
Package ‘canprot’
January 17, 2022

Date 2022-01-17

Version 1.1.2

Title Chemical Metrics of Differentially Expressed Proteins

Maintainer Jeffrey Dick <j3ffdick@gmail.com>

Depends R (>= 3.1.0), CHNOSZ (>= 1.3.2)

Imports xtable, MASS, rmarkdown

Suggests knitr, testthat

Description Chemical metrics of differentially expressed proteins in cancer
and cell culture proteomics experiments. Data files in the package have amino
acid compositions of proteins obtained from UniProt and >250 published lists of
up- and down-regulated proteins in different cancer types and laboratory
experiments. Functions are provided to calculate chemical metrics including
protein length, grand average of hydropathicity (GRAVY), isoelectric point
(pI), carbon oxidation state, and stoichiometric hydration state; the latter
two are described in Dick et al. (2020) <doi:10.5194/bg-17-6145-2020>. The
vignettes visualize differences of chemical metrics between up- and
down-regulated proteins and list literature references for all datasets.

Encoding UTF-8

License GPL (>= 2)

BuildResaveData no

VignetteBuilder knitr

URL https://github.com/jedick/canprot

NeedsCompilation no

Author Jeffrey Dick [aut, cre] (<https://orcid.org/0000-0002-0687-5890>),
Ben Bolker [ctb] (<https://orcid.org/0000-0002-2127-0443>)

Repository CRAN

Date/Publication 2022-01-17 08:22:51 UTC

1

https://doi.org/10.5194/bg-17-6145-2020
https://github.com/jedick/canprot
https://orcid.org/0000-0002-0687-5890
https://orcid.org/0000-0002-2127-0443

2 canprot-package

R topics documented:

canprot-package . 2
check_IDs . 3
cleanup . 4
CLES . 5
diffplot . 8
get_comptab . 10
human . 11
metrics . 13
mkvig . 16
pdat_ . 17
protcomp . 18
qdist . 19
xsummary . 20

Index 22

canprot-package Chemical Metrics of Differentially Expressed Proteins

Description

canprot is a package for computing chemical metrics of proteins from their amino acid compo-
sitions. The package has datasets for differentially expressed proteins in cancer and cell culture
conditions from over 250 studies.

Overview

This package includes datasets for differential expression of proteins in six cancer types (breast,
colorectal, liver, lung, pancreatic, prostate), and four cell culture conditions (hypoxia, hyperosmotic
stress, secreted proteins in hypoxia, and 3D compared to 2D growth conditions). The hyperosmotic
stress data are divided into bacteria, archaea (both high- and low-salt experiments) and eukaryotes;
the latter are further divided into salt and glucose experiments. Nearly all datasets use UniProt
IDs; if not given in the original publications they have been added using the UniProt mapping tool
(https://www.uniprot.org/mapping/).

The analysis vignettes have plots for each cancer type and cell culture condition and references for
all data sources used. Because of their size, pre-built vignette HTML files are not included with the
package; use mkvig to compile and view any of the vignettes.

The functions in this package were originally based on code for the papers of Dick (2016 and 2017).
Updated data compilations and revised vignettes were developed by Dick et al. (2020) and Dick
(2021).

https://www.uniprot.org/mapping/

check_IDs 3

References

Dick, J. M. (2016) Proteomic indicators of oxidation and hydration state in colorectal cancer. PeerJ
4, e2238. doi: 10.7717/peerj.2238

Dick, J. M. (2017) Chemical composition and the potential for proteomic transformation in cancer,
hypoxia, and hyperosmotic stress. PeerJ 5, e3421. doi: 10.7717/peerj.3421

Dick, J. M., Yu, M. and Tan, J. (2020) Uncovering chemical signatures of salinity gradients through
compositional analysis of protein sequences. Biogeosciences 17, 6145–6162. doi: 10.5194/bg17-
61452020

Dick, J. M. (2021) Water as a reactant in the differential expression of proteins in cancer. Comp.
Sys. Onco. 1:e1007. doi: 10.1002/cso2.1007

Examples

List the data files for all studies
(one study can have more than one dataset)
exprdata <- system.file("extdata/expression", package="canprot")
datafiles <- dir(exprdata, recursive=TRUE)
print(datafiles)
Show the number of data files for each condition
table(dirname(datafiles))

check_IDs Check UniProt IDs

Description

Find the first ID for each protein that matches a known UniProt ID.

Usage

check_IDs(dat, IDcol, aa_file = NULL, updates_file = NULL)

Arguments

dat data frame, protein expression data

IDcol character, name of column that has the UniProt IDs

aa_file character, name of file with additional amino acid compositions

updates_file character, name of file with old to new ID mappings

Details

check_IDs is used to check for known UniProt IDs and to update obsolete IDs. The source IDs
should be provided in the IDcol column of dat; multiple IDs for one protein can be separated by a
semicolon.

The function keeps the first “known” ID for each protein, which must be present in one of these
groups:

https://doi.org/10.7717/peerj.2238
https://doi.org/10.7717/peerj.3421
https://doi.org/10.5194/bg-17-6145-2020
https://doi.org/10.5194/bg-17-6145-2020
https://doi.org/10.1002/cso2.1007

4 cleanup

• The human_aa dataset of amino acid compositions.

• Old UniProt IDs that are mapped to new UniProt IDs in uniprot_updates or in updates_file
if specified.

• IDs of proteins in aa_file, which lists amino acid compositions in the format described for
human_aa (see extdata/protein/human_extra.csv for an example and thermo$protein
for more details).

Value

dat is returned with possibly changed values in the column designated by IDcol; old IDs are
replaced with new ones, the first known ID for each protein is kept, then proteins with no known
IDs are assigned NA.

See Also

This function is used by the pdat_ functions, where it is called before cleanup.

Examples

Make up some data for this example
ID <- c("P61247;PXXXXX", "PYYYYY;P46777;P60174", "PZZZZZ")
dat <- data.frame(ID = ID, stringsAsFactors = FALSE)
Get the first known ID for each protein; the third one is NA
check_IDs(dat, "ID")

Update an old ID
dat <- data.frame(Entry = "P50224", stringsAsFactors = FALSE)
check_IDs(dat, "Entry")

cleanup Clean Up Data

Description

Remove proteins with unavailable IDs, ambiguous expression ratios, and duplicated IDs.

Usage

cleanup(dat, IDcol, up2 = NULL)

Arguments

dat data frame, protein expression data

IDcol character, name of column that has the UniProt IDs

up2 logical, TRUE for up-regulated proteins, FALSE for down-regulated proteins

CLES 5

Details

cleanup is used in the pdat_ functions to clean up the dataset given in dat. IDcol is the name
of the column that has the UniProt IDs, and up2 indicates the expression change for each protein.
The function removes proteins with unavailable (NA or "") or duplicated IDs. If up2 is provided,
the function also removes unquantified proteins (those that have NA values of up2) and those with
ambiguous expression ratios (up and down for the same ID). For each operation, a message is
printed describing the number of proteins that are ‘unavailable’, ‘unquantified’, ‘ambiguous’,
or ‘duplicated’.

Alternatively, if IDcol is a logical value, it selects proteins to be unconditionally removed.

See Also

This function is used extensively by the pdat_ functions, where it is called after check_IDs (if
needed).

Examples

Set up a simple workflow
extdatadir <- system.file("extdata", package="canprot")
datadir <- paste0(extdatadir, "/expression/pancreatic/")
dataset <- "CYD+05"
dat <- read.csv(paste0(datadir, dataset, ".csv.xz"), as.is = TRUE)
up2 <- dat$Ratio..cancer.normal. > 1
Remove two unavailable and one duplicated proteins
dat <- cleanup(dat, "Entry", up2)
Now we can retrieve the amino acid compositions
pcomp <- protcomp(dat$Entry)

Read another data file
datadir <- paste0(system.file("extdata", package="canprot"), "/expression/colorectal/")
dataset <- "STK+15"
dat <- read.csv(paste0(datadir, "STK+15.csv.xz"), as.is = TRUE)
Remove unavailable proteins
dat <- cleanup(dat, "uniprot")
Remove proteins that have less than 2-fold expression ratio
dat <- cleanup(dat, abs(log2(dat$invratio)) < 1)

CLES Common Language Effect Size

Description

Calculate the common language effect size.

Usage

CLES(x, y, distribution = "normal")

6 CLES

Arguments

x numeric, data

y numeric, data

distribution ‘normal’ to use probabilities calculated for a normal distribution, or NA for
empirical probabilities

Details

The common language statistic is defined for continuous data as “the probability that a score sam-
pled at random from one distribution will be greater than a score sampled from some other distri-
bution” (McGraw and Wong, 1992).

Given the default value of distribution (‘normal’), this function uses pnorm to calculate the
probability that a random sample from the unit normal distribution is greater than the Z score (i.e.
(the mean of ‘y’ minus the mean of ‘x’) / square root of (variance of ‘x’ plus variance of ‘y’)).

If distribution is NA, this function calculates the empirical probability that the difference is pos-
itive, that is, the fraction of all possible pairings between elements of x and y where the difference
(‘y’ value - ‘x’ value) is positive. It may not be possible to calculate the empirical probability for
very large samples because of memory limits.

The examples use simulated data for normal distributions, given the sample size, mean, and stan-
dard deviation of datasets cited by McGraw and Wong, 1992. Therefore, the empirical probability
in the examples approaches the normal curve probability. However, the empirical probability for
nonnormal distributions is distinct from the normal curve probability, as discussed on p. 364-365
of McGraw and Wong, 1992.

References

McGraw, Kenneth O. and Wong, S. P. (1992) A common language effect size statistic. Psychologi-
cal Bulletin 11, 361–365. doi: 10.1037/00332909.111.2.361

National Center for Health Statistics (1987) Anthropometric Reference Data and Prevalence of
Overweight: United States, 1976-1980. Data from the National Health Survey, Series 11, No.
238. DHHS Publication (PHS) No. 87-1688. U.S. Government Printing Office, Washington, DC.
https://www.cdc.gov/nchs/data/series/sr_11/sr11_238.pdf

Examples

Example 1: Height differences between males and females
a) Use statistics quoted by McGraw and Wong, 1992 from NCHS, 1987
for heights in inches of 18-24 year-old males and females
Table 14: number, mean height, and standard deviation of height of females
n1 <- 1066
M1 <- 64.3
SD1 <- 2.8
Table 13: number, mean height, and standard deviation of height of males
n2 <- 988
M2 <- 69.7
SD2 <- 2.6
b) Simulate data from a normal distribution with exact mean and SD
use rnorm2 function from Ben Bolker's answer to

https://doi.org/10.1037/0033-2909.111.2.361
https://www.cdc.gov/nchs/data/series/sr_11/sr11_238.pdf

CLES 7

https://stackoverflow.com/questions/18919091/generate-random-numbers-with-fixed-mean-and-sd
rnorm2 <- function(n, mean, sd) { mean + sd * scale(rnorm(n)) }
set.seed(1234)
height_female <- rnorm2(n1, M1, SD1)
height_male <- rnorm2(n2, M2, SD2)
c) Calculate the CLES using the normal distribution and empirical probability
CLES_normal <- CLES(height_female, height_male)
CLES_empirical <- CLES(height_female, height_male, distribution = NA)
d) Test numerical equivalence of the results
The CLES is approximately 0.92 (McGraw and Wong, 1992)
(note: becasue we used rnorm2, this doesn't depend on the seed)
stopifnot(all.equal(CLES_normal, 0.92, tol = 0.01))
With this seed, the difference between the normal curve probability
and empirical probability is less than 1%
stopifnot(all.equal(CLES_normal, CLES_empirical, tol = 0.01))

Example 1.5: Use multiple simulated datasets to show approach
of empirical probability to normal curve probability
CLES_empirical_n <- sapply(1:100, function(x) {

height_female <- rnorm2(n1, M1, SD1)
height_male <- rnorm2(n2, M2, SD2)
CLES(height_female, height_male, distribution = NA)

})
CLES_empirical <- mean(CLES_empirical_n)
now we're even closer to the normal curve probability
stopifnot(all.equal(CLES_normal, CLES_empirical, tol = 0.0001))

Example 2: Multiple datasets in Table 2 of McGraw and Wong, 1992
Sample statistics for females
n1 <- c(638, 672, 3139, 420740, 19274, 104263, 207, 394, 1066, 982, 108, 108)
M1 <- c(103, 15, 103, 18.9, 30, 16.1, 6.9, 13.3, 64.3, 134, 45, 94)
SD1 <- sqrt(c(908, 74, 219, 27, 110, 59, 15, 164, 6.8, 688, 310, 1971))
Sample statistics for males
n2 <- c(354, 359, 3028, 356704, 21768, 133882, 199, 469, 988, 988, 443, 443)
M2 <- c(112, 23, 100, 17.9, 33, 18.6, 9.3, 21.8, 69.7, 163, 86, 212)
SD2 <- sqrt(c(1096, 96, 202, 29, 110, 61, 15, 133, 7.8, 784, 818, 5852))
A function to calculate the effect size using simulated data
CLESfun <- function(n1, M1, SD1, n2, M2, SD2, distribution) {

rnorm2 <- function(n, mean, sd) { mean + sd * scale(rnorm(n)) }
set.seed(1234)
x <- rnorm2(n1, M1, SD1)
y <- rnorm2(n2, M2, SD2)
CLES(x, y, distribution)

}
Calculate 100 * CL for the normal curve probabilities
CLnorm <- sapply(1:12, function(i) {

CL <- CLESfun(n1[i], M1[i], SD1[i], n2[i], M2[i], SD2[i], "normal")
round(100 * CL)

})
Calculate 100 * CL for empirical probabilities
CLemp <- sapply(1:12, function(i) {

skip very large samples: not enough memory
if(n1[i] > 5000 | n2[i] > 5000) NA else {

8 diffplot

CL <- CLESfun(n1[i], M1[i], SD1[i], n2[i], M2[i], SD2[i], NA)
round(100 * CL)

}
})
The difference between the empirical and normal curve
probabilities is not more than 1 percent
stopifnot(max(abs(CLemp - CLnorm), na.rm = TRUE) <= 1)
TODO: Why are some of the calculated values different from
Table 2 of McGraw and Wong, 1992?
CLref <- c(54, 74, 44, 45, 56, 63, 67, 65, 92, 78, 89, 91)
Differences range from -4 to 4
range(CLnorm - CLref)
#stopifnot(max(abs(CLnorm - CLref)) == 0)

diffplot Plot Differences of Chemical Metrics

Description

Make a plot showing differences of selected chemical metrics.

Usage

diffplot(comptab, vars = c("ZC", "nH2O"), col = "black", plot.rect = FALSE,
pt.text = c(letters, LETTERS), cex.text = 0.85, oldstyle = FALSE,
pch = 1, cex = 2.1, contour = TRUE, col.contour = par("fg"),
probs = 0.5, add = FALSE, labtext = NULL, ...)

cplab

Arguments

comptab list or data frame, chemical differences generated by get_comptab

vars character, which variables to plot
col character or numeric, color(s) for the points
plot.rect logical, plot a reference rectangle?
pt.text character, text labels for the points
cex.text numeric, size of text labels
oldstyle logical, use old style plot?
pch numeric, point symbol
cex numeric, point size
contour logical, add contour lines?
col.contour character or numeric, color of contour lines
probs numeric, probability level(s) for contours
add logical, add to an existing plot?
labtext character, text to add to axis labels
... other argumenents passed to plot

diffplot 9

Details

A plot is created with points showing the differences between up- and down-regulated proteins for
two chemical metrics, as calculated by get_comptab. The default setting of vars refers to average
oxidation state of carbon (ZC) as the x-variable and stoichiometric hydration state (nH2O) as the
y-variable.

The colors of the points are controlled by col, which is recycled to be equal to the number of
comparisons in comptab.

If plot.rect is TRUE, a shaded rectangle is drawn with coordinates -0.01, -0.01, 0.01, 0.01. This
is useful for visualizing the different scales of multi-panel plots.

If pt.text is not NA or FALSE, text labels are added with size controlled by cex.text. The
default value produces labels that are taken sequentially from the 26 lowercase Roman letters in
alphabetical order (letters), followed by the set of uppercase letters (LETTERS).

For labtext = NULL, descriptive text (“median difference” or “mean difference”) is added to the
axis labels in parentheses. This text can be changed by giving a value in labtext (for both axes),
two values (for each axis), or NA to suppress the text.

cplab is a list of formatted labels used by diffplot. It is an exported object, available to the user
and other packages.

Plot style

The overall style of the plot is controlled by oldstyle.

oldstyle = FALSE This is the current default style. Use pch and cex to control the point symbol
and size. Contours are added for confidence regions of highest probability density, com-
puted using a 2-D kernel density estimate (kde2d). probs gives the probability level(s) and
col.contour sets the color(s) of the contour lines. contour can be a logical vector, indicating
which points to include; set it to FALSE to omit the contour lines.
The code to calculate the contour levels is modified from HPDregionplot in the emdbook
package by Ben Bolker (https://cran.r-project.org/package=emdbook).

oldstyle = TRUE This style was used for the historical (2017) vignettes, which have been moved
to the ‘extdata/cpcp’ directory in JMDplots (https://github.com/jedick/JMDplots).
For each dataset, the point symbol is a filled square if the p-values of both the x-variable
and y-variable are less than 0.05, a filled circle if the p-value of one of the x- or y-variables
is less than 0.05, and an open circle otherwise. A solid line is drawn from the point to the
corresponding axis if the rounded, absolute value of (CLES in percent - 50) of the x- or y-
variable is greater than or equal 10. Otherwise, a dashed line is drawn from the point to the
corresponding axis if the p-value of the x- or y-variable is less than 0.05. Otherwise, no line
is drawn.

See Also

qdist to plot quantile distributions for a single dataset.

Examples

library(CHNOSZ)
Make an old-style plot for two datasets

https://cran.r-project.org/package=emdbook
https://github.com/jedick/JMDplots

10 get_comptab

comptab <- lapply(c("JKMF10", "WDO+15_C.N"), function(dataset) {
pdat <- pdat_colorectal(dataset)
get_comptab(pdat, oldstyle = TRUE)

})
diffplot(comptab, oldstyle = TRUE)

get_comptab Calculate Differences of Chemical Metrics

Description

Compute differences of carbon oxidation state, stoichiometric hydration state and other chemical
metrics between groups of up- and down-regulated proteins.

Usage

get_comptab(pdat, var1 = "ZC", var2 = "nH2O", plot.it = FALSE,
mfun = "median", oldstyle = FALSE, basis = getOption("basis"))

Arguments

pdat list, data object generated by a pdat_ function

var1 character, the first variable

var2 character, the second variable

plot.it logical, make a scatterplot?

mfun character, either ‘median’ or ‘mean’

oldstyle logical, also calculate CLES and p-values?

basis character, keyword for basis species to use

Details

The available variables are:

‘ZC’ average oxidation state of carbon (ZC; see ZCAA)
‘nH2O’ stoichiometric hydration state per residue (nH2O; see H2OAA)
‘nO2’ stoichiometric oxidation state per residue (nO2 ; see O2AA)
‘V0’ standard molal volume per residue
‘nAA’ protein length (number of amino acids)
‘GRAVY’ grand average of hydropathicity (see GRAVY)
‘pI’ isoelectric point (see pI)
‘MW’ molecular weight per residue

Differentially expressed proteins are identified by the value of pdat$up2 (TRUE for up-regulated
proteins and FALSE for down-regulated proteins). The differences are calculated as (median for up-

human 11

regulated proteins) - (median for down-regulated proteins); if mfun is ‘mean’, means of the groups
are used instead. If oldstyle is TRUE, the function also calculates the common language effect
size (CLES, in percent) and p-value for each variable.

The basis argument is used to select the basis species, which are used for the calculation of nH2O

and nO2 . The default for getOption("basis") is to use the ‘QEC’ basis species (see metrics).

Volume is calculated using amino acid group additivity as described by Dick et al. (2006).

Set plot.it to TRUE to make a scatterplot. Open red squares and filled blue circles stand for up-
regulated and down-regulated proteins, respectively.

Value

A data frame is returned invisibly containing the columns ‘dataset’, ‘description’, ‘n1’ (number
of down-regulated proteins), ‘n2’ (number of up-regulated proteins), followed two sets of columns
for the variables. These are denoted generically as (‘var.mfun1’, ‘var.mfun2’, ‘var.diff’, ‘var.CLES’,
‘var.p.value’), where ‘var’ is replaced by the name of var1 or var2, and ‘mfun’ is replaced by
the value of mfun. For example, ‘ZC.median1’ and ‘ZC.median2’ are the median ZC of the down-
and up-regulated proteins, respectively.

References

Dick, J. M., LaRowe, D. E. and Helgeson, H. C. (2006) Temperature, pressure, and electrochemical
constraints on protein speciation: Group additivity calculation of the standard molal thermodynamic
properties of ionized unfolded proteins. Biogeosciences 3, 311–336. doi: 10.5194/bg33112006

Examples

pd <- pdat_colorectal("JKMF10")
default variables: ZC and nH2O
get_comptab(pd, plot.it = TRUE)
protein length and per-residue volume
get_comptab(pd, "nAA", "V0", plot.it = TRUE)

human Amino Acid Compositions of Human Proteins

Description

Data for amino acid compositions of proteins and conversion from old to new UniProt IDs.

Format

human_aa is a data frame with 25 columns in the format used for amino acid compositions in
CHNOSZ (see thermo):

protein character Identification of protein
organism character Identification of organism
ref character Reference key for source of sequence data

https://doi.org/10.5194/bg-3-311-2006

12 human

abbrv character Abbreviation or other ID for protein (e.g. gene name)
chains numeric Number of polypeptide chains in the protein
Ala. . .Tyr numeric Number of each amino acid in the protein

The protein column contains UniProt IDs in the format database|accession-isoform, where
database is most often ‘sp’ (Swiss-Prot) or ‘tr’ (TrEMBL), and isoform is an optional suffix
indicating the isoform of the protein (particularly in the human_additional file).

Details

The amino acid compositions of human proteins are stored in three files under extdata/protein.

• human_base.rds contains amino acid compositions of canonical isoforms of manually re-
viewed proteins in the UniProt reference human proteome (computed from sequences in
UP000005640_9606.fasta.gz, dated 2016-04-03).

• human_additional.rds contains amino acid compositions of additional proteins (
UP000005640_9606_additional.fasta.gz) including isoforms and unreviewed sequences.
In version 0.1.5, this file was trimmed to include only those proteins that are used in any of
the datasets in the package.

• human_extra.csv contains amino acid compositions of other (“extra”) proteins used in a
dataset but not listed in one of the files above. These proteins may include obsolete, unre-
viewed, or newer additions to the UniProt database. Most, but not all, sequences here are
HUMAN (see the organism column and the ref column for the reference keys).

On loading the package, the individual data files are read and combined, and the result is assigned
to the human_aa object in the human environment.

As an aid for processing datasets that list old (obsolete) UniProt IDs, the corresponding new (cur-
rent) IDs are are stored in uniprot_updates. These ID mappings have been manually added
as needed for individual datasets, and include proteins from humans as well as other organisms.
check_IDs performs the conversion of old to new IDs.

See Also

Amino acid compositions of non-human proteins are stored under extdata/aa in directories archaea,
bacteria, cow, dog, mouse, rat, and yeast. These files can be loaded in protcomp via the aa_file
argument, which is used e.g. in pdat_osmotic_bact.

Examples

The number of proteins
nrow(get("human_aa", human))
The number of old to new ID mappings
nrow(get("uniprot_updates", human))

https://www.uniprot.org/

metrics 13

metrics Calculate Chemical Metrics for Proteins

Description

These functions calculate chemical metrics of proteins given a data frame of amino acid composi-
tions.

Usage

ZCAA(AAcomp, nothing = NULL)
H2OAA(AAcomp, basis = getOption("basis"))
O2AA(AAcomp, basis = getOption("basis"))
GRAVY(AAcomp)
pI(AAcomp)
MWAA(AAcomp)
basis.text(basis)

Arguments

AAcomp data frame, amino acid compositions

nothing dummy argument

basis character, basis species

Details

Columns in AAcomp should be named with the three-letter abbreviations for the amino acids (‘Ala’,
‘Arg’, . . .). Abbreviations are matched without regard to case (e.g. ‘ALA’ is the same as ‘ala’).

The metrics are described below:

ZCAA Average oxidation state of carbon (ZC) (Dick, 2014). nothing is an extra argument that
does nothing. It is provided so that do.call can be used to run ZCAA or H2OAA with the same
number of arguments.
This metric is independent of the choice of basis species.

H2OAA Stoichiometric hydration state (nH2O) per residue. The available basis species are:

• ‘QEC’ - glutamine, glutamic acid, cysteine, H2O, O2 (Dick et al., 2020) (this is the default
for getOption("basis"))

• ‘QCa’ - glutamine, cysteine, acetic acid, H2O, O2

• Any other valid basis specification for basis, such as ‘CHNOS’ for CO2, NH3, H2S, H2O,
and O2

O2AA Stoichiometric oxidation state (nO2
) per residue. The basis species also affect this calculation.

GRAVY Grand average of hydropathicity. Values of the hydropathy index for individual amino acids
are from Kyte and Doolittle (1982).

14 metrics

pI Isoelectric point. The net charge for each ionizable group was pre-calculated from pH 0 to 14
at intervals of 0.01. The isoelectric point is found as the pH where the sum of charges of all
groups in the protein is closest to zero. The pK values for the terminal groups and sidechains
are taken from Bjellqvist et al. (1993) and Bjellqvist et al. (1994); note that the calculation
does not implement position-specific adjustments described in the latter paper. The number of
N- and C-terminal groups is taken to be one, unless a value for chains (number of polypeptide
chains) is given in AAcomp.

MWAA Molecular weight per residue.

Note that ZC is a per-carbon average, but nH2O is a per-residue average. The contribution of H2O
from the terminal groups of proteins is counted, so shorter proteins have slightly greater nH2O.

Tests for a few proteins (see examples) indicate that GRAVY and pI are equal those calculated with
the ProtParam tool (https://web.expasy.org/protparam/; Gasteiger et al., 2005).

basis.text is used in the vignettes to generate a textual description of the names of the basis
species, except H2O and O2, for one of the keywords ‘QEC’ or ‘QCa’.

References

Bjellqvist, B., Hughes, G. J., Pasquali, C., Paquet, N., Ravier, F., Sanchez, J.-C., Frutiger, S. and
Hochstrasser, D. (1993) The focusing positions of polypeptides in immobilized pH gradients can
be predicted from their amino acid sequences. Electrophoresis 14, 1023–1031. doi: 10.1002/
elps.11501401163

Bjellqvist, B. and Basse, B. and Olsen, E. and Celis, J. E. (1994) Reference points for compar-
isons of two-dimensional maps of proteins from different human cell types defined in a pH scale
where isoelectric points correlate with polypeptide compositions. Electrophoresis 15, 529–539.
doi: 10.1002/elps.1150150171

Dick, J. M. (2014) Average oxidation state of carbon in proteins. J. R. Soc. Interface 11, 20131095.
doi: 10.1098/rsif.2013.1095

Dick, J. M., Yu, M. and Tan, J. (2020) Uncovering chemical signatures of salinity gradients through
compositional analysis of protein sequences. Biogeosciences 17, 6145–6162. doi: 10.5194/bg17-
61452020

Gasteiger, E., Hoogland, C., Gattiker, A., Duvaud, S., Wilkins, M. R., Appel, R. D. and Bairoch,
A. (2005) Protein identification and analysis tools on the ExPASy server. In J. M. Walker (Ed.),
The Proteomics Protocols Handbook (pp. 571–607). Totowa, NJ: Humana Press Inc. doi: 10.1385/
1592598900:571

Kyte, J. and Doolittle, R. F. (1982) A simple method for displaying the hydropathic character of a
protein. J. Mol. Biol. 157, 105–132. doi: 10.1016/00222836(82)905150

See Also

For calculation of ZC from a chemical formula instead of amino acid composition, see the ZC
function in CHNOSZ.

Examples

we need CHNOSZ for these examples
require(CHNOSZ)

https://web.expasy.org/protparam/
https://doi.org/10.1002/elps.11501401163
https://doi.org/10.1002/elps.11501401163
https://doi.org/10.1002/elps.1150150171
https://doi.org/10.1098/rsif.2013.1095
https://doi.org/10.5194/bg-17-6145-2020
https://doi.org/10.5194/bg-17-6145-2020
https://doi.org/10.1385/1-59259-890-0:571
https://doi.org/10.1385/1-59259-890-0:571
https://doi.org/10.1016/0022-2836(82)90515-0

metrics 15

for reference, compute ZC of alanine and glycine "by hand"
ZC.Gly <- ZC("C2H5NO2")
ZC.Ala <- ZC("C3H7NO2")
define the composition of a Gly-Ala-Gly tripeptide
AAcomp <- data.frame(Gly = 2, Ala = 1)
calculate the ZC of the tripeptide (value: 0.571)
ZC.GAG <- ZCAA(AAcomp)
this is equal to the carbon-number-weighted average of the amino acids
nC.Gly <- 2 * 2
nC.Ala <- 1 * 3
ZC.average <- (nC.Gly * ZC.Gly + nC.Ala * ZC.Ala) / (nC.Ala + nC.Gly)
stopifnot(all.equal(ZC.GAG, ZC.average))

compute the per-residue nH2O of Gly-Ala-Gly
basis("QEC")
nH2O.GAG <- species("Gly-Ala-Gly")$H2O
divide by the length to get residue average (we keep the terminal H-OH)
nH2O.residue <- nH2O.GAG / 3
compare with the value calculated by H2OAA() (-0.2)
nH2O.H2OAA <- H2OAA(AAcomp, "QEC")
stopifnot(all.equal(nH2O.residue, nH2O.H2OAA))

calculate GRAVY for a few proteins
first get the protein index in CHNOSZ's list of proteins
iprotein <- pinfo(c("LYSC_CHICK", "RNAS1_BOVIN", "AMYA_PYRFU"))
then get the amino acid compositions
AAcomp <- pinfo(iprotein)
then calculate GRAVY
Gcalc <- as.numeric(GRAVY(AAcomp))
these are equal to values obtained with ProtParam on uniprot.org
https://web.expasy.org/cgi-bin/protparam/protparam1?P00698@19-147@
https://web.expasy.org/cgi-bin/protparam/protparam1?P61823@27-150@
https://web.expasy.org/cgi-bin/protparam/protparam1?P49067@2-649@
Gref <- c(-0.472, -0.663, -0.325)
stopifnot(all.equal(round(Gcalc, 3), Gref))
also calculate molecular weight of the proteins
MWcalc <- as.numeric(MWAA(AAcomp)) * protein.length(iprotein)
MWref <- c(14313.14, 13690.29, 76178.25)
stopifnot(all.equal(round(MWcalc, 2), MWref))

calculate pI for a few proteins
iprotein <- pinfo(c("LYSC_CHICK", "RNAS1_BOVIN", "AMYA_PYRFU", "CSG_HALJP"))
AAcomp <- pinfo(iprotein)
pI_calc <- pI(AAcomp)
reference values calculated with ProtParam on uniprot.org
LYSC_CHICK: residues 19-147 (sequence v1)
RNAS1_BOVIN: residues 27-150 (sequence v1)
AMYA_PYRFU: residues 2-649 (sequence v2)
CSG_HALJP: residues 35-862 (sequence v1)
pI_ref <- c(9.32, 8.64, 5.46, 3.37)
stopifnot(all.equal(as.numeric(pI_calc), pI_ref))

16 mkvig

mkvig Compile and View Vignettes from the Command Line

Description

Compile the indicated vignette and open it in the browser.

Usage

mkvig(vig = NULL)

Arguments

vig character, name of a vignette without ‘.Rmd’ extension

Details

In order to reduce package space and check time, pre-built vignettes are not included in the package.
mkvig is a convenience function to compile the vignettes on demand and view them in a browser.

The available vignettes for mkvig are listed here:

• Cell culture – ‘hypoxia’, ‘secreted’, ‘osmotic_bact’, ‘osmotic_euk’, ‘osmotic_halo’,
‘glucose’, ‘3D’

• Cancer – ‘breast’, ‘colorectal’, ‘liver’, ‘lung’, ‘pancreatic’, ‘prostate’

Note that pandoc (including pandoc-citeproc), as a system dependency of rmarkdown, is required
to build the vignettes.

See Also

The vignettes can also be run using e.g. demo("glucose"), and through the interactive help system
(help.start > Packages > canprot > Code demos).

Examples

Not run:
mkvig("colorectal")

End(Not run)

pdat_ 17

pdat_ Get Protein Expression Data

Description

Get differentially expressed proteins and amino acid compositions.

Usage

pdat_breast(dataset = 2020)
pdat_colorectal(dataset = 2020)
pdat_liver(dataset = 2020)
pdat_lung(dataset = 2020)
pdat_pancreatic(dataset = 2020)
pdat_prostate(dataset = 2020)
pdat_hypoxia(dataset = 2020)
pdat_secreted(dataset = 2020)
pdat_3D(dataset = 2020)
pdat_glucose(dataset = 2020)
pdat_osmotic_bact(dataset = 2020)
pdat_osmotic_euk(dataset = 2020)
pdat_osmotic_halo(dataset = 2020)
.pdat_multi(dataset = 2020)
.pdat_osmotic(dataset = 2017)

Arguments

dataset character, dataset name

Details

The pdat_ functions assemble lists of up- and down-regulated proteins and retrieve their amino
acid compositions using protcomp. The result can be used with get_comptab to make a table of
chemical metrics that can then be plotted with diffplot.

If dataset is ‘2020’ (the default) or ‘2017’, the function returns the names of all datasets in the
compilation for the respective year.

Each dataset name starts with a reference key indicating the study (i.e. paper or other publication)
where the data were reported. The reference keys are made by combining the first characters of the
authors’ family names with the 2-digit year of publication.

If a study has more than one dataset, the reference key is followed by an underscore and an identifier
for the particular dataset. This identifier is saved in the variable named stage in the functions, but
can be any descriptive text.

To retrieve the data, provide a single dataset name in the dataset argument. Protein expression data
is read from the CSV files stored in extdata/expression/, under the subdirectory corresponding
to the name of the pdat_ function. Some of the functions also read amino acid compositions (e.g.
for non-human proteins) from the files in extdata/aa/.

18 protcomp

Descriptions for each function:

• pdat_colorectal, pdat_pancreatic, pdat_breast, pdat_lung, pdat_prostate, and pdat_liver
retrieve data for protein expression in different cancer types.

• pdat_hypoxia gets data for cellular extracts in hypoxia and pdat_secreted gets data for
secreted proteins (e.g. exosomes) in hypoxia.

• pdat_3D retrieves data for 3D (e.g. tumor spheroids and aggregates) compared to 2D (mono-
layer) cell culture.

• .pdat_osmotic retrieves data for hyperosmotic stress, for the 2017 compilation only. In 2020,
this compilation was expanded and split into pdat_osmotic_bact (bacteria), pdat_osmotic_euk
(eukaryotic cells) and pdat_osmotic_halo (halophilic bacteria and archaea).

• pdat_glucose gets data for high-glucose experiments in eukaryotic cells.

• .pdat_multi retrieves data for studies that have multiple types of datasets (e.g. both cel-
lular and secreted proteins in hypoxia), and is used internally by the specific functions (e.g.
pdat_hypoxia and pdat_secreted).

Value

A list consisting of:

dataset Name of the dataset

description Descriptive text for the dataset, used for making the tables in the vignettes (see
mkvig)

pcomp UniProt IDs together with amino acid compositions obtained using protcomp

up2 Logical vector with length equal to the number of proteins; TRUE for up-regulated proteins
and FALSE for down-regulated proteins

Examples

List datasets in the 2017 complilation for colorectal cancer
pdat_colorectal(2017)
Get proteins and amino acid compositions for one dataset
pdat_colorectal("JKMF10")

protcomp Amino Acid Compositions

Description

Get amino acid compositions of proteins.

Usage

protcomp(uniprot = NULL, aa = NULL, aa_file = NULL)

qdist 19

Arguments

uniprot character, UniProt IDs of proteins

aa data frame, amino acid compositions

aa_file character, file name

Details

This function retrieves the amino acid compositions of one or more proteins specified by uniprot.

This function depends on the amino acid compositions of human proteins, which are stored in the
human environment when the package is attached. If aa_file is specified, additional amino acid
compositions to be considered are read from this file, which should be in the same format as e.g.
human_extra.csv (see also thermo$protein). Alternatively, the amino acid compositions can be
given in aa, bypassing the search step.

Value

The function returns a list with elements uniprot (UniProt IDs as given in the arguments) and aa
(amino acid compositions of the proteins).

See Also

cleanup

Examples

protcomp("P24298")

qdist Quantile Distributions for One Dataset

Description

Make a plot showing quantile distributions for up- and down-regulated proteins.

Usage

qdist(pdat, vars = c("ZC", "nH2O"), show.steps = FALSE)

Arguments

pdat list, output of a pdat_ function for a single dataset

vars character, which variables to plot

show.steps logical, show the steps using plot.ecdf?

20 xsummary

Details

This function makes a quantile distribution plot with lines for both up- and down-regulated proteins.
The variable (var) can be ‘ZC’, ‘H2O’, or both (two plots are made for the latter). The horizontal
axis is the variable and the vertical axis is the quantile point. A solid black line is drawn for the
down-regulated proteins, and a dashed red line for the up-regulated proteins. The median difference
is shown by a gray horizontal line drawn between the distributions at the 0.5 quantile point.

References

Jimenez, C. R. and Knol, J. C. and Meijer, G. A. and Fijneman, R. J. A. (2010) Proteomics of
colorectal cancer: Overview of discovery studies and identification of commonly identified cancer-
associated proteins and candidate CRC serum markers. J. Proteomics 73, 1873–1895. doi: 10.1016/
j.jprot.2010.06.004

See Also

diffplot to plot median differences for multiple datasets.

Examples

Plot the data of Jimenez et al., 2010 for colorectal cancer
pdat <- pdat_colorectal("JKMF10")
qdist()

xsummary Summarize Chemical Differences

Description

Make an HTML table summarizing chemical differences.

Usage

xsummary(comptab, vars = c("ZC", "nH2O"))
xsummary2(comptab1, comptab2)
xsummary3(comptab1, comptab2, comptab3)

Arguments

comptab list or data frame, summary of comparisons generated by get_comptab

vars character, two variables to tabulate

comptab1 list, output of get_comptab

comptab2 list, output of get_comptab

comptab3 list, output of get_comptab

https://doi.org/10.1016/j.jprot.2010.06.004
https://doi.org/10.1016/j.jprot.2010.06.004

xsummary 21

Details

xsummary makes an HTML table (using xtable) and adds bold and underline formatting to high-
light significant chemical differences. The p-value is bolded if it is less than 0.05, and the percent
common language effect size (CLES) is bolded if it is <= 40 or >= 60. The mean (or median)
difference is [underlined / bolded] if [only one of / both] the p-value and CLES pass these cutoffs.

The generated table is written to the console, and can be used in a vignette using the results =
"asis" chunk option. The function also returns (invisibly) the data frame used to make the table;
this data frame differs from comptab by having row names added (alphabetical one-letter IDs for
the datasets).

xsummary2 is an updated version that is used in the current vignettes in the package. It shows
negative numbers in bold (p-value and CLES are not shown). xsummary3 is a further revision that
shows GRAVY and pI; it is used in the ‘osmotic_bact’ and ‘osmotic_halo’ vignettes.

Examples

comptab <- lapply(c("JKMF10", "WDO+15_C.N"), function(dataset) {
pdat <- pdat_colorectal(dataset)
get_comptab(pdat, oldstyle = TRUE)

})
xsummary(comptab)

Index

∗ Amino acid composition
human, 11
protcomp, 18

∗ Chemical metrics
get_comptab, 10
metrics, 13

∗ Plotting functions
diffplot, 8
qdist, 19

∗ Protein data
check_IDs, 3
cleanup, 4
pdat_, 17

∗ Statistical functions
CLES, 5

∗ Vignette utilities
mkvig, 16
xsummary, 20

∗ package
canprot-package, 2

.pdat_multi (pdat_), 17

.pdat_osmotic (pdat_), 17

basis, 13
basis.text (metrics), 13

canprot-package, 2
check_IDs, 3, 5, 12
cleanup, 4, 4, 19
CLES, 5, 9–11, 21
cplab (diffplot), 8

demo, 16
diffplot, 8, 17, 20
do.call, 13

get_comptab, 8, 9, 10, 17, 20
GRAVY, 10
GRAVY (metrics), 13

H2OAA, 10

H2OAA (metrics), 13
help.start, 16
human, 11, 19
human_aa, 4
human_aa (human), 11
human_additional (human), 11
human_base (human), 11
human_extra, 19
human_extra (human), 11

kde2d, 9

LETTERS, 9
letters, 9

metrics, 11, 13
mkvig, 2, 16, 18
MWAA (metrics), 13

O2AA, 10
O2AA (metrics), 13

pdat_, 4, 5, 10, 17, 19
pdat_3D (pdat_), 17
pdat_breast (pdat_), 17
pdat_colorectal (pdat_), 17
pdat_glucose (pdat_), 17
pdat_hypoxia (pdat_), 17
pdat_liver (pdat_), 17
pdat_lung (pdat_), 17
pdat_osmotic_bact, 12
pdat_osmotic_bact (pdat_), 17
pdat_osmotic_euk (pdat_), 17
pdat_osmotic_halo (pdat_), 17
pdat_pancreatic (pdat_), 17
pdat_prostate (pdat_), 17
pdat_secreted (pdat_), 17
pI, 10
pI (metrics), 13
plot, 8
plot.ecdf, 19

22

INDEX 23

pnorm, 6
protcomp, 12, 17, 18, 18

qdist, 9, 19

rect, 9

text, 9
thermo, 4, 11, 19

uniprot_updates, 4
uniprot_updates (human), 11

xsummary, 20
xsummary2 (xsummary), 20
xsummary3 (xsummary), 20
xtable, 21

ZC, 14
ZCAA, 10
ZCAA (metrics), 13

	canprot-package
	check_IDs
	cleanup
	CLES
	diffplot
	get_comptab
	human
	metrics
	mkvig
	pdat_
	protcomp
	qdist
	xsummary
	Index

