Package 'cate'

June 23, 2020
Type Package
Title High Dimensional Factor Analysis and Confounder Adjusted Testing and Estimation

Version 1.1.1

Date 2020-06-22
Description Provides several methods for factor analysis in high dimension (both $n, p \gg 1$) and methods to adjust for possible confounders in multiple hypothesis testing.
biocViews sva
Imports Matrix, MASS, esaBcv, ruv, sva, corpcor, leapp
Suggests knitr, ggplot2, gridExtra
Encoding UTF-8
License GPL-2
LazyData TRUE
VignetteBuilder knitr
RoxygenNote 7.1.0
NeedsCompilation no
Author Jingshu Wang [aut], Qingyuan Zhao [aut, cre]
Maintainer Qingyuan Zhao qz280@cam.ac.uk
Repository CRAN
Date/Publication 2020-06-23 10:10:03 UTC

R topics documented:

cate-package 2
adjust.latent 2
cate 3
est.confounder.num 6
fa.em 8
fa.pc 9

Description

Provides several methods for factor analysis in high dimension (both n, p » 1) and methods to adjust for possible confounders in multiple hypothesis testing.

See Also

factor.analysis, cate
adjust.latent Adjust for latent factors, after rotationn

Description

Adjust for latent factors, after rotationn

Usage

adjust.latent(
corr.margin, n, X.cov, Gamma, Sigma, method = c("rr", "nc", "lqs"), psi = psi.huber, nc = NULL, nc.var.correction = TRUE
)

Arguments

corr.margin	marginal correlations, $\mathrm{p}^{*} \mathrm{~d} 1 \mathrm{matrix}$
n	sample size
X.cov	estimated second moment of $\mathrm{X}, \mathrm{d}^{*} \mathrm{~d}$ matrix
Gamma	estimated confounding effects, $\mathrm{p}^{*} \mathrm{r}$ matrix
Sigma	diagonal of the estimated noise covariance, $\mathrm{p}^{*} 1$ vector
method	adjustment method
psi	derivative of the loss function in robust regression, choices are psi.huber, psi.bisquareand psi.hampel
nc	position of the negative controls
nc.var.correction	
	correct asymptotic variance based on our formula

Details

The function essentially runs a regression of corr .margin \sim Gamma. The sample size n is needed to have the right scale.
This function should only be called if you know what you are doing. Most of the time you want to use the main function cate to adjust for confounders.

Value

a list of objects
alpha estimated alpha, $\mathrm{r}^{*} \mathrm{~d} 1$ matrix
beta estimated beta, $\mathrm{p}^{*} \mathrm{~d} 1$ matrix
beta.cov.row estimated row covariance of beta, a length p vector
beta.cov.col estimated column covariance of beta, a d1*d1 matrix

See Also

cate

```
cate The main function for confounder adjusted testing
```


Description

The main function for confounder adjusted testing

```
Usage
    cate(
        formula,
        X.data = NULL,
        Y,
        r,
        fa.method = c("ml", "pc", "esa"),
        adj.method = c("rr", "nc", "lqs", "naive"),
        psi = psi.huber,
        nc = NULL,
        nc.var.correction = TRUE,
        calibrate = TRUE
    )
    cate.fit(
    X.primary,
    X.nuis = NULL,
    Y,
    r,
    fa.method = c("ml", "pc", "esa"),
    adj.method = c("rr", "nc", "lqs", "naive"),
    psi = psi.huber,
    nc = NULL,
    nc.var.correction = TRUE,
        calibrate = TRUE
    )
```


Arguments

| formula | a formula indicating the known covariates including both primary variables and nuisance variables, which are seperated by \|. The variables before \| are primary variables and the variables after \| are nuisance variables. It's OK if there is no nuisance variables, then | is not needed and formula becomes a typical formula with all the covariates considered primary. When there is confusion about where the intercept should be put, cate will include it in X.nuis. |
| :---: | :---: |
| X.data | the data frame used for formula |
| Y | outcome, n *p matrix |
| r | number of latent factors, can be estimated using the function est. confounder. num |
| fa.method | factor analysis method |
| adj.method | adjustment method |
| psi | derivative of the loss function in robust regression |
| nc | position of the negative controls, if $\mathrm{d} 0>1$, this should be a matrix with 2 columns |
| nc.var.correction | |
| | correct asymptotic variance based on our formula |

calibrate	if TRUE, use the Median and the Mean Absolute Deviation(MAD) to calibrate the test statistics
X. primary	primary variables, $\mathrm{n}^{*} \mathrm{~d} 0$ matrix or data frame
X. nuis	nuisance covarites, $\mathrm{n}^{*} \mathrm{~d} 1$ matrix

Details

Ideally nc can either be a vector of numbers between 1 and p, if $\mathrm{d} 0=1$ or the negative controls are the same for every treatment variable, or a 2-column matrix specifying which positions of beta are known to be zero. But this is yet implemented.

Value

a list of objects
alpha estimated alpha, $\mathrm{r}^{*} \mathrm{~d} 1$ matrix
alpha.p.value asymptotic p-value for the global chi squared test of alpha, a vector of length d1
beta estimated beta, $p^{*} d 1$ matrix
beta.cov.row estimated row covariance of beta, a length p vector
beta.cov.col estimated column covariance of beta, a d1*d1 matrix
beta.t asymptotic z statistics for beta
beta.p.value asymptotic p-values for beta, based on beta. t
Y.tilde the transformed outcome matrix, an $n * p$ matrix

Gamma estimated factor loadings, $\mathrm{p} * \mathrm{r}$ matrix
\mathbf{Z} estimated latent factors
Sigma estimated noise variance matrix, a length p vector

Functions

- cate.fit: Basic computing function called by cate

References

J. Wang, Q. Zhao, T. Hastie, and A. B. Owen (2017). Confounder adjustment in multiple testing. Annals of Statistics, 45(5), 1863-1894.

See Also

wrapper for wrapper functions of some existing methods.

Examples

```
    ## simulate a dataset with 100 observations, 1000 variables and 5 confounders
    data <- gen.sim.data(n = 100, p = 1000, r = 5)
    X.data <- data.frame(X1 = data$X1)
    ## linear regression without any adjustment
    output.naive <- cate(~ X1 | 1, X.data, Y = data$Y, r = 0, adj.method = "naive")
    ## confounder adjusted linear regression
    output <- cate(~ X1 | 1, X.data, Y = data$Y, r = 5)
    ## plot the histograms of unadjusted and adjusted regression statistics
    par(mfrow = c(1, 2))
    hist(output.naive$beta.t)
    hist(output$beta.t)
    ## simulate a dataset with 100 observations, 1000 variables and 5 confounders
    data <- gen.sim.data(n = 100, p = 1000, r = 5)
    ## linear regression without any adjustment
    output.naive <- cate.fit(X.primary = data$X1, X.nuis = NULL, Y = data$Y,
    r = 0, adj.method = "naive")
    ## confounder adjusted linear regression
    output <- cate.fit(X.primary = data$X1, X.nuis = NULL, Y = data$Y, r = 5)
    ## plot the histograms of unadjusted and adjusted regression statistics
    par(mfrow = c(1, 2))
    hist(output.naive$beta.t)
    hist(output$beta.t)
```

est.confounder.num

Description

Estimate the number of confounders

Usage

```
est.confounder.num(
    formula,
    X.data = NULL,
    Y,
    method = c("bcv", "ed"),
    rmax = 20,
    nRepeat = 20,
    bcv.plot = TRUE,
    log = ""
)
est.factor.num(
```

```
    Y,
    method = c("bcv", "ed"),
    rmax = 20,
    nRepeat = 12,
    bcv.plot = TRUE,
    log = ""
)
```


Arguments

\(\left.$$
\begin{array}{ll}\text { formula } & \begin{array}{l}\text { a formula indicating the known covariates including both primary variables and } \\
\text { nuisance variables, which are seperated by } \mid \text {. The variables before | are primary } \\
\text { variables and the variables after | are nuisance variables. It's OK if there is no } \\
\text { nuisance variables, then | is not needed and formula becomes a typical formula } \\
\text { with all the covariates considered primary. When there is confusion about where } \\
\text { the intercept should be put, cate will include it in X.nuis. }\end{array}
$$

the data frame used for formula\end{array}\right]\)| outcome, n^{*} p matrix |
| :--- |
| method to estimate the number of factors. There are currently two choices, "ed" |
| is the eigenvalue difference method proposed by Onatski (2010) and "bcv" is the |
| bi-cross-validation method proposed by Owen and Wang (2015). "bcv" tends to |
| estimate more weak factors and takes longer time |

Value

if method is "ed", then return the estimated number of confounders/factors. If method is "bcv", then return the a list of objects
r estimated number of confounders/factors
errors the relative bcv errors of length $1+r m a x$

Functions

- est.factor. num: Estimate the number of factors

References

A. B. Owen and J. Wang (2015), Bi-cross-validation for factor analysis. Statistical Science, 31(1), 119-139.
A. Onatski (2010), Determining the number of factors from empirical distribution of eigenvalues. The Review of Economics and Statistics 92(4).

Examples

```
## example for est.confounder.num
data <- gen.sim.data(n = 50, p = 50, r = 5)
X.data <- data.frame(X1 = data$X1)
est.confounder.num(~ X1 | 1, X.data, data$Y, method = "ed")
est.confounder.num(~ X1 | 1, X.data, data$Y, method = "bcv")
## example for est.factor.num
n <- 50
p<- 100
r<- 5
Z <- matrix(rnorm(n * r), n, r)
Gamma <- matrix(rnorm(p * r), p, r)
Y <- Z %*% t(Gamma) + rnorm(n * p)
est.factor.num(Y, method = "ed")
est.factor.num(Y, method = "bcv")
```


Description

Factor analysis via EM algorithm to maximize likelihood

Usage

fa.em(Y, r, tol $=1 \mathrm{e}-06$, maxiter $=1000)$

Arguments

Y	data matrix, a $n * p$ matrix
r	number of factors
tol	a tolerance scale of change of log-likelihood for convergence in the EM itera- tions
maxiter	maximum iterations

References

Bai, J. and Li, K. (2012). Statistical analysis of factor models of high dimension. The Annals of Statistics 40, 436-465.

See Also

factor. analysis for the main function.
fa.pc Factor analysis via principal components

Description

Factor analysis via principal components

Usage

fa.pc(Y, r)

Arguments

Y	data matrix, a $n * p$ matrix
r	number of factors

See Also

factor. analysis for the main function.

```
factor.analysis Factor analysis
```


Description

The main function for factor analysis with potentially high dimensional variables. Here we implement some recent algorithms that is optimized for the high dimensional problem where the number of samples n is less than the number of variables p.

Usage

factor.analysis(Y, r, method = c("ml", "pc", "esa"))

Arguments

$Y \quad$ data matrix, a n*p matrix
r number of factors
method algorithm to be used

Details

The three methods are quasi-maximum likelihood (ml), principal component analysis (pc), and factor analysis using an early stopping criterion (esa).

The ml is iteratively solved the Expectation-Maximization algorithm using the PCA solution as the initial value. See Bai and Li (2012) and for more details. For the esa method, see Owen and Wang (2015) for more details.

Value

a list of objects
Gamma estimated factor loadings
\mathbf{Z} estimated latent factors
Sigma estimated noise variance matrix

References

Bai, J. and Li, K. (2012). Statistical analysis of factor models of high dimension. The Annals of Statistics 40, 436-465. Owen, A. B. and Wang, J. (2015). Bi-cross-validation for factor analysis. arXiv:1503.03515.

See Also

fa.pc, fa.em, ESA

Examples

```
## a factor model
n <- 100
p <- 1000
r<- 5
Z <- matrix(rnorm(n * r), n, r)
Gamma <- matrix(rnorm(p * r), p, r)
Y <- Z %*% t(Gamma) + rnorm(n * p)
## to check the results, verify the true factors are in the linear span of the estimated factors.
pc.results <- factor.analysis(Y, r = 5, "pc")
sapply(summary(lm(Z ~ pc.results$Z)), function(x) x$r.squared)
ml.results <- factor.analysis(Y, r = 5, "ml")
sapply(summary(lm(Z ~ ml.results$Z)), function(x) x$r.squared)
esa.results <- factor.analysis(Y, r = 5, "esa")
sapply(summary(lm(Z ~ esa.results$Z)), function(x) x$r.squared)
```

```
    gen.sim.data Generate simulation data set
```


Description

gen.sim. data generates data from the following model $Y=X _0$ Beta_0^T $+X _1$ Beta_1^T $+Z$ Gamma^T + E Sigma^1/2, ZIX_0, X_1 = X_0 Alpha_0^T + X_1 Alpha_1^T + D, cov(X_0, X_1)
~Sigma_X

Usage

```
gen.sim.data(
    n,
    p,
    r,
    d0 = 0,
    d1 = 1,
    X.dist = c("binary", "normal"),
    alpha = matrix(0.5, r, d0 + d1),
    beta = NULL,
    beta.strength = 1,
    beta.nonzero.frac = 0.05,
    Gamma = NULL,
    Gamma.strength = sqrt(p),
    Gamma.beta.cor = 0,
    Sigma = 1,
    seed = NULL
)
```


Arguments

n	number of observations
p	number of observed variables
r	number of confounders
d 0	number of nuisance regression covariates
d 1	number of primary regression covariates
X.dist	the distribution of X, either "binary" or "normal"
alpha	association of X and Z, a r*d vector (d = d0 + d1)
beta	treatment effects, a p*d vector
beta.strength	strength of beta
beta.nonzero.frac	
	if beta is not specified, fraction of nonzeros in beta
Gamma	confounding effects, a p*r matrix

Gamma. strength strength of Gamma, more precisely the mean of square entries of Gamma * alpha

Gamma.beta.cor the "correlation" (proportion of variance explained) of beta and Gamma
Sigma noise variance, a p^{*} p matrix or $p^{*} 1$ vector or a single real number
seed random seed

Value

a list of objects
X0 matrix of nuisance covariates
X1 matrix of primary covariates
Y matrix Y
\mathbf{Z} matrix of confounders
alpha regression coefficients between X and Z
beta regression coefficients between X and Y
Gamma coefficients between Z and Y
Sigma noise variance
beta.nonzero.pos the nonzero positions in beta
r number of confounders
gender.sm Gender study dataset

Description

This genetics dataset is used to demonstrate the usage of cate in the vignette. It was originally extracted by Gagnon-Bartsch and Speed (2012) as an example of confounded multiple testing. The data included in this package contains only 500 genes that are sampled from the original 12600 genes, besides keeping all the spike-in controls.

References

http://www-personal.umich.edu/~johanngb/ruv/ Vawter, M. P., S. Evans, P. Choudary, H. Tomita, J. Meador-Woodruff, M. Molnar, J. Li, J. F. Lopez, R. Myers, D. Cox, et al. (2004). Gender-specific gene expression in post-mortem human brain: localization to sex chromosomes. Neuropsychopharmacology 29(2), 373-384. Gagnon-Bartsch, J. A. and T. P. Speed (2012). Using control genes to correct for unwanted variation in microarray data. Biostatistics 13(3), 539-552.

Description

These functions provide an uniform interface to three existing methods: SVA, RUV, LEAPP The wrapper functions transform the data into desired forms and call the corresponding functions in the package sva, ruv, leapp

Usage

sva.wrapper (
formula,
X. data $=$ NULL,

Y,
r,
sva.method = c("irw", "two-step"),
$B=5$
)
ruv.wrapper (
formula,
X.data $=$ NULL,

Y,
r,
nc ,
lambda = 1,
ruv.method = c("RUV2", "RUV4", "RUVinv")
)
leapp.wrapper(
formula,
X. data $=$ NULL,

Y,
r,
search.tuning = F,
ipod.method = c("hard", "soft")
)

Arguments

formula a formula indicating the known covariates including both primary variables and nuisance variables, which are seperated by \mid. The variables before \mid are primary variables and the variables after | are nuisance variables. It's OK if there is no nuisance variables, then \| is not needed and formula becomes a typical formula with all the covariates considered primary. When there is confusion about where the intercept should be put, cate will include it in X.nuis.

X.data	the data frame used for formula
Y	outcome, $n * p$ matrix
r	number of latent factors, can be estimated using the function est. confounder. num
sva.method	parameter for sva. whether to use an iterative reweighted algorithm (irw) or a two-step algorithm (two-step).
B	parameter for sva. the number of iterations of the irwsva algorithm
nc	parameter for ruv functions: position of the negative controls
lambda	parameter for RUVinv
ruv.method	either using RUV2, RUV4 or RUVinv functions
search.tuning	logical parameter for leapp, whether using BIC to search for tuning parameter of IPOD.
ipod.method	parameter for leapp. "hard": hard thresholding in the IPOD algorithm; "soft": soft thresholding in the IPOD algorithm

Details

The beta.p.values returned is a length p vector, each for the overall effects of all the primary variables.
Only 1 variable of interest is allowed for leapp. wrapper. The method can be slow.

Value

All functions return beta.p.value which are the p-values after adjustment. For the other returned objects, refer to cate for their meaning.

Examples

```
## this is the simulation example in Wang et al. (2015).
n <- 100
p <- 1000
r <- 2
set.seed(1)
data <- gen.sim.data(n = n, p = p, r= r,
    alpha = rep(1 / sqrt(r), r),
    beta.strength = 3 * sqrt(1 + 1) / sqrt(n),
    Gamma.strength = c(seq(3, 1, length = r)) * sqrt(p),
    Sigma = 1 / rgamma(p, 3, rate = 2),
    beta.nonzero.frac = 0.05)
X.data <- data.frame(X1 = data$X1)
sva.results <- sva.wrapper(~ X1 | 1, X.data, data$Y,
    r = r, sva.method = "irw")
ruv.results <- ruv.wrapper(~ X1 | 1, X.data, data$Y, r = r,
                        nc = sample(data$beta.zero.pos, 30), ruv.method = "RUV4")
leapp.results <- leapp.wrapper(~ X1 | 1, X.data, data$Y, r = r)
cate.results <- cate(~ X1 | 1, X.data, data$Y, r = r)
## p-values after adjustment
par(mfrow = c(2, 2))
```

```
hist(sva.results$beta.p.value)
hist(ruv.results$beta.p.value)
hist(leapp.results$beta.p.value)
hist(cate.results$beta.p.value)
## type I error
mean(sva.results$beta.p.value[data$beta.zero.pos] < 0.05)
## power
mean(sva.results$beta.p.value[data$beta.nonzero.pos] < 0.05)
## false discovery proportion for sva
discoveries.sva <- which(p.adjust(sva.results$beta.p.value, "BH") < 0.2)
fdp.sva <- length(setdiff(discoveries.sva, data$beta.nonzero.pos)) / max(length(discoveries.sva), 1)
fdp.sva
```


Index

*Topic data
gender.sm, 12
adjust.latent, 2
cate, 2, 3, 3, 14
cate-package, 2
ESA, 10
est. confounder.num, 6
est.factor.num (est. confounder. num), 6
fa.em, 8,10
fa.pc, 9, 10
factor. analysis, 2, 9, 9
gen.sim.data, 11
gender.sm, 12
leapp, 13, 14
leapp.wrapper (wrapper), 13
ruv, 13, 14
ruv.wrapper (wrapper), 13
RUV2, 14
RUV4, 14
RUVinv, 14
sva, 13, 14
sva.wrapper (wrapper), 13
wrapper, 5, 13

