Package 'bvartools'

January 22, 2022
Title Bayesian Inference of Vector Autoregressive and Error Correction Models

Version 0.2.1
Date 2022-01-21

Description

Assists in the set-up of algorithms for Bayesian inference of vector autoregressive (VAR) and error correction (VEC) models. Functions for posterior simulation, forecasting, impulse response analysis and forecast error variance decomposition are largely based on the introductory texts of Chan, Koop, Poirier and Tobias (2019, ISBN: 9781108437493), Koop and Korobilis (2010) doi:10.1561/0800000013 and Luetkepohl (2006, ISBN: 9783540262398).
License GPL ($>=2$)
Depends R (>= 3.4.0), coda
Imports grDevices, graphics, methods, parallel, Rcpp (>=0.12.14),
stats
LinkingTo Rcpp, RcppArmadillo
Encoding UTF-8
RoxygenNote 7.1.2
URL https://github.com/franzmohr/bvartools
BugReports https://github.com/franzmohr/bvartools/issues
Suggests knitr, rmarkdown
VignetteBuilder knitr
Collate 'RcppExports.R' 'add_priors.R' 'add_priors.bvarmodel.R' 'add_priors.bvecmodel.R' 'add_priors.dfmodel.R' 'bvar.R' 'bvar_fill_helper.R' 'bvarpost.R' 'bvartools.R' 'bvec.R' 'bvec_to_bvar.R' 'bvecpost.R' 'data.R' 'dfm.R' 'dfmpost.R' 'draw_posterior.R' 'draw_posterior.bvarmodel.R' 'draw_posterior.bvecmodel.R' 'draw_posterior.dfmodel.R' 'fevd.R' 'fevd.bvar.R' 'gen_dfm.R' 'gen_var.R' 'gen_vec.R' 'get_regressor_names.R' 'inclusion_prior.R' 'irf.R' 'irf.bvar.R' 'minnesota_prior.R' 'plot.bvar.R' 'plot.bvarfevd.R' 'plot.bvarirf.R' 'plot.bvarprd.R'
'plot.bvec.R' 'plot.dfm.R' 'predict.bvar.R' 'summary.bvar.R''print.summary.bvar.R' 'summary.bvec.R' 'print.summary.bvec.R''ssvs_prior.R' 'summary.bvarlist.R' 'summary.dfm.R''thin.bvar.R' 'thin.bvarlist.R' 'thin.bvec.R' 'thin.dfm.R''tvpribbon.R' 'zzz.R'
NeedsCompilation yes
Author Franz X. Mohr [aut, cre]
Maintainer Franz X. Mohr bvartools@outlook.com
Repository CRAN
Date/Publication 2022-01-22 01:12:41 UTC
R topics documented:
add_priors 3
add_priors.bvarmodel 4
add_priors.bvecmodel 8
add_priors.dfmodel 12
bem_dfmdata 14
bvar 14
bvarpost 20
bvartools 21
bvec 22
bvecpost 29
bvec_to_bvar 30
bvs 33
dfm 34
dfmpost 37
draw_posterior 38
draw_posterior.bvarmodel 38
draw_posterior.bvecmodel 39
draw_posterior.dfmodel 40
e1 41
e6 42
fevd 43
fevd.bvar 44
gen_dfm 46
gen_var 47
gen_vec 49
inclusion_prior 51
irf 53
irf.bvar 54
kalman_dk 56
loglik_normal 58
minnesota_prior 59
plot.bvarprd 61
post_coint_kls 62
post_coint_kls_sur 64
post_normal 67
post_normal_sur 68
ssvs 70
ssvs_prior 72
stoch_vol 73
summary.bvar 74
summary.bvarlist 75
summary.bvec 76
summary.dfm 77
thin.bvar 77
thin.bvarlist 78
thin.bvec 79
thin.dfm 80
us_macrodata 81
Index 83
add_priorsAdd Priors to Bayesian Models A generic function used to generateprior specifications for a list of models. The function invokes particu-lar methods which depend on the class of the first argument.

Description

Add Priors to Bayesian Models

A generic function used to generate prior specifications for a list of models. The function invokes particular methods which depend on the class of the first argument.

Usage

add_priors(object, ...)

Arguments

$$
\begin{array}{ll}
\text { object } & \text { an object of class "bvarmodel" or "bvecmodel". } \\
\ldots & \text { arguments passed forward to method. }
\end{array}
$$

Examples

```
# Load data
data("e1")
e1 <- diff(log(e1)) * 100
# Obtain data matrices
model <- gen_var(e1, p = 2, deterministic = 2,
    iterations = 100, burnin = 10)
```

\# Chosen number of iterations and burn-in draws should be much higher.
\# Add prior specifications
model <- add_priors(model)
add_priors.bvarmodel Add Priors for a Vector Autoregressive Models

Description

Adds prior specifications to a list of models, which was produced by function gen_var.

Usage

```
\#\# S3 method for class 'bvarmodel'
add_priors(
    object,
    coef \(=\) list(v_i \(=1, v_{-} i_{-}\)det \(=0.1\), shape \(=3\), rate \(=1 e-04\), rate_det \(=0.01\) ),
    sigma \(=\) list (df = "k", scale \(=1, \mathrm{mu}=0, \mathrm{v}_{-} \mathrm{i}=0.01\), sigma_h = 0.05),
    ssvs = NULL,
    bvs = NULL,
    ...
    )
```


Arguments

object a list, usually, the output of a call to gen_var.
coef a named list of prior specifications for the coefficients of the models. For the default specification all prior means are set to zero and the diagonal elements of the inverse prior variance-covariance matrix are set to 1 for coefficients corresponding to non-deterministic and structural terms. For deterministic coefficients the prior variances are set to 10 via $v_{-} i _d e t=0.1$. The variances need to be specified as precisions, i.e. as inverses of the variances. For further specifications such as the Minnesota prior see 'Details'.
sigma a named list of prior specifications for the error variance-covariance matrix of the models. For the default specification of an inverse Wishart distribution the prior degrees of freedom are set to the number of endogenous variables and the prior variances to 1 . See 'Details'.
ssvs optional; a named list of prior specifications for the SSVS algorithm. Not allowed for TVP models. See 'Details'.
bvs optional; a named list of prior specifications for the BVS algorithm. See 'Details'.
... further arguments passed to or from other methods.

Details

The arguments of the function require named lists. Possible specifications are described in the following. Note that it is important to specify the priors in the correct list. Otherwise, the provided specification will be disregarded and default values will be used.
Argument coef can contain the following elements
v_i a numeric specifying the prior precision of the coefficients. Default is 1.
v_i_det a numeric specifying the prior precision of coefficients corresponding to deterministic terms. Default is 0.1 .
coint_var a logical specifying whether the prior mean of the first own lag of an endogenous variable should be set to 1 . Default is FALSE.
const a numeric or character specifying the prior mean of coefficients, which correspond to the intercept. If a numeric is provided, all prior means are set to this value. If const = "mean", the mean of the respective endogenous variable is used as prior mean. If const = "first", the first values of the respective endogenous variable is used as prior mean.
minnesota a list of length 4 containing parameters for the calculation of the Minnesota prior, where the element names must be kappa0, kappa1, kappa2 and kappa3. For the endogenous variable i the prior variance of the l th lag of regressor j is obtained as
$\frac{\kappa_{0}}{l^{2}}$ for own lags of endogenous variables,
$\frac{\kappa_{0} \kappa_{1}}{l^{2}} \frac{\sigma_{i}^{2}}{\sigma_{j}^{2}}$ for endogenous variables other than own lags,
$\frac{\kappa_{0} \kappa_{2}}{(l+1)^{2}} \frac{\sigma_{i}^{2}}{\sigma_{j}^{2}}$ for exogenous variables,
$\kappa_{0} \kappa_{3} \sigma_{i}^{2}$ for deterministic terms,
where σ_{i} is the residual standard deviation of variable i of an unrestricted LS estimate. For exogenous variables σ_{i} is the sample standard deviation.
max_var a numeric specifying the maximum prior variance that is allowed for non-deterministic coefficients.
shape a numeric specifying the prior shape parameter of the error term of the state equation. Only used for models with time varying parameters. Default is 3 .
rate a numeric specifying the prior rate parameter of the error term of the state equation. Only used for models with time varying parameters. Default is 0.0001 .
rate_det a numeric specifying the prior rate parameter of the error term of the state equation for coefficients, which correspond to deterministic terms. Only used for models with time varying parameters. Default is 0.01 .
If minnesota is specified, $v_{-} i$ and $v_{-} i_{-}$det are ignored.
Argument sigma can contain the following elements:
df an integer or character specifying the prior degrees of freedom of the error term. Only used, if the prior is inverse Wishart. Default is " k ", which indicates the amount of endogenous variables in the respective model. " $k+3$ " can be used to set the prior to the amount of endogenous variables plus 3. If an integer is provided, the degrees of freedom are set to this value in all models.
scale a numeric specifying the prior error variance of endogenous variables. Default is 1 .
shape a numeric or character specifying the prior shape parameter of the error term. Only used, if the prior is inverse gamma or if time varying volatilities are estimated. For models with constant volatility the default is " k ", which indicates the amount of endogenous variables in the respective country model. " $k+3$ " can be used to set the prior to the amount of endogenous variables plus 3. If a numeric is provided, the shape parameters are set to this value in all models. For models with stochastic volatility this prior refers to the error variance of the state equation.
rate a numeric specifying the prior rate parameter of the error term. Only used, if the prior is inverse gamma or if time varying volatilities are estimated. For models with stochastic volatility this prior refers to the error variance of the state equation.
mu numeric of the prior mean of the initial state of the log-volatilities. Only used for models with time varying volatility.
v_i numeric of the prior precision of the initial state of the log-volatilities. Only used for models with time varying volatility.
sigma_h numeric of the initial draw for the variance of the log-volatilities. Only used for models with time varying volatility.
covar logical indicating whether error covariances should be estimated. Only used in combination with an inverse gamma prior or stochastic volatility, for which shape and rate must be specified.
df and scale must be specified for an inverse Wishart prior. shape and rate are required for an inverse gamma prior. For structural models or models with stochastic volatility only a gamma prior specification is allowed.

Argument ssvs can contain the following elements:
inprior a numeric between 0 and 1 specifying the prior probability of a variable to be included in the model.
tau a numeric vector of two elements containing the prior standard errors of restricted variables $\left(\tau_{0}\right)$ as its first element and unrestricted variables $\left(\tau_{1}\right)$ as its second.
semiautomatic an numeric vector of two elements containing the factors by which the standard errors associated with an unconstrained least squares estimate of the model are multiplied to obtain the prior standard errors of restricted $\left(\tau_{0}\right)$ and unrestricted $\left(\tau_{1}\right)$ variables, respectively. This is the semiautomatic approach described in George et al. (2008).
covar logical indicating if SSVS should also be applied to the error covariance matrix as in George et al. (2008).
exclude_det logical indicating if deterministic terms should be excluded from the SSVS algorithm.
minnesota a numeric vector of length 4 containing parameters for the calculation of the Minnesotalike inclusion priors. See below.

Either tau or semiautomatic must be specified.
The argument bvs can contain the following elements
inprior a numeric between 0 and 1 specifying the prior probability of a variable to be included in the model.
covar logical indicating if BVS should also be applied to the error covariance matrix.
exclude_det logical indicating if deterministic terms should be excluded from the BVS algorithm.
minnesota a numeric vector of length 4 containing parameters for the calculation of the Minnesotalike inclusion priors. See below.

If either ssvs\$minnesota or bvs\$minnesota is specified, prior inclusion probabilities are calculated in a Minnesota-like fashion as

$\frac{\kappa_{1}}{l}$	for own lags of endogenous variables,
$\frac{\kappa_{2}}{l}$	for other endogenous variables,
$\frac{\kappa_{3}}{1+l}$	for exogenous variables,
κ_{4}	for deterministic variables,

for lag l with $\kappa_{1}, \kappa_{2}, \kappa_{3}, \kappa_{4}$ as the first, second, third and forth element in ssvs\$minnesota or bvs\$minnesota, respectively.

Value

A list of country models.

References

Chan, J., Koop, G., Poirier, D. J., \& Tobias J. L. (2019). Bayesian econometric methods (2nd ed.). Cambridge: Cambridge University Press.

George, E. I., Sun, D., \& Ni, S. (2008). Bayesian stochastic search for VAR model restrictions. Journal of Econometrics, 142(1), 553-580. doi: 10.1016/j.jeconom.2007.08.017

Korobilis, D. (2013). VAR forecasting using Bayesian variable selection. Journal of Applied Econometrics, 28(2), 204-230. doi: 10.1002/jae. 1271

Lütkepohl, H. (2006). New introduction to multiple time series analysis (2nd ed.). Berlin: Springer.

Examples

```
data("e1")
e1 <- diff(log(e1)) * 100
model <- gen_var(e1, p = 2, deterministic = 2,
    iterations = 100, burnin = 10)
model <- add_priors(model)
```

add_priors.bvecmodel Add Priors for Vector Error Correction Models

Description

Adds prior specifications to a list of models, which was produced by function gen_vec.

Usage

```
    \#\# S3 method for class 'bvecmodel'
    add_priors(
    object,
    coef = list(v_i = 1, v_i_det = 0.1, shape = 3, rate = 1e-04, rate_det = 0.01),
    coint \(=\) list(v_i = 0, p_tau_i = 1, shape = 3, rate = 1e-04, rho = 0.999),
    sigma \(=\) list(df = "k", scale = 1, mu = 0, v_i = 0.01, sigma_h = 0.05),
    ssvs = NULL,
    bvs = NULL,
    ...
    )
```


Arguments

object
coef
coint
sigma
ssvs
bvs optional; a named list of prior specifications for the BVS algorithm. See 'Details'.
further arguments passed to or from other methods.

Details

The arguments of the function require named lists. Possible specifications are described in the following. Note that it is important to specify the priors in the correct list. Otherwise, the provided specification will be disregarded and default values will be used.
Argument coef contains the following elements
$v_{-} i$ a numeric specifying the prior precision of the coefficients. Default is 1 .
v_i_det a numeric specifying the prior precision of coefficients that correspond to deterministic terms. Default is 0.1.
const a character specifying the prior mean of coefficients, which correspond to the intercept. If const = "mean", the means of the series of endogenous variables are used as prior means. If const = "first", the first values of the series of endogenous variables are used as prior means.
minnesota a list of length 4 containing parameters for the calculation of the Minnesota prior, where the element names must be kappa0, kappa1, kappa2 and kappa3. For the endogenous variable i the prior variance of the l th lag of regressor j is obtained as

$$
\begin{gathered}
\frac{\kappa_{0}}{l^{2}} \text { for own lags of endogenous variables, } \\
\frac{\kappa_{0} \kappa_{1}}{l^{2}} \frac{\sigma_{i}^{2}}{\sigma_{j}^{2}} \text { for endogenous variables other than own lags, } \\
\frac{\kappa_{0} \kappa_{2}}{(l+1)^{2}} \frac{\sigma_{i}^{2}}{\sigma_{j}^{2}} \text { for exogenous variables, } \\
\kappa_{0} \kappa_{3} \sigma_{i}^{2} \text { for deterministic terms }
\end{gathered}
$$

where σ_{i} is the residual standard deviation of variable i of an unrestricted LS estimate. For exogenous variables σ_{i} is the sample standard deviation.
The function only provides priors for the non-cointegration part of the model. However, the residual standard errors σ_{i} are based on an unrestricted LS regression of the endogenous variables on the error correction term and the non-cointegration regressors.
max_var a numeric specifying the maximum prior variance that is allowed for non-deterministic coefficients.
shape a numeric specifying the prior shape parameter of the error term of the state equation. Only used for models with time varying parameters. Default is 3 .
rate a numeric specifying the prior rate parameter of the error term of the state equation. Only used for models with time varying parameters. Default is 0.0001 .
rate_det a numeric specifying the prior rate parameter of the error term of the state equation for coefficients, which correspond to deterministic terms. Only used for models with time varying parameters. Default is 0.01 .

If minnesota is specified, elements $v_{-} i$ and $v_{-} i _d e t$ are ignored.
Argument coint can contain the following elements:
v_i numeric between 0 and 1 specifying the shrinkage of the cointegration space prior. Default is 0.
p_tau_i numeric of the diagonal elements of the inverse prior matrix of the central location of the cointegration space $s p(\beta)$. Default is 1 .
shape an integer specifying the prior degrees of freedom of the error term of the state equation of the loading matrix α. Default is 3 .
rate a numeric specifying the prior variance of error term of the state equation of the loading matrix α. Default is 0.0001 .
rho a numeric specifying the autocorrelation coefficient of the state equation of β. It must be smaller than 1 . Default is 0.999 . Note that in contrast to Koop et al. (2011) ρ is not drawn in the Gibbs sampler of this package yet.

Argument sigma can contain the following elements:
df an integer or character specifying the prior degrees of freedom of the error term. Only used, if the prior is inverse Wishart. Default is " k ", which indicates the amount of endogenous variables in the respective model. " $k+3$ " can be used to set the prior to the amount of endogenous variables plus 3. If an integer is provided, the degrees of freedom are set to this value in all models. In all cases the rank r of the cointegration matrix is automatically added.
scale a numeric specifying the prior error variance of endogenous variables. Default is 1.
shape a numeric or character specifying the prior shape parameter of the error term. Only used, if the prior is inverse gamma or if time varying volatilities are estimated. For models with constant volatility the default is " k ", which indicates the amount of endogenous variables in the respective country model. " $k+3$ " can be used to set the prior to the amount of endogenous variables plus 3. If a numeric is provided, the shape parameters are set to this value in all models. For models with stochastic volatility this prior refers to the error variance of the state equation.
rate a numeric specifying the prior rate parameter of the error term. Only used, if the prior is inverse gamma or if time varying volatilities are estimated. For models with stochastic volatility this prior refers to the error variance of the state equation.
mu numeric of the prior mean of the initial state of the log-volatilities. Only used for models with time varying volatility.
v_i numeric of the prior precision of the initial state of the log-volatilities. Only used for models with time varying volatility.
sigma_h numeric of the initial draw for the variance of the log-volatilities. Only used for models with time varying volatility.
covar logical indicating whether error covariances should be estimated. Only used in combination with an inverse gamma prior or stochastic volatility, for which shape and rate must be specified.
df and scale must be specified for an inverse Wishart prior. shape and rate are required for an inverse gamma prior. For structural models or models with stochastic volatility only a gamma prior specification is allowed.
Argument ssvs can contain the following elements:
inprior a numeric between 0 and 1 specifying the prior probability of a variable to be included in the model.
tau a numeric vector of two elements containing the prior standard errors of restricted variables (τ_{0}) as its first element and unrestricted variables $\left(\tau_{1}\right)$ as its second.
semiautomatic an numeric vector of two elements containing the factors by which the standard errors associated with an unconstrained least squares estimate of the model are multiplied to obtain the prior standard errors of restricted $\left(\tau_{0}\right)$ and unrestricted $\left(\tau_{1}\right)$ variables, respectively. This is the semiautomatic approach described in George et al. (2008).
covar logical indicating if SSVS should also be applied to the error covariance matrix as in George et al. (2008).
exclude_det logical indicating if deterministic terms should be excluded from the SSVS algorithm.
minnesota a numeric vector of length 4 containing parameters for the calculation of the Minnesotalike inclusion priors. See below.

Either tau or semiautomatic must be specified.
The argument bvs can contain the following elements
inprior a numeric between 0 and 1 specifying the prior probability of a variable to be included in the model.
covar logical indicating if BVS should also be applied to the error covariance matrix.
exclude_det logical indicating if deterministic terms should be excluded from the BVS algorithm. minnesota a numeric vector of length 4 containing parameters for the calculation of the Minnesotalike inclusion priors. See below.

If either ssvs\$minnesota or bvs\$minnesota is specified, prior inclusion probabilities are calculated in a Minnesota-like fashion as

$\frac{\kappa_{1}}{l}$	for own lags of endogenous variables,
$\frac{\kappa_{2}}{l}$	for other endogenous variables,
$\frac{\kappa_{3}}{1+l}$	for exogenous variables,
κ_{4}	for deterministic variables,

for lag l with $\kappa_{1}, \kappa_{2}, \kappa_{3}, \kappa_{4}$ as the first, second, third and forth element in ssvs\$minnesota or bvs\$minnesota, respectively.

Value

A list of country models.

References

Chan, J., Koop, G., Poirier, D. J., \& Tobias J. L. (2019). Bayesian econometric methods (2nd ed.). Cambridge: Cambridge University Press.
George, E. I., Sun, D., \& Ni, S. (2008). Bayesian stochastic search for VAR model restrictions. Journal of Econometrics, 142(1), 553-580. doi: 10.1016/j.jeconom.2007.08.017
Koop, G., León-González, R., \& Strachan R. W. (2010). Efficient posterior simulation for cointegrated models with priors on the cointegration space. Econometric Reviews, 29(2), 224-242. doi: 10.1080/07474930903382208
Koop, G., León-González, R., \& Strachan R. W. (2011). Bayesian inference in a time varying cointegration model. Journal of Econometrics, 165(2), 210-220. doi: 10.1016/j.jeconom.2011.07.007

Korobilis, D. (2013). VAR forecasting using Bayesian variable selection. Journal of Applied Econometrics, 28(2), 204-230. doi: 10.1002/jae. 1271
Lütkepohl, H. (2006). New introduction to multiple time series analysis (2nd ed.). Berlin: Springer.

Examples

```
# Get data
data("e6")
# Create model
model <- gen_vec(e6, p = 4, r=1,
    const = "unrestricted", seasonal = "unrestricted",
    iterations = 100, burnin = 10)
# Chosen number of iterations and burnin should be much higher.
# Add priors
model <- add_priors(model)
```


Description

Adds prior specifications to a list of models, which was produced by function gen_dfm.

Usage

```
## S3 method for class 'dfmodel'
add_priors(
    object,
    lambda = list(v_i = 0.01),
    sigma_u = list(shape = 5, rate = 4),
    a = list(v_i = 0.01),
    sigma_v = list(shape = 5, rate = 4),
)
```


Arguments

object
lambda
sigma_u a named list of prior specifications for the error variance-covariance matrix. See 'Details'.
a a named list of prior specifications for the coefficients of the transition equation. For the default specification the diagonal elements of the inverse prior variance-covariance matrix are set to 0.01 . The variances need to be specified as precisions, i.e. as inverses of the variances.
sigma_v a named list of prior specifications for the error variance-covariance matrix. See 'Details'.
... further arguments passed to or from other methods.

Details

Argument lambda can only contain the element $v_{-} i$, which is a numeric specifying the prior precision of the loading factors of the measurement equation. Default is 0.01 .
The function assumes an inverse gamma prior for the errors of the measurement equation. Argument sigma_u can contain the following elements:
shape a numeric or character specifying the prior shape parameter of the error terms of the measurement equation. Default is 5 .
rate a numeric specifying the prior rate parameter of the error terms of the measurement equation. Default is 4 .

Argument a can only contain the element $v_{-} i$, which is a numeric specifying the prior precision of the coefficients of the transition equation. Default is 0.01 .
The function assumes an inverse gamma prior for the errors of the transition equation. Argument sigma_v can contain the following elements:
shape a numeric or character specifying the prior shape parameter of the error terms of the transition equation. Default is 5 .
rate a numeric specifying the prior rate parameter of the error terms of the transition equation. Default is 4 .

Value

A list of models.

References

Chan, J., Koop, G., Poirier, D. J., \& Tobias J. L. (2019). Bayesian econometric methods (2nd ed.). Cambridge: Cambridge University Press.
Lütkepohl, H. (2007). New introduction to multiple time series analysis (2nd ed.). Berlin: Springer.

Examples

```
# Load data
data("bem_dfmdata")
# Generate model data
model <- gen_dfm(x = bem_dfmdata, p = 1, n = 1,
    iterations = 5000, burnin = 1000)
```

\# Number of iterations and burnin should be much higher.
\# Add prior specifications
model <- add_priors(model,
lambda = list(v_i = .01),
sigma_u = list(shape = 5, rate = 4),
a $=$ list($v_{-} i=.01$),
sigma_v $=$ list (shape $=5$, rate $=4$)
bem_dfmdata FRED-QD data

Description

The data set contains quarterly time series for 196 US macroeconomic variables from 1959Q3 to 2015Q3. It was produced from file "freddata_Q.csv" of the data sets associated with Chan, Koop, Poirier and Tobias (2019). Raw data are available at https://web.ics.purdue.edu/~jltobias/ second_edition/Chapter18/code_for_exercise_4/freddata_Q.csv.

Usage

data("bem_dfmdata")

Format

A named time-series object with 225 rows and 196 variables. A detailed explanation of the variables can be found in McCracken and Ng (2016).

References

Chan, J., Koop, G., Poirier, D. J., \& Tobias J. L. (2019). Bayesian econometric methods (2nd ed.). Cambridge: Cambridge University Press.
McCracken, M. W., \& Ng, S. (2016). FRED-MD: A monthly database for macroeconomic research. Journal of Business \& Economic Statistics 34(4), 574-589. doi: 10.1080/07350015.2015.1086655
bvar Bayesian Vector Autoregression Objects

Description

bvar is used to create objects of class "bvar".
A plot function for objects of class "bvar".
Forecasting a Bayesian VAR object of class "bvar" with credible bands.

Usage

```
bvar(
    data = NULL,
    exogen = NULL,
    y,
    x = NULL,
    A0 = NULL,
    A = NULL,
    B = NULL,
    C = NULL,
    Sigma = NULL
)
## S3 method for class 'bvar'
plot(x, ci = 0.95, type = "hist", ...)
## S3 method for class 'bvar'
predict(object, ..., n.ahead = 10, new_x = NULL, new_d = NULL, ci = 0.95)
```


Arguments

data
the original time-series object of endogenous variables.
exogen the original time-series object of unmodelled variables.
y
a time-series object of endogenous variables with T observations, usually, a result of a call to gen_var.
x
A0
an object of class "bvar", usually, a result of a call to draw_posterior.
either a $K^{2} \times S$ matrix of MCMC coefficient draws of structural parameters or a named list, where element coeffs contains a $K^{2} \times S$ matrix of MCMC coefficient draws of structural parameters and element lambda contains the corresponding draws of inclusion parameters in case variable selection algorithms were employed. For time varying parameter models the coefficient matrix must be $T K^{2} \times S$. Draws of the error covariance matrix of the state equation can be provided as a $K^{2} \times S$ matrix in an additional list element.

A
either a $p K^{2} \times S$ matrix of MCMC coefficient draws of lagged endogenous variables or a named list, where element coeffs contains a $p K^{2} \times S$ matrix of MCMC coefficient draws of lagged endogenous variables and element lambda contains the corresponding draws of inclusion parameters in case variable selection algorithms were employed. For time varying parameter models the coefficient matrix must be $p T K^{2} \times S$. Draws of the error covariance matrix of the state equation can be provided as a $p K^{2} \times S$ matrix in an additional list element.

B either a $((1+s) M K) \times S$ matrix of MCMC coefficient draws of unmodelled, non-deterministic variables or a named list, where element coeffs contains a $((1+s) M K) \times S$ matrix of MCMC coefficient draws of unmodelled, nondeterministic variables and element lambda contains the corresponding draws of inclusion parameters in case variable selection algorithms were employed. For time varying parameter models the coefficient matrix must be $(1+s) T M K \times S$.

Draws of the error covariance matrix of the state equation can be provided as a $(1+s) M K \times S$ matrix in an additional list element.
C either a $K N \times S$ matrix of MCMC coefficient draws of deterministic terms or a named list, where element coeffs contains a $K N \times S$ matrix of MCMC coefficient draws of deterministic terms and element lambda contains the corresponding draws of inclusion parameters in case variable selection algorithms were employed. For time varying parameter models the coefficient matrix must be $T K N \times S$. Draws of the error covariance matrix of the state equation can be provided as a $K N \times S$ matrix in an additional list element.
Sigma a $K^{2} \times S$ matrix of MCMC draws for the error variance-covariance matrix or a named list, where element coeffs contains a $K^{2} \times S$ matrix of MCMC draws for the error variance-covariance matrix and element lambda contains the corresponding draws of inclusion parameters in case variable selection algorithms were employed to the covariances. For time varying parameter models the coefficient matrix must be $T K^{2} \times S$. Draws of the error covariance matrix of the state equation can be provided as a $K^{2} \times S$ matrix in an additional list element.
ci a numeric between 0 and 1 specifying the probability mass covered by the credible intervals. Defaults to 0.95 .
type either "hist" (default) for histograms or "trace" for a trace plot. Only used for parameter draws of constant coefficients.
... additional arguments.
object an object of class "bvar", usually, a result of a call to bvar or bvec_to_bvar.
n. ahead number of steps ahead at which to predict.
new_x an object of class ts of new non-deterministic, exogenous variables. The object must have the same frequency as the time series in object[["x"]] and must contain at least all necessary observations for the predicted period.
new_d a matrix of new deterministic variables. Must have n. ahead rows.

Details

For the VARX model

$$
A_{0} y_{t}=\sum_{i=1}^{p} A_{i} y_{t-i}+\sum_{i=0}^{s} B_{i} x_{t-i}+C d_{t}+u_{t}
$$

the function collects the S draws of a Gibbs sampler (after the burn-in phase) in a standardised object, where y_{t} is a K-dimensional vector of endogenous variables, A_{0} is a $K \times K$ matrix of structural coefficients. A_{i} is a $K \times K$ coefficient matrix of lagged endogenous variabels. x_{t} is an Mdimensional vector of unmodelled, non-deterministic variables and B_{i} its corresponding coefficient matrix. d_{t} is an N -dimensional vector of deterministic terms and C its corresponding coefficient matrix. u_{t} is an error term with $u_{t} \sim N\left(0, \Sigma_{u}\right)$.
For time varying parameter and stochastic volatility models the respective coefficients and error covariance matrix of the above model are assumed to be time varying, respectively.
The draws of the different coefficient matrices provided in A0, A, B, C and Sigma have to correspond to the same MCMC iterations.

For the VAR model

$$
A_{0} y_{t}=\sum_{i=1}^{p} A_{i} y_{t-i}+\sum_{i=0}^{s} B_{i} x_{t-i}+C D_{t}+u_{t},
$$

with $u_{t} \sim N(0, \Sigma)$ the function produces n . ahead forecasts.

Value

An object of class "bvar" containing the following components, if specified:

data exogen	the original time-series object of endogenous variables. the original time-series object of unmodelled variables.
y	a $K \times T$ matrix of endogenous variables.
x	a $(p K+(1+s) M+N) \times T$ matrix of regressor variables.
A0	an $S \times K^{2}$ "mcmc" object of coefficient draws of structural parameters. In case of time varying parameters a list of such objects.
A0_lambda	an $S \times K^{2}$ "mcmc" object of inclusion parameters for structural parameters.
A0_sigma	an $S \times K^{2}$ "mcmc" object of the error covariance matrices of the structural parameters in a model with time varying parameters.
A	an $S \times p K^{2}$ "mcmc" object of coefficient draws of lagged endogenous variables. In case of time varying parameters a list of such objects.
A_lambda	an $S \times p K^{2}$ "mcmc" object of inclusion parameters for lagged endogenous variables.
A_sigma	an $S \times p K^{2}$ "mcmc" object of the error covariance matrices of coefficients of lagged endogenous variables in a model with time varying parameters.
B	an $S \times((1+s) M K)$ "mcmc" object of coefficient draws of unmodelled, nondeterministic variables. In case of time varying parameters a list of such objects.
B_lambda	an $S \times((1+s) M K)$ "mcmc" object of inclusion parameters for unmodelled, non-deterministic variables.
B_sigma	an $S \times((1+s) M K)$ "mcmc" object of the error covariance matrices of coefficients of unmodelled, non-deterministic variables in a model with time varying parameters.
C	an $S \times N K$ "mcmc" object of coefficient draws of deterministic terms. In case of time varying parameters a list of such objects.
C_lambda	an $S \times N K$ "mcmc" object of inclusion parameters for deterministic terms.
C_sigma	an $S \times N K$ "mcmc" object of the error covariance matrices of coefficients of deterministic terms in a model with time varying parameters.
Sigma	an $S \times K^{2}$ "mcmc" object of variance-covariance draws. In case of time varying parameters a list of such objects.
Sigma_lambda	an $S \times K^{2}$ "mcmc" object of inclusion parameters for error covariances.
Sigma_sigma	an $S \times K^{2}$ "mcmc" object of the error covariance matrices of the coefficients of the error covariance matrix of the measurement equation of a model with time varying parameters.
specification	a list containing information on the model specification.

A time-series object of class "bvarprd".

References

Lütkepohl, H. (2006). New introduction to multiple time series analysis (2nd ed.). Berlin: Springer.

Examples

```
# Get data
data("e1")
e1 <- diff(log(e1))
e1 <- window(e1, end = c(1978, 4))
# Generate model data
data <- gen_var(e1, p = 2, deterministic = "const")
# Add priors
model <- add_priors(data,
    coef = list(v_i = 0, v_i_det = 0),
    sigma = list(df = 0, scale = .00001))
# Set RNG seed for reproducibility
set.seed(1234567)
iterations <- 400 # Number of iterations of the Gibbs sampler
# Chosen number of iterations and burnin should be much higher.
burnin <- 100 # Number of burn-in draws
draws <- iterations + burnin # Total number of MCMC draws
y <- t(model$data$Y)
x <- t(model$data$Z)
tt <- ncol(y) # Number of observations
k <- nrow(y) # Number of endogenous variables
m <- k * nrow(x) # Number of estimated coefficients
# Priors
a_mu_prior <- model$priors$coefficients$mu # Vector of prior parameter means
a_v_i_prior <- model$priors$coefficients$v_i # Inverse of the prior covariance matrix
u_sigma_df_prior <- model$priors$sigma$df # Prior degrees of freedom
u_sigma_scale_prior <- model$priors$sigma$scale # Prior covariance matrix
u_sigma_df_post <- tt + u_sigma_df_prior # Posterior degrees of freedom
# Initial values
u_sigma_i <- diag(1 / .00001, k)
# Data containers for posterior draws
draws_a <- matrix(NA, m, iterations)
draws_sigma <- matrix(NA, k^2, iterations)
# Start Gibbs sampler
for (draw in 1:draws) {
    # Draw conditional mean parameters
    a <- post_normal(y, x, u_sigma_i, a_mu_prior, a_v_i_prior)
```

```
    # Draw variance-covariance matrix
    u <- y - matrix(a, k) %*% x # Obtain residuals
    u_sigma_scale_post <- solve(u_sigma_scale_prior + tcrossprod(u))
    u_sigma_i <- matrix(rWishart(1, u_sigma_df_post, u_sigma_scale_post)[,, 1], k)
    # Store draws
    if (draw > burnin) {
    draws_a[, draw - burnin] <- a
    draws_sigma[, draw - burnin] <- solve(u_sigma_i)
}
}
# Generate bvar object
bvar_est <- bvar(y = model$data$Y, x = model$data$Z,
    A = draws_a[1:18,], C = draws_a[19:21, ],
    Sigma = draws_sigma)
# Load data
data("e1")
e1 <- diff(log(e1)) * 100
# Generate model
model <- gen_var(e1, p = 1, deterministic = 2,
    iterations = 100, burnin = 10)
# Chosen number of iterations and burn-in should be much higher.
# Add priors
model <- add_priors(model)
# Obtain posterior draws
object <- draw_posterior(model)
# Plot draws
plot(object)
# Load data
data("e1")
e1 <- diff(log(e1)) * 100
e1 <- window(e1, end = c(1978, 4))
# Generate model data
model <- gen_var(e1, p = 2, deterministic = 2,
    iterations = 100, burnin = 10)
# Chosen number of iterations and burnin should be much higher.
# Add prior specifications
model <- add_priors(model)
# Obtain posterior draws
object <- draw_posterior(model)
```


\# Generate forecasts

bvar_pred <- predict(object, n.ahead $=10$, new_d $=\operatorname{rep}(1,10)$)
\# Plot forecasts
plot(bvar_pred)
bvarpost Posterior Simulation for BVAR Models

Description

Produces draws from the posterior distributions of Bayesian VAR models.

Usage

bvarpost(object)

Arguments

object an object of class "bvarmodel", usually, a result of a call to gen_var in combination with add_priors.

Details

The function implements commonly used posterior simulation algorithms for Bayesian VAR models with both constant and time varying parameters (TVP) as well as stochastic volatility. It can produce posterior draws for standard BVAR models with independent normal-Wishart priors, which can be augmented by stochastic search variable selection (SSVS) as proposed by Geroge et al. (2008) or Bayesian variable selection (BVS) as proposed in Korobilis (2013). Both SSVS or BVS can also be applied to the covariances of the error term.
The implementation follows the descriptions in Chan et al. (2019), George et al. (2008) and Korobilis (2013). For all approaches the SUR form of a VAR model is used to obtain posterior draws. The algorithm is implemented in $\mathrm{C}++$ to reduce calculation time.

The function also supports structural BVAR models, where the structural coefficients are estimated from contemporary endogenous variables, which corresponds to the so-called (A-model). Currently, only specifications are supported, where the structural matrix contains ones on its diagonal and all lower triangular elements are freely estimated. Since posterior draws are obtained based on the SUR form of the VAR model, the structural coefficients are drawn jointly with the other coefficients.

Value

An object of class "bvar".

References

Chan, J., Koop, G., Poirier, D. J., \& Tobias J. L. (2019). Bayesian econometric methods (2nd ed.). Cambridge: Cambridge University Press.
George, E. I., Sun, D., \& Ni, S. (2008). Bayesian stochastic search for VAR model restrictions. Journal of Econometrics, 142(1), 553-580. doi: 10.1016/j.jeconom.2007.08.017
Korobilis, D. (2013). VAR forecasting using Bayesian variable selection. Journal of Applied Econometrics, 28(2), 204-230. doi: 10.1002/jae. 1271

Examples

```
# Get data
data("e1")
e1 <- diff(log(e1)) * 100
# Create model
model <- gen_var(e1, p = 2, deterministic = "const",
    iterations = 50, burnin = 10)
# Number of iterations and burnin should be much higher.
# Add priors
model <- add_priors(model)
# Obtain posterior draws
object <- bvarpost(model)
```

bvartools bvartools: Bayesian Inference of Vector Autoregressive Models

Description

A collection of R and $\mathrm{C}++$ functions, which assist in the Bayesian inference of vector autoregressive (VAR) and vector error correction (VEC) models.

Details

The package bvartools implements some common functions used for Bayesian inference for linear, multivariate time series models. It should give researchers maximum freedom in setting up MCMC algorithms in R and keep calculation time limited at the same time. This is achieved by implementing posterior simulation functions in $\mathrm{C}++$. Its main features are

- The bvar and bvec functions collect the output of a Gibbs sampler in standardised objects, which can be used for further analyses.
- Further functions such as predict, irf, fevd for forecasting, impulse response analysis and forecast error variance decomposition, respectively.
- Computationally intensive functions - such as for posterior simulation - are written in C++ using the RcppArmadillo package of Eddelbuettel and Sanderson (2014).
- Posterior simulation functions for commonly used Gibbs sampler algorithms.

Author(s)

Franz X. Mohr

References

Chan, J., Koop, G., Poirier, D. J., \& Tobias, J. L. (2019). Bayesian Econometric Methods (2nd ed.). Cambridge: University Press.
Durbin, J., \& Koopman, S. J. (2002). A simple and efficient simulation smoother for state space time series analysis. Biometrika, 89(3), 603-615.
Eddelbuettel, D., \& Sanderson C. (2014). RcppArmadillo: Accelerating R with high-performance C++ linear algebra. Computational Statistics and Data Analysis, 71, 1054-1063. doi: 10.1016/ j.csda.2013.02.005

George, E. I., Sun, D., \& Ni, S. (2008). Bayesian stochastic search for VAR model restrictions. Journal of Econometrics, 142(1), 553-580. doi: 10.1016/j.jeconom.2007.08.017
Koop, G, \& Korobilis, D. (2010), Bayesian multivariate time series Methods for empirical macroeconomics, Foundations and Trends in Econometrics, 3(4), 267-358. doi: 10.1561/0800000013

Koop, G., León-González, R., \& Strachan R. W. (2010). Efficient posterior simulation for cointegrated models with priors on the cointegration space. Econometric Reviews, 29(2), 224-242. doi: 10.1080/07474930903382208

Koop, G., León-González, R., \& Strachan R. W. (2011). Bayesian inference in a time varying cointegration model. Journal of Econometrics, 165(2), 210-220. doi: 10.1016/j.jeconom.2011.07.007
Korobilis, D. (2013). VAR forecasting using Bayesian variable selection. Journal of Applied Econometrics, 28(2), 204-230. doi: 10.1002/jae. 1271
Lütkepohl, H. (2006). New introduction to multiple time series analysis (2nd ed.). Berlin: Springer.
Sanderson, C., \& Curtin, R. (2016). Armadillo: a template-based C++ library for linear algebra. Journal of Open Source Software, 1(2), 26. doi: 10.21105/joss. 00026

$$
\text { bvec } \quad \text { Bayesian Vector Error Correction Objects }
$$

Description

'bvec' is used to create objects of class "bvec".
A plot function for objects of class "bvec".

Usage

bvec (
y,
alpha = NULL,
beta $=$ NULL,
beta_x = NULL,
beta_d = NULL,

```
    r = NULL,
    Pi = NULL,
    Pi_x = NULL,
    Pi_d = NULL,
    w = NULL,
    w_x = NULL,
    w_d = NULL,
    Gamma = NULL,
    Upsilon = NULL,
    C = NULL,
    x = NULL,
    x_x = NULL,
    x_d = NULL,
    A0 = NULL,
    Sigma = NULL,
    data = NULL,
    exogen = NULL
)
## S3 method for class 'bvec'
plot(x, ci = 0.95, type = "hist", ...)
```


Arguments

y
alpha
beta
beta_x a $M r \times S$ matrix of MCMC coefficient draws of cointegration matrix β corresponding to unmodelled, non-deterministic variables.
beta_d a $N^{R} r \times S$ matrix of MCMC coefficient draws of cointegration matrix β corresponding to restricted deterministic terms.
r
Pi a $K^{2} \times S$ matrix of MCMC coefficient draws of endogenous varaibles in the cointegration matrix.
Pi_x a $K M \times S$ matrix of MCMC coefficient draws of unmodelled, non-deterministic variables in the cointegration matrix.
Pi_d a $K N^{R} \times S$ matrix of MCMC coefficient draws of restricted deterministic terms.
w
w_x a time-series object of lagged unmodelled, non-deterministic variables in levels, which enter the cointegration term, usually, a result of a call to gen_vec.
w_d a time-series object of deterministic terms, which enter the cointegration term, usually, a result of a call to gen_vec.

Gamma	a $(p-1) K^{2} \times S$ matrix of MCMC coefficient draws of differenced lagged endogenous variables or a named list, where element coeffs contains a ($p-$ 1) $K^{2} \times S$ matrix of MCMC coefficient draws of lagged differenced endogenous variables and element lambda contains the corresponding draws of inclusion parameters in case variable selection algorithms were employed.
Upsilon	an $s M K \times S$ matrix of MCMC coefficient draws of differenced unmodelled, non-deterministic variables or a named list, where element coeffs contains a $s M K \times S$ matrix of MCMC coefficient draws of unmodelled, non-deterministic variables and element lambda contains the corresponding draws of inclusion parameters in case variable selection algorithms were employed.
C	an $K N^{U R} \times S$ matrix of MCMC coefficient draws of unrestricted deterministic terms or a named list, where element coeffs contains a $K N^{U R} \times S$ matrix of MCMC coefficient draws of deterministic terms and element lambda contains the corresponding draws of inclusion parameters in case variable selection algorithms were employed.
x	an object of class "bvec", usually, a result of a call to draw_posterior.
x_x	a time-series object of $M s$ differenced unmodelled regressors.
x_d	a time-series object of $N^{U R}$ deterministic terms that do not enter the cointegration term.
A0	either a $K^{2} \times S$ matrix of MCMC coefficient draws of structural parameters or a named list, where element coeffs contains a $K^{2} \times S$ matrix of MCMC coefficient draws of structural parameters and element lambda contains the corresponding draws of inclusion parameters in case variable selection algorithms were employed.
Sigma	a $K^{2} \times S$ matrix of MCMC draws for the error variance-covariance matrix or a named list, where element coeffs contains a $K^{2} \times S$ matrix of MCMC draws for the error variance-covariance matrix and element lambda contains the corresponding draws of inclusion parameters in case variable selection algorithms were employed to the covariances.
data	the original time-series object of endogenous variables.
exogen	the original time-series object of unmodelled variables.
ci	interval used to calculate credible bands for time-varying parameters.
type	either "hist" (default) for histograms or "trace" for a trace plot. Only used for parameter draws of constant coefficients. further graphical parameters.

Details

For the vector error correction model with unmodelled exogenous variables (VECX)

$$
A_{0} \Delta y_{t}=\Pi^{+}(y)_{t-1} x_{t-1} d_{t-1}^{R}+\sum_{i=1}^{p-1} \Gamma_{i} \Delta y_{t-i}+\sum_{i=0}^{s-1} \Upsilon_{i} \Delta x_{t-i}+C^{U R} d_{t}^{U R}+u_{t}
$$

the function collects the S draws of a Gibbs sampler in a standardised object, where Δy_{t} is a Kdimensional vector of differenced endogenous variables and A_{0} is a $K \times K$ matrix of structural
coefficients. $\Pi^{+}=\left[\Pi, \Pi^{x}, \Pi^{d}\right]$ is the coefficient matrix of the error correction term, where y_{t-1}, x_{t-1} and d_{t-1}^{R} are the first lags of endogenous, exogenous variables in levels and restricted deterministic terms, respectively. Π, Π^{x}, and Π^{d} are the corresponding coefficient matrices, respectively. Γ_{i} is a coefficient matrix of lagged differenced endogenous variabels. Δx_{t} is an M-dimensional vector of unmodelled, non-deterministic variables and Υ_{i} its corresponding coefficient matrix. d_{t} is an $N^{U R}$-dimensional vector of unrestricted deterministics and $C^{U R}$ the corresponding coefficient matrix. u_{t} is an error term with $u_{t} \sim N\left(0, \Sigma_{u}\right)$.
For time varying parameter and stochastic volatility models the respective coefficients and error covariance matrix of the above model are assumed to be time varying, respectively.
The draws of the different coefficient matrices provided in alpha, beta, Pi, Pi_x, Pi_d, A0, Gamma, Ypsilon, C and Sigma have to correspond to the same MCMC iteration.

Value

An object of class "gvec" containing the following components, if specified:
data the original time-series object of endogenous variables.
exogen the original time-series object of unmodelled variables.
$y \quad a \operatorname{time}-$ series object of differenced endogenous variables.
w a time-series object of lagged endogenous variables in levels, which enter the cointegration term.
w_x a time-series object of lagged unmodelled, non-deterministic variables in levels, which enter the cointegration term.
w_d a time-series object of deterministic terms, which enter the cointegration term.
x
x_x
a time-series object of $K(p-1)$ differenced endogenous variables
a time-series object of $M s$ differenced unmodelled regressors.
x_d a time-series object of $N^{U R}$ deterministic terms that do not enter the cointegration term.
A0 an $S \times K^{2}$ "mcmc" object of coefficient draws of structural parameters. In case of time varying parameters a list of such objects.
A0_lambda an $S \times K^{2}$ "mcmc" object of inclusion parameters for coefficients corresponding to structural parameters.
A0_sigma an $S \times K^{2}$ "mcmc" object of the error covariance matrices of the structural parameters in a model with time varying parameters.
alpha an $S \times K r$ "mcmc" object of coefficient draws of loading parameters. In case of time varying parameters a list of such objects.
beta an $S \times\left(\left(K+M+N^{R}\right) r\right)$ "mcmc" object of coefficient draws of cointegration parameters corresponding to the endogenous variables of the model. In case of time varying parameters a list of such objects.
beta_x an $S \times K M$ "mcmc" object of coefficient draws of cointegration parameters corresponding to unmodelled, non-deterministic variables. In case of time varying parameters a list of such objects.
beta_d an $S \times K N^{R}$ "mcmc" object of coefficient draws of cointegration parameters corresponding to restricted deterministic variables. In case of time varying parameters a list of such objects.

Pi	an $S \times K^{2}$ " mcmc " object of coefficient draws of endogenous variables in the cointegration matrix. In case of time varying parameters a list of such objects.
Pi_x	an $S \times K M$ "mcmc" object of coefficient draws of unmodelled, non-deterministic variables in the cointegration matrix. In case of time varying parameters a list of such objects.
Pi_d	an $S \times K N^{R}$ "mcmc" object of coefficient draws of restricted deterministic variables in the cointegration matrix. In case of time varying parameters a list of such objects.
Gamma	an $S \times(p-1) K^{2}$ "mcmc" object of coefficient draws of differenced lagged endogenous variables. In case of time varying parameters a list of such objects.
Gamma_lamba	an $S \times(p-1) K^{2}$ "mcmc" object of inclusion parameters for coefficients corresponding to differenced lagged endogenous variables.
Gamma_sigma	an $S \times(p-1) K^{2}$ "mcmc" object of the error covariance matrices of the coefficients of lagged endogenous variables in a model with time varying parameters.
Upsilon	an $S \times s M K$ "mcmc" object of coefficient draws of differenced unmodelled, non-deterministic variables. In case of time varying parameters a list of such objects.
Upsilon_lambda	an $S \times s M K$ "mcmc" object of inclusion parameters for coefficients corresponding to differenced unmodelled, non-deterministic variables.
Upsilon_sigma	an $S \times s M K$ "mcmc" object of the error covariance matrices of the coefficients of unmodelled, non-deterministic variables in a model with time varying parameters.
C	an $S \times K N^{U R}$ "mcmc" object of coefficient draws of deterministic terms that do not enter the cointegration term. In case of time varying parameters a list of such objects.
C_lambda	an $S \times K N^{U R}$ "mcmc" object of inclusion parameters for coefficients corresponding to deterministic terms, that do not enter the conintegration term.
C_sigma	an $S \times K N^{U R}$ "mcmc" object of the error covariance matrices of the coefficients of deterministic terms, which do not enter the cointegration term, in a model with time varying parameters.
Sigma	an $S \times K^{2}$ "mcmc" object of variance-covariance draws. In case of time varying parameters a list of such objects.
Sigma_lambda	an $S \times K^{2}$ "mcmc" object inclusion parameters for the variance-covariance matrix.
Sigma_sigma	an $S \times K^{2}$ "mcmc" object of the error covariance matrices of the coefficients of the error covariance matrix of the measurement equation of a model with time varying parameters.
specification	ontaining information on the model specification.

Examples

```
# Load data
data("e6")
```

```
# Generate model
data <- gen_vec(e6, p = 4, r = 1, const = "unrestricted", season = "unrestricted")
# Obtain data matrices
y <- t(data$data$Y)
w <- t(data$data$W)
x <- t(data$data$X)
# Reset random number generator for reproducibility
set.seed(1234567)
iterations <- 400 # Number of iterations of the Gibbs sampler
# Chosen number of iterations should be much higher, e.g. 30000.
burnin <- 100 # Number of burn-in draws
draws <- iterations + burnin
r <- 1 # Set rank
tt <- ncol(y) # Number of observations
k <- nrow(y) # Number of endogenous variables
k_w <- nrow(w) # Number of regressors in error correction term
k_x <- nrow(x) # Number of differenced regressors and unrestrictec deterministic terms
k_alpha <- k * r # Number of elements in alpha
k_beta <- k_w * r # Number of elements in beta
k_gamma <- k * k_x
# Set uninformative priors
a_mu_prior <- matrix(0, k_x * k) # Vector of prior parameter means
a_v_i_prior <- diag(0, k_x * k) # Inverse of the prior covariance matrix
v_i <- 0
p_tau_i <- diag(1, k_w)
u_sigma_df_prior <- r # Prior degrees of freedom
u_sigma_scale_prior <- diag(0, k) # Prior covariance matrix
u_sigma_df_post <- tt + u_sigma_df_prior # Posterior degrees of freedom
# Initial values
beta <- matrix(c(1, -4), k_w, r)
u_sigma_i <- diag(1 / .0001, k)
g_i <- u_sigma_i
# Data containers
draws_alpha <- matrix(NA, k_alpha, iterations)
draws_beta <- matrix(NA, k_beta, iterations)
draws_pi <- matrix(NA, k * k_w, iterations)
draws_gamma <- matrix(NA, k_gamma, iterations)
draws_sigma <- matrix(NA, k^2, iterations)
# Start Gibbs sampler
for (draw in 1:draws) {
    # Draw conditional mean parameters
```

```
    temp <- post_coint_kls(y = y, beta = beta, w = w, x = x, sigma_i = u_sigma_i,
                v_i = v_i, p_tau_i = p_tau_i, g_i = g_i,
                    gamma_mu_prior = a_mu_prior,
                        gamma_v_i_prior = a_v_i_prior)
    alpha <- temp$alpha
    beta <- temp$beta
    Pi <- temp$Pi
    gamma <- temp$Gamma
    # Draw variance-covariance matrix
    u <- y - Pi %*% w - matrix(gamma, k) %*% x
    u_sigma_scale_post <- solve(tcrossprod(u) +
        v_i * alpha %*% tcrossprod(crossprod(beta, p_tau_i) %*% beta, alpha))
    u_sigma_i <- matrix(rWishart(1, u_sigma_df_post, u_sigma_scale_post)[,, 1], k)
    u_sigma <- solve(u_sigma_i)
    # Update g_i
    g_i <- u_sigma_i
    # Store draws
    if (draw > burnin) {
        draws_alpha[, draw - burnin] <- alpha
        draws_beta[, draw - burnin] <- beta
        draws_pi[, draw - burnin] <- Pi
        draws_gamma[, draw - burnin] <- gamma
        draws_sigma[, draw - burnin] <- u_sigma
    }
}
# Number of non-deterministic coefficients
k_nondet <- (k_x - 4) * k
# Generate bvec object
bvec_est <- bvec(y = data$data$Y, w = data$data$W,
    x = data$data$X[, 1:6],
    x_d = data$data$X[, 7:10],
        Pi = draws_pi,
        Gamma = draws_gamma[1:k_nondet,],
        C = draws_gamma[(k_nondet + 1):nrow(draws_gamma),],
        Sigma = draws_sigma)
# Load data
data("e6")
# Generate model
model <- gen_vec(data = e6, p = 2, r = 1, const = "unrestricted",
    iterations = 20, burnin = 10)
# Chosen number of iterations and burn-in should be much higher.
# Add priors
model <- add_priors(model)
```

```
# Obtain posterior draws
object <- draw_posterior(model)
# Plot draws
plot(object)
```

bvecpost Posterior Simulation for BVEC Models

Description

Produces draws from the posterior distributions of Bayesian VEC models.

Usage

bvecpost(object)

Arguments

object an object of class "bvecmodel", usually, a result of a call to gen_vec in combination with add_priors.

Details

The function implements posterior simulation algorithms proposed in Koop et al. (2010) and Koop et al. (2011), which place identifying restrictions on the cointegration space. Both algorithms are able to employ Bayesian variable selection (BVS) as proposed in Korobilis (2013). The algorithm of Koop et al. (2010) is also able to employ stochastic search variable selection (SSVS) as proposed by Geroge et al. (2008). Both SSVS and BVS can also be applied to the covariances of the error term. However, the algorithms cannot be applied to cointegration related coefficients, i.e. to the loading matrix α or the cointegration matrix beta.
The implementation primarily follows the description in Koop et al. (2010). Chan et al. (2019), George et al. (2008) and Korobilis (2013) were used to implement the variable selection algorithms. For all approaches the SUR form of a VEC model is used to obtain posterior draws. The algorithm is implemented in $\mathrm{C}++$ to reduce calculation time.
The function also supports structural BVEC models, where the structural coefficients are estimated from contemporary endogenous variables, which corresponds to the so-called (A-model). Currently, only specifications are supported, where the structural matrix contains ones on its diagonal and all lower triangular elements are freely estimated. Since posterior draws are obtained based on the SUR form of the VEC model, the structural coefficients are drawn jointly with the other coefficients. No identifying restrictions are made regarding the cointegration matrix.

Value

An object of class "bvec".

References

Chan, J., Koop, G., Poirier, D. J., \& Tobias J. L. (2019). Bayesian econometric methods (2nd ed.). Cambridge: Cambridge University Press.
George, E. I., Sun, D., \& Ni, S. (2008). Bayesian stochastic search for VAR model restrictions. Journal of Econometrics, 142(1), 553-580. doi: 10.1016/j.jeconom.2007.08.017
Koop, G., León-González, R., \& Strachan R. W. (2010). Efficient posterior simulation for cointegrated models with priors on the cointegration space. Econometric Reviews, 29(2), 224-242. doi: 10.1080/07474930903382208
Koop, G., León-González, R., \& Strachan R. W. (2011). Bayesian inference in a time varying cointegration model. Journal of Econometrics, 165(2), 210-220. doi: 10.1016/j.jeconom.2011.07.007
Korobilis, D. (2013). VAR forecasting using Bayesian variable selection. Journal of Applied Econometrics, 28(2), 204-230. doi: 10.1002/jae. 1271

Examples

```
# Get data
data("e6")
# Create model
model <- gen_vec(e6, p = 4, r = 1,
    const = "unrestricted", seasonal = "unrestricted",
    iterations = 100, burnin = 10)
# Chosen number of iterations and burnin should be much higher.
# Add priors
model <- add_priors(model)
# Obtain posterior draws
object <- bvecpost(model)
```


Description

An object of class "bvec" is transformed to a VAR in level representation.

Usage

bvec_to_bvar (object)

Arguments

object an object of class "bvec".

Value

An object of class "bvar".

References

Lütkepohl, H. (2006). New introduction to multiple time series analysis (2nd ed.). Berlin: Springer.

Examples

```
# Load data
data("e6")
# Generate model
data <- gen_vec(e6, p = 4, r = 1, const = "unrestricted", season = "unrestricted")
# Obtain data matrices
y <- t(data$data$Y)
w <- t(data$data$W)
x <- t(data$data$X)
# Reset random number generator for reproducibility
set.seed(1234567)
iterations <- 100 # Number of iterations of the Gibbs sampler
# Chosen number of iterations should be much higher, e.g. 30000.
burnin <- 100 # Number of burn-in draws
draws <- iterations + burnin
r <- 1 # Set rank
tt <- ncol(y) # Number of observations
k <- nrow(y) # Number of endogenous variables
k_w <- nrow(w) # Number of regressors in error correction term
k_x <- nrow(x) # Number of differenced regressors and unrestrictec deterministic terms
k_alpha <- k * r # Number of elements in alpha
k_beta <- k_w * r # Number of elements in beta
k_gamma <- k * k_x
# Set uninformative priors
a_mu_prior <- matrix(0, k_x * k) # Vector of prior parameter means
a_v_i_prior <- diag(0, k_x * k) # Inverse of the prior covariance matrix
v_i <- 0
p_tau_i <- diag(1, k_w)
u_sigma_df_prior <- r # Prior degrees of freedom
u_sigma_scale_prior <- diag(0, k) # Prior covariance matrix
u_sigma_df_post <- tt + u_sigma_df_prior # Posterior degrees of freedom
```

```
# Initial values
beta <- matrix(c(1, -4), k_w, r)
u_sigma_i <- diag(1 / .0001, k)
g_i <- u_sigma_i
# Data containers
draws_alpha <- matrix(NA, k_alpha, iterations)
draws_beta <- matrix(NA, k_beta, iterations)
draws_pi <- matrix(NA, k * k_w, iterations)
draws_gamma <- matrix(NA, k_gamma, iterations)
draws_sigma <- matrix(NA, k^2, iterations)
# Start Gibbs sampler
for (draw in 1:draws) {
    # Draw conditional mean parameters
    temp <- post_coint_kls(y = y, beta = beta, w = w, x = x, sigma_i = u_sigma_i,
                                    v_i = v_i, p_tau_i = p_tau_i, g_i = g_i,
                                    gamma_mu_prior = a_mu_prior,
                                    gamma_v_i_prior = a_v_i_prior)
    alpha <- temp$alpha
    beta <- temp$beta
    Pi <- temp$Pi
    gamma <- temp$Gamma
    # Draw variance-covariance matrix
    u <- y - Pi %*% w - matrix(gamma, k) %*% x
    u_sigma_scale_post <- solve(tcrossprod(u) +
        v_i * alpha %*% tcrossprod(crossprod(beta, p_tau_i) %*% beta, alpha))
    u_sigma_i <- matrix(rWishart(1, u_sigma_df_post, u_sigma_scale_post)[,, 1], k)
    u_sigma <- solve(u_sigma_i)
    # Update g_i
    g_i <- u_sigma_i
    # Store draws
    if (draw > burnin) {
        draws_alpha[, draw - burnin] <- alpha
        draws_beta[, draw - burnin] <- beta
        draws_pi[, draw - burnin] <- Pi
        draws_gamma[, draw - burnin] <- gamma
        draws_sigma[, draw - burnin] <- u_sigma
    }
}
# Number of non-deterministic coefficients
k_nondet <- (k_x - 4) * k
# Generate bvec object
bvec_est <- bvec(y = data$data$Y, w = data$data$W,
    x = data$data$X[, 1:6],
    x_d = data$data$X[, 7:10],
    Pi = draws_pi,
    Gamma = draws_gamma[1:k_nondet,],
```

```
    C = draws_gamma[(k_nondet + 1):nrow(draws_gamma),],
    Sigma = draws_sigma)
    # Thin posterior draws
    bvec_est <- thin(bvec_est, thin = 5)
    # Transfrom VEC output to VAR output
    bvar_form <- bvec_to_bvar(bvec_est)
```

bvs

Description

bvs employs Bayesian variable selection as proposed by Korobilis (2013) to produce a vector of inclusion parameters for the coefficient matrix of a VAR model.

Usage

bvs(y, z, a, lambda, sigma_i, prob_prior, include = NULL)

Arguments

y a $K \times T$ matrix of the endogenous variables.
z a $K T \times M$ matrix of explanatory variables.
a an M-dimensional vector of parameter draws. If time varying parameters are used, an $M \times T$ coefficient matrix can be provided.
lambda an $M \times M$ inclusion matrix that should be updated.
sigma_i the inverse variance-covariance matrix. If the variance-covariance matrix is time varying, a $K T \times K$ matrix can be provided.
prob_prior an M-dimensional vector of prior inclusion probabilities.
include an integer vector specifying the positions of variables, which should be included in the BVS algorithm. If NULL (default), BVS will be applied to all variables.

Details

The function employs Bayesian variable selection as proposed by Korobilis (2013) to produce a vector of inclusion parameters, which are the diagonal elements of the inclusion matrix Λ for the VAR model

$$
y_{t}=Z_{t} \Lambda a_{t}+u_{t}
$$

where $u_{t} \sim N\left(0, \Sigma_{t}\right) . y_{t}$ is a K-dimensional vector of endogenous variables and $Z_{t}=x_{t}^{\prime} \otimes I_{K}$ is a $K \times M$ matrix of regressors with x_{t} as a vector of regressors.

Value

A matrix of inclusion parameters on its diagonal.

References

Korobilis, D. (2013). VAR forecasting using Bayesian variable selection. Journal of Applied Econometrics, 28(2), 204-230. doi: 10.1002/jae. 1271

Examples

```
# Load data
data("e1")
data <- diff(log(e1)) * 100
# Generate model data
temp <- gen_var(data, p = 2, deterministic = "const")
y <- t(temp$data$Y)
z <- temp$data$SUR
tt <- ncol(y)
m <- ncol(z)
# Priors
a_mu_prior <- matrix(0, m)
a_v_i_prior <- diag(0.1, m)
# Prior for inclusion parameter
prob_prior <- matrix(0.5, m)
# Initial value of Sigma
sigma <- tcrossprod(y) / tt
sigma_i <- solve(sigma)
lambda <- diag(1, m)
z_bvs <- z %*% lambda
a <- post_normal_sur(y = y, z = z_bvs, sigma_i = sigma_i,
                            a_prior = a_mu_prior, v_i_prior = a_v_i_prior)
lambda <- bvs(y = y, z = z, a = a, lambda = lambda,
    sigma_i = sigma_i, prob_prior = prob_prior)
```


Description

dfm is used to create objects of class "dfm".
A plot function for objects of class "dfm".

Usage

```
dfm(x, lambda = NULL, fac, sigma_u = NULL, a = NULL, sigma_v = NULL)
    \#\# S3 method for class 'dfm'
    plot(x, ci \(=0.95, \ldots\) )
```


Arguments

X
lambda an $M N \times S$ matrix of MCMC coefficient draws of factor loadings of the measurement equation.
fac an $N T \times S$ matrix of MCMC draws of the factors in the transition equation, where the first N rows correspond to the N factors in period 1 and the next N rows to the factors in period 2 etc.
sigma_u an $M \times S$ matrix of MCMC draws for the error variances of the measurement equation.
a a $p N^{2} \times S$ matrix of MCMC coefficient draws of the transition equation.
sigma_v an $N \times S$ matrix of MCMC draws for the error variances of the transition equation.
ci interval used to calculate credible bands.
... further graphical parameters.

Details

The function produces a standardised object from S draws of a Gibbs sampler (after the burn-in phase) for the dynamic factor model (DFM) with measurement equation

$$
x_{t}=\lambda f_{t}+u_{t}
$$

where x_{t} is an $M \times 1$ vector of observed variables, f_{t} is an $N \times 1$ vector of unobserved factors and λ is the corresponding $M \times N$ matrix of factor loadings. u_{t} is an $M \times 1$ error term.
The transition equation is

$$
f_{t}=\sum_{i=1}^{p} A_{i} f_{t-i}+v_{t}
$$

where A_{i} is an $N \times N$ coefficient matrix and v_{t} is an $N \times 1$ error term.

Value

An object of class "dfm" containing the following components, if specified:
$x \quad$ the standardised time-series object of observable variables.
lambda an $S \times M N$ "mcmc" object of draws of factor loadings of the measurement equation.
factor an $S \times N T$ "mcmc" object of draws of factors.
sigma_u an $S \times M$ "mcmc" object of variance draws of the measurement equation.
a
an $S \times p N^{2}$ "mcmc" object of coefficient draws of the transition equation.
sigma_v an $S \times N$ "mcmc" object of variance draws of the transition equation.
specifications a list containing information on the model specification.

Examples

```
# Load data
data("bem_dfmdata")
# Generate model data
model <- gen_dfm(x = bem_dfmdata, p = 1, n = 1,
    iterations = 20, burnin = 10)
# Number of iterations and burnin should be much higher.
# Add prior specifications
model <- add_priors(model,
    lambda = list(v_i = .01),
    sigma_u = list(shape = 5, rate = 4),
    a = list(v_i = .01),
    sigma_v = list(shape = 5, rate = 4))
# Obtain posterior draws
object <- dfmpost(model)
# Load data
data("bem_dfmdata")
# Generate model data
model <- gen_dfm(x = bem_dfmdata, p = 1, n = 1,
    iterations = 20, burnin = 10)
# Number of iterations and burnin should be much higher.
# Add prior specifications
model <- add_priors(model,
    lambda = list(v_i = .01),
    sigma_u = list(shape = 5, rate = 4),
    a = list(v_i = .01),
    sigma_v = list(shape = 5, rate = 4))
# Obtain posterior draws
object <- draw_posterior(model)
# Plot factors
plot(object)
```


dfmpost
 Posterior Simulation for Dynamic Factor Models

Description

Produces draws from the posterior distributions of Bayesian dynamic factor models.

Usage

dfmpost(object)

Arguments

object an object of class "dfmodel", usually, a result of a call to gen_dfm in combination with add_priors.

Details

The function implements the posterior simulation algorithm for Bayesian dynamic factor models.
The implementation follows the description in Chan et al. (2019) and C++ is used to reduce calculation time.

Value

An object of class "dfm".

References

Chan, J., Koop, G., Poirier, D. J., \& Tobias J. L. (2019). Bayesian econometric methods (2nd ed.). Cambridge: Cambridge University Press.

Examples

```
# Load data
data("bem_dfmdata")
# Generate model data
model <- gen_dfm(x = bem_dfmdata, p = 1, n = 1,
    iterations = 20, burnin = 10)
# Number of iterations and burnin should be much higher.
# Add prior specifications
model <- add_priors(model,
    lambda = list(v_i = .01),
    sigma_u = list(shape = 5, rate = 4),
    a = list(v_i = .01),
    sigma_v = list(shape = 5, rate = 4))
```

\# Obtain posterior draws
object <- dfmpost(model)

```
draw_posterior Posterior Simulation
```


Description

Forwards model input to posterior simulation functions. This is a generic function.

Usage

draw_posterior(object, ...)

Arguments

object a list of model specifications. Usually, the output of a call to gen_var, gen_vec or gen_dfm in combination with add_priors.
... arguments passed forward to method.

```
draw_posterior.bvarmodel
```


Posterior Simulation

Description

Forwards model input to posterior simulation functions.

Usage

\#\# S3 method for class 'bvarmodel'
draw_posterior (object, FUN = NULL, mc.cores = NULL, ...)

Arguments

object a list of model specifications, which should be passed on to function FUN. Usually, the output of a call to gen_var in combination with add_priors.
FUN the function to be applied to each model in argument object. If NULL (default), the internal functions bvarpost is used.
mc.cores the number of cores to use, i.e. at most how many child processes will be run simultaneously. The option is initialized from environment variable MC_CORES if set. Must be at least one, and parallelization requires at least two cores.
... further arguments passed to or from other methods.

Value

For multiple models a list of objects of class bvarlist. For a single model the object has the class of the output of the applied posterior simulation function. In case the package's own functions are used, this will result in an object of class "bvar".

Examples

```
# Load data
data("e1")
e1 <- diff(log(e1)) * 100
# Generate model
model <- gen_var(e1, p = 1:2, deterministic = 2,
    iterations = 100, burnin = 10)
# Chosen number of iterations and burn-in should be much higher.
# Add priors
model <- add_priors(model)
# Obtain posterior draws
object <- draw_posterior(model)
```

draw_posterior.bvecmodel

Posterior Simulation for Vector Error Correction Models

Description

Forwards model input to posterior simulation functions for vector error correction models.

Usage

\#\# S3 method for class 'bvecmodel'
draw_posterior(object, FUN = NULL, mc.cores = NULL, ...)

Arguments

object a list of model specifications, which should be passed on to function FUN. Usually, the output of a call to gen_vec in combination with add_priors.
FUN the function to be applied to each list element in argument object. If NULL (default), the internal function bvecpost is used.
mc.cores the number of cores to use, i.e. at most how many child processes will be run simultaneously. The option is initialized from environment variable MC_CORES if set. Must be at least one, and parallelization requires at least two cores.
... further arguments passed to or from other methods.

Value

For multiple models a list of objects of class bvarlist. For a single model the object has the class of the output of the applied posterior simulation function. In case the package's own functions are used, this will be "bvec".

References

Koop, G., León-González, R., \& Strachan R. W. (2010). Efficient posterior simulation for cointegrated models with priors on the cointegration space. Econometric Reviews, 29(2), 224-242. doi: 10.1080/07474930903382208

Koop, G., León-González, R., \& Strachan R. W. (2011). Bayesian inference in a time varying cointegration model. Journal of Econometrics, 165(2), 210-220. doi: 10.1016/j.jeconom.2011.07.007

Examples

```
# Load data
data("e6")
e6 <- e6 * 100
# Generate model
model <- gen_vec(e6, p = 1, r = 1, const = "restricted",
    iterations = 10, burnin = 10)
# Chosen number of iterations and burn-in should be much higher.
# Add priors
model <- add_priors(model)
# Obtain posterior draws
object <- draw_posterior(model)
```

```
draw_posterior.dfmodel
```


Posterior Simulation

Description

Forwards model input to posterior simulation functions.

Usage

\#\# S3 method for class 'dfmodel'
draw_posterior (object, FUN = NULL, mc.cores = NULL, ...)

Arguments

object a list of model specifications, which should be passed on to function FUN. Usually, the output of a call to gen_var, gen_vec or gen_dfm in combination with add_priors.
FUN the function to be applied to each list element in argument object. If NULL (default), the internal functions bvarpost is used for VAR model, bvecpost for VEC models and dfmpost for dynamic factor models.
mc.cores the number of cores to use, i.e. at most how many child processes will be run simultaneously. The option is initialized from environment variable MC_CORES if set. Must be at least one, and parallelization requires at least two cores.
. . further arguments passed to or from other methods.

Value

For multiple models a list of objects of class bvarlist. For a single model the object has the class of the output of the applied posterior simulation function. In case the package's own functions are used, this will be "bvar", "bvec" or "dfm".

Examples

```
# Load data
data("e1")
e1 <- diff(log(e1)) * 100
# Generate model
model <- gen_var(e1, p = 1:2, deterministic = 2,
    iterations = 100, burnin = 10)
    # Chosen number of iterations and burn-in should be much higher.
    # Add priors
    model <- add_priors(model)
    # Obtain posterior draws
    object <- draw_posterior(model)
```


Description

The data set contains quarterly, seasonally adjusted time series for West German fixed investment, disposable income, and consumption expenditures in billions of DM from 1960Q1 to 1982Q4. It was produced from file E1 of the data sets associated with Lütkepohl (2007). Raw data are available at http://www.jmulti.de/download/datasets/e1.dat and were originally obtained from Deutsche Bundesbank.

Usage

data("e1")

Format

A named time-series object with 92 rows and 3 variables:
invest fixed investment.
income disposable income.
cons consumption expenditures.

References

Lütkepohl, H. (2006). New introduction to multiple time series analysis (2nd ed.). Berlin: Springer.

Description

The data set contains quarterly, seasonally unadjusted time series for German long-term interest and inflation rates from 1972Q2 to 1998Q4. It was produced from file E6 of the data sets associated with Lütkepohl (2007). Raw data are available at http://www.jmulti.de/download/ datasets/e6.dat and were originally obtained from Deutsche Bundesbank and Deutsches Institut für Wirtschaftsforschung.

Usage

```
    data("e6")
```


Format

A named time-series object with 107 rows and 2 variables:
\mathbf{R} nominal long-term interest rate (Umlaufsrendite).
Dp $\Delta \log$ of GDP deflator.

Details

The data cover West Germany until 1990Q2 and all of Germany aferwards. The values refer to the last month of a quarter.

References

Lütkepohl, H. (2006). New introduction to multiple time series analysis (2nd ed.). Berlin: Springer. calculate forecast error varianc decompositions.

Description

A plot function for objects of class "bvarfevd".

Usage

fevd(object, ...)
\#\# S3 method for class 'bvarfevd'
plot(x, ...)

Arguments

object an object of class "bvar".
... further graphical parameters.
x an object of class "bvarfevd", usually, a result of a call to fevd.

Examples

```
# Load data
data("e1")
e1 <- diff(log(e1)) * 100
# Generate model data
model <- gen_var(e1, p = 2, deterministic = 2,
    iterations = 100, burnin = 10)
# Chosen number of iterations and burnin should be much higher.
# Add prior specifications
model <- add_priors(model)
# Obtain posterior draws
object <- draw_posterior(model)
# Obtain FEVD
vd <- fevd(object, response = "cons")
# Plot
plot(vd)
```


Description

Produces the forecast error variance decomposition of a Bayesian VAR model.

Usage

```
    ## S3 method for class 'bvar'
    fevd(
        object,
        response = NULL,
        n.ahead = 5,
        type = "oir",
        normalise_gir = FALSE,
        period = NULL,
    )
```


Arguments

object an object of class "bvar", usually, a result of a call to bvar or bvec_to_bvar.
response name of the response variable.
n. ahead number of steps ahead.
type type of the impulse responses used to calculate forecast error variable decompositions. Possible choices are orthogonalised oir (default) and generalised gir impulse responses.
normalise_gir logical. Should the GIR-based FEVD be normalised?
period integer. Index of the period, for which the variance decomposition should be generated. Only used for TVP or SV models. Default is NULL, so that the posterior draws of the last time period are used.
. . further arguments passed to or from other methods.

Details

The function produces forecast error variance decompositions (FEVD) for the VAR model

$$
A_{0} y_{t}=\sum_{i=1}^{p} A_{i} y_{t-i}+u_{t}
$$

with $u_{t} \sim N(0, \Sigma)$. For non-structural models matrix A_{0} is set to the identiy matrix and can therefore be omitted, where not relevant.

If the FEVD is based on the orthogonalised impulse resonse (OIR), the FEVD will be calculated as

$$
\omega_{j k, h}^{O I R}=\frac{\sum_{i=0}^{h-1}\left(e_{j}^{\prime} \Phi_{i} P e_{k}\right)^{2}}{\sum_{i=0}^{h-1}\left(e_{j}^{\prime} \Phi_{i} \Sigma \Phi_{i}^{\prime} e_{j}\right)},
$$

where Φ_{i} is the forecast error impulse response for the i th period, P is the lower triangular Choleski decomposition of the variance-covariance matrix Σ, e_{j} is a selection vector for the response variable and e_{k} a selection vector for the impulse variable.
If type = "sir", the structural FEVD will be calculated as

$$
\omega_{j k, h}^{S I R}=\frac{\sum_{i=0}^{h-1}\left(e_{j}^{\prime} \Phi_{i} A_{0}^{-1} e_{k}\right)^{2}}{\sum_{i=0}^{h-1}\left(e_{j}^{\prime} \Phi_{i} A_{0}^{-1} A_{0}^{-1 \prime} \Phi_{i}^{\prime} e_{j}\right)},
$$

where $\sigma_{j j}$ is the diagonal element of the j th variable of the variance covariance matrix.
If type = "gir", the generalised FEVD will be calculated as

$$
\omega_{j k, h}^{G I R}=\frac{\sigma_{j j}^{-1} \sum_{i=0}^{h-1}\left(e_{j}^{\prime} \Phi_{i} \Sigma e_{k}\right)^{2}}{\sum_{i=0}^{h-1}\left(e_{j}^{\prime} \Phi_{i} \Sigma \Phi_{i}^{\prime} e_{j}\right)}
$$

where $\sigma_{j j}$ is the diagonal element of the j th variable of the variance covariance matrix.
If type = "sgir", the structural generalised FEVD will be calculated as

$$
\omega_{j k, h}^{S G I R}=\frac{\sigma_{j j}^{-1} \sum_{i=0}^{h-1}\left(e_{j}^{\prime} \Phi_{i} A_{0}^{-1} \Sigma e_{k}\right)^{2}}{\sum_{i=0}^{h-1}\left(e_{j}^{\prime} \Phi_{i} A_{0}^{-1} \Sigma A_{0}^{-1 \prime} \Phi_{i}^{\prime} e_{j}\right)}
$$

Since GIR-based FEVDs do not add up to unity, they can be normalised by setting normalise_gir = TRUE.

Value

A time-series object of class "bvarfevd".

References

Lütkepohl, H. (2006). New introduction to multiple time series analysis (2nd ed.). Berlin: Springer. Pesaran, H. H., \& Shin, Y. (1998). Generalized impulse response analysis in linear multivariate models. Economics Letters, 58, 17-29.

Examples

```
# Load data
data("e1")
e1 <- diff(log(e1)) * 100
# Generate models
model <- gen_var(e1, p = 2, deterministic = 2,
    iterations = 100, burnin = 10)
```

```
# Add priors
model <- add_priors(model)
# Obtain posterior draws
object <- draw_posterior(model)
# Obtain FEVD
vd <- fevd(object, response = "cons")
# Plot FEVD
plot(vd)
```

```
gen_dfm Dynamic Factor Model Input
```


Description

gen_dfm produces the input for the estimation of a dynamic factor model (DFM).

Usage

gen_dfm(x, $\mathrm{p}=2, \mathrm{n}=1$, iterations $=50000$, burnin $=5000$)

Arguments

$x \quad$ a time-series object of stationary endogenous variables.
$\mathrm{p} \quad$ an integer vector of the lag order of the measurement equation. See 'Details'.
$\mathrm{n} \quad$ an integer vector of the number of factors. See 'Details'.
iterations an integer of MCMC draws excluding burn-in draws (defaults to 50000).
burnin an integer of MCMC draws used to initialize the sampler (defaults to 5000). These draws do not enter the computation of posterior moments, forecasts etc.

Details

The function produces the variable matrices of dynamic factor models (DFM) with measurement equation

$$
x_{t}=\lambda f_{t}+u_{t}
$$

where x_{t} is an $M \times 1$ vector of observed variables, f_{t} is an $N \times 1$ vector of unobserved factors and λ is the corresponding $M \times N$ matrix of factor loadings. u_{t} is an $M \times 1$ error term.
The transition equation is

$$
f_{t}=\sum_{i=1}^{p} A_{i} f_{t-i}+v_{t}
$$

where A_{i} is an $N \times N$ coefficient matrix and v_{t} is an $N \times 1$ error term.
If integer vectors are provided as arguments p or n , the function will produce a distinct model for all possible combinations of those specifications.

Value

An object of class 'dfmodel', which contains the following elements:
data A list of data objects, which can be used for posterior simulation. Element X is a time-series object of normalised observable variables, i.e. each column has zero mean and unity variance.
model A list of model specifications.

References

Chan, J., Koop, G., Poirier, D. J., \& Tobias, J. L. (2019). Bayesian Econometric Methods (2nd ed.). Cambridge: University Press.
Lütkepohl, H. (2007). New introduction to multiple time series analysis (2nd ed.). Berlin: Springer.

Examples

```
# Load data
data("bem_dfmdata")
# Generate model data
model <- gen_dfm(x = bem_dfmdata, p = 1, n = 1,
    iterations = 5000, burnin = 1000)
```

 gen_var Vector Autoregressive Model Input

Description

gen_var produces the input for the estimation of a vector autoregressive (VAR) model.

Usage

```
gen_var(
    data,
    p = 2,
    exogen = NULL,
    s = NULL,
    deterministic = "const",
    seasonal = FALSE,
    structural = FALSE,
    tvp = FALSE,
    sv = FALSE,
    fcst = NULL,
    iterations = 50000,
    burnin = 5000
)
```


Arguments

data a time-series object of endogenous variables.
p an integer vector of the lag order (default is $p=2$).
exogen an optional time-series object of external regressors.
s
an optional integer vector of the lag order of the external regressors (default is s $=2$).
deterministic a character specifying which deterministic terms should be included. Available values are "none", "const" (default) for an intercept, "trend" for a linear trend, and "both" for an intercept with a linear trend.
seasonal logical. If TRUE, seasonal dummy variables are generated as additional deterministic terms. The amount of dummies depends on the frequency of the time-series object provided in data.
structural logical indicating whether data should be prepared for the estimation of a structural VAR model.
tvp logical indicating whether the model parameters are time varying.
sv logical indicating whether time varying error variances should be estimated by employing a stochastic volatility algorithm.
fcst integer. Number of observations saved for forecasting evaluation.
iterations an integer of MCMC draws excluding burn-in draws (defaults to 50000).
burnin an integer of MCMC draws used to initialize the sampler (defaults to 5000). These draws do not enter the computation of posterior moments, forecasts etc.

Details

The function produces the data matrices for vector autoregressive (VAR) models, which can also include unmodelled, non-deterministic variables:

$$
A_{0} y_{t}=\sum_{i=1}^{p} A_{i} y_{t-i}+\sum_{i=0}^{s} B_{i} x_{t-i}+C D_{t}+u_{t}
$$

where y_{t} is a K -dimensional vector of endogenous variables, A_{0} is a $K \times K$ coefficient matrix of contemporaneous endogenous variables, A_{i} is a $K \times K$ coefficient matrix of endogenous variables, x_{t} is an M-dimensional vector of exogenous regressors and B_{i} its corresponding $K \times M$ coefficient matrix. D_{t} is an N-dimensional vector of deterministic terms and C its corresponding $K \times N$ coefficient matrix. p is the lag order of endogenous variables, s is the lag order of exogenous variables, and u_{t} is an error term.

If an integer vector is provided as argument p or s, the function will produce a distinct model for all possible combinations of those specifications.

If tvp is TRUE, the respective coefficients of the above model are assumed to be time varying. If $s v$ is TRUE, the error covariance matrix is assumed to be time varying.

Value

An object of class 'bvarmodel ', which contains the following elements:
data A list of data objects, which can be used for posterior simulation. Element Y is a time-series object of dependent variables. Element Z is a time-series object of the regressors and element SUR is the corresponding matrix of regressors in SUR form.
model A list of model specifications.

References

Chan, J., Koop, G., Poirier, D. J., \& Tobias, J. L. (2019). Bayesian Econometric Methods (2nd ed.). Cambridge: University Press.
Lütkepohl, H. (2006). New introduction to multiple time series analysis (2nd ed.). Berlin: Springer.

Examples

```
# Load data
data("e1")
e1 <- diff(log(e1))
# Generate model data
data <- gen_var(e1, p = 0:2, deterministic = "const")
```

 gen_vec Vector Error Correction Model Input

Description

gen_vec produces the input for the estimation of a vector error correction (VEC) model.

Usage

```
gen_vec(
    data,
    p = 2,
    exogen = NULL,
    s = 2,
    r = NULL,
    const = NULL,
    trend = NULL,
    seasonal = NULL,
    structural = FALSE,
    tvp = FALSE,
    sv = FALSE,
```

```
    fcst = NULL,
    iterations = 50000,
    burnin = 5000
)
```


Arguments

data	a time-series object of endogenous variables.
p	an integer vector of the lag order of the series in the (levels) VAR. Thus, the resulting model's lag will be $p-1$. See 'Details'.
exogen	an optional time-series object of external regressors.
S	an optional integer vector of the lag order of the exogenous variables of the series in the (levels) VAR. Thus, the resulting model's lag will be $s-1$. See 'Details'.
r	an integer vector of the cointegration rank. See 'Details'.
const	a character specifying whether a constant term enters the error correction term ("restricted") or the non-cointegration term as an "unrestricted" variable. If NULL (default) no constant term will be added.
trend	a character specifying whether a trend term enters the error correction term ("restricted") or the non-cointegration term as an "unrestricted" variable. If NULL (default) no constant term will be added.
seasonal	a character specifying whether seasonal dummies should be included in the error correction term ("restricted") or in the non-cointegreation term as "unrestricted" variables. If NULL (default) no seasonal terms will be added. The amount of dummy variables will be automatically detected and depends on the frequency of the time-series object provided in data.
structural	logical indicating whether data should be prepared for the estimation of a structural VAR model.
tvp	logical indicating whether the model parameters are time varying.
sv	logical indicating whether time varying error variances should be estimated by employing a stochastic volatility algorithm.
fcst	integer. Number of observations saved for forecasting evaluation.
iterations	an integer of MCMC draws excluding burn-in draws (defaults to 50000).
burnin	an integer of MCMC draws used to initialize the sampler (defaults to 5000). These draws do not enter the computation of posterior moments, forecasts etc.

Details

The function produces the variable matrices of vector error correction (VEC) models, which can also include exogenous variables:

$$
\Delta y_{t}=\Pi w_{t}+\sum_{i=1}^{p-1} \Gamma_{i} \Delta y_{t-i}+\sum_{i=0}^{s-1} \Upsilon_{i} \Delta x_{t-i}+C^{U R} d_{t}^{U R}+u_{t}
$$

where Δy_{t} is a $K \times 1$ vector of differenced endogenous variables, w_{t} is a $\left(K+M+N^{R}\right) \times 1$ vector of cointegration variables, Π is a $K \times\left(K+M+N^{R}\right)$ matrix of cointegration parameters,
Γ_{i} is a $K \times K$ coefficient matrix of endogenous variables, Δx_{t} is a $M \times 1$ vector of differenced exogenous regressors, Υ_{i} is a $K \times M$ coefficient matrix of exogenous regressors, $d_{t}^{U R}$ is a $N \times 1$ vector of deterministic terms, and $C^{U R}$ is a $K \times N^{U R}$ coefficient matrix of deterministic terms that do not enter the cointegration term. p is the lag order of endogenous variables and s is the lag order of exogenous variables of the corresponding VAR model. u_{t} is a $K \times 1$ error term.

If an integer vector is provided as argument p, s or r, the function will produce a distinct model for all possible combinations of those specifications.

If tvp is TRUE, the respective coefficients of the above model are assumed to be time varying. If $s v$ is TRUE, the error covariance matrix is assumed to be time varying.

Value

An object of class 'bvecmodel', which contains the following elements:
data A list of data objects, which can be used for posterior simulation. Element Y is a time-series object of dependent variables. Element W is a timer-series object of variables in the cointegration term and element X is a time-series object of variables that do not enter the cointegration term. Element SUR contains a matrix of element X in its SUR form.
model A list of model specifications.

References

Lütkepohl, H. (2006). New introduction to multiple time series analysis (2nd ed.). Berlin: Springer.

Examples

```
# Load data
data("e6")
# Generate model data
data <- gen_vec(e6, p = 4, const = "unrestricted", season = "unrestricted")
```

 inclusion_prior
 Prior Inclusion Probabilities

Description

Prior inclusion probabilities as required for stochastic search variable selection (SSVS) à la George et al. (2008) and Bayesian variable selection (BVS) à la Korobilis (2013).

Usage

```
inclusion_prior(
    object,
    prob = 0.5,
    exclude_deterministics = TRUE,
    minnesota_like = FALSE,
    kappa = c(0.8, 0.5, 0.5, 0.8)
)
```


Arguments

object an object of class "bvarmodel", usually, a result of a call to gen_var or gen_vec.
prob a numeric specifying the prior inclusion probability of all model parameters.
exclude_deterministics
logical. If TRUE (default), the vector of the positions of included variables does not include the positions of deterministic terms.
minnesota_like logical. If TRUE, the prior inclusion probabilities of the parameters are calculated in a similar way as the Minnesota prior. See 'Details'.
kappa a numeric vector of four elements containing the prior inclusion probabilities of coefficients that correspond to own lags of endogenous variables, to endogenous variables, which do not correspond to own lags, to exogenous variables and deterministic terms, respectively. Only used if minnesota_like = TRUE. See 'Details'.

Details

If minnesota_like $=$ TRUE, prior inclusion probabilities $\underline{\pi}_{1}$ are calculated as

$\frac{\kappa_{1}}{r}$	for own lags of endogenous variables,
$\frac{\kappa_{2}}{r}$	for other endogenous variables,
$\frac{\kappa_{3}}{1+r}$	for exogenous variables,
κ_{4}	for deterministic variables,

for lag r with $\kappa_{1}, \kappa_{2}, \kappa_{3}, \kappa_{4}$ as the first, second, third and forth element in kappa, respectively.
For vector error correction models the function generates prior inclusion probabilities for differenced variables and unrestricted deterministc terms as described above. For variables in the error correction term prior inclusion probabilites are calculated as
κ_{1} fow own levels of endogenous variables,
κ_{2} for levels of other endogenous variables,
κ_{3} for levels of exogenous variables,
κ_{4} for deterministic variables.

Value

A list containing a matrix of prior inclusion probabilities and an integer vector specifying the positions of variables, which should be included in the variable selction algorithm.

References

George, E. I., Sun, D., \& Ni, S. (2008). Bayesian stochastic search for VAR model restrictions. Journal of Econometrics, 142(1), 553-580. doi: 10.1016/j.jeconom.2007.08.017
Korobilis, D. (2013). VAR forecasting using Bayesian variable selection. Journal of Applied Econometrics, 28(2), 204-230. doi: 10.1002/jae. 1271

Examples

```
# Prepare data
data("e1")
# Generate model input
object <- gen_var(e1)
    # Obtain inclusion prior
    pi_prior <- inclusion_prior(object)
```

 irf
 Impulse Response Function A generic function used to calculate im-
 pulse response functions.

Description

A plot function for objects of class "bvarirf".

Usage

$\operatorname{irf}(x, \ldots)$
\#\# S3 method for class 'bvarirf'
plot(x, ...)

Arguments

$\begin{array}{ll}x & \text { an object of class "bvarirf", usually, a result of a call to irf. } \\ \ldots & \text { further graphical parameters. }\end{array}$

Examples

```
# Load data
data("e1")
e1 <- diff(log(e1)) * 100
# Generate model data
model <- gen_var(e1, p = 2, deterministic = 2,
```

iterations $=100$, burnin $=10$)
\# Number of iterations and burnin should be much higher.
\# Add prior specifications
model <- add_priors(model)
\# Optain posterior draws
object <- draw_posterior(model)
\# Calculate IR
ir <- irf(object, impulse = "invest", response = "cons")
\# Plot IR
plot(ir)

```
irf.bvar Impulse Response Function
```


Description

Computes the impulse response coefficients of an object of class "bvar" for n. ahead steps.

Usage

```
## S3 method for class 'bvar'
irf(
        x,
        impulse = NULL,
        response = NULL,
        n.ahead = 5,
        ci = 0.95,
        shock = 1,
        type = "feir",
        cumulative = FALSE,
        keep_draws = FALSE,
        period = NULL,
)
```


Arguments

X
impulse
response
n. ahead
ci
an object of class "bvar", usually, a result of a call to bvar or bvec_to_bvar.
name of the impulse variable.
name of the response variable.
number of steps ahead.
a numeric between 0 and 1 specifying the probability mass covered by the credible intervals. Defaults to 0.95 .

shock	size of the shock. type type of the impulse resoponse. Possible choices are forecast error "feir" (de- fault), orthogonalised "oir", structural "sir", generalised "gir", and structural generalised "sgir" impulse responses.
cumulative	logical specifying whether a cumulative IRF should be calculated. keep_draws logical specifying whether the function should return all draws of the posterior impulse response function. Defaults to FALSE so that the median and the credible intervals of the posterior draws are returned. integer. Index of the period, for which the IR should be generated. Only used for TVP or SV models. Default is NULL, so that the posterior draws of the last time period are used.
period	further arguments passed to or from other methods.
\ldots	

Details

The function produces different types of impulse responses for the VAR model

$$
A_{0} y_{t}=\sum_{i=1}^{p} A_{i} y_{t-i}+u_{t}
$$

with $u_{t} \sim N(0, \Sigma)$.
Forecast error impulse responses Φ_{i} are obtained by recursions

$$
\Phi_{i}=\sum_{j=1}^{i} \Phi_{i-j} A_{j}, i=1,2, \ldots, h
$$

with $\Phi_{0}=I_{K}$.
Orthogonalised impulse responses Θ_{i}^{o} are calculated as $\Theta_{i}^{o}=\Phi_{i} P$, where P is the lower triangular Choleski decomposition of Σ.
Structural impulse responses Θ_{i}^{s} are calculated as $\Theta_{i}^{s}=\Phi_{i} A_{0}^{-1}$.
(Structural) Generalised impulse responses for variable j, i.e. $\Theta_{j}^{g} i$ are calculated as $\Theta_{j i}^{g}=\sigma_{j j}^{-1 / 2} \Phi_{i} A_{0}^{-1} \Sigma e_{j}$, where $\sigma_{j j}$ is the variance of the $j^{t h}$ diagonal element of Σ and e_{i} is a selection vector containing one in its $j^{\text {th }}$ element and zero otherwise. If the "bvar" object does not contain draws of A_{0}, it is assumed to be an identity matrix.

Value

A time-series object of class "bvarirf" and if keep_draws = TRUE a simple matrix.

References

Lütkepohl, H. (2006). New introduction to multiple time series analysis (2nd ed.). Berlin: Springer.
Pesaran, H. H., Shin, Y. (1998). Generalized impulse response analysis in linear multivariate models. Economics Letters, 58, 17-29.

Examples

```
    # Load data
    data("e1")
    e1 <- diff(log(e1)) * 100
    # Generate model data
model <- gen_var(e1, p = 2, deterministic = 2,
    iterations = 100, burnin = 10)
    # Chosen number of iterations and burnin should be much higher.
    # Add prior specifications
model <- add_priors(model)
# Obtain posterior draws
object <- draw_posterior(model)
# Obtain IR
ir <- irf(object, impulse = "invest", response = "cons")
# Plot IR
plot(ir)
```

kalman_dk
Durbin and Koopman Simulation Smoother

Description

An implementation of the Kalman filter and backward smoothing algorithm proposed by Durbin and Koopman (2002).

Usage

kalman_dk(y, z, sigma_u, sigma_v, B, a_init, P_init)

Arguments

y	a $K \times T$ matrix of endogenous variables.
z	a $K T \times M$ matrix of explanatory variables.
sigma_u	the constant $K \times K$ error variance-covariance matrix. For time varying variance- covariance matrices a $K T \times K$ can be specified.
sigma_v	the constant $M \times M$ coefficient variance-covariance matrix. For time varying variance-covariance matrices a $M T \times M$ can be specified. an $M \times M$ autocorrelation matrix of the transition equation.
B a_init	an M-dimensional vector of initial states. P_init
	an $M \times M$ variance-covariance matrix of the initial states.

Details

The function uses algorithm 2 from Durbin and Koopman (2002) to produce a draw of the state vector a_{t} for $t=1, \ldots, T$ for a state space model with measurement equation

$$
y_{t}=Z_{t} a_{t}+u_{t}
$$

and transition equation

$$
a_{t+1}=B_{t} a_{t}+v_{t}
$$

where $u_{t} \sim N\left(0, \Sigma_{u, t}\right)$ and $v_{t} \sim N\left(0, \Sigma_{v, t}\right)$. y_{t} is a K-dimensional vector of endogenous variables and $Z_{t}=z_{t}^{\prime} \otimes I_{K}$ is a $K \times M$ matrix of regressors with z_{t} as a vector of regressors.
The algorithm takes into account Jarociński (2015), where a possible missunderstanding in the implementation of the algorithm of Durbin and Koopman (2002) is pointed out. Following that note the function sets the mean of the initial state to zero in the first step of the algorithm.

Value

A $M \times T+1$ matrix of state vector draws.

References

Durbin, J., \& Koopman, S. J. (2002). A simple and efficient simulation smoother for state space time series analysis. Biometrika, 89(3), 603-615.
Jarociński, M. (2015). A note on implementing the Durbin and Koopman simulation smoother. Computational Statistics and Data Analysis, 91, 1-3. doi: 10.1016/j.csda.2015.05.001

Examples

```
# Load data
data("e1")
data <- diff(log(e1))
# Generate model data
temp <- gen_var(data, p = 2, deterministic = "const")
y <- t(temp$data$Y)
z <- temp$data$SUR
k <- nrow(y)
tt <- ncol(y)
m <- ncol(z)
# Priors
a_mu_prior <- matrix(0, m)
a_v_i_prior <- diag(0.1, m)
a_Q <- diag(.0001, m)
# Initial value of Sigma
sigma <- tcrossprod(y) / tt
sigma_i <- solve(sigma)
```

```
# Initial values for Kalman filter
y_init <- y * 0
a_filter <- matrix(0, m, tt + 1)
# Initialise the Kalman filter
for (i in 1:tt) {
    y_init[, i] <- y[, i] - z[(i - 1) * k + 1:k,] %*% a_filter[, i]
}
a_init <- post_normal_sur(y = y_init, z = z, sigma_i = sigma_i,
                                    a_prior = a_mu_prior, v_i_prior = a_v_i_prior)
y_filter <- matrix(y) - z %*% a_init
y_filter <- matrix(y_filter, k) # Reshape
# Kalman filter and backward smoother
a_filter <- kalman_dk(y = y_filter, z = z, sigma_u = sigma,
    sigma_v = a_Q, B = diag(1, m),
    a_init = matrix(0, m), P_init = a_Q)
a <- a_filter + matrix(a_init, m, tt + 1)
```

 loglik_normal Calculates the log-likelihood of a multivariate normal distribution.

Description

Calculates the log-likelihood of a multivariate normal distribution.

Usage

loglik_normal(u, sigma)

Arguments

u
sigma
a $K \times T$ matrix of residuals.
a $K \times K$ or $K T \times K$ variance-covariance matrix.

Details

The log-likelihood is calculated for each vector in period t as

$$
-\frac{K}{2} \ln 2 \pi-\frac{1}{2} \ln \left|\Sigma_{t}\right|-\frac{1}{2} u_{t}^{\prime} \Sigma_{t}^{-1} u_{t}
$$

, where $u_{t}=y_{t}-\mu_{t}$.

Examples

```
# Load data
data("e1")
e1 <- diff(log(e1))
# Generate VAR model
data <- gen_var(e1, p = 2, deterministic = "const")
y <- t(data$data$Y)
x <- t(data$data$Z)
# LS estimate
ols <- tcrossprod(y, x) %*% solve(tcrossprod(x))
# Residuals
u <- y - ols %*% x # Residuals
# Covariance matrix
sigma <- tcrossprod(u) / ncol(u)
# Log-likelihood
loglik_normal(u = u, sigma = sigma)
```

minnesota_prior Minnesota Prior

Description

Calculates the Minnesota prior for a VAR model.

Usage

```
    minnesota_prior(
        object,
        kappa0 = 2,
        kappa1 = 0.5,
        kappa2 = NULL,
        kappa3 = 5,
        max_var = NULL,
        coint_var = FALSE,
        sigma = "AR"
    )
```


Arguments

object an object of class "bvarmodel", usually, a result of a call to gen_var or gen_vec.
kappa0 a numeric specifying the prior variance of coefficients that correspond to own lags of endogenous variables.

kappa1	a numeric specifying the size of the prior variance of endogenous variables, which do not correspond to own lags, relative to argument kappa0. a numeric specifying the size of the prior variance of non-deterministic exoge- nous variables relative to argument kappa0. Default is NULL, which indicates that the formula for the calculation of the prior variance of deterministic terms is used for all exogenous variables. a numeric specifying the size of the prior variance of deterministic terms relative to argument kappa0. a positive numeric specifying the maximum prior variance that is allowed for
kappa3	
max_var	coefficients of non-deterministic variables. If NULL (default), the prior variances are not limited. a logical specifying whether the model is a cointegrated VAR model, for which the prior means of first own lags should be set to one.
coint_var	either "AR" (default) or "VAR" indicating that the variances of the endogenous variables σ^{2} are calculated based on a univariate AR regression or a least squares estimate of the VAR form, respectively. In both cases all deterministic variables are used in the regressions, if they appear in the model.

Details

The function calculates the Minnesota prior of a VAR model. For the endogenous variable i the prior variance of the l th lag of regressor j is obtained as

$$
\begin{gathered}
\frac{\kappa_{0}}{l^{2}} \text { for own lags of endogenous variables, } \\
\frac{\kappa_{0} \kappa_{1}}{l^{2}} \frac{\sigma_{i}^{2}}{\sigma_{j}^{2}} \text { for endogenous variables other than own lags, } \\
\frac{\kappa_{0} \kappa_{2}}{(l+1)^{2}} \frac{\sigma_{i}^{2}}{\sigma_{j}^{2}} \text { for exogenous variables } \\
\kappa_{0} \kappa_{3} \sigma_{i}^{2} \text { for deterministic terms }
\end{gathered}
$$

where σ_{i} is the residual standard deviation of variable i of an unrestricted LS estimate. For exogenous variables σ_{i} is the sample standard deviation.
For VEC models the function only provides priors for the non-cointegration part of the model. The residual standard errors σ_{i} are based on an unrestricted LS regression of the endogenous variables on the error correction term and the non-cointegration regressors.

Value

A list containing a matrix of prior means and the precision matrix of the cofficients and the inverse variance-covariance matrix of the error term, which was obtained by an LS estimation.

References

Chan, J., Koop, G., Poirier, D. J., \& Tobias, J. L. (2020). Bayesian Econometric Methods (2nd ed.). Cambridge: University Press.
Lütkepohl, H. (2006). New introduction to multiple time series analysis (2nd ed.). Berlin: Springer.

Examples

```
# Load data
data("e1")
data <- diff(log(e1))
# Generate model input
object <- gen_var(data)
# Obtain Minnesota prior
prior <- minnesota_prior(object)
```

plot.bvarprd Plotting Forecasts of BVAR Models

Description

A plot function for objects of class "bvarprd".

Usage

\#\# S3 method for class 'bvarprd'
plot(x, n.pre $=$ NULL, ...)

Arguments

x	an object of class "bvarprd", usually, a result of a call to predict.bvar.
n. pre	number of plotted observations that precede the forecasts. If NULL (default), all available obervations will be plotted.
\ldots	further graphical parameters.

Examples

```
# Load data
data("e1")
e1 <- diff(log(e1)) * 100
# Generate model data
model <- gen_var(e1, p = 2, deterministic = 2,
    iterations = 100, burnin = 10)
# Add prior specifications
model <- add_priors(model)
# Obtain posterior draws
object <- draw_posterior(model)
```

```
# Calculate forecasts
pred <- predict(object, new_d = rep(1, 10))
# Plot forecasts
plot(pred)
```

post_coint_kls Posterior Draw for Cointegration Models

Description

Produces a draw of coefficients for cointegration models with a prior on the cointegration space as proposed in Koop et al. (2010) and a draw of non-cointegration coefficients from a normal density.

Usage

```
post_coint_kls(
    y,
    beta,
    w,
    sigma_i,
    v_i,
    p_tau_i,
    g_i,
    x = NULL,
    gamma_mu_prior = NULL,
    gamma_v_i_prior = NULL
)
```


Arguments

y	a $K \times T$ matrix of differenced endogenous variables.
beta	a $M \times r$ cointegration matrix β.
w	a $M \times T$ matrix of variables in the cointegration term.
sigma_i	an inverse of the $K \times K$ variance-covariance matrix. v_i a numeric between 0 and 1 specifying the shrinkage of the cointegration space prior. an inverted $M \times M$ matrix specifying the central location of the cointegration space prior of $s p(\beta)$.
g_i	a $K \times K$ matrix.
x	a $N \times T$ matrix of differenced regressors and unrestricted deterministic terms. gamma_mu_prior gamma_v_i_prior $K N \times 1$ prior mean vector of non-cointegration coefficients.
	an inverted $K N \times K N$ prior covariance matrix of non-cointegration coefficients.

Details

The function produces posterior draws of the coefficient matrices α, β and Γ for the model

$$
y_{t}=\alpha \beta^{\prime} w_{t-1}+\Gamma z_{t}+u_{t}
$$

where y_{t} is a K-dimensional vector of differenced endogenous variables. w_{t} is an $M \times 1$ vector of variables in the cointegration term, which include lagged values of endogenous and exogenous variables in levels and restricted deterministic terms. z_{t} is an N -dimensional vector of differenced endogenous and exogenous explanatory variabes as well as unrestricted deterministic terms. The error term is $u_{t} \sim \Sigma$.
Draws of the loading matrix α are obtained using the prior on the cointegration space as proposed in Koop et al. (2010). The posterior covariance matrix is

$$
\bar{V}_{\alpha}=\left[\left(v^{-1}\left(\beta^{\prime} P_{\tau}^{-1} \beta\right) \otimes G_{-1}\right)+\left(Z Z^{\prime} \otimes \Sigma^{-1}\right)\right]^{-1}
$$

and the posterior mean by

$$
\bar{\alpha}=\bar{V}_{\alpha}+\operatorname{vec}\left(\Sigma^{-1} Y Z^{\prime}\right)
$$

where Y is a $K \times T$ matrix of differenced endogenous variables and $Z=\beta^{\prime} W$ with W as an $M \times T$ matrix of variables in the cointegration term.
For a given prior mean vector $\underline{\Gamma}$ and prior covariance matrix $\underline{V_{\Gamma}}$ the posterior covariance matrix of non-cointegration coefficients in Γ is obtained by

$$
\bar{V}_{\Gamma}=\left[\underline{V}_{\Gamma}^{-1}+\left(X X^{\prime} \otimes \Sigma^{-1}\right)\right]^{-1}
$$

and the posterior mean by

$$
\bar{\Gamma}=\bar{V}_{\Gamma}\left[\underline{V}_{\Gamma}^{-1} \underline{\Gamma}+\operatorname{vec}\left(\Sigma^{-1} Y X^{\prime}\right)\right],
$$

where X is an $M \times T$ matrix of explanatory variables, which do not enter the cointegration term.
Draws of the cointegration matrix β are obtained using the prior on the cointegration space as proposed in Koop et al. (2010). The posterior covariance matrix of the unrestricted cointegration matrix B is

$$
\bar{V}_{B}=\left[\left(A^{\prime} G^{-1} A \otimes v^{-1} P_{\tau}^{-1}\right)+\left(A^{\prime} \Sigma^{-1} A \otimes W W^{\prime}\right)\right]^{-1}
$$

and the posterior mean by

$$
\bar{B}=\bar{V}_{B}+\operatorname{vec}\left(W Y_{B}^{-1} \Sigma^{-1} A\right)
$$

where $Y_{B}=Y-\Gamma X$ and $A=\alpha\left(\alpha^{\prime} \alpha\right)^{-\frac{1}{2}}$.
The final draws of α and β are calculated using $\beta=B\left(B^{\prime} B\right)^{-\frac{1}{2}}$ and $\alpha=A\left(B^{\prime} B\right)^{\frac{1}{2}}$.

Value

A named list containing the following elements:
alpha a draw of the $K \times r$ loading matrix.
beta a draw of the $M \times r$ cointegration matrix.
Pi a draw of the $K \times M$ cointegration matrix $\Pi=\alpha \beta^{\prime}$.
Gamma a draw of the $K \times N$ coefficient matrix for non-cointegration parameters.

References

Koop, G., León-González, R., \& Strachan R. W. (2010). Efficient posterior simulation for cointegrated models with priors on the cointegration space. Econometric Reviews, 29(2), 224-242. doi: 10.1080/07474930903382208

Examples

```
# Load data
data("e6")
# Generate model data
temp <- gen_vec(e6, p = 1, r = 1)
y <- t(temp$data$Y)
ect <- t(temp$data$W)
k <- nrow(y) # Endogenous variables
tt <- ncol(y) # Number of observations
# Initial value of Sigma
sigma <- tcrossprod(y) / tt
sigma_i <- solve(sigma)
# Initial values of beta
beta <- matrix(c(1, -4), k)
# Draw parameters
coint <- post_coint_kls(y = y, beta = beta, w = ect, sigma_i = sigma_i,
                            v_i = 0, p_tau_i = diag(1, k), g_i = sigma_i)
```

post_coint_kls_sur Posterior Draw for Cointegration Models

Description

Produces a draw of coefficients for cointegration models in SUR form with a prior on the cointegration space as proposed in Koop et al. (2010) and a draw of non-cointegration coefficients from a normal density.

Usage

post_coint_kls_sur(
y,
beta,
w,
sigma_i,
v_i,
p_tau_i,

```
    g_i,
    x = NULL,
    gamma_mu_prior = NULL,
    gamma_v_i_prior = NULL,
    svd = FALSE
    )
```


Arguments

y a $K \times T$ matrix of differenced endogenous variables.
beta \quad a $M \times r$ cointegration matrix β, where $\beta^{\prime} \beta=I$.
w
a $M \times T$ matrix of variables in the cointegration term.
sigma_i the inverse of the constant $K \times K$ error variance-covariance matrix. For time varying variance-covariance matrics a $K T \times K$ can be provided.
v_i a numeric between 0 and 1 specifying the shrinkage of the cointegration space prior.
p_tau_i an inverted $M \times M$ matrix specifying the central location of the cointegration space prior of $s p(\beta)$.
g_i a $K \times K$ or $K T \times K$ matrix. If the matrix is $K T \times K$, the function will automatically produce a $K \times K$ matrix containing the means of the time varying $K \times K$ covariance matrix.
x
a $K T \times N K$ matrix of differenced regressors and unrestricted deterministic terms.
gamma_mu_prior a $K N \times 1$ prior mean vector of non-cointegration coefficients.
gamma_v_i_prior
an inverted $K N \times K N$ prior covariance matrix of non-cointegration coefficients.
svd logical. If TRUE the singular value decomposition is used to determine the root of the posterior covariance matrix. Default is FALSE which means that the eigenvalue decomposition is used.

Details

The function produces posterior draws of the coefficient matrices α, β and Γ for the model

$$
y_{t}=\alpha \beta^{\prime} w_{t-1}+\Gamma z_{t}+u_{t}
$$

where y_{t} is a K-dimensional vector of differenced endogenous variables. w_{t} is an $M \times 1$ vector of variables in the cointegration term, which include lagged values of endogenous and exogenous variables in levels and restricted deterministic terms. z_{t} is an N -dimensional vector of differenced endogenous and exogenous explanatory variabes as well as unrestricted deterministic terms. The error term is $u_{t} \sim \Sigma$.

Draws of the loading matrix α are obtained using the prior on the cointegration space as proposed in Koop et al. (2010). The posterior covariance matrix is

$$
\bar{V}_{\alpha}=\left[\left(v^{-1}\left(\beta^{\prime} P_{\tau}^{-1} \beta\right) \otimes G_{-1}\right)+\left(Z Z^{\prime} \otimes \Sigma^{-1}\right)\right]^{-1}
$$

and the posterior mean by

$$
\bar{\alpha}=\bar{V}_{\alpha}+\operatorname{vec}\left(\Sigma^{-1} Y Z^{\prime}\right)
$$

where Y is a $K \times T$ matrix of differenced endogenous variables and $Z=\beta^{\prime} W$ with W as an $M \times T$ matrix of variables in the cointegration term.
For a given prior mean vector $\underline{\Gamma}$ and prior covariance matrix $\underline{V_{\Gamma}}$ the posterior covariance matrix of non-cointegration coefficients in Γ is obtained by

$$
\bar{V}_{\Gamma}=\left[\underline{V}_{\Gamma}^{-1}+\left(X X^{\prime} \otimes \Sigma^{-1}\right)\right]^{-1}
$$

and the posterior mean by

$$
\bar{\Gamma}=\bar{V}_{\Gamma}\left[\underline{V}_{\Gamma}^{-1} \underline{\Gamma}+\operatorname{vec}\left(\Sigma^{-1} Y X^{\prime}\right)\right],
$$

where X is an $M \times T$ matrix of explanatory variables, which do not enter the cointegration term.
Draws of the cointegration matrix β are obtained using the prior on the cointegration space as proposed in Koop et al. (2010). The posterior covariance matrix of the unrestricted cointegration matrix B is

$$
\bar{V}_{B}=\left[\left(A^{\prime} G^{-1} A \otimes v^{-1} P_{\tau}^{-1}\right)+\left(A^{\prime} \Sigma^{-1} A \otimes W W^{\prime}\right)\right]^{-1}
$$

and the posterior mean by

$$
\bar{B}=\bar{V}_{B}+\operatorname{vec}\left(W Y_{B}^{-1} \Sigma^{-1} A\right)
$$

where $Y_{B}=Y-\Gamma X$ and $A=\alpha\left(\alpha^{\prime} \alpha\right)^{-\frac{1}{2}}$.
The final draws of α and β are calculated using $\beta=B\left(B^{\prime} B\right)^{-\frac{1}{2}}$ and $\alpha=A\left(B^{\prime} B\right)^{\frac{1}{2}}$.

Value

A named list containing the following elements:

alpha	a draw of the $K \times r$ loading matrix.
beta	a draw of the $M \times r$ cointegration matrix.
Pi	a draw of the $K \times M$ cointegration matrix $\Pi=\alpha \beta^{\prime}$.
Gamma	a draw of the $K \times N$ coefficient matrix for non-cointegration parameters.

References

Koop, G., León-González, R., \& Strachan R. W. (2010). Efficient posterior simulation for cointegrated models with priors on the cointegration space. Econometric Reviews, 29(2), 224-242. doi: 10.1080/07474930903382208

Examples

```
# Load data
data("e6")
# Generate model data
temp <- gen_vec(e6, p = 1, r = 1)
y <- t(temp$data$Y)
ect <- t(temp$data$W)
```

```
k <- nrow(y) # Endogenous variables
tt <- ncol(y) # Number of observations
    # Initial value of Sigma
    sigma <- tcrossprod(y) / tt
    sigma_i <- solve(sigma)
    # Initial values of beta
    beta <- matrix(c(1, -4), k)
    # Draw parameters
    coint <- post_coint_kls_sur(y = y, beta = beta, w = ect,
        sigma_i = sigma_i, v_i = 0, p_tau_i = diag(1, nrow(ect)),
        g_i = sigma_i)
```

 post_normal Posterior Draw from a Normal Distribution

Description

Produces a draw of coefficients from a normal posterior density.

Usage

post_normal(y, x, sigma_i, a_prior, v_i_prior)

Arguments

y
x
sigma_i
a_prior
v_i_prior
a $K \times T$ matrix of endogenous variables.
an $M \times T$ matrix of explanatory variables.
the inverse of the $K \times K$ variance-covariance matrix.
a $K M \times 1$ numeric vector of prior means.
the inverse of the $K M \times K M$ prior covariance matrix.

Details

The function produces a vectorised posterior draw a of the $K \times M$ coefficient matrix A for the model

$$
y_{t}=A x_{t}+u_{t}
$$

where y_{t} is a K-dimensional vector of endogenous variables, x_{t} is an M-dimensional vector of explanatory variabes and the error term is $u_{t} \sim \Sigma$.
For a given prior mean vector \underline{a} and prior covariance matrix \underline{V} the posterior covariance matrix is obtained by

$$
\bar{V}=\left[\underline{V}^{-1}+\left(X X^{\prime} \otimes \Sigma^{-1}\right)\right]^{-1}
$$

and the posterior mean by

$$
\bar{a}=\bar{V}\left[\underline{V}^{-1} \underline{a}+\operatorname{vec}\left(\Sigma^{-1} Y X^{\prime}\right)\right]
$$

where Y is a $K \times T$ matrix of the endogenous variables and X is an $M \times T$ matrix of the explanatory variables.

Value

A vector.

References

Lütkepohl, H. (2006). New introduction to multiple time series analysis (2nd ed.). Berlin: Springer.

Examples

```
# Load data
data("e1")
data <- diff(log(e1))
# Generate model data
temp <- gen_var(data, p = 2, deterministic = "const")
y <- t(temp$data$Y)
x <- t(temp$data$Z)
k <- nrow(y)
tt <- ncol(y)
m <- k * nrow(x)
# Priors
a_mu_prior <- matrix(0, m)
a_v_i_prior <- diag(0.1, m)
# Initial value of inverse Sigma
sigma_i <- solve(tcrossprod(y) / tt)
# Draw parameters
a <- post_normal(y = y, x = x, sigma_i = sigma_i,
    a_prior = a_mu_prior, v_i_prior = a_v_i_prior)
```


Description

Produces a draw of coefficients from a normal posterior density for a model with seemingly unrelated regresssions (SUR).

Usage

post_normal_sur(y, z, sigma_i, a_prior, v_i_prior, svd = FALSE)

Arguments

y
z
sigma_i
a_prior
v_i_prior
svd
a $K \times T$ matrix of endogenous variables.
a $K T \times M$ matrix of explanatory variables.
the inverse of the constant $K \times K$ error variance-covariance matrix. For time varying variance-covariance matrics a $K T \times K$ can be provided.

$$
\text { a } M x 1 \text { numeric vector of prior means. }
$$

the inverse of the $M x M$ prior covariance matrix.
logical. If TRUE the singular value decomposition is used to determine the root of the posterior covariance matrix. Default is FALSE which means that the eigenvalue decomposition is used.

Details

The function produces a posterior draw of the coefficient vector a for the model

$$
y_{t}=Z_{t} a+u_{t}
$$

where $u_{t} \sim N\left(0, \Sigma_{t}\right)$. y_{t} is a K-dimensional vector of endogenous variables and $Z_{t}=z_{t}^{\prime} \otimes I_{K}$ is a $K \times K M$ matrix of regressors with z_{t} as a vector of regressors.
For a given prior mean vector \underline{a} and prior covariance matrix \underline{V} the posterior covariance matrix is obtained by

$$
\bar{V}=\left[\underline{V}^{-1}+\sum_{t=1}^{T} Z_{t}^{\prime} \Sigma_{t}^{-1} Z_{t}\right]^{-1}
$$

and the posterior mean by

$$
\bar{a}=\bar{V}\left[\underline{V}^{-1} \underline{a}+\sum_{t=1}^{T} Z_{t}^{\prime} \Sigma_{t}^{-1} y_{t}\right]
$$

Value

A vector.

Examples

```
# Load data
data("e1")
data <- diff(log(e1))
# Generate model data
temp <- gen_var(data, p = 2, deterministic = "const")
y <- t(temp$data$Y)
z <- temp$data$SUR
k <- nrow(y)
```

```
\(\mathrm{tt}<-\operatorname{ncol}(\mathrm{y})\)
\(\mathrm{m}<-\mathrm{ncol}(\mathrm{z})\)
\# Priors
a_mu_prior <- matrix(0, m)
a_v_i_prior <- diag(0.1, m)
\# Initial value of inverse Sigma
sigma_i <- solve(tcrossprod(y) / tt)
\# Draw parameters
a <- post_normal_sur \((y=y, z=z\), sigma_i = sigma_i,
a_prior = a_mu_prior, v_i_prior = a_v_i_prior)
```

ssvs

Stochastic Search Variable Selection

Description

ssvs employs stochastic search variable selection as proposed by George et al. (2008) to produce a draw of the precision matrix of the coefficients in a VAR model.

Usage

ssvs(a, tau0, tau1, prob_prior, include = NULL)

Arguments

a
tau0
tau1
prob_prior an M-dimensional vector of prior inclusion probabilites for the coefficients in vector a .
include an integer vector specifying the positions of coefficients in vector a, which should be included in the SSVS algorithm. If NULL (default), SSVS will be applied to all coefficients.

Details

The function employs stochastic search variable selection (SSVS) as proposed by George et al. (2008) to produce a draw of the diagonal inverse prior covariance matrix \underline{V}^{-1} and the corresponding vector of inclusion parameters λ of the vectorised coefficient matrix $a=\operatorname{vec}(A)$ for the VAR model

$$
y_{t}=A x_{t}+u_{t}
$$

where y_{t} is a K -dimensional vector of endogenous variables, x_{t} is a vector of explanatory variabes and the error term is $u_{t} \sim \Sigma$.

Value

A named list containing two components:
$\begin{array}{ll}\text { v_i } & \text { an } M \times M \text { inverse prior covariance matrix. } \\ \text { lambda } & \text { an } \mathrm{M} \text {-dimensional vector of inclusion parameters. }\end{array}$

References

George, E. I., Sun, D., \& Ni, S. (2008). Bayesian stochastic search for VAR model restrictions. Journal of Econometrics, 142(1), 553-580. doi: 10.1016/j.jeconom.2007.08.017

Examples

```
# Load data
data("e1")
data <- diff(log(e1))
# Generate model data
temp <- gen_var(data, p = 2, deterministic = "const")
y <- t(temp$data$Y)
x <- t(temp$data$Z)
k <- nrow(y)
tt <- ncol(y)
m <- k * nrow(x)
# Obtain SSVS priors using the semiautomatic approach
priors <- ssvs_prior(temp, semiautomatic = c(0.1, 10))
tau0 <- priors$tau0
tau1 <- priors$tau1
# Prior for inclusion parameter
prob_prior <- matrix(0.5, m)
# Priors
a_mu_prior <- matrix(0, m)
a_v_i_prior <- diag(c(tau1^2), m)
# Initial value of Sigma
sigma_i <- solve(tcrossprod(y) / tt)
# Draw parameters
a <- post_normal(y = y, x = x, sigma_i = sigma_i,
    a_prior = a_mu_prior, v_i_prior = a_v_i_prior)
# Run SSVS
lambda <- ssvs(a = a, tau0 = tau0, tau1 = tau1,
    prob_prior = prob_prior)
```


Description

Calculates the priors for a Bayesian VAR model, which employs stochastic search variable selection (SSVS).

Usage

ssvs_prior (object, tau $=c(0.05,10)$, semiautomatic $=$ NULL)

Arguments

object an object of class "bvarmodel", usually, a result of a call to gen_var or gen_vec.
tau a numeric vector of two elements containing the prior standard errors of restricted variables $\left(\tau_{0}\right)$ as its first element and unrestricted variables $\left(\tau_{1}\right)$ as its second. Default is $\mathrm{c}(0.05,10)$.
semiautomatic an optional numeric vector of two elements containing the factors by which the standard errors associated with an unconstrained least squares estimate of the VAR model are multiplied to obtain the prior standard errors of restricted (τ_{0}) and unrestricted $\left(\tau_{1}\right)$ variables. This is the semiautomatic approach described in George et al. (2008).

Value

A list containing the vectors of prior standard deviations for restricted and unrestricted variables, respectively.

References

George, E. I., Sun, D., \& Ni, S. (2008). Bayesian stochastic search for VAR model restrictions. Journal of Econometrics, 142(1), 553-580. doi: 10.1016/j.jeconom.2007.08.017

Examples

```
# Prepare data
data("e1")
data <- diff(log(e1))
# Generate model input
object <- gen_var(data)
# Obtain SSVS prior
prior <- ssvs_prior(object, semiautomatic = c(.1, 10))
```

```
stoch_vol Stochastic Volatility
```


Description

Produces a draw of log-volatilities.

Usage

stoch_vol(y, h, sigma, h_init)

Arguments

y a $T \times 1$ vector containing the time series.
h a $T \times 1$ vector of log-volatilities.
sigma a numeric of the variance of the log-volatilites.
h_init a numeric of the initial state of log-volatilities.

Details

The function produces a posterior draw of the log-volatility h for the model

$$
y_{t}=e^{\frac{1}{2} h_{t}} \epsilon_{t}
$$

where $\epsilon_{t} \sim N(0,1)$ and h_{t} is assumed to evolve according to a random walk

$$
h_{t}=h_{t-1}+u_{t}
$$

with $u_{t} \sim N\left(0, \sigma^{2}\right)$.
The implementation follows the algorithm of Kim, Shephard and Chip (1998) and performs the following steps:

1. Perform the transformation $y_{t}^{*}=\ln \left(y_{t}^{2}+0.0001\right)$.
2. Obtain a sample from the seven-component normal mixture for approximating the $\log -\chi_{1}^{2}$ distribution.
3. Obtain a draw of log-volatilities.

The implementation follows the code provided on the website to the textbook by Chan, Koop, Poirier, and Tobias (2019).

Value

A vector of log-volatility draws.

References

Chan, J., Koop, G., Poirier, D. J., \& Tobias J. L. (2019). Bayesian econometric methods (2nd ed.). Cambridge: Cambridge University Press.
Kim, S., Shephard, N., \& Chib, S. (1998). Stochastic volatility. Likelihood inference and comparison with ARCH models. Review of Economic Studies 65(3), 361-393. doi: 10.1111/1467937X. 00050

Examples

```
data("us_macrodata")
y <- us_macrodata[, "r"]
# Initialise log-volatilites
h_init <- log(var(y))
h <- rep(h_init, length(y))
# Obtain draw
stoch_vol(y - mean(y), h, .05, h_init)
```

summary.bvar Summarising Bayesian VAR Coefficients

Description

summary method for class "bvar".

Usage

```
## S3 method for class 'bvar'
summary(object, ci = 0.95, period = NULL, ...)
## S3 method for class 'summary.bvar'
print(x, digits = max(3L, getOption("digits") - 3L), ...)
```


Arguments

object an object of class "bvar", usually, a result of a call to bvar or bvec_to_bvar.
ci a numeric between 0 and 1 specifying the probability of the credible band. Defaults to 0.95 .
period integer. Index of the period, for which the summary statistics should be generated. Only used for TVP or SV models. Default is NULL, so that the posterior draws of the last time period are used.
... further arguments passed to or from other methods.
x an object of class "summary.bvar", usually, a result of a call to summary .bvar.
digits the number of significant digits to use when printing.

Value

summary.bvar returns a list of class "summary.bvar", which contains the following components:
coefficients A list of various summary statistics of the posterior draws of the VAR coefficients.
sigma A list of various summary statistics of the posterior draws of the variancecovariance matrix.
specifications a list containing information on the model specification.

Description

summary method for class "bvarlist".

Usage

\#\# S3 method for class 'bvarlist'
summary (object, ...)

Arguments

object an object of class "bvar", usually, a result of a call to draw_posterior.
... further arguments passed to or from other methods.

Details

The log-likelihood for the calculation of the information criteria is obtained by

$$
L L=\frac{1}{R} \sum_{i=1}^{R}\left(\sum_{t=1}^{T}-\frac{K}{2} \ln 2 \pi-\frac{1}{2} \ln \left|\Sigma_{t}^{(i)}\right|-\frac{1}{2}\left(u_{t}^{(i) \prime}\left(\Sigma_{t}^{(i)}\right)^{-1} u_{t}^{(i)}\right)\right.
$$

, where $u_{t}=y_{t}-\mu_{t}$. The Akaike, Bayesian and Hannan-Quinn (HQ) information criteria are calculated as

$$
\begin{gathered}
A I C=2(K p+M s+N)-2 L L \\
B I C=(K p+M s+N) \ln (T)-2 L L
\end{gathered}
$$

and

$$
H Q=2(K p+M s+N) \ln (\ln (T))-2 L L
$$

, respectively, where K is the number of endogenous variables, p the number of lags of endogenous variables, M the number of exogenous variables, s the number of lags of exogenous variables, N the number of deterministic terms and T the number of observations.

Value

summary.bvarlist returns a table of class "summary.bvarlist".

Description

summary method for class "bvec".

Usage

```
    ## S3 method for class 'bvec'
```

 summary (object, ci \(=0.95\), period \(=\) NULL, \(\ldots\))
 \#\# S3 method for class 'summary.bvec'
 print(x, digits \(=\max (3 \mathrm{~L}\), getOption("digits") - 3L), ...)

Arguments

object	an object of class "bvec", usually, a result of a call to bvec.
ci	a numeric between 0 and 1 specifying the probability of the credible band. De- faults to 0.95.
period	integer. Index of the period of a TVP VEC, for which a summary should be generated. Only used for TVP models. Default is NULL so that only the most recent time period is used.
\ldots	further arguments passed to or from other methods.
x	an object of class "summary.bvec", usually, a result of a call to summary.bvec.
digits	the number of significant digits to use when printing.

Value

summary.bvec returns a list of class "summary.bvec", which contains the following components:
coefficients A list of various summary statistics of the posterior draws of the VAR coefficients.
sigma A list of various summary statistics of the posterior draws of the variancecovariance matrix.
specifications a list containing information on the model specification.

Description

summary method for class "dfm".

Usage

\#\# S3 method for class 'dfm'
summary (object, ci $=0.95, \ldots$)

Arguments

object an object of class "dfm", usually, a result of a call to dfm.
ci a numeric between 0 and 1 specifying the probability of the credible band. Defaults to 0.95 .
... further arguments passed to or from other methods.

Value

summary. dfm returns a list of class "summary. dfm ", which contains the following components:
lambda A list of various summary statistics of the posterior draws of the factor loadings.
factor A list of various summary statistics of the posterior draws of the factors.
sigma_u A list of various summary statistics of the posterior draws of the variance matrix of the measurement equation.
a
sigma_v A list of various summary statistics of the posterior draws of the variance matrix of the transition equation.
specifications a list containing information on the model specification.

Description

Thins the MCMC posterior draws in an object of class "bvar".

Usage

\#\# S3 method for class 'bvar'
thin(x, thin $=10, \ldots$)

Arguments

x	an object of class "bvar".
thin	an integer specifying the thinning interval between successive values of posterior draws.
\ldots	further arguments passed to or from other methods.

Value

An object of class "bvar".

Examples

```
    # Load data
data("e1")
    e1 <- diff(log(e1)) * 100
    # Obtain data matrices
    model <- gen_var(e1, p = 2, deterministic = 2,
            iterations = 100, burnin = 10)
    # Chosen number of iterations and burn-in draws should be much higher.
    # Add prior specifications
model <- add_priors(model)
# Obtain posterior draws
object <- draw_posterior(model)
object <- thin(object)
```

thin.bvarlist

Description

Thins the MCMC posterior draws in an object of class "bvarlist".

Usage

\#\# S3 method for class 'bvarlist'
thin(x, thin $=10, \ldots$)

Arguments

x
thin
an object of class "bvarlist".
an integer specifying the thinning interval between successive values of posterior draws.
... further arguments passed to or from other methods.

Value

An object of class "bvarlist".

Examples

```
# Load data
data("e1")
e1 <- diff(log(e1)) * 100
# Generate multiple model matrices
model <- gen_var(e1, p = 1:2, deterministic = 2,
    iterations = 100, burnin = 10)
# Add prior specifications
model <- add_priors(model)
# Obtain posterior draws
object <- draw_posterior(model)
# Thin
object <- thin(object)
```

thin.bvec

Thinning Posterior Draws

Description

Thins the MCMC posterior draws in an object of class "bvec".

Usage

\#\# S3 method for class 'bvec'
thin(x, thin $=10, \ldots$)

Arguments

$x \quad$ an object of class "bvec".
thin an integer specifying the thinning interval between successive values of posterior draws.
... further arguments passed to or from other methods.

Value

An object of class "bvec".

Examples

```
# Load data
data("e6")
# Generate model data
model <- gen_vec(e6, p = 2, r = 1,
    const = "unrestricted", seasonal = "unrestricted",
    iterations = 100, burnin = 10)
# Add prior specifications
model <- add_priors(model)
# Obtain posterior draws
object <- draw_posterior(model)
# Thin
object <- thin(object)
```


Description

Thins the MCMC posterior draws in an object of class "dfm".

Usage

\#\# S3 method for class 'dfm'
thin(x, thin $=10, \ldots$)

Arguments

x
thin an integer specifying the thinning interval between successive values of posterior draws.
...

Value
An object of class "dfm".

Examples

```
# Load data
data("bem_dfmdata")
# Generate model data
model <- gen_dfm(x = bem_dfmdata, p = 1, n = 1,
    iterations = 20, burnin = 10)
# Number of iterations and burnin should be much higher.
# Add prior specifications
model <- add_priors(model,
    lambda = list(v_i = .01),
    sigma_u = list(shape = 5, rate = 4),
    a = list(v_i = .01),
    sigma_v = list(shape = 5, rate = 4))
# Obtain posterior draws
object <- draw_posterior(model)
# Plot factors
object <- thin(object, thin = 2)
```


Description

The data set contains quarterly time series for the US CPI inflation rate, unemployment rate, and Fed Funds rate from 1959Q2 to 2007Q4. It was produced from file "US_macrodata.csv" of the data sets associated with Chan, Koop, Poirier and Tobias (2019). Raw data are available at https://web. ics.purdue.edu/~jltobias/second_edition/Chapter20/code_for_exercise_1/US_macrodata. csv.

Usage

data("us_macrodata")

Format

A named time-series object with 195 rows and 3 variables:
Dp CPI inflation rate.
u unemployment rate.
r Fed Funds rate.

References

Chan, J., Koop, G., Poirier, D. J., \& Tobias J. L. (2019). Bayesian econometric methods (2nd ed.). Cambridge: Cambridge University Press.

Index

```
* datasets
    bem_dfmdata, 14
    e1,41
    e6,42
    us_macrodata, }8
add_priors, 3, 20, 29, 37-39, 41
add_priors.bvarmodel,4
add_priors.bvecmodel, 8
add_priors.dfmodel, 12
bem_dfmdata, 14
bvar, 14, 16, 44, 54, 74
bvarpost, 20, 38,41
bvartools, 21
bvec, 22, 76
bvec_to_bvar, 16, 30, 44, 54, 74
bvecpost, 29, 39, 41
bvs,}3
dfm, 34, 35,77
dfmpost, 37,41
draw_posterior, 15, 24, 38,75
draw_posterior.bvarmodel, 38
draw_posterior.bvecmodel, 39
draw_posterior.dfmodel,40
e1,41
e6,42
fevd, 43,43
fevd.bvar,44
gen_dfm, 12, 37, 38, 41,46
gen_var, 4, 15, 20, 38, 41, 47, 52, 59, 72
gen_vec, 8, 23, 29, 38, 39, 41, 49, 52, 59, 72
inclusion_prior,51
irf, 53,53
irf.bvar, 54
```

kalman_dk, 56
loglik_normal, 58
minnesota_prior, 59
plot.bvar (bvar), 14
plot.bvarfevd (fevd), 43
plot.bvarirf(irf), 53
plot.bvarprd, 61
plot.bvec (bvec), 22
plot.dfm (dfm), 34
post_coint_kls, 62
post_coint_kls_sur, 64
post_normal, 67
post_normal_sur, 68
predict.bvar, 61
predict.bvar (bvar), 14
print. summary.bvar (summary.bvar), 74
print. summary.bvec (summary.bvec), 76
ssvs, 70
ssvs_prior, 72
stoch_vol, 73
summary.bvar, 74, 74
summary.bvarlist, 75
summary.bvec, 76, 76
summary.dfm, 77
thin.bvar, 77
thin.bvarlist, 78
thin.bvec, 79
thin. dfm, 80
us_macrodata, 81

