Cartograflow
is designed to filter origin-destination (OD) flow matrix for thematic mapping purposes.
1. Preparing flow data sets:
1.1 General functions
You can use long “L” or matrix “M” [n*n] flow dataset formats.
– flowtabmat()
is to transform “L” to “M” formats, also to build an empty square matrix from spatial codes.
– flowcarre()
is to square a matrix.
– flowjointure()
is to performs a spatial join between a flow dataset and a spatial features layer or an external matrix.
– flowstructmat()
fixes an unpreviously codes shift in the flow dataset “M” format. If necessary this function is to be used with flowjointure
and flowtabmat
.
1.2. Flow computation:
– flowtype()
is to compute several types of flow from an asymmetric matrix:
x= flux
for remaining initial flow (Fij)
x= transpose
for reverse flow value (Fji)
x= bivolum
for bilateral volum, as gross flow (FSij)
x= bibal
for bilateral balance, as net flow (FBij)
x= biasym
for asymetry of bilateral flow (FAij)
x= bimin
for minimum of bilateral flow (minFij)
x= bimax
for maximum of bilateral flow (maxFij)
x= birange
for bilateral flow range (rangeFij)
x= bidisym
for bilateral disymetry as (FDij)
– flowplaces()
is to compute several types of flow places oriented from an asymmetric:
ie. as a dataframe that describes the flows from Origin / destination point of view
x= ini
for the number of incoming links (as in-degree)
x= outi
for the number of outcoming links (as out-degree)
x= degi
for the total number of links (as in and out degrees)
x= intra
for total intra zonal interaction (if main diagonal is not empty
x= Dj
for the total flows received by (j) place
x= voli
for the total volume of flow per place
x= bali
for the net balance of flow per place
x= asyi
for the asymetry of flow per place
x= allflowplaces
for computing all the above indicators
1.3. Flow reduction:
– flowlowup()
is to extracts the upper or the lower triangular part of a matrix - preferably for symmetrical matrixes.
x= up
for the part above the main diagonal
x= low
for the part below the main diagonal
– flowreduct()
is to reduce the flow dataset regarding another matrix, e.g. distances travelled.
metric
is the metric of the distance matrix :
- metric= continuous
(e.g. for kilometers)
- metric= ordinal
(e.g. for k
contiguity)
If the metric is continuous
(e.g for filtering flows by kilometric distances travelled), use:
d.criteria
is for selecting the minimum or the maximum distance criteria
- d.criteria= dmin
for keeping only flows up to a dmin criterion in km
- d.criteria= dmax
for selecting values less than a dmax criterion in km
d
is the value of the selected dmin
or dmax
criteria.
Notice that these arguments can be used as a filter criterion in flowmap()
.
See Cartograflow_distance and Cartograflow_ordinal_distance Vignettes for examples.
URL: https://github.com/fbahoken/cartogRaflow/tree/master/vignettes
2. Flows filtering:
2.1. Filtering from flow concentration analysis
Flow concentration analysis:
– flowgini()
performs a Gini’s concentration analysis of the flow features, by computing Gini coefficient and plotting interactive Lorenz curve.
To be use before flowanalysis()
See Cartograflow_concentration Vignette for example.
URL: https://github.com/fbahoken/cartogRaflow/tree/master/vignettes
Flow filtering according to a concentration criterion:
– flowanalysis()
computes filters criterions based on:
critflow
is to filter the flows according to their significativity (% of total of flow information) ; critlink
is to filter the flows according to their density (% of total features) These arguments can be used as filter
criterion in flowmap()
.
See Cartograflow_concentration Vignette for example.
URL: https://github.com/fbahoken/cartogRaflow/tree/master/vignettes
2.2. Spatial / territorial filtering of flows
Flow filtering based on a continuous distance criterion
– flowdist()
computes a continous distance matrix from spatial features (area or points). The result is a matrix of the distances travelled between ODs, with flows filtered or not.
See Cartograflow_distance Vignette for example.
URL: https://github.com/fbahoken/cartogRaflow/tree/master/vignettes
Flow filtering based on an ordinal distance / neighbourhood criterion:
– flowcontig()
compute an ordinal distance matrix from spatial features (area). The result is a matrix of adjacency or k-contiguity of the ODs.
background
is the areal spatial features ;k
is to enter the number (k:1,2,…,k) of the contiguity matrix to be constructed : if (k=1), ODs places are adjacent, then the flow have to cross only 1 boundary, else (k=k) ODs places are distant from n borders ;algo
is the algorithm to use for ordinal distance calculation (also Default is “automatic” for “Dijkstra’s”) ; Notice that the function automatically returns the maximum (k) number of the spatial layer.
See Cartograflow_distance_ordinal Vignette for example.
3. Flow mapping
– flowmap()
is to plot flows as segments or arrows, by acting on the following arguments:
filter
is to filter or not flow’s information or features threshold
is used to set the filtering level of the flows when filter=“True” taille
is the value of the width of the flow feature a.head
is the arrow head parameter (in, out, in and out) a.length
is the length of the edges of the arrow head (in inches) a.angle
is the angle from the shaft of the arrow to the edge of the arrow head a.col
is the arrow’s color plota
is to add spatial features as map background to the flows’s plot add
is to allow to overlay flow features on external spatial features background – Useful packages Best external R package to use: {dplyr} {sf} {igraph} {rlang} {cartography}
Flow dataset
# Load Statistical information
tabflow<-read.csv2("./data/MOBPRO_ETP.csv", header=TRUE, sep=";",stringsAsFactors=FALSE,
encoding="UTF-8", dec=".",check.names=FALSE)
## 'data.frame': 121 obs. of 4 variables:
## $ i : chr "T1" "T1" "T1" "T1" ...
## $ j : chr "T1" "T10" "T11" "T12" ...
## $ Fij : num 291058 8297 3889 17064 12163 ...
## $ count: num 351 43 13 77 52 55 134 63 53 14 ...
Select variable and change matrix format
# Selecting useful variables for changing format
tabflow<-tabflow %>% select(i,j,Fij)
# From list (L) to matrix (M) format
matflow <-flowtabmat(tabflow,matlist="M")
head(matflow[1:4,1:4])
## T1 T10 T11 T12
## T1 291058 8297 3889 17064
## T10 73743 19501 11707 4931
## T11 22408 9359 12108 6084
## T12 68625 1906 7269 46515
## [1] 12 12
Geographical dataset
Compute bilateral flows types : eg. volum, balance, bilateral maximum and all types
# Bilateral volum (gross) FSij:
tabflow_vol<-flowtype(tabflow, format="L", origin="i", destination="j", fij="Fij", x= "bivolum" )
# Matrix format (M= : matflow_vol<-flowtype(matflow, format="M", "bivolum")
# Bilateral balance (net ) FBij:
tabflow_net<-flowtype(tabflow, format="L", origin="i", destination="j", fij="Fij", x="bibal")
# Bilateral maximum (maxFij):
tabflow_max<-flowtype(tabflow, format="L", origin="i", destination="j", fij="Fij", x="bimax")
# Compute all types of bilateral flows, in one 11 columns
tabflow_all<-flowtype(tabflow,format="L", origin="i", destination="j", fij="Fij", x="alltypes")
head(tabflow_all)
## i j Fij Fji FSij FBij FAij minFij maxFij rangeFij FDij
## 1 T1 T1 291058 291058 582116 0 0.0000000 291058 291058 0 0.0000000
## 2 T1 T10 8297 73743 82040 65446 0.7977328 8297 73743 65446 0.7977328
## 3 T1 T11 3889 22408 26297 18519 0.7042248 3889 22408 18519 0.7042248
## 4 T1 T12 17064 68625 85689 51561 0.6017225 17064 68625 51561 0.6017225
## 5 T1 T2 12163 47427 59590 35264 0.5917771 12163 47427 35264 0.5917771
## 6 T1 T3 32682 45772 78454 13090 0.1668494 32682 45772 13090 0.1668494
3.1. Plot all origin-destination without any filtering criterion The result will reveal a graphic complexity (“spaghetti-effect”")
Plot links
## Reading layer `MGP_TER' from data source `/tmp/RtmpmeYsUo/Rbuild751f7853470a/cartograflow/vignettes/data/MGP_TER.shp' using driver `ESRI Shapefile'
## Simple feature collection with 12 features and 14 fields
## geometry type: POLYGON
## dimension: XY
## bbox: xmin: 637297.4 ymin: 6838629 xmax: 671752.1 ymax: 6879246
## projected CRS: Lambert_Conformal_Conic
# Add and overlay spatial background
par(bg = "NA")
# Graphic parameters
par(mar=c(0,0,1,0))
extent <- c(2800000, 1340000, 6400000, 4800000)
resolution<-150
plot(st_geometry(map), col = NA, border=NA, bg="#dfe6e1")
plot(st_geometry(map), col = "light grey", add=TRUE)
# Flowmapping of all links
flowmap(tab=tabflow,
fij="Fij",
origin.f = "i",
destination.f = "j",
bkg = map,
code="EPT_NUM",
nodes.X="X",
nodes.Y = "Y",
filter=FALSE,
add=TRUE
)
library(cartography)
# Map cosmetics
layoutLayer(title = "All origin-destination for commuting in Greater Paris, 2017",
coltitle ="black",
author = "Cartograflow, 2020",
sources = "Data : INSEE, 2017 ; Basemap : APUR, RIATE, 2018.",
scale = 2,
tabtitle = FALSE,
frame = TRUE,
col = "grey"
)
# North arrow
north("topright")
3.2. Plot the above-average flows
## Reading layer `MGP_TER' from data source `/tmp/RtmpmeYsUo/Rbuild751f7853470a/cartograflow/vignettes/data/MGP_TER.shp' using driver `ESRI Shapefile'
## Simple feature collection with 12 features and 14 fields
## geometry type: POLYGON
## dimension: XY
## bbox: xmin: 637297.4 ymin: 6838629 xmax: 671752.1 ymax: 6879246
## projected CRS: Lambert_Conformal_Conic
# Add and overlay spatial background
par(bg = "NA")
# Graphic parameters
par(mar=c(0,0,1,0))
extent <- c(2800000, 1340000, 6400000, 4800000)
resolution<-150
plot(st_geometry(map), col = NA, border=NA, bg="#dfe6e1")
plot(st_geometry(map), col = "light grey", add=TRUE)
# Flow mapping above-average flows
flowmap(tab=tabflow,
fij="Fij",
origin.f = "i",
destination.f = "j",
bkg = map,
code="EPT_NUM",
nodes.X="X",
nodes.Y = "Y",
filter=TRUE,
threshold =(mean(tabflow$Fij)), #mean value is the level of threshold
taille=20,
a.head = 1,
a.length = 0.11,
a.angle = 30,
a.col="#138913",
add=TRUE)
# Map Legend
legendPropLines(pos="topleft",
title.txt="Commuters > 13220 ",
title.cex=0.8,
cex=0.5,
values.cex= 0.7,
var=c(mean(tabflow$Fij),max(tabflow$Fij)),
lwd=5,
frame = FALSE,
col="#138913",
values.rnd = 0
)
#Map cosmetic
layoutLayer(title = "Commuters up to above-average in Greater Paris",
coltitle ="black",
author = "Cartograflow, 2020",
sources = "Data : INSEE, 2017 ; Basemap : APUR, RIATE, 2018.",
scale = 2,
tabtitle = FALSE,
frame = TRUE,
col = "grey"
)
# North arrow
north("topright")
3.3. Plot the net flows of bilateral flows
## Reading layer `MGP_TER' from data source `/tmp/RtmpmeYsUo/Rbuild751f7853470a/cartograflow/vignettes/data/MGP_TER.shp' using driver `ESRI Shapefile'
## Simple feature collection with 12 features and 14 fields
## geometry type: POLYGON
## dimension: XY
## bbox: xmin: 637297.4 ymin: 6838629 xmax: 671752.1 ymax: 6879246
## projected CRS: Lambert_Conformal_Conic
# Net matrix reduction
tabflow_net <- tabflow_net %>% filter(.data$FBij>=0)
# Net matrix thresholding
Q80<-quantile(tabflow_net$FBij,0.95)
# Add and overlay spatial background
par(bg = "NA")
# Graphic parameters
par(mar=c(0,0,1,0))
extent <- c(2800000, 1340000, 6400000, 4800000)
resolution<-150
plot(st_geometry(map), col = NA, border=NA, bg="#dfe6e1")
plot(st_geometry(map), col = "light grey", add=TRUE)
# Flow mapping above-average flows
flowmap(tab=tabflow_net,
fij="FBij",
origin.f = "i",
destination.f = "j",
bkg = map,
code="EPT_NUM",
nodes.X="X",
nodes.Y = "Y",
filter=TRUE,
threshold = Q80,
taille=12,
a.head = 1,
a.length = 0.11,
a.angle = 30,
a.col="#4e8ef5",
add=TRUE)
# Map Legend
legendPropLines(pos="topleft",
title.txt="Commuters > 5722 ",
title.cex=0.8,
cex=0.5,
values.cex= 0.7,
var=c(Q80,max(tabflow_net$FBij)),
lwd=12,
frame = FALSE,
col="#4e8ef5",
values.rnd = 0
)
#Map cosmetic
layoutLayer(title = "Net commuters in Greater Paris (20% strongest)",
coltitle ="black",
author = "Cartograflow, 2020",
sources = "Data : INSEE, 2017 ; Basemap : APUR, RIATE, 2018.",
scale = 2,
tabtitle = FALSE,
frame = TRUE,
col = "grey"
)
# North arrow
north("topright")
– Statistical dataset : - INSEE - Base flux de mobilité (2015) - URL : https://www.insee.fr/fr/statistiques/fichier/3566008/rp2015_mobpro_txt.zip
– Geographical dataset :
https://github.com/fbahoken/cartogRaflow/tree/master/vignettes
– cartograflow_general.html
– cartograflow_concentration.html
– cartograflow_distance.html
– cartograflow_ordinal_distance.hmtl
– Bahoken Francoise (2016), Programmes pour R/Rtudio annexés, in : Contribution à la cartographie d’une matrix de flux, Thèse de doctorat, Université Paris 7, pp. 325-346. URL : https://halshs.archives-ouvertes.fr/tel-01273776, pp. 480-520.