
Package ‘cancerTiming’
April 3, 2016

Title Estimation of Temporal Ordering of Cancer Abnormalities

Version 3.1.8

Date 2016-04-01

Author Elizabeth Purdom

Maintainer Elizabeth Purdom <epurdom@stat.berkeley.edu>

Description Timing copy number changes using estimates of mutational allele frequency from rese-
quencing of tumor samples.

Depends R (>= 2.11.0)

Suggests GenomicRanges, IRanges, S4Vectors

Imports utils, stats, grDevices, graphics, LearnBayes, gplots

License GPL (>= 2)

NeedsCompilation no

Repository CRAN

Date/Publication 2016-04-03 00:22:46

R topics documented:
alleleFrequency . 2
bootstrapEventTiming . 3
eventTiming . 4
eventTimingOverList . 7
hg19chromosomes . 8
labelSeg . 9
makeEventHistory . 10
mleAF . 11
multidensity . 12
mut2Seg . 13
mutData . 14
plotAlleleByPosition . 15
plotAlleleDensity . 17
plotCopies . 18
plotPi0 . 19

1

2 alleleFrequency

plotSegmentation . 20
plotSeqCount . 21
readSimulation . 22

Index 24

alleleFrequency Get allele frequencies for tumor data

Description

Calculate allele frequencies that would be possible for a variant found in a region with a given
number of total copies of the tumor, adjusted for the given percentage of normal contamination.

Usage

allAF(totalCopy,normCont=0,totalCopyNormal=2,
type=c("mutation","SNPHet","SNPHomo"))
contAF(trueAF, totalCopy, normCont = 0, totalCopyNormal = 2,
type = c("mutation", "SNPHet", "SNPHomo"))
decontAF(contAF, totalCopy, normCont = 0, totalCopyNormal = 2,
type = c("mutation", "SNPHet", "SNPHomo"))
errorAF(trueAF,seqError=0)

Arguments

totalCopy total number of copies of DNA of the tumor, integer

normCont proportion of normal contamination (see Details)
totalCopyNormal

total number of copies of DNA in the normal sample

type type of allele frequency (see Details)

trueAF vector of true AF values in tumor

contAF vector of observed (contaminated by normal) allele frequency values

seqError The probability of sequencing error per base

Details

contAF takes as input a true allele frequency and then adjusted its based on the given normal con-
tamination, to give the allele frequencies actually expected from the mixture of tumor and normal
cells present. decontAF does the reverse, taking contaminated AF and calculating the true AF that
is implied for the given normal contamination.

errorAF gives the adjusted allele frequencies to account for sequencing error.

allAF returns all the possible allele frequencies for a variant, namely (0:totalCopy)/totalCopy. For
type="mutation", only alleles from (1:totalCopy)/totalCopy are calculated, since the assumption is
that mutated (relative to germline) regions by definition are not expected to be present at 0 copies

bootstrapEventTiming 3

in the tumor. For ‘allAF’, ‘normCont’ can be a vector, in which case all the allele frequencies are
calculated for all the values of ‘normCont’; for the remaining functions, it must be a single value.

Only integer values of ‘totalCopy’ are allowed.

‘type’ refers to the type of variant, relative to the normal. Namely, how many copies of the variant
are in the normal. Therefore ‘mutation’ implies 0 copies in the normal, ‘SNPHet’ implies 1 copy
in the normal, and ‘SNPHomo’ implies variant is in every copy of the normal (which could be not
equal to 2 if totalCopyNormal is not 2).

For the functions seqError, contAF, and decontAF, ‘totalCopy’, ‘normCont’,‘totalCopyNormal’,
and ‘seqError’ can be vectors of the same length as the input.

Value

For ‘allAF’, a list of the same length of ‘normCont’. Each element of the list is a vector of the entire
set of possible allele frequencies for the corresponding level of normal contamination.

For ‘contAF’, ‘decontAF’, and ‘seqError’ a vector the same length as the inputted allele frequencies
that were to be converted.

Author(s)

Elizabeth Purdom

Examples

contAF(1/3,totalCopy=3,normCont=.1,type="mutation")
contAF(c(.5,.5,.5),totalCopy=c(2,4,6),normCont=.2)

#allele frequencies possible for a location that is same
#as reference in the normal, for three different values of normal contamination
allAF(totalCopy=3,normCont=c(0,.1,.5),type="mutation")
#same, but for those that are heterozygous in the normal
allAF(totalCopy=3,normCont=c(0,.1,.5),type="SNPHet")

bootstrapEventTiming Bootstrap the results of eventTiming

Description

Create bootstrap estimates of pi base on the results of a call to eventTiming.

Usage

bootstrapEventTiming(eventOrdering, B, type = c("parametric",
"nonparametric"), pi, x, m ,call)

4 eventTiming

Arguments

eventOrdering output from eventTiming

B number of bootstrap samples to take

type type of bootstrap confidence interval to calculate, one of “parametric", “non-
parametric"

pi the estimate of pi from which to create bootstrap samples (if type="parametric".
If not given, will use output from eventOrdering)

x vector. the number of reads/fragments containing the variant; not needed if
output from eventOrdering given.

m vector. the number of reads/fragments covering the location with the variant (the
coverage); not needed if output from eventOrdering given.

call information about the call given to original eventTiming command. Only needed
if eventOrdering object not given (mainly used for internal calls within event-
Timing function)

Value

Matrix of dimension (B,length(pi)) with the estimate of pi for each of the bootstrap samples

Author(s)

Elizabeth Purdom

Examples

##can do this within eventTiming function, but here is an example doing it separately...
data(mutData)
ACNLOH<-matrix(c(1,3,1,0),ncol=2,nrow=2,byrow=TRUE)
onlyMuts<-subset(mutData,is.na(rsID) & position <= 1.8E7)
onlyMuts$t_depth<-onlyMuts$t_ref_count+onlyMuts$t_alt_count
x<-eventTiming(x=onlyMuts$t_alt_count,m=onlyMuts$t_depth,

history=ACNLOH,totalCopy=2,type="CNLOH",normCont=0.22,returnAssignments=TRUE)
piBoot<-bootstrapEventTiming(x,B=100,type="parametric")

eventTiming Estimate the time of events in tumor data

Description

Estimate the proportion of time spent between different chromosomal abnormalities based on the
allele frequencies of mutated locations.

eventTiming 5

Usage

eventTiming (x, m, history, totalCopy,
method = c("fullMLE","partialMLE", "Bayes"),
type = c("gain", "CNLOH"), seqError = 0, bootstrapCI = NULL,
B = if (method =="Bayes") 10000 else 500, CILevel = 0.95, normCont = 0,
verbose = TRUE, returnAssignments = FALSE, coverageCutoff = 1,
minMutations = 10, init = NULL, maxiter = 100, tol= 1e-04,
mutationId = 1:length(x),...)

Arguments

x vector. the number of reads/fragments containing the variant

m vector. the number of reads/fragments covering the location with the variant (the
coverage)

history a matrix, based on the history of the region (see Details)

totalCopy integer. the total number of copies of the tumor DNA for this region

method what estimation method to use, one of “fullMLE",“partialMLE",“Bayes"

type type of region, either a gain or a CNLOH region

seqError Probability of sequencing error

bootstrapCI type of bootstrap confidence interval to calculate, one of “parametric", “non-
parametric". If NULL, then the confidence interval is not calculated

B number of bootstrap samples to take (or simulations from the posterior for Bayesian
estimation)

CILevel At what level the confidence intervals should be calculated.

normCont the proportion of normal contamination, between 0 and 1.

verbose logical. Whether to give additional warnings as the program is running.
returnAssignments

logical. Whether to return the probabilistic assignments of mutations to allele
frequencies generated by the EM algorithm. Also returns the x,m values for
those that pass the filter.

coverageCutoff minimum value for m[i]; any entries with m[i]<coverageCutoff are ignored in
estimation.

minMutations minimum number of mutations required.

init initial value of multinomial parameter q passed to estimateQ.

maxiter maximum number of iterations in calculation q.

tol tolerance in the convergence of q

mutationId identification values of the mutations (vector of the same length as x and m).
Default is indexing values, 1:length(x). Used when returnAssignments=TRUE
so that the assignments of the mutations to allele frequencies can be linked with
the original mutations if there has been filtering in eventTiming, e.g. due to
depth of coverage.

6 eventTiming

... Arguments passed to internal fitting function for Bayesian Method. For exam-
ple, ‘alpha’ gives the Dirichlet prior of the bayesian estimate (default=1), ‘tdf’
gives the number of degrees of freedom for the t proposal density used in the
bayesian estimate (default=4), ‘bayesApproxMethod’ gives the method for cal-
culating the approximate distribution (default is “sir"; “inv" is for K=1 when
the problem is 1-dimensional and one can easily grid and get the approximate
posterior density and cdf).

Value

A list with values

pi estimate of pi vector

piCI bootstrap confidence interval, if requested

q estimate of the multinomial parameter q
perLocationProb

output from estimateQ giving per location P(P[i]|X[i],q), if requested. Only
locations used in the estimation are included.

optimDetails optimization details from estimateQ

call list of the parameters of the call to the function: history, totalCopy, type, ex-
actAllele, normCont, coverageCutoff, minMutations. In addition, ‘alleleSet’ is
included in this list, which is the set of possible alleles for this history, after
adjusting for normal contamination.

Author(s)

Elizabeth Purdom

References

Durinck S, et al. (2011). “Temporal Dissection of Tumorigenesis in Primary Cancers." Cancer
Discovery, 1(2): 137–143. Greenman CD, et al. (2012). “Estimation of rearrangement phylogeny
for cancer genomes." Genome Research, 22(2): 346–361. Purdom E, et al. (2013). “Timing
Chromosomal Abnormalities within Cancer Samples.” Bioinformatics, 29(24): 3113–3120.

Examples

data(mutData)
ACNLOH<-matrix(c(1,3,1,0),ncol=2,nrow=2,byrow=TRUE)
onlyMuts<-subset(mutData,is.na(rsID) & position <= 1.8E7)
onlyMuts$t_depth<-onlyMuts$t_ref_count+onlyMuts$t_alt_count
x<-eventTiming(x=onlyMuts$t_alt_count,m=onlyMuts$t_depth,

history=ACNLOH,totalCopy=2,type="CNLOH",normCont=0.22)
x$pi #estimate of time of stages
x$q #estimate of the multinomial (likelihood of each of the alleles)
x$call$alleleSet #possible set of alleles after

#adjusting for normal contamination

eventTimingOverList 7

eventTimingOverList eventTiming for multiple samples and regions

Description

eventTimingOverList is a wrapper to eventTiming that allows for timing of common events over
several regions of a sample and/or multiple samples. getPi0Summary gets summary information
about π0 (the first event) from the output of that function and returns a simple dataframe of the
estimate of π0 for every region and sample combination.

Usage

eventTimingOverList(dfList, normCont, eventArgs)
getPi0Summary(eventList, CI = TRUE)

Arguments

dfList a list of mutation data per sample. Each element of the list corresponds to a sam-
ple, and consists of a data frame of mutation information for all of the regions
that are to be timed. The data frame must have a certain format, see description
below.

normCont a vector of equal length as dfList giving the normal contamination of each sam-
ple

eventArgs list of arguments passed to eventTiming via ‘do.call’. Should NOT contain the
arguments ‘x’,‘m’,‘history’,‘totalCopy’,‘type’,‘mutationId’ or ‘normCont’

eventList Output of eventTimingOverList (see below)
CI logical, whether to grab CI from the output.

Details

The data frame of mutation data for each sample must have the following columns: ‘segId’, ‘type’,
‘nMutAllele’, ‘nReads’, ‘mutationId’. The rows of the data frame correspond to mutated locations
within the sample. ‘segId’ is an identifier of the segmented region that the mutation is in; eventTim-
ing will be run using the mutation data for each ‘segId’ in the sample. ‘type’ identifies the type of
segment, one of c("Other","CNLOH","SingleGain","Diploid","DoubleGain"). ‘nMutAllele’ gives
for every row (mutated location) the number of reads with the mutation and corresponds to ‘x’
imputed into eventTiming. ‘nReads’ gives the total number of reads covering the location and
corresponds to ‘m’ imputed into eventTiming. ‘mutationId’ is a unique identifier for the mutation.

For arguments passed to eventTiming, it is recommended to pass verbose=FALSE if you want to
avoid many warnings about mutations that do not meet the necessary criteria of coverage, etc.

Value

eventTimingOverList returns a list equal to the number of samples. Each element of that list (i.e.
per sample) is itself a list of length three corresponding to the three types of regions that can be
timed, “CNLOH",“SingleGain", and “DoubleGain". Each of these gives the output of eventTiming
per region of that type.

8 hg19chromosomes

Author(s)

Elizabeth Purdom

See Also

eventTiming

Examples

if(require(GenomicRanges)){
#fix up mutation data to right format
data(mutData)
colnames(mutData)[1]<-c("chr")
colnames(mutData)[grep("t_alt_count",colnames(mutData))]<-"nMutAllele"
colnames(mutData)[grep("t_ref_count",colnames(mutData))]<-"nRefAllele"
mutData$nReads<-mutData$nMutAllele+mutData$nRefAllele
mutData$mutationId<-1:nrow(mutData)

#add segmentation annotation -- second region is bogus, only for illustration
segs<-data.frame(chr=c(17,17),start=c(1,1.8e7+100),end=c(1.8e7,81195210),
normCont=0.22,segId=c("Seg1","Seg2"),type=c("CNLOH","SingleGain"))
##Create Trivial segmentation annotation for example
mutId<-mut2Seg(mutData,segs)
eventOut<-eventTimingOverList(dfList=list(Sample1=mutId),normCont=0.22)
getPi0Summary(eventOut)
}

hg19chromosomes Definitions of the p,q, and centromeres of chromosomes

Description

Gives the coordinates of the p,q, and centromeres of human chromosomes, based on hg19

Usage

hg19chromosomes

Format

A data.frame containing 72 rows and 5 columns.

chr chromosome

start start position

end end position

label one of “p",“q", and “centromere"

width width of region

labelSeg 9

Source

UCSC genome browser

labelSeg Helper functions for plotting

Description

Helper functions for plotting and working with chromosomes and segmentations

Usage

labelSeg(chr, start, end, pctOv = 0.1)
numChromosome(chr)
divideGenome(size=10)

Arguments

chr chromosome

start start position of segment

end end position of segment

pctOv required amount of percent overlap needed in order to report

size Size, in MB, of the desired equally spaced divisions of the genome

Details

labelSeg creates labels ‘p’, ‘q’, and ‘pq’ for segmentations based on the overlap of the segment with
the p/q portions of the human chromosome (hg19). It uses the data stored in hg19chromosomes with
the package (under the directory ’extdata’, not as a dataset of the package). Uses the findOverlaps
function of GenomicRanges.

numChromosome takes character valued chromosome labels (“1”,“2”,...,“X”,“Y”) and converts
them into values 1:23. This is useful for sorting chromosome values, for example.

divideGenome makes segments of the genome of size equal to ’size’ times 1e6, i.e. size-MB length
intervals, also based on the hg19chromosomes data described above.

Value

vector of numerical values between 1:23

Author(s)

Elizabeth Purdom

See Also

hg19chromosomes,findOverlaps

10 makeEventHistory

Examples

data(mutData)
segData<-data.frame(chromosome="17",start=c(0,1.8e7+1),

end=c(1.8e7,max(mutData$position)),totalCpy=c(2,NA),
markRegion=c(FALSE,TRUE))

if(require(GenomicRanges) & require(IRanges)) labelSeg(chr=segData$chromosome,
start=segData$start,end=segData$end)

chr<-c("1","4","10","23","X")
chr[order(chr)]
chr[order(numChromosome(chr))]

makeEventHistory Create the event history matrix

Description

Create the event history matrix needed for the event timing algorithm

Usage

makeEventHistory(type = c("gain", "LOH"), copies = NULL,
totalCopy = sum(copies), onlyIdentifiable = TRUE)

Arguments

type

copies a vector of length 2, giving the number of copies of the maternal and paternal
chromosomes

totalCopy an integer between 2 and 5. totalCopy must be the sum of the numbers given for
the argument copies

onlyIdentifiable

logical. Only return event matrices corresponding to event histories with identi-
fiable π0?

Value

The A matrix relates allele frequencies to the event history. The vector Aπ gives the probabilities
of each allele frequency possible for the specified event.

Author(s)

Elizabeth Purdom

References

Purdom, E, et al. (submitted). “Timing Chromosomal Abnormalities within Cancer Samples.”

mleAF 11

Examples

makeEventHistory(type="gain",totalCopy=8)
makeEventHistory(type="gain",copies=c(1,4),totalCopy=5,onlyIdentifiable=FALSE)

mleAF Estimate the most likely allele frequency

Description

Estimate the number of copies a mutation is found in, based on which allele value maximizes the
binomial likelihood after correcting for normal contamination and seqError.

Usage

mleAF(x, m, totalCopy, maxCopy=totalCopy, seqError = 0, normCont = 0)

Arguments

x vector. the number of reads/fragments containing the variant

m vector. the number of reads/fragments covering the location with the variant (the
coverage)

totalCopy The total number of copies (maternal and paternal combined), can be vector with
length equal to length(x)

maxCopy The maximum number of copies of either maternal or paternal alleles, can be
vector with length equal to length(x)

seqError The probability of sequencing error per base, can be vector with length equal to
length(x)

normCont Percentage of normal contamination, can be vector with length equal to length(x)

Details

maxCopy and totalCopy are used to determine the possible allele frequencies in a pure tumor cell,
given by 1:maxCopy/totalCopy. The default of maxCopy=totalCopy ensures that all theoretically
possible alleles are considered given the lack of further information, but in general will not be
correct. For example, if the region has allelic copy 2/3, then there are only three possible allele
frequencies rather than five.

Value

List with following values:

perLocationProb

matrix of dimension (number of locations) x (number of possible allele frequen-
cies), with each row corresponding to a given location and each column giving
the probability of observing the data for that location for each of the possible
allele frequencies

12 multidensity

assignments data.frame of dimension (number of locations) x 3, with columns ncopies=estimate
of number of copies mutation is found in, based on which maximizes the likeli-
hood, totalCopy=totalCopy given by user, AF=estimate of true allele frequency
given by ncopies/totalCopy

alleleSet Only returned if the parameters totalCopy, maxCopy, seqError, and normCont
are of length=1. A data.frame with rows equal to number of possible alleles
and three columns, tumorAF=the allele frequency in the pure tumor, AF= the
corresponding allele frequency after adjusting for normal contamination and se-
quencing error, frequency = number of locations with that allele frequency.

Author(s)

Elizabeth Purdom

References

Greenman, C D et al. 2012. “Estimation of rearrangement phylogeny for cancer genomes." Genome
Research 22(2):346-361.

Examples

#example of CNLOH
m<-c(24,41,40,15)
x<-c(13,21,17,12)
nc<-c(0.27,0.39,0.49,0.22)
mleAF(x=x,m=m,totalCopy=2,maxCopy=2,normCont=nc)
mleAF(x=x,m=m,totalCopy=c(2,3,2,3),maxCopy=2,normCont=nc)
#note the difference in output if instead all data is from
#same sample (shares normal Contamination estimate)
mleAF(x=x,m=m,totalCopy=2,maxCopy=2,normCont=nc[1])

multidensity plot multiple density functions on top of each other

Description

plots multiple density functions on top of each other, calculating the correct xlim, ylim, etc.

Usage

multidensity(x, col = palette(), lwd = 1, lty = 1, xlim, ylab = "Density", ...)

Arguments

x list of values to create density from (can be a data.frame which where columns
are elements of the list)

col colors for each density plot

lwd lwd for each density plot

mut2Seg 13

lty lty for each density plot

xlim user defined xlim

ylab user defined ylab

... plotting parameters passed to initial plot command.

Author(s)

Elizabeth Purdom

Examples

x<-lapply(c(1,2,3),function(x){rnorm(100,mean=x)})
multidensity(x)

mut2Seg Align mutations to segments

Description

A function to match mutations into the segments that include them.

Usage

mut2Seg(mutData, segData, verbose = TRUE)

Arguments

mutData matrix or data.frame. Column names must include ‘chr’ and ‘position’

segData matrix or data.frame. Column names must include ‘chr’,‘start’,and ‘end’ (in any
order)

verbose logical. If TRUE gives information about the progress and possible problems
(e.g. if different chromosome names in the two sets)

Details

This function finds which segments in the segData file contain the mutations and returns a data.frame
with the concatenation of the mutation information and the segments information. The function re-
lies on findOverlaps in the GenomicRanges package in bioconductor.

Value

Data frame with concatenated values.

Author(s)

Elizabeth Purdom

14 mutData

See Also

findOverlaps

Examples

if(require(GenomicRanges) & require(IRanges)){
data(mutData)
colnames(mutData)[1]<-c("chr")
segs<-data.frame(chr=c(17,17),start=c(1,1.8e7+100),end=c(1.8e7,81195210),
normCont=0.22,segId=c("CNLOH","Other"))
##Trivial segmentation annotation for example
mutId<-mut2Seg(mutData,segs)
head(mutId)
}

mutData Example Mutation Data

Description

Example mutation data

Usage

data(mutData)

Format

A data frame with 1007 observations on the following 10 variables.

chromosome chromosome

position position

refbase reference base at this location

mutbase variant base at this location

rsID dbSNP database number, NA if not in database.

t_ref_count number of fragments in tumor with the reference base

t_alt_count number of fragments in tumor with the variant base

allelefreq observed allele frequency

n_ref_count number of fragments in normal with the ref base

n_alt_count number of fragments in normal with the variant base

Details

Mutation data from chr17. The CNLOH region is from positions 0 to 1.8E7. The normal contami-
nation estimate in the paper was given as 0.22.

plotAlleleByPosition 15

Source

Durinck, S, et al. (2011). “Temporal Dissection of Tumorigenesis in Primary Cancers." Cancer
Discovery, 1(2), 137-143.

Examples

data(mutData)
head(mutData)
#only mutations in the CNLOH region
onlyMuts<-subset(mutData,is.na(rsID) & position <= 1.8E7)

plotAlleleByPosition Plot allele frequencies by position

Description

Plot observed allele frequencies from sequencing data against their location on the chromosome.

Usage

plotAlleleByPosition(mutData, segmentData = NULL,
whChr = 1:22, chromosomeId = "chr",
sampleName = NULL, sample = FALSE, tumorAFId, positionId, type = "mutation",
startId = "start", endId = "end", segFactorId, tCNId, MarkId, segColors,
normCont = NULL, addData = NULL, addColor="red",col="black",pch=1,lwd=2,
xlim,ylab="Allele Frequency",...)

Arguments

mutData data.frame with mutation data set to be plotted

segmentData (optional) segmentation data

whChr which chromosome to plot

chromosomeId column name for chromosome (must be same in all data.frames)

sampleName id printed on the plot to identify the sample

sample logical. If true, take only a random sample of 10,000 locations for the chromo-
some. Can speed up for plotting SNPs.

tumorAFId column name for the allele frequency in mutData

positionId column name for the allele location in mutData

type type of allele frequency plotted (passed to ‘allAF’ in order to create the lines for
the expected AF)

startId column name for the start of the segmentation (in segData)

endId column name for the end of the segmentation (in segData)

segFactorId column name for the factor for segmentations (in segData).

16 plotAlleleByPosition

tCNId column name that gives the total copy number for the segmentation (in segData);
needed if give normCont to calculated expected AF

MarkId column name of a column with logical values that identifies segments that should
be marked up with hash marks.

segColors vector of colors for the segmentations. Should be as long as the number of levels
of segFactorId

normCont percent normal contamination. If missing, then lines for the expected AF will
not be calculated.

addData data.frame with another set (example germline SNPs) to be plotted in red

addColor color for the additional data

lwd line width of the lines for the expected AF

ylab label for y-axis

xlim xlim boundaries. If missing, will be calculated.

col col for the mutData points

pch pch for the mutData points

... arguments passed to initial plotting command.

Value

returns invisibly the vector of colors for the segmentations, useful for making legends (see the
example)

Author(s)

Elizabeth Purdom

Examples

data(mutData)
#only mutations in the CNLOH region

onlyMuts<-subset(mutData,is.na(rsID) & position <= 1.8E7)
snps<-subset(mutData,!is.na(rsID))
segData<-data.frame(chromosome="17",start=c(0,1.8e7+1),
end=c(1.8e7,max(mutData$position)),
totalCpy=c(2,NA),markRegion=c(FALSE,TRUE))
out<-plotAlleleByPosition(onlyMuts,whChr=17, segmentData=segData,
tCNId="totalCpy",normCont=0.22, addData=snps,pch=19,
addColor="grey",MarkId="markRegion",
segColors="pink",xaxt="n",xlab="Position", segFactorId="totalCpy",
chromosomeId = "chromosome",tumorAFId="allelefreq",
positionId="position",type="mutation")
axis(1,line=1,tick=FALSE)
legend("topright",legend=c(names(out),"unknown"),fill=c(out,NA),
title="Total Copy Number")

plotAlleleDensity 17

plotAlleleDensity Plot density/histogram of allele frequencies

Description

Plot of densities/histograms of allele frequencies, useful for evaluating normal contamination esti-
mate, total Copy number estimates, etc.

Usage

plotAlleleDensity(af, depth, groupingId, totalCopy, groupCol=palette(),
normCont = 0, type="mutation", minDepth = 40,
lineCols = c("grey", "tan4"), minMut = 40,
histogram = FALSE)

Arguments

af vector of allele frequencies

depth coverage of the location

groupingId grouping variable for allele frequencies (single density curve/histogram for each
id)

totalCopy the total copy number for the allele frequencies plotted (must be the same)

groupCol colors for the different groups (if histogram=FALSE)

type type of allele frequency (mutation, SNPHet, SNPHomo), passed to allAF

normCont percentage of normal contamination. Can be vector of different values.

minDepth min required depth in order to include it in the density/histogram

lineCols colors of the vertical lines (each color is for different normal contamination)

minMut minimum number of mutations per group in order to plot the group

histogram logical. should the plot be superimposed density curves (FALSE), or a single
histogram per group (TRUE)?

Value

Returns invisibly the data used (i.e. passed minimum cutoff criteria), separated by the groupingId
given by the user

Author(s)

Elizabeth Purdom

18 plotCopies

Examples

data(mutData)
#only mutations in the CNLOH region
onlyMuts<-subset(mutData,is.na(rsID) & position <= 1.8E7)
plotAlleleDensity(onlyMuts$allelefreq,onlyMuts$t_ref_count+onlyMuts$t_alt_count,
totalCopy=2,normCont=c(0,0.22),minMut=0,minDepth=0,hist=TRUE)

gpId<-factor(is.na(mutData$rsID),levels=c("TRUE","FALSE"),labels=c("Mutations","SNPs"))
plotAlleleDensity(mutData$allelefreq,mutData$t_ref_count+mutData$t_alt_count,
groupCol=c("black","red"),totalCopy=2,groupingId=gpId,minMut=0,minDepth=30,hist=FALSE)
legend("topleft",levels(gpId),fill=c("red","black"))

plotCopies plot segmentation values against each other

Description

Plot different values per segment against each other (e.g. minor and major allele estimates).

Usage

plotCopies (x, y, nX, nY, xleg, yleg, onlyPositive = TRUE,
equalAxis = TRUE, integerLegend = TRUE, xlim, ylim, ...)

Arguments

x The values plotted for x coordinates (e.g. segmentation value for minor allele)

y The values plotted for y coordinates (e.g. segmentation value for major allele)

nX The grouping id for the x coordinate (e.g. assignment of number of copies)

nY The grouping id for the y coordinate (e.g. assignment of number of copies)

xleg title for the legend of the x values

yleg title for the legend of the y values

xlim limits for the x axis

ylim limits for the y axis

onlyPositive only plot values positive in x and y

equalAxis xlim and ylim are forced to be the same

integerLegend Only give integers

... passed to the scatter plot command

Author(s)

Elizabeth Purdom

plotPi0 19

Examples

cp1<-c(0,0,0,1,1,1,1,2,2,2,3,3,3)
cp2<-c(0,1,2,1,2,2,3,2,2,4,3,6,8)
seg1<-jitter(c(0,0,0,1,1,1,1,2,2,2,3,3,3))
seg2<-jitter(c(0,1,2,1,2,2,3,2,2,4,3,6,8))
plotCopies(x=seg1,y=seg2,nX=cp1,nY=cp2)

plotPi0 Confidence intervals for π_0

Description

A plotting function to plot the confidence intervals of the estimated π0 values returned from event-
Timing

Usage

plotPi0(est, ui, li, samples, labels = NULL, xlab = "Segment",
ylab = expression(pi[0]),
pchFac = rep(1, length(est)), whHighlight = NULL,
nMut = NULL, xorder = NULL, ...)

Arguments

est vector of the estimates of π0
ui vector of the upper values for the confidence interval of the π0
li vector of the lower values for the confidence interval of the π0
samples vector indicating which sample each π0 corresponds to (will be converted to

factor with factor command)

labels character vector of the labels of each estimate (optional)

xlab label for the xaxis, defaults to “Segment”

ylab label for the yaxis, defaults to “π0”

pchFac vector of pch values for the center of the confidence interval

whHighlight a vector of indices of the estimates that should be ‘highlighted’ by coloring their
confidence intervals red (optional)

nMut a vector of values of the number of mutations from each confidence interval to
be printed at the top of the plot

xorder a vector giving an ordering of the estimates for the confidence intervals; if
NULL, an order within each sample is created automatically.

... arguments passed to plotCI function

Value

The order of the estimates found internally by the program (or given by the user) are returned
invisibly.

20 plotSegmentation

Author(s)

Elizabeth Purdom

See Also

plotCI, eventTiming

plotSegmentation plot segmentation(s) against positions

Description

Plot the values of a segmentation against chromosome position.

Usage

plotSegmentation(segs, valId, col = palette(),lty=1, lwd = 2, xlim, ylim,
xlab="Position", ylab = valId,...)

Arguments

segs list of segmentation data.frames. Each data.frame must have ‘start’ and ‘end’ as
the column names of the limits of the segmentations.

valId name of the column with the segmentation value to be plotted (must be the same
in all data.frames)

col colors for the segmentation (1 per element of the list of segmentations)

lty lty for the lines

lwd lwd for the lines

xlim x limits

ylim y limits

xlab The label for the x-axis

ylab The label for the y-axis

... passed to initial plotting command

Value

returns invisibly the col and lty after any processing done, useful for legends.

Author(s)

Elizabeth Purdom

plotSeqCount 21

Examples

data(mutData)
segData<-data.frame(chromosome="17",start=c(0,1.8e7+1),
end=c(1.8e7,max(mutData$position)),val=c(2,3))
cp1<-data.frame(chromosome="17",start=c(0,1.8e7+1),
end=c(1.8e7,max(mutData$position)),val=c(1,1))
cp2<-data.frame(chromosome="17",start=c(0,1.8e7+1),
end=c(1.8e7,max(mutData$position)),val=c(.9,2))
out<-plotSegmentation(list(total=segData,cp1=cp1,cp2=cp2),
valId="val",lwd=2,ylab="Segmentation Value")
legend("topright",names(out),fill=out)

plotSeqCount Basic function for plotting the ratio of tumor to normal coverage

Description

Basic function for plotting the ratio of tumor to normal coverage, and calculating the average over
segments. A simple tool for assessing copy number breaks.

Usage

plotSeqCount(position, t_count, n_count, ylim=NULL, normFac=1,
segs, segColors = palette(), ...)

Arguments

position vector of position of the base

t_count vector of number of reads overlapping position in tumor

n_count vector of number of reads overlapping position in normal

ylim set the limits of y axis. If NULL, default values found.

normFac a normalizing factor to correct for

segs factor as same length as position, identifying which segment a count is from

segColors

... passed to plot

Author(s)

Elizabeth Purdom

22 readSimulation

readSimulation Simulate reads based on an event matrix

Description

Simulate reads based on an event matrix

Usage

readSimulation(B, alleleSet, q, totalCopy, mutRate = NULL, seqError = 0,
fixedN = FALSE, normCont = 0, aveReadCoverage = 30, countDistribution = NULL)

Arguments

B the number of simulated data sets to make

alleleSet a vector of expected allele frequencies, without contamination or sequencing
error accounted for

q integer. the number of expected allele frequencies???

totalCopy integer. The total number of copies in the final stage, i.e. at the end of the event

mutRate a number between 0 and 1. The mutation rate, defined as the number of muta-
tions observed divided by number of nucleotides sequenced or examined

seqError a number between 0 and 1 representing the sequencing error. The default value
is 0, i.e. no sequencing error.

fixedN logical. Should the number of mutations be fixed? By default set to FALSE. If
set to TRUE, the expected number of mutations is used, i.e. mutRate*B

normCont a number between 0 and 1 describing the amount of normal contamination
present in the sample. The default value is 0, i.e. no normal contamination.

aveReadCoverage

average read coverage of an allele. The default value is 30 reads per allele.
countDistribution

optional. Provide an empirical distribution for read coverage. If given, the argu-
ment aveReadCoverage is ignored, and the mean of the empirical distribution is
used. By default, set to NULL.

Value

Returns a data frame with simulated read counts under the normal contamination, sequencing error,
allele frequency distribution, and read count distributions provided.

Author(s)

Elizabeth Purdom

readSimulation 23

Examples

#simulate from CNLOH event with pi[0]=.1
Amat<-makeEventHistory(totalCopy=2,type="LOH")[[1]]
piVal<-c(.1,.9)
qvec<-prop.table(Amat%*%piVal)

sims<-readSimulation(10, alleleSet=allAF(totalCopy=2)[[1]], q=qvec,
totalCopy=2, mutRate = 100, seqError = 0.1, fixedN = TRUE,
normCont = 0.1, aveReadCoverage = 30)

Index

∗Topic datasets
hg19chromosomes, 8
mutData, 14

allAF (alleleFrequency), 2
alleleFrequency, 2

bootstrapEventTiming, 3

contAF (alleleFrequency), 2

decontAF (alleleFrequency), 2
divideGenome (labelSeg), 9

errorAF (alleleFrequency), 2
eventTiming, 4, 8
eventTimingOverList, 7

findOverlaps, 9, 14

getPi0Summary (eventTimingOverList), 7

hg19chromosomes, 8, 9

labelSeg, 9

makeEventHistory, 10
mleAF, 11
multidensity, 12
mut2Seg, 13
mutData, 14

numChromosome (labelSeg), 9

plotAlleleByPosition, 15
plotAlleleDensity, 17
plotCopies, 18
plotPi0, 19
plotSegmentation, 20
plotSeqCount, 21

readSimulation, 22

24

	alleleFrequency
	bootstrapEventTiming
	eventTiming
	eventTimingOverList
	hg19chromosomes
	labelSeg
	makeEventHistory
	mleAF
	multidensity
	mut2Seg
	mutData
	plotAlleleByPosition
	plotAlleleDensity
	plotCopies
	plotPi0
	plotSegmentation
	plotSeqCount
	readSimulation
	Index

