Package ‘cghRA’

March 3, 2017

Type Package

Title Array CGH Data Analysis and Visualization
Version 1.6.0

Date 2017-03-03

Author Sylvain Mareschal

Maintainer Sylvain Mareschal <maressyl@gmail.com>
URL http://www.ovsa.fr/cghRA

BugReports https://github.com/maressyl/R.cghRA/issues

Description Provides functions to import data from Agilent CGH arrays and process them accord-
ing to the cghRA workflow. Implements several algorithms such as WACA, STEPS and cnvS-
core and an interactive graphical interface.

License GPL (>=3)

Depends methods, Rgb (>=1.5.0), R (>=2.10)

Imports DNAcopy, utils, stats

Suggests tcltk, tkrplot, parallel, GLAD, graphics, grDevices
NeedsCompilation yes

Repository CRAN

Date/Publication 2017-03-03 21:25:45

R topics documented:

bias
cghRA.array e
cghRA.array-class e
cghRA.copies-class e
cghRA.copies-constructor i e
cghRA.design-class L e
cghRA.design-constructor e
cghRA.probes-class e
cghRA.probes-constructor L

http://www.ovsa.fr/cghRA
https://github.com/maressyl/R.cghRA/issues

cghRA.regions-class e 17
cghRA.TegIONS-CONSIIUCtOT it it e e e e 21
cghRAseries o e 22
cghRA.series-Class e 22
CAVSCOT® .« o v v v v vt e e e e e e e e e e 24
COPICS .« v v v v e e e e e e e e e e e e e e e 26
Designfileparser L e e e 28
drawableFromClass.cghRA.probes 29
fillGaps e 30
GEDI . . . e 31
localize e 32
map2design e e e e e e e e 34
model.apply e 35
model.auto L e e e e 38
model.test e e e 41
parallelize L 44
parseKaryoo L e e 45
PENELTANCE o o i i e e e e e e e e e e e e e e e 46
Probe fileparser 47
PIOCESS « o v ot i e e e e e e e e e e e 48
segmentMap-class 52
SRA&LRA . . e 53
STEPS e 55
tkeannotate L L e e e 56
tk.eghRA L e 57
tkodesign L e 58
tkemodelize 59
tK.SEIIES o e e e 60
tkovalue 61
trace2track L e e 62
track CNV.DGVsupp 62
WACA . . 63
Index 65
bias WACA bias computation for a probe series
Description

This function computes the various probe-dependant biases used by the Waves aCGH Correction
Algorithm (WACA), in order to apply this correction to CGH arrays using these probes.

Usage

bias(chromFiles, probeChrom, probeStarts, probeEnds,
chromPattern = "~(.+)\\.[*"\\.1+$", fragSites = c(Alul = "AG|CT", Rsal = "GT|AC"),
digits = 6, verbose = 1)

bias

Arguments

chromFiles

probeChrom

probeStarts

probeEnds

chromPattern

fragSites

digits

verbose

Value

Character vector, paths to chromosome sequences (a single fasta file for each
chromosome).

character vector, for each probe its chromosome location.

integer vector, for each probe its chromosome starting position (first base is 1,
starting position is comprised in the probe).

integer vector, for each probe its chromosome ending position (first base is 1,
ending position is comprised in the probe).

Single character value, a regular expression to be used for chromosome name
extraction from chromFiles. It needs to capture a single value for replacement,
default value will use the base names of the files without extension as chromo-
some names.

Named character vector describing the restriction enzymes used for the CGH
experiment. Restriction sites are described in upper cases, with a pipe at the
fragmentation position (see the default value for an example). Only A, C, G and
T letters allowed.

Single integer value, to be passed to round for all bias values.

Single integer value, whether to print diagnostic messages or not.

Returns a double matrix, with probes in rows and the following columns :

wGC150
wGC500
WwGCprobe
wGCfrag

wFragSize

Author(s)

Sylvain Mareschal

References

GC frequency in a window of 150 kb on each side of the probe
GC frequency in a window of 500 kb on each side of the probe
GC frequency in the probe sequence

GC frequency in the fragment holding the probe

Size (in bp) of the fragment holding the probe

Lepretre F. et al. (2010) Waved aCGH: to smooth or not to smooth. Nucleic Acids Res. 2010

Apr;38(7):e94

See Also

WACA, localize

4 cghRA .array-class

cghRA.array cghRA.array class constructor

Description

This function returns a new cghRA. array object from various arguments.

Usage

cghRA.array(.design, .probes, .name, .parameters, warn = TRUE)

Arguments
.design An object of class cghRA.design, as returned by the cghRA. design constructor.
.probes An object of class cghRA. probes, as returned by the cghRA. probes constructor.
.name Single character value, to fill the name field inherited from drawable.
.parameters A list of drawing parameters, to fill the parameters field of the object.
warn Single logical value, to be passed to the cghRA. array-class check method.
Value

An object of class cghRA. array.

Author(s)

Sylvain Mareschal

See Also

cghRA.array-class

cghRA.array-class Class "cghRA.array"

Description

This class is the main component of the cghRA object-oriented package. Each CGH array must be
stored in a distinct cghRA .array object.

Objects from this class should always be produced by the cghRA.array constructor.

This class is a hub, it provides methods to apply various CGH analysis tools in a straight-forward
way.

The Reference Class system is used notably to share designs objects between arrays, as several
arrays may have values for the same probes.

cghRA .array-class 5

Extends

Class crossable, directly.
Class sliceable, by class crossable, distance 2.
Class drawable, by class crossable, distance 3.

All reference classes extend and inherit methods from envRefClass.

Fields

assembly: Single character value, the assembly version for the coordinates stored in the object.
Must have length 1, should not be NA.

design: Object of class cghRA.design

organism: Single character value, the name of the organism whose data is stored in the object.
Must have length 1, should not be NA.

probes: Object of class cghRA.probes.

The following fields are inherited (from the corresponding class):

e name (drawable)

 parameters (drawable)

Methods

as.CNA(): Returns a CNA object (DNAcopy) with the object content.

as.profileCGH(chrom = , quiet =): Returns a profileCGH object (GLAD) with the object
content.
- chrom : single character value defining how to deal with chromosome names :
’merged’ forces chromosome arms to be merged (as chromosome arms are not handled)
’levels’ converts chromosome to integers (can be deceiving for factors)
- quiet : single logical value, whether to warn for factor to integer conversion or not.

DLRS(method = , na.rm =): Computes the Derivative Log Ratio Spread from the probes.
- method : ’agilent’ or ’original’, implying distinct formulas.

DNAcopy(smooth = , ...): Apply the Circular Binary Segmentation, as implemented in DNA-
copy, and return a cghRA.regions object.
- smooth : a list of arguments to be passed to smooth.CNA(), TRUE to use the default param-
eters or FALSE to skip smoothing.
- ... : arguments to be passed to segment().

extract(i = , j =): Extracts values from ’probes’ and ’design’ into a data.frame.
-1i: row selection, see the R5Table method for further details.
- j : column selection, see the R5Table method for further details.

GADA(...): Apply the Genome Alteration Detection Analysis, as implemented in GADA, and re-
turn a cghRA.regions object.
- smooth : a list of arguments to be passed to smooth.CNA(), TRUE to use the default param-
eters or FALSE to skip smoothing.
- ... : arguments to be passed to segment().

cghRA .array-class

GLAD(chrom = , quiet = , output = , ...): Apply the Gain and Loss Analysis of Dna, as
implemented in GLAD, and return a cghRA.regions object.
- chrom, quiet : to be passed to the as.profileCGH method.
- output : single character value defining the returned value :
‘regions’ returns a cghRA.regions object with the segmented genome
raw’ returns the glad() output
"both’ adds a ’cghRA.regions’ element to the glad() output list to return both
- ... : arguments to be passed to glad().

MAplot(pch = , cex =, xlab =, ylab =, ...): MA plot of all the probes.
- ... : arguments to be passed to plot().

maskByFlag(flags = , pattern = , multiple = , na =): ReplaceslogRatios of flagged probes
by NA.
- flags : character vector, the columns to coerce as boolean and use as flags.
- pattern : single logical value, whether to consider ’flags’ as regular expressions or fixed
values.
- multiple : mask a probe when ’all’ its flag columns are TRUE or when ’any’ is.

replicates(fun = , na.rm = , ...): Apply 'fun’ to replicated probes (same name), masking
all members but one.
- fun : single character value, the function to apply.
- ... : to be passed to ’fun’.

spatial(filename = , palSize = , palEnds = , ...): Produces a spatial representation of
the logRatios, to identify spatial biases.
- filename : single character value, the path to the PNG output.
- palSize : single integer value, the amount of color levels for logRatios. Should be lesser or
equal to 254 to produce small PNG files.
- palEnds : character vector to be passed to colorRampPalette() for palette generation.

WACA(): Apply the Waves aCGH Correction Algorithm (Lepretre et al. 2009) to the array logRa-
tios.

The following methods are inherited (from the corresponding class):

e callParams (drawable)

e callSuper (envRefClass)

 check (drawable, overloaded)

e chromosomes (drawable, overloaded)
* copy (envRefClass)

e cross (crossable)

e defaultParams (sliceable, overloaded)
e draw (sliceable)

 export (envRefClass)

¢ field (envRefClass)

e fix.param (drawable)

» getChromEnd (sliceable, overloaded)
* getClass (envRefClass)

cghRA .copies-class 7

» getName (drawable)
 getParam (drawable)
 getRefClass (envRefClass)
* import (envRefClass)

« initFields (envRefClass)

e initialize (drawable, overloaded)
e setName (drawable)

e setParam (drawable)

¢ show (sliceable, overloaded)
e slice (sliceable, overloaded)
« trace (envRefClass)
 untrace (envRefClass)

* usingMethods (envRefClass)

Author(s)

Sylvain Mareschal

See Also

cghRA.array

cghRA.series-class, cghRA.design-class, cghRA.probes-class, cghRA.regions-class

cghRA.copies-class Class "cghRA.copies”

Description

This class is derived from cghRA. regions, whose model. apply method is the commonest way to
obtain cghRA. copies objects.

Extends

Class cghRA. regions, directly.

Class track. table, by class cghRA.regions, distance 2.
Class refTable, by class cghRA. regions, distance 3.
Class crossable, by class cghRA. regions, distance 3.
Class sliceable, by class cghRA. regions, distance 4.
Class drawable, by class cghRA. regions, distance 5.

All reference classes extend and inherit methods from envRefClass.

Fields

The following fields are inherited (from the corresponding class):

Methods

The following methods are inherited (from the corresponding class):

assembly (track.table)
checktrack (track.table)
colCount (refTable)
collterator (refTable)
colNames (refTable)
colReferences (refTable)
index (track.table)

model (cghRA.regions)
modelizeCall (cghRA .regions)
name (drawable)

organism (track.table)
parameters (drawable)
rowCount (refTable)
rowNamed (refTable)
rowNames (refTable)
segmentCall (cghRA .regions)
sizetrack (track.table)
subtrack (track.table)

values (refTable)

addArms (track.table)
addColumn (track.table)
addDataFrame (refTable)
addEmptyRows (refTable)
addList (track.table)

addVectors (refTable)
buildCalls (track.table)
buildGroupPosition (track.table)
buildGroupSize (track.table)
buildIndex (track.table)
callParams (drawable)
callSuper (envRefClass)

check (cghRA. regions, overloaded)

cghRA .copies-class

cghRA .copies-class

¢ chromosomes (track.table)
e coerce (track.table)

¢ colOrder (refTable)

* copy (refTable)

e cross (crossable)

¢ defaultParams (cghRA. regions, overloaded)
¢ delColumns (track.table)

e draw (sliceable)

e crase (refTable)

e eraseArms (track.table)
 export (envRefClass)

« extract (refTable)

e field (envRefClass)

« fill (track.table)

* fillGaps (cghRA. regions)

e fix.param (drawable)

* getChromEnd (track.table)
* getClass (envRefClass)

» getColCount (refTable)

» getColNames (refTable)
 getLevels (refTable)

» getName (drawable)
 getParam (drawable)

» getRefClass (envRefClass)
* getRowCount (refTable)

» getRowNames (refTable)

* import (envRefClass)

¢ indexes (refTable)

¢ initFields (envRefClass)

* initialize (cghRA.regions)
¢ isArmed (track.table)

* karyotype (cghRA.regions)
e metaFields (track.table)

* model.apply (cghRA regions)
* model.auto (cghRA.regions)
* modelized (cghRA.regions)
* model.test (cghRA.regions)

10

proportions (cghRA.regions)
rowOrder (track.table)
segMerge (track.table)
segOverlap (track.table)
setColNames (track.table)
setLevels (track.table)
setName (drawable)
setParam (drawable)
setRowNames (refTable)
show (cghRA.regions, overloaded)
size (track.table)

slice (track.table)

status (cghRA.regions)

trace (envRefClass)

types (refTable)

untrace (envRefClass)

usingMethods (envRefClass)

Author(s)

Sylvain Mareschal

See Also

cghRA.regions-class

cghRA .copies-constructor

cghRA. copies-constructor

cghRA.copies class constructor

Description

This function returns a new cghRA. copies object from various arguments.

Notice the new() alternative can be used to produce an empty object, setting only the fields not the
content.

Usage

cghRA.copies(..., warn = TRUE)

cghRA .design-class 11

Arguments
Arguments to be passed through the inherited constructors up to refTable.
warn Single logical value, to be passed to the cghRA. copies check method.
Value

An object of class cghRA. copies.

Author(s)

Sylvain Mareschal

See Also

cghRA.copies-class, cghRA.regions-class, track.table-class, refTable-class

cghRA.design-class Class "cghRA.design”

Description

This class is part of the cghRA.array class. A single object from this class is used to store in-
formations about probes for series of arrays sharing the same CGH design, in order to store only
array-specific values in the array variables.

Objects from this class can be produced by the cghRA.design, Agilent.design and custom.design
constructors. Alternatively they can be produced by the interactive function tk.design, included
in tk.cghRA.

Extends

Class track. table, directly.

Class refTable, by class track. table, distance 2.
Class crossable, by class track. table, distance 2.
Class sliceable, by class track. table, distance 3.
Class drawable, by class track. table, distance 4.

All reference classes extend and inherit methods from envRefClass.

Fields
The following fields are inherited (from the corresponding class):
* assembly (track.table)
¢ checktrack (track.table)

¢ colCount (refTable)
e collterator (refTable)

12

Methods

colNames (refTable)
colReferences (refTable)
index (track.table)
name (drawable)
organism (track.table)
parameters (drawable)
rowCount (refTable)
rowNamed (refTable)
rowNames (refTable)
sizetrack (track.table)
subtrack (track.table)
values (refTable)

cghRA.design-class

bias(...): Computes the Waves aCGH Correction Algorithm (Lepretre et al. 2009) bias for the

current design.

- ... : arguments to be passed to the bias() function (except from *probeChrom’, *probeStarts’

and ’probeEnds’).

remap(...): Recomputes the coordinates of the probes from the probes and genome sequences.

The following methods are inherited (from the corresponding class):

Forces *chrom’ to factor, keeping levels if available.
- ... : arguments to be passed to the localize() function.

addArms (track.table)
addColumn (track.table)
addDataFrame (refTable)
addEmptyRows (refTable)
addList (track.table)
addVectors (refTable)
buildCalls (track.table)
buildGroupPosition (track.table)
buildGroupSize (track.table)
buildIndex (track.table)
callParams (drawable)
callSuper (envRefClass)

check (track.table, overloaded)
chromosomes (track.table)
coerce (track.table)

colOrder (refTable)

cghRA .design-class

e copy (refTable)

e cross (crossable)

e defaultParams (track.table, overloaded)
¢ delColumns (track.table)

e draw (sliceable)

« erase (refTable)

¢ eraseArms (track.table)

* export (envRefClass)

¢ extract (refTable)

¢ field (envRefClass)

« fill (track.table)

e fix.param (drawable)

» getChromEnd (track.table)
» getClass (envRefClass)

» getColCount (refTable)

» getColNames (refTable)

* getLevels (refTable)

» getName (drawable)

» getParam (drawable)

» getRefClass (envRefClass)
* getRowCount (refTable)

» getRowNames (refTable)
* import (envRefClass)

* indexes (refTable)

¢ initFields (envRefClass)

* initialize (track.table, overloaded)
¢ isArmed (track.table)

¢ metaFields (track.table)

e rowOrder (track.table)

* segMerge (track.table)

* segOverlap (track.table)

¢ setColNames (track.table)
» setLevels (track.table)

¢ setName (drawable)

¢ setParam (drawable)

¢ setRowNames (refTable)

¢ show (track.table, overloaded)

14 cghRA.design-constructor

e size (track.table)

« slice (track.table)

* trace (envRefClass)

* types (refTable)

 untrace (envRefClass)

* usingMethods (envRefClass)

Author(s)

Sylvain Mareschal

See Also

cghRA.design, Agilent.design, custom.design, tk.design

cghRA.array-class, refTable-class

cghRA.design-constructor
cghRA.design class constructor

Description

This function returns a new cghRA.design object from various arguments.

Notice the new() alternative can be used to produce an empty object, setting only the fields not the
content.

Usage
cghRA.design(..., warn = TRUE)

Arguments
Arguments to be passed through the inherited constructors up to refTable.
warn Single logical value, to be passed to the cghRA.design check method.
Value

An object of class cghRA.design.

Author(s)

Sylvain Mareschal

See Also

cghRA.design-class, track.table-class, refTable-class

Agilent.design

cghRA .probes-class 15

cghRA.probes-class Class "cghRA.probes”

Description

This class is part of the cghRA.array class, designed to store all probe-related values of a single
CGH array.

Objects from this class can be produced by the cghRA.array constructor or by the process func-
tion, its interfaces tk.process and tk.cghRA or their sub-functions.

Extends

Class refTable, directly.

All reference classes extend and inherit methods from envRefClass.

Fields

name: Custom name for the object, as a character vector of length 1.

The following fields are inherited (from the corresponding class):

¢ colCount (refTable)

e collterator (refTable)

e colNames (refTable)

¢ colReferences (refTable)
* rowCount (refTable)

¢ rowNamed (refTable)

e rowNames (refTable)

e values (refTable)

Methods

The following methods are inherited (from the corresponding class):

e addColumn (refTable)

¢ addDataFrame (refTable)

* addEmptyRows (refTable)

¢ addList (refTable)

¢ addVectors (refTable)

e callSuper (envRefClass)

e check (refTable, overloaded)
e coerce (refTable)

e colOrder (refTable)

16 cghRA .probes-class

e copy (refTable)

* delColumns (refTable)

« erase (refTable)

 export (envRefClass)

¢ extract (refTable)

¢ field (envRefClass)

* fill (refTable)

» getClass (envRefClass)

» getColCount (refTable)

» getColNames (refTable)

» getLevels (refTable)

» getRefClass (envRefClass)
» getRowCount (refTable)

» getRowNames (refTable)
* import (envRefClass)

¢ indexes (refTable)

¢ initFields (envRefClass)

e initialize (refTable, overloaded)
¢ metaFields (refTable)

e rowOrder (refTable)

¢ setColNames (refTable)

* setlLevels (refTable)

¢ setRowNames (refTable)

e show (refTable, overloaded)
* trace (envRefClass)

* types (refTable)

 untrace (envRefClass)

 usingMethods (envRefClass)

Author(s)

Sylvain Mareschal

See Also

cghRA.array-class, refTable-class, tk.process

cghRA .probes-constructor 17

cghRA.probes-constructor
cghRA.probes class constructor

Description

This function returns a new cghRA. probes object from various arguments.

Notice the new() alternative can be used to produce an empty object, setting only the fields not the

content.
Usage
cghRA.probes(..., .name, warn = TRUE)
Arguments
Arguments to be passed through the inherited constructors up to refTable.
.name Single character value, a custom name for the object (for printing purpose es-
sentially).
warn Single logical value, to be passed to the cghRA.probes check method.
Value

An object of class cghRA. probes.

Author(s)

Sylvain Mareschal

See Also

cghRA.probes-class, refTable-class

Agilent.probes

cghRA.regions-class Class "cghRA.regions”

Description

This class is intended to store a list of genomic segments produced by a segmentation algorithm,
with a mean log-ratio for each segment.

Objects from this class are intended to be produced by the DNAcopy method of the cghRA.array
class, or the cghRA.regions constructor. Producing such objects is part of the process function
and its interfaced version tk.process, found in tk.cghRA.

18 cghRA regions-class

Extends

Class track. table, directly.

Class refTable, by class track. table, distance 2.
Class crossable, by class track. table, distance 2.
Class sliceable, by class track.table, distance 3.
Class drawable, by class track. table, distance 4.

All reference classes extend and inherit methods from envRefClass.

Fields
model: Numeric vector, storing the parameters and fitness of a copy-number model. See model . auto
for further details on the components.
modelizeCall: The R call which produced the stored copy-number model.
segmentCall: The R call which produced the segments stored in the object.

The following fields are inherited (from the corresponding class):

* assembly (track.table)
e checktrack (track.table)
¢ colCount (refTable)

e collterator (refTable)

¢ colNames (refTable)

¢ colReferences (refTable)
¢ index (track.table)

¢ name (drawable)

* organism (track.table)
* parameters (drawable)
¢ rowCount (refTable)

e rowNamed (refTable)

¢ rowNames (refTable)

e sizetrack (track.table)
 subtrack (track.table)

e values (refTable)

Methods

fillGaps(...): Apply the fillGaps() function to extend regions in order to fill inter-segment gaps.

karyotype(bandTrack, value = , thresholds = , precision =): Returns akaryotype for-
mula of altered regions.
- bandTrack : a track.table object, as returned by track. UCSC_bands().
- value : column to use to select altered regions.
- thresholds : length 2 numeric vector defining altered values.
- precision : single integer value from 1 to 4, amount of digits to consider in banding.

cghRA .regions-class 19

model.apply(...): Call the model.apply() function to produce a cghRA.copies object with pre-
dicted copy number for each region.

model.auto(save = , ...): Call the model.auto() function to automatically fit a copy-number
prediction model.
- save : single logical value, whether to save the model or only return it

modelized(): Does the object embed a complete model or not
model.test(...): Call the model.test() function to plot the current copy-number model.

proportions(chrom = | value = , states = , mode =): Returns the proportion of the chro-
mosomes in given states (in bp involved).
- chrom : character vector, chromosome location of the regions to query. Consider track.table$erase Arms()
to focus on chromosome arms.
- value : single character value, name of the column to use for state assignation.
- states : list of states, see penetrance help page for details.

status(chrom, start, end, value = , na = , fuzzy = , states =): Returns the copy states
in various windows, mimicing penetrance behavior.
- chrom : character vector, chromosome location of the regions to query.
- start : integer vector, starting position on the chromosome for the regions to query.
- end : integer vector, ending position on the chromosome for the regions to query.
- value : single character value, name of the column to use for state assignation.
- na : single character value, see penetrance() help page for details (’false’ is not handled).
- fuzzy : single logical value, whether to assign the state when some sub-regions are out or
not.
- states : list of states, see penetrance help page for details.

The following methods are inherited (from the corresponding class):

¢ addArms (track.table)

¢ addColumn (track.table)

¢ addDataFrame (refTable)

* addEmptyRows (refTable)

¢ addList (track.table)

e addVectors (refTable)

* buildCalls (track.table)

* buildGroupPosition (track.table)
* buildGroupSize (track.table)

¢ buildIndex (track.table)

e callParams (drawable)

e callSuper (envRefClass)

¢ check (track.table, overloaded)
¢ chromosomes (track.table)

¢ coerce (track.table)

¢ colOrder (refTable)

* copy (refTable)

20

cross (crossable)
defaultParams (track.table, overloaded)
delColumns (track.table)
draw (sliceable)

erase (refTable)

eraseArms (track.table)
export (envRefClass)
extract (refTable)

field (envRefClass)

fill (track.table)

fix.param (drawable)
getChromEnd (track.table)
getClass (envRefClass)
getColCount (refTable)
getColNames (refTable)
getLevels (refTable)
getName (drawable)
getParam (drawable)
getRefClass (envRefClass)
getRowCount (refTable)
getRowNames (refTable)
import (envRefClass)
indexes (refTable)
initFields (envRefClass)
initialize (track.table, overloaded)
isArmed (track.table)
metaFields (track.table)
rowOrder (track.table)
segMerge (track.table)
segOverlap (track.table)
setColNames (track.table)
setLevels (track.table)
setName (drawable)
setParam (drawable)
setRowNames (refTable)
show (track.table, overloaded)

size (track.table)

cghRA regions-class

cghRA .regions-constructor 21

* slice (track.table)

* trace (envRefClass)

* types (refTable)

¢ untrace (envRefClass)
 usingMethods (envRefClass)

Author(s)

Sylvain Mareschal

See Also

cghRA.array-class, process, tk.process, refTable-class

cghRA.regions-constructor
cghRA.regions class constructor

Description

This function returns a new cghRA. regions object from various arguments.

Notice the new() alternative can be used to produce an empty object, setting only the fields not the

content.

Usage
cghRA.regions(..., .model, warn = TRUE)
Arguments
Arguments to be passed through the inherited constructors up to refTable.

.model Numeric vector, to fill the model field of the object.

warn Single logical value, to be passed to the cghRA. regions check method.
Value

An object of class cghRA.regions.

Author(s)

Sylvain Mareschal

See Also

cghRA.regions-class, track.table-class, refTable-class

22 cghRA .series-class

cghRA.series cghRA.series class constructor

Description

This function returns a new cghRA. series object. Elements may be added to the series via the add
method in a second time.

Usage
cghRA.series(..., .name, warn = TRUE)
Arguments
Elements to include in the series, as a single 1ist or multiple variables contain-
ing cghRA. regions objects. Alternatively, a character vector of RDT file paths
can be provided.
.hame Single character value, the name of the series.
warn Single logical value, to be passed to the cghRA. series check method.
Value

An object of class cghRA. series.

Author(s)

Sylvain Mareschal

See Also

cghRA.series-class

cghRA.series-class Class "cghRA.series”

Description

Objects from this class are collections of cghRA. regions objects, and provide various methods for
CGH series analysis.

Objects from this class should always be produced by the cghRA. series constructor.

Extends

All reference classes extend and inherit methods from envRefClass.

cghRA .series-class 23

Fields

arrays: A possibly named list of cghRA.regions objects.

name: Single character value, the custom name of the series.

Methods

add(object): Add an object to the series

applyMethod(.method, ..., .simplify = , .quiet =): Calls a method on each array of
the series
- .method : single character value, the method to be called.
- ... : arguments to be passed to the method.
- .simplify : same behavior as sapply() ’simplify’ argument.
- .quiet : single logical value, whether to print iterations or not.

check(warn =): Raises an error if the object is not valid, else returns TRUE
get(arrayName): Returns an element from the series

getArrayNames(): Returns a vector of array names

initialize(name = , arrays =, ...):

last(): Refers to the last array added in the series

LRA(value = , tracks =, ...): Apply the LRA() function to list Long Recurrent Abnormal-
ities (Lenz et al, PNAS 2008).
- value : single character value, the name of the column to use as copy number estimate
(’copies’ or ’logRatio’).
- tracks : single logical value, whether to convert output to track.table class or not.
parallelize(value = , quiet = , tracks =, ...): Apply the parallelize() function to build
a summary matrix of the series.
- tracks : single logical value, whether to convert output to track.table class or not.

penetrance(tracks = , ...): Apply the penetrance() function to compute the proportion of
altered samples for each genomic position.
- tracks : single logical value, whether to convert output to track.table class or not.

pool(tracks = , value = , group = , states = , others = , quiet =): Collectand pool
all alterated segments from the various samples of the series.
- tracks : single logical value, whether to convert output to track.table class or not.
- value : column on which apply a filtering.
- group : single logical value, whether to visually group segments per samples or not (valid
only for tracks=TRUE).
- states : list of states, see penetrance help page for details. If ’states’ is not empty, segments
without state will be filtered out.
- others : character vector, names of other columns to keep.
- quiet : single logical value, whether to throw diagnosis messages or not.

SRA(value = , tracks =, ...): Apply the SRA() function to list Short Recurrent Abnormal-
ities (Lenz et al, PNAS 2008).
- value : single character value, the name of the column to use as copy number estimate
(’copies’ or 'logRatio’).
- tracks : single logical value, whether to convert output to track.table class or not.

24 cnvScore

STEPS(tracks = , ...): Apply the STEPS() function to prioritize commonly altered regions.
- tracks : single logical value, whether to convert output to track.table class or not.

The following methods are inherited (from the corresponding class):

¢ callSuper (envRefClass)

* copy (envRefClass)

* export (envRefClass)

¢ field (envRefClass)

* getClass (envRefClass)

» getRefClass (envRefClass)
* import (envRefClass)

« initFields (envRefClass)

¢ show (envRefClass, overloaded)
e trace (envRefClass)

« untrace (envRefClass)

* usingMethods (envRefClass)

Author(s)

Sylvain Mareschal

See Also

cghRA.series, cghRA.regions

cnvScore Polymorphism likelihood score for a genomic segment

Description

Computes for each genomic segment provided a score reflecting its likelihood to a polymorphism
(CNV) dataset, as can be download from the Database of Genomic Variants.

Usage

cnvScore(sample.map, dgv.map, hangingThreshold = 0.8, minGain = 0.1, maxPaths = NA,
trace = FALSE, expand = TRUE, quiet = TRUE)

cnvScore

Arguments

sample.map

dgv.map

25

A segmentMap object as returned by map2design, corresponding to the mapping
of the segments to assess to a common design.

A segmentMap object as returned by map2design, corresponding to the mapping
of the true polymorphism (CNV) dataset to a common design.

hangingThreshold

minGain

maxPaths

trace

expand

quiet

Value

Single numeric value, segments to score must cover at least this proportion of
union(CNYV, segment) for a CNV to be considered. Decrease this value to allow
poorly overlapping CNVs to (modestly) contribute to the final score, at the cost
of longer computing time.

Single numeric value, CNVs must add at least this value to the path’s score to
be retained. Increase this value to allow poorly overlapping CNVs to (modestly)
contribute to the final score, at the cost of longer computing time.

Single integer value, the maximal amount of paths to be computed for each
segment (use NA to always compute all of them). Considering that most of the
best paths are computed first and final score focus on them, an arbitrary value
like 50 can be provided to decrease the computing time with marginal effects on
the resulting scores.

Single logical value, whether to produce a trace of every path constructed or
only the final CNV score. This is mainly provided for debugging purpose, and
increase the computing time. trace2track provides graphical means to visual-
ize these traces.

Single logical value, whether to return a vector of scores with one element for
each row in sample.map (FALSE) or in the original mapped track (TRUE). As the
mapping involves row compression (see map2design), producing a vector that
can be directly used as a column in the original track needs an expansion step,
that can be performed if requested via this argument.

Single logical value, whether to print diagnostic messages or not.

If trace is FALSE, returns a numeric vector storing the resulting CNV score. See expand for further
details on this vector size.

If trace is TRUE, returns a named 1ist of two elements: "scores", that holds the numeric vector of
scores (see above), and "traces", that described every path that has been built to compute the scores.
The columns in "traces" are:

seg
seg.score
path.count

path.jaccard
path.cnvCount
path.cnvList

path.score

Range of the original track indexes corresponding to the assessed segment.
Final CNV score for the assessed segment, all paths comprised.

How many times the CNV path described was built.

Jaccard index between the assessed segment and the CN'V path described.
How many CNVs are included in the CNV path described.

Indexes in dgv.map of the CNVs retained in the CNV path described.

"path.jaccard’ corrected for the amount of CNVs included in the CNV path de-
scribed.

26 copies

Author(s)

Sylvain Mareschal

See Also

map2design, applyMap, trace2track

copies LogRatio to copies conversion

Description

copies applies a model to a vector of logRatios, converting them into copy amounts.

LCN is similar, but returns only Log-ratio related Copy Numbers, corresponding to a model with O
as center, 1 aswidth and 2 as ploidy. See the references for further details on the models.

Usage

LCN(x, exact = TRUE)
copies(x, model = NA, center = model['center'], width = model['width'],
ploidy = model['ploidy'], exact = TRUE, from = c("logRatios", "LCN", "copies"))

Arguments
X Numeric vector, the values to be converted (their nature depends on from).
model A numeric vector, as returned by model.auto or model.test. Can be NA if
parameters are provided via other arguments.
center Single numeric value, the most common LCN within the analyzed genome.
width Single numeric value, LCN gaps between two consecutive real copy amounts.
ploidy Single numeric value, the real copy amount corresponding to center LCN. A
few altered human genome should have a ploidy of 2, use 0 to compute relative
copy numbers rather than absolute ones.
exact Single logical value, whether to round copy numbers or not.
from Single character value defining what computation apply to x. "logRatios" as-
sumes X to be logRatios to be converted to copy numbers, applying a full model
(center,width, ploidy). "LCN" assumes x to be Log-ratio related Copy Num-
bers, as returned by LCN, so only the exact argument is used. "copies" assumes
x to be already modelized copy numbers to be turned back into logRatios, using
ploidy as reference.
Value

A numeric vector the same length as x.

copies

Author(s)

Sylvain Mareschal

See Also

model.auto, model. apply

Examples

Generating random segmentation results
with 30% normal cells contamination
with +10% for normal DNA labelling
seglogRatios <- c(
rnorm(
sample(5:20, 1),
mean = log((1%0.7 + 2x0.3)/(2*1.1), 2), # One deletion
sd = 0.08
),
rnorm(
sample(80:120, 1),
mean = log(2/(2%1.1), 2), # No alteration
sd = 0.08
),
rnorm(
sample(40:60, 1),
mean = log((3%0.7 + 2x0.3)/(2*1.1), 2), # One more copy
sd = 0.08
)
)
seglogRatios <- sample(seglLogRatios)
seglengths <- as.integer(3 + round(rchisq(length(seglogRatios), 1)*100))
segEnds <- cumsum(seglengths)
segStarts <- c(1L, head(segEnds, -1))
segChroms <- rep(”chr1”, length(segEnds))

Generated genome

genome <- data.frame(
segChroms,
segStarts,
segEnds,
seglogRatios,
seglengths

)

print(genome)

Automatic modelization

model <- model.auto(
seglogRatios = seglogRatios,
segChroms = segChroms,
seglengths = seglengths

)

27

28 Design file parser

Relative copy numbers
print(
copies(
seglogRatios,
model = model,
ploidy = 0,
exact = FALSE
)
)

Absolute copy number (assuming n=2)
print(
copies(
seglogRatios,
model = model,
ploidy = 2,
exact = FALSE

Design file parser Design file parser

Description

These functions are examples of design file parsers, as can be used directly or by tk.design to
produce a cghRA. probes object from a CGH design file.

Usage
Agilent.design(file, name = NULL, organism = as.character(NA),
assembly = as.character(NA), chromosomes = NULL, ...)
custom.design(file, name = NULL, organism = as.character(NA),
assembly = as.character(NA), chromosomes = NULL, ...)
Arguments
file Single character value, path to the file to extract the design from (Agilent TDT
design file for Agilent.design, CSV file as described below for custom.design).
name Single character value, the name of the design. NULL will generate an automatic
design name with the array dimensions (e.g. "Agilent 125 x 50").
organism Single character value, the name of the organism studied by the current design.
assembly Single character value, the genome assembly version for probe coordinates.
chromosomes Character vector, the ordered list of the chromosome names for the design or-

ganism. If NULL the factor levels of the chrom column will be extracted, if not
chromosomes will be used as levels to coerce the chrom column to factor.

Further arguments are ignored by Agilent.design and custom.design, but
can be used by other design file parsers.

drawableFromClass.cghRA.probes 29

Details

As the package was developed with Agilent arrays, only the corresponding parser and a generic one
are currently provided. Parsing design files from other brands can be achieved providing a custom
design file parser suiting the manufacturer file format. Common brand file parsers may be added
in the future, if you developed one (or need one to be developed) and wish it to be added to the
package, please contact the package maintainer.

"Custom" files must be CSV files, using tabulations as column separators, periods as decimal sep-
arators and a first row naming columns. No comment line is allowed, and cell content protection
(quoting) can be performed using double-quotes. The mandatory columns are "chrom" (character),
"start" (integer) and "end" (integer), describing the genomic location of each probe in the design.
Additionally it is recommended to provide "strand" ("+", "-" or NA), "id" (an integer ID that will be
used to match probes between design and data files), "name" (character), "row" and "col" (integers,
the physical position of the probe on the slide). Further columns will be stored as provided.
Value

An object of class cghRA.design.

Author(s)

Sylvain Mareschal

See Also

cghRA.design-class, tk.design

drawableFromClass.cghRA.probes
Extend Rgb compatibility to cghRA.probes

Description

This function is only defined to allow the selection of RDT files containing cghRA.probes in Rgb
drawable.lists. It should not be called directly by users.

Usage
drawableFromClass.cghRA.probes(track, design, ...)
Arguments
track The cghRA. probes object extracted from the currently parsed RDT file.
design Either a cghRA.design matching track or the path to a RDT file containing it.

Alternatively a Tcl-tk dialog window will be summoned to select such a RDT
file if design was not set in the drawable.list$add() call.

Further arguments are silently ignored.

30 fillGaps

Value

A cghRA. array object binding track and design.

Author(s)

Sylvain Mareschal

See Also

cghRA.array

fillGaps Fill gaps between consecutive segments

Description

This function enlarges segments on their upper boundary to fill gaps between consecutive segments.

It may be crucial for penetrance computation, as they lead to small low steps in penetrance.

Usage

fillGaps(segTable, isOrdered = FALSE)

Arguments
segTable A data.frame of segments, with at least "chrom" (character), "start" (integer)
and "end" (integer) columns.
isOrdered Single logical value, whether segTable is already ordered by chromosome and
starting position or not.
Value

Returns a data. frame similar to segTable.

Author(s)

Sylvain Mareschal

GEDI 31

GEDI Gene Expression and Dosage Integrator

Description
This function implements the "Gene Expression and Dosage Integrator” CGH / transcriptome cor-
relation, as described by Lenz et al.

Usage

GEDI(cgh, cgh.chrom, cgh.start, cgh.end, cgh.genes, expr, expr.genes,
permutations = 1000, type = c("amplifications”, "deletions"”), quiet = FALSE)

Arguments

cgh Logical matrix, with regions in rows and samples in columns. Alterated samples
for a given region are to be TRUE, germline FALSE and other NA.

cgh.chrom Character vector, the chromosome location of the regions described in cgh.

cgh.start Integer vector, the starting position on the chromosome for the regions described
in cgh.

cgh.end Integer vector, the ending position on the chromosome for the regions described
in cgh.

cgh.genes Character vector, the names of the genes in each region described in cgh, sep-
arated by ", ". See the cross method of the sliceable class (in Rgb package)
for an easy way to produce this, in combination with track.NCBI_genes.

expr Numeric matrix of gene expressions, with probesets in rows and samples in
columns.

expr.genes Character vector, the names of the genes associated with each probeset described
in expr, separated by ", ". Notice probesets associated with multiple genes will

not be used, as they are not specific.

permutations Single integer value, the amount of permutations to use for score computation.
Time consumption and score accuracy increases with this value.

type Single character value, describing the type of alterations studied (as the alterna-
tive hypothesis for the t-test depends on it).

quiet Single logical value, when FALSE a message will be sent for each region pro-
cessing, in order to evaluate the processing time.
Value

Returns a 1ist with the following elements :

gediScore Numeric vector with for each cgh row the proportion of permutated scores lesser
than the observed one. The algorithm authors consider an association to be
present if this score is greater than 0.9.

32 localize

gediGenes Character vector with for each cgh row the list of the genes used for the score
computation (intersection of cgh.genes and expr. genes for the considered re-
gion).
Author(s)
Sylvain Mareschal
References

Lenz G et al. "Molecular subtypes of diffuse large B-cell lymphoma arise by distinct genetic path-
ways". Proc Natl Acad Sci U S A. 2008 Sep 9;105(36):13520-5 (Supporting Information)

localize Localize CGH probes in a genome

Description

localize returns genomic coordinates (chromosome, strand, starting position, ending position) of
a set of probes into a given genome. It relies on the external Blast-Like Alignment Tool to
perform fuzzy both-strands matching, and provides various filters suitable to CGH probes.

blatInstall needs to be executed once after the R package installation in order to use localize.

Usage
blatInstall(blat, cygwin)
localize(probeFile, chromFiles, chromPattern = "~(.+)\\.[*\\.]+$",

blatArgs = character (@), rawOutput = FALSE, noMulti = TRUE, noOverlap = TRUE,
noPartial = TRUE, verbose = 2)

Arguments
blat Single character value, path to the BLAT executable file to use for localization.
cygwin Single character value, path to the cygwinl.dll file that might be needed to run
BLAT on Windows.
probeFile Single character value, path to a multi-fasta file describing the probes to compute
the bias for. FASTA comments are used as probe names, and should be unique.
chromFiles Character vector, paths to chromosome sequences (a single fasta file for each

chromosome).

chromPattern Single character value, a regular expression to be used for chromosome name
extraction from chromFiles. It needs to capture a single value for replacement,
default value will use the base names of the files without extension as chromo-
some names.

blatArgs Character vector, arguments to be passed to BLAT ("name=value" or "-flag").
See the BLAT documentation in *References’ for further details.

localize 33

rawOutput Single logical value, whether to return the merged BLAT output or the processed
one (see *Value’). Notice raw output is not filtered.

noMulti Single logical value, whether to filter out probes located in multiple genomic
positions or not. Ignored if rawOutput.

noOverlap Single logical value, whether to filter out overlapping probes or not (when two
overlapping probes are detected, both are discarded). Ignored if rawOutput.

noPartial Single logical value, whether to filter out partial matches or not (they will still be
used by other filters, to disable them completely consider using different BLAT
arguments). Ignored if rawOutput.

verbose Single numeric value, the level of verbosity (0, 1 or 2).

Value

If rawOutput, localize returns the tabular section of merged psLayout 3 file returned by BLAT
(see the BLAT documentation in References’ for further details).

Else returns a data.frame with a row for each probe that was found and not filtered, ordered by
chrom, start then name :
name Character, the probe names, as defined by comments in probeFile.

chrom Character, the chromosomal location of the probe, as defined by the chromNames
corresponding to the codechromFiles in which the probe matched.

strand Character, "+" for a forward match, "-" for a reverse complement match.

start Integer, the lower position of the probe in the chromosome. See ’Coordinate
system’.

end Integer, the upper position of the probe in the chromosome. See ’Coordinate
system’.

insertions Integer, amount of nucleotides inserted in the probe when refering to the chro-

mosome sequence.

deletions Integer, amount of nucleotides deleted in the probe when refering to the chro-
mosome sequence.

mismatches Integer, amount of mismatching nucleotides between probe and chromosome
sequence.
freeEnds Integer, amount of nucleotides at probe extremities ignored in the alignment.

Coordinate system

When rawOutput is FALSE, coordinates begin at 1, both boundaries are comprised in the sequence
and length can be computed as end - start + 1 (Biostrings behavior).

When rawOutput, refer to BLAT specifications (See ’References’).

non

In both cases, backward matches (strand = "-") are expressed in forward coordinates (start < end)
(BLAT behavior).

34 map2design

BLAT installation

BLAT relies on a single executable file, so installation is straight-forward.

Download the executable file or compile it for your computer architecture, then simply use the
blatInstall function to copy it to the proper package folder for further uses. Precompiled exe-
cutables for various systems can be found on the author website (see "References’), as part of the
BlatSuite (only ’blat.exe’ or ’blat’ is needed).

Windows specificities: Running BLAT on Windows needs Cygwin. You can install Cygwin
entirely on your system (see 'References’), or download the "cygwinl.dll" file and provide it
to blatInstall, as it is the only Cygwin component needed. DLL is a common format for
informatic viruses, so be sure of the website you download this file from. You can safely (no
guarantee !) download it from the official website (see *References’) mirrors, they generally keep
compressed archives in /release/cygwin in which you can find the DLL (in /ust/bin).

Author(s)

Sylvain Mareschal

References

BLAT is an open-source software freely available for academic, nonprofit and personal use. See the
FAQ for further details. FAQ, specifications, source code and executables

Cygwin is a free and open-source software under GNU General Public Licencing. Official website

See Also

bias

map2design Update a track coordinates to match a distinct CGH design

Description

Remapping a track.table object storing genomic segments to a specific CGH design consists of
two steps :

* The production of a map, which defines the coordinates of each segment by the indexes of the
first and last CGH probes included in it (map2design).

* The update of the genomic coordinates of the original track, using the map and the design
(applyMap).
Usage

map2design(track, design, minProbes = 1, quiet = FALSE, warn = TRUE)
applyMap(track, map, design)

http://genome.ucsc.edu/FAQ/FAQblat.html
http://genome.ucsc.edu/goldenPath/help/blatSpec.html
http://hgwdev.cse.ucsc.edu/~kent/src/
http://hgwdev.cse.ucsc.edu/~kent/exe/
http://www.cygwin.com/

model.apply 35

Arguments
track A track. table-inheriting object, storing one row for each genomic segment of
interest in a CGH-like experiment.
design A track.table-inheriting object (preferably a cghRA.design object), storing
one row for each probe in the design data is to be remapped on.
minProbes Single integer value, the amount of probes a segment in track must cover to be
retained.
quiet Single logical value, whether to print diagnostic messages or not.
map An integer matrix defining the mapping of track to design, as produced by
map2design.
warn Single logical value, to be passed to the check method of the newly created
segmentMap object.
Value

map2design returns an integer matrix with 3 columns and row names. Columns "start" and "end"
define the coordinates of a segment as probe indexes in design, and column "count" allow to group
segments with the same remapped coordinates. Row names correspond to the index range of the
corresponding segments in the original track.

applyMap returns a copy of track, in which start and end coordinates have been updated to match
coordinates of probes in design. Segments that do not overlap at least minProbes probe in design
are excluded.

Author(s)

Sylvain Mareschal

See Also

cnvScore

model.apply Computes copy number for a set of CGH segments

Description
This function translates log ratios of a set of segments into copy numbers, applying a copy number
model as produced by model.auto or model. test.

If exact is set set to FALSE, copy numbers are rounded and consecutive segments with the same
copy number are merged.

Usage

model .apply(segStarts, segEnds, segChroms, seglLogRatios, seglLengths, model = NA,
center = model['center'], width = model['width'], ploidy = model['ploidy'],
exact = FALSE, merge = TRUE)

model.apply

Arguments
segStarts Numeric vector, the starting positions of the CGH segments to modelize.
segEnds Numeric vector, the endind positions of the CGH segments to modelize.
segChroms Vector, the chromosome holding the CGH segments to modelize.
seglogRatios Double vector, the log ratios of the CGH segments to modelize.
seglengths Numeric vector, the lengths of the CGH segments to modelize.
model A numeric vector, as returned by model.auto or model.test. Can be NA if
parameters are provided via other arguments.
center Single double value, the center parameter to use in the model.
width Single double value, the width parameter to use in the model.
ploidy Single numeric value, copy number supposed to be the most common within the
analyzed genome.
exact Single logical value, whether to return continue copy numbers (double) or dis-
crete ones (integer).
merge Single logical value, whether to merge consecutive segments with the same copy
number when exact is FALSE.
Value

Returns a data. frame describing the segments :

segStarts Extracted from the segStarts argument.
segEnds Extracted from the segEnds argument.
segChroms Extracted from the segChroms argument.
seglogRatios Double, the theoretic log ratio of the segment, with 2 copies as reference.
segCopies Numeric, the copy number of the segment.
seglLengths Extracted from the seglLengths argument.
Author(s)

Sylvain Mareschal

See Also

copies, model.auto, model. test

Examples

Generating random segmentation results
with 30% normal cells contamination
with +10% for normal DNA labelling
seglogRatios <- c(
rnorm(
sample(5:20, 1),

mean = log((1%0.7 + 2x0.3)/(2*1.1), 2), # One deletion

model.apply 37

sd = 0.08
),
rnorm(
sample(80:120, 1),
mean = log(2/(2*1.1), 2), # No alteration
sd = 0.08
),
rnorm(
sample(40:60, 1),
mean = log((3%0.7 + 2x0.3)/(2x1.1), 2), # One more copy
sd = 0.08
)
)
seglogRatios <- sample(seglLogRatios)
seglengths <- as.integer(3 + round(rchisq(length(seglogRatios), 1)*100))
segEnds <- cumsum(seglengths)
segStarts <- c(1L, head(segEnds, -1))
segChroms <- rep(”chr1”, length(segEnds))

Generated genome

genome <- data.frame(
segChroms,
segStarts,
segEnds,
seglogRatios,
seglengths

)

print(genome)

Automatic modelization

model <- model.auto(
seglogRatios = seglogRatios,
segChroms = segChroms,
seglengths = seglengths

)

Profile simplification
segments <- model.apply(
segStarts,
segEnds,
segChroms,
seglogRatios,
seglengths,
model = model,
exact = FALSE,
merge = TRUE
)
layout(matrix(1:2, ncol=1))
plot(x=segStarts, y=seglogRatios, type="s", xlab="Position”, ylab="Log Ratios")
plot(x=segments$segStarts, y=segments$segCopies, type="s", xlab="Position”, ylab="Copies")
print(segments)

layout (1)

38 model.auto

model.auto Automatic generation of copy number model

Description

This function computes a copy number model, as needed by model.apply to translate logRatios
into copy numbers.

Usage

model.auto(seglLogRatios, segChroms, seglengths = rep(1, length(seglLogRatios)),
from = 0.02, to = 0.5, by = 0.001, precision = 512, maxPeaks = 8, minWidth = 0.15,
maxWidth = 0.9, minDensity = 0.001, peakFrom = -2, peakTo = 1.3, ploidy = 0,
discreet = FALSE, method = c("stm"”, "sdd"”, "ptm"), exclude = c("X", "Y", "Xp", "Xq",

HYpH’ HYqH))
Arguments

seglogRatios Double vector, the log ratios of the CGH segments to modelize.

segChroms Vector, the chromosome holding the CGH segments to modelize.

seglengths Double vector, the lengths of the CGH segments to modelize. Amount of probes
should be prefered if available, but nucleotide length or no length at all can also
be used.

from Single double value, the minimal bandwidth to test for density.

to Single double value, the maximal bandwidth to test for density.

by Single double value, the precision of the bandwidths to test for density.

precision Single integer value, the amount of points to compute for density. As its help
page suggests, values greater than 512 should be powers of 2.

maxPeaks Single integer value, the maximal amount of peaks in the density of distribution
to consider a model as valid.

minWidth Single double value, minimal value allowed for the width model parameter (thus
for tumoral cell proportion in the sample).

maxWidth Single double value, maximal value allowed for the width model parameter
(thus for tumoral cell proportion in the sample).

minDensity Single double value, minimal density for a peak to be detected.

peakFrom Single double value, minimal logRatio for a peak to be detected. Use NA for
no lower limit. Only 1, 2 and 3 copies peaks should be considered for a more
precise model.

peakTo Single double value, maximal logRatio for a peak to be detected. Use NA for
no upper limit. Only 1, 2 and 3 copies peaks should be considered for a more
precise model.

ploidy Single numeric value, copy number supposed to be the most common within the

analyzed genome.

model.auto 39

discreet Single logical value, if FALSE a fail in modelization raises an error, if TRUE it
returns a NA filled model.

method Single character value, the statistic to minimize ("stm" is default). See below for
further details.

exclude Vector, the chromosomes to exclude from the density computation and to plot
with distinct symbols (use NULL to disable this feature). Sexual chromosomes
should be excluded in heterogeneous DNA source, as their desequilibrium (2
X’ and no Y’ in women) impact normal cells AND tumoral ones.

Details

More details about the cghRA copy number model and modelization can be found in the vignette
associated with this package, as well as in the related publication. Once the parameters of a model
(width and center) are set, three scores can be computed to assess its fitness to the data :

STM is the "Segment To Model" score, computed at the segment level as the average of the residuals
weighted by the segment size (in probe counts). Residuals are computed as the absolute difference
between exact copy numbers (see the copies function) and their rounding, assuming that copy
numbers should be integers and that decimal parts are noise in the model. This is the recommended
score to use with cghRA.

PTM is the "Peak To Model" score, computed at the peak level as the average of the residuals.
Residuals are computed as the absolute difference between exact copy numbers (see the copies
function) and their rounding, assuming that copy numbers should be integers and that decimal parts
are noise in the model.

SDD is the "Standard Deviation of peak Differences" score. As its name suggests, it is computed as
the sd or differences between consecutive peaks, considering that good models should show very
regularly spaced density peaks.

Value

Returns a double vector, with the following values :

bw Bandwidth used for density computation.
peaks Amount of peaks considered in the model.
peakFrom See the peakFrom argument.
peakTo See the peakTo argument.
center Center parameter of the model.
width Width paremeter of the model.
ploidy Ploidy paremeter of the model, as provided.
sdd Quality statistic, see "Details’.
ptm Quality statistic, see "Details’.
stm Quality statistic, see "Details’.
Author(s)

Sylvain Mareschal

40

See Also

model. test, model. apply

Examples

Generating random segmentation results
with 30% normal cells contamination
with +10% for normal DNA labelling
seglogRatios <- c(
rnorm(
sample(5:20, 1),
mean = log((1%0.7 + 2x0.3)/(2*1.1), 2),
sd = 0.08
),
rnorm(
sample(80:120, 1),
mean = log(2/(2%1.1), 2),
sd = 0.08
),
rnorm(
sample(40:60, 1),
mean = log((3%0.7 + 2x0.3)/(2x1.1), 2),
sd = 0.08
)
)

seglogRatios <- sample(seglLogRatios)

seglengths <- as.integer(3 + round(rchisq(length(seglLogRatios), 1)*100))

segEnds <- cumsum(seglLengths)
segStarts <- c(1L, head(segEnds, -1))
segChroms <- rep("chr1”, length(segEnds))

Generated genome

genome <- data.frame(
segChroms,
segStarts,
segknds,
seglogRatios,
seglengths

)

print(genome)

Automatic modelization

model <- model.auto(
seglogRatios = seglogRatios,
segChroms = segChroms,
seglengths = seglengths

)

print(model)

One deletion

No alteration

One more copy

model.auto

model.test 41

model. test Copy number model quality assessment

Description

This function provides various data to manually fit or upgrade a copy number model, as needed by
model. apply to translate logRatios into copy numbers.

Usage

model. test(seglLogRatios, segChroms, seglengths = rep(1, length(seglLogRatios)),
model = NA, center = model['center'], width = model['width'],
ploidy = model['ploidy'], bw = model['bw'], minDensity = 0.001,
peakFrom = model['peakFrom'], peakTo = modell'peakTo'], graph = TRUE,
parameters = TRUE, returnPar = FALSE, xlim = c(@, 5), ylim = c(@, max(seglLengths)),
xlab = "Segment copy number”, ylab = "Segment length”, cex.seg = 0.4, cex.leg = 0.7,
cex.12r = 0.7, exclude = c("X", "Y", "Xp", "Xq", "Yp", "Yq"), title = NULL,

panel = FALSE, klim = NULL, ...)
Arguments

seglogRatios Double vector, the log ratios of the CGH segments to modelize.

segChroms Vector, the chromosome holding the CGH segments to modelize.

seglengths Double vector, the lengths of the CGH segments to modelize. Amount of probes
should be prefered if available, but nucleotide length or no length at all can also
be used.

model A double vector, as returned by model.auto or model.test. Can be NA if pa-
rameters are provided via other arguments.

center Single double value, the center parameter to use in the model.

width Single double value, the width parameter to use in the model.

ploidy Single numeric value, copy number supposed to be the most common within the
analyzed genome.

bw Single double value, the bandwidth parameter to use in the model.

minDensity Single double value, minimal density for a peak to be detected.

peakFrom Single double value, the peak logRatio lower limit parameter to use in the model.

peakTo Single double value, the peak logRatio upper limit parameter to use in the model.

graph Single logical value, whether to plot the density distribution of the segments
with the modelized copy numbers or not.

parameters Single logical value, whether to add a legend to the plot with the parameters and
statistics of the model or not.

returnPar Single logical value, whether to return the par content (for point identification

in interactive plots) or the model statistics.

42

xlim

ylim

xlab
ylab

cex.seg

cex.leg

cex.l2r

exclude

title

panel
klim

Value

model.test

Vector of two double values, the boundaries of the plot on the horizontal axis (in
LCN).

Vector of two double values, the boundaries of the plot on the vertical axis (in
the same units than seglengths).

Single character value, the title to print for the horizontal axis.
Single character value, the title to print for the vertical axis.

Single double value, the character expansion factor for points (segments) on the
plot.

Single double value, the character expansion factor for the plot legend.

Single double value, the character expansion factor for the log-ratio axis of the
plot.

Vector, the chromosomes to exclude from the density computation and to plot
with distinct symbols (use NULL to disable this feature). Sexual chromosomes
should be excluded in heterogeneous DNA source, as their desequilibrium (2
’X’ and no 'Y’ in women) impact normal cells AND tumoral ones.

To be passed to legend, see there for allowed types (usually a single character
value).

Single logical value, whether to plot a rotated minimalist graph or a classic one.

Double vector of two values, alternative definition of x1im in modelized copy
numbers rather than LCN.

Further graphical arguments to be passed to plot.

When returnPar is TRUE, invisibly returns the par content, for point identification.

When returnPar is FALSE, returns the same vector as model.auto, see its help page for further

details.

Author(s)

Sylvain Mareschal

See Also

model.auto, model. apply

Examples

Generating random segmentation results
with 30% normal cells contamination
with +10% for normal DNA labelling
seglogRatios <- c(

rnorm(

sample(5:20, 1),
mean = log((1%0.7 + 2x0.3)/(2*1.1), 2), # One deletion

sd = 0.08

model.test

),

rnorm(
sample(80:120, 1),
mean = log(2/(2%1.1), 2), # No alteration
sd = 0.08

),

rnorm(

sample(40:60, 1),

mean = log((3%0.7 + 2x0.3)/(2*1.1), 2), # One more copy

sd = 0.08

)

)
seglogRatios <- sample(seglLogRatios)
seglengths <- as.integer(3 + round(rchisq(length(seglogRatios), 1)*100))
segEnds <- cumsum(seglengths)
segStarts <- c(1L, head(segEnds, -1))
segChroms <- rep(”chr1”, length(segEnds))

Generated genome

genome <- data.frame(
segChroms,
segStarts,
segEnds,
seglogRatios,
seglengths

)

print(genome)

Automatic modelization

autoModel <- model.auto(
seglogRatios = seglogRatios,
segChroms = segChroms,
seglengths = seglengths

)

layout(matrix(1:2, ncol=1))

Show automatic model
model. test(
seglogRatios = seglogRatios,
segChroms = segChroms,
seglengths = seglengths,
model = autoModel

)

Standard model derived from the log ratios definition
refModel <- model.test(

seglogRatios = seglogRatios,

segChroms = segChroms,

seglengths = seglengths,

center = 2,

width = 1,

bw = 0.1 # Arbitrary

44 parallelize

)

Differences in scores
print(autoModel)
print(refModel)

layout (1)

parallelize Reshapes a list of segments

Description

This function reshapes a list of segment data. frames (with chromosomal location and value) into
a single data. frame containing a column for each element of the list (typically samples) and a the
minimal amount of regions in rows.

Usage

parallelize(segTables, value = "logRatio”, digits = 3, quiet = FALSE, chroms = NULL)

Arguments
segTables An eventually named list of data.frames to reshape. All the data.frames
must contain at least "chrom" (character), "start" (integer), "end" (integer) columns,
and the column defined by value.
Can also be a single data. frame containing all the segments, with a . sampleIdentity
integer column.
value Single character value, the column name from which extract values that will fill
the output cells.
digits Single integer value to be passed to round for each cell of the output (NA disables
the rounding step).
quiet Single logical value, whether to throw diagnosis messages or not.
chroms Character vector, the names of chromosomes to restrain the analysis on (fre-
quently autosomes). If NULL, all chromosomes in segTable will be used.
Value

Returns a data. frame with the following columns :

chrom Character, the chromosomal location of the region described.
start Integer, the lower coordinate of the region described.
end Integer, the upper coordinate of the region described.

For each element of segTables a column with the value extracted from the
value column of the according data. frame.

parseKaryo 45

Author(s)

Sylvain Mareschal

See Also

penetrance

parseKaryo Parses a karyotype-like formula

Description

This function produces a cghRA.regions object from a simplified karyotype formula, associating
copy numbers to numeric coordinates.

Usage

parseKaryo(formula, bandTrack, name = as.character(NA), design = NULL,
alteratedOnly = TRUE)

Arguments
formula Single character value, the formula to be parsed. See ’Examples’.
bandTrack A track. table object with cytoband definition, as returned by the track.UCSC_bands
function from the Rgb package.
name Single character value, to be used as name for the produced object.
design A cghRA.design object, or NULL. If provided, a cghRA.copies object will

be produced, using design to compute probe content of each region. Else, a
track. table object will be returned.

alteratedOnly Single logical value, if TRUE normal clones (2n without alteration) will not be
averaged with alterated clones for the final copy amount computation. If all
clones are normals, a normal genome will be returned anyway.

Value

Returns a 1ist with two elements : "clones" and "copies".

"clones" is a summary of the clones found in the formula as an integer value, with mitosis counts
as values and ploidy as names.

"copies" is a track.table-inheriting object with genomic regions of distinct copy numbers. If
design is provided, the object is a cghRA. copies object, else a track. table object.

Author(s)

Sylvain Mareschal

46 penetrance

See Also

cghRA.copies

Examples

Not run:
karyo <- paste(
"111<5n>,6(1qt-p11),4(1p11-pt),4(2),8(3),4(4),6(5),6(6pt-g22),6(60g26-qt),",
"2(6g22-926),6(7pt-g31),3(7931-qt),6(9),4(10),4(11),4(12),6(13),4(14),",
"4(15pt-922),2(15922-qt),2(16),4(17),6(18),4(19),4(21),4(22) [6] ; 46<2n> [7]",
collapse = ""

)
parseKaryo(karyo, bandTrack)

End(Not run)

penetrance Penetrance computation from a series of segments

Description

This function computes the penetrance of various states from a parallelized series of segments.

In each point of the genome, the penetrance is the proportion of the series arrays that show a specific
alteration state.
Usage

penetrance(segParallel, states = list(deletion=c(-Inf, -0.5), gain=c(0.5, Inf)),
na = c("fill", "keep"”, "false"), mergeOnValue = FALSE, bool = FALSE, quiet = FALSE)

Arguments
segParallel A data.frame, as returned by parallelize.
states A named list of numerics defining the boundaries of each state. Each state
may be defined by a single value (the only value in segParallel to link to the
state) or by two boundaries (the lower boundary is part of the state, the upper
one is not). Inf and -Inf can be used as boundaries.
na Single character value defining how to deal with NA segments : "fill" fills them

when possible (chromosome ends and gaps for which the state is the same on
each side), "keep" keeps all of them NA and "false" always considers them as
"not in the state". When NA remains ("fill" or "keep"), the penetrance frequency
is locally computed on non-NA samples.

mergeOnValue Single logical value, whether to merge consecutive regions with same pene-
trance value but distinct alterated sample list.

bool Single logical value, if TRUE the penetrance is not returned but logical matrixes
of regions ’in state’ are returned instead. This is a quite uncommon behavior,
allowed essentially for code recycling by other packages, use FALSE.

quiet Single logical value, whether to throw diagnosis messages or not.

Probe file parser 47

Value

If bool is FALSE, a list containing a distinct data.frame for each state, with the following

columns :

chrom Character, the chromosomal location of the region described.

start Integer, the lower coordinate of the region described.

end Integer, the upper coordinate of the region described.

value Numeric, the penetrance in the region described for the state described.
Author(s)

Sylvain Mareschal
See Also

parallelize, STEPS

Probe file parser Probe file parser

Description

These functions are examples of probe file parsers, as requested by process to produce a cghRA. probes
object from a CGH array data file.

Usage
Agilent.probes(
file,
columns = c(
rfin = "rProcessedSignal”,
gFin = "gProcessedSignal”,

flag_rIsSaturated = "rIsSaturated”,
flag_glIsSaturated = "gIsSaturated”,
flag_rIsFeatNonUnifOL = "rIsFeatNonUnifOL",
flag_gIsFeatNonUnifOL = "gIsFeatNonUnifOL",
flag_rIsBGNonUnifOL = "rIsBGNonUnifOL",
flag_gIsBGNonUnifOL = "gIsBGNonUnifOL",
flag_rIsFeatPopnOL = "rIsFeatPopnOL"”,
flag_gIsFeatPopnOL = "gIsFeatPopnOL",
flag_rIsBGPopnOL = "rIsBGPopnOL",
flag_gIsBGPopnOL = "gIsBGPopnOL"

),

)

custom.probes(file, columns = NULL, ...)

48 process
Arguments
file Single character value, path to the file to extract the design from (Agilent Feature
Extraction file).
columns Character vector defining the columns to extract, the names are the names to use
in the cghRA. probes object while the values are the names used in the Feature
Extraction file.
Further arguments are ignored by Agilent.probes and custom.probes, but
can be used by other probe file parsers.
Details

As the package was developped with Agilent arrays, only the corresponding parser and a generic
one are currently provided. Parsing arrays from other brands can be achieved providing a custom
probe file parser suiting the manufacturer file format. Common brand file parsers may be added
in the future, if you developped one (or need one to be developped) and wish it to be added to the
package, please contact the package maintainer.

As this function will be exported for parallel computing, dependencies need to be explicit : packages
need library calls (even the core ones) or usage of :: operators and sub-functions should be
declared inside the parser body.

"Custom" files must be CSV files, using tabulations as column separators, periods as decimal sep-
arators and a first row naming columns. No comment line is allowed, and cell content protection
(quoting) can be performed using double-quotes. The mandatory columns are "id" (an integer ID
that will be used to match probes between design and data files) and "logRatio" (numeric). Ad-
ditionally one can provide boolean columns starting with "flag_", to be used as probe filters by
process.mask during the array processing. Further columns will be stored as provided.

Value

An object of class cghRA.probes.

Author(s)

Se

Sylvain Mareschal

e Also

cghRA.probes-class

process cghRA array processing

process 49

Description

These functions implement the cghRA workflow, as a sequence of process subfunction calls. Each
of them rely on cghRA.array and cghRA.regions methods, so custom processing can be easily
achieved using them directly if the steps argument is not flexible enough to your purpose.

Custom steps can be added as well on the model of existing ones, defining a function called
process.NAME and adding "NAME" to the steps vector during the call to process. Step func-
tions need to handle at least an input parameter which will be returned directly by the previous
step, thus forming a pipeline.

The tk.process function is a wrapper for process, built around a Tcl-Tk interface for more user-
friendliness.

The process function is a multi-core command line interface that will dispatch its arguments to in-
dividual process. core calls, and should be the prefered entry point even on single core computers.
process.log is a wrapper to process. core which captures warnings and errors into a log file.

The process.default function is a common way for process and tk.process to obtain default
values for complex arguments like ’segmentArgs’ and modelizeArgs’. It can be used to obtain the
profiles proposed by tk.process in process.

Usage

process(inputs, logFile = "process.log"”, cluster = NA, ...)

process.log(..., logFile)

process.core(input, inputName, steps = c("parse”, "mask”, "replicates”, "waca”,
"export”, "spatial”, "segment”, "fill", "modelize", "export"”, "fittest"”, "export”,
"applyModel”, "export"), ...)

process.parse(input, design, probeParser = Agilent.probes, probeArgs = list(), ...)

process.probes(input, design, ...)

process.regions(input, ...)

process.mask(input, ...)

process.replicates(input, replicateFun = stats::median, ...)

process.waca(input, ...)

process.spatial(input, outDirectory, ...)

process.segment(input, segmentArgs = process.default(”segmentArgs”"), ...)

process.fill(input, ...)

process.modelize(input, modelizeArgs = process.default("modelizeArgs”), ...)

process.applyModel (input, ...)

process.fittest(input, ...)

process.export(input, outDirectory, ...)

tk.process(globalTopLevel, localToplLevel)
process.default(argName, profileName)

Arguments
inputs List of input to dispatch to each node (preferably named). The default workflow
expects it to be a character vector naming raw data files to be parsed.
logFile Single character value, the path to the log file to produce with messages, warn-

ings and errors. If the file already exists, it will be emptied first. The behavior

cluster

input

inputName

steps

probeParser

probeArgs

design

replicateFun

outDirectory

segmentArgs

modelizeArgs

argName

profileName

process

when logFile is set to NA or "" depends on cluster: if cluster is FALSE (un-
parallelized mode), messages and errors will be passed to the R console rather
than logged in a file, if cluster is anything else they will be silently ignored.

Arguments to be passed to makeCluster as a list, for parallel processing (re-
quires the optionnal parallel package). Remote machines are not handled
properly in the current version of process, you should limit to "spec" defining
how many processors can be used on the local machine as an integer value. The
FALSE value requires an unparallelized mode, slower but more suitable for error
tracking. The NA default value tries to detect the CPU count on the local machine
if parallel is installed, else switches to unparallelized mode.

Further arguments to be passed to process sub-functions, depending on the
steps choosen (see below). The default workflow expects at least design and
outDirectory to be provided.

A single input to process on one node. The default workflow expects it to be a
single character value naming a raw data file to be parsed.

Single character value, the name of the input currently processed (for logging
only).

Ordered character vector, naming the processing steps to apply. Custom steps
can be named as well, as long as a function named "process.[step]" exists in the
global environment. Each step will take as input the output of the previous step,
the first step taking the value of the input argument as input.

The function to parse probeFiles into cghRA. probes objects, such as Agilent.probes

for Agilent FeatureExtraction arrays.

A list of arguments to pass to probeParser (apart from ’file’ which is always
provided).

Single character vector, the path and name of the RDT design file, as produced
by tk.design.

The function to apply to replicate groups, if the "replicate” step is to be applied.
This function must use a vector of numeric values (logRatios) as input, and
return a single representative value (typically median or mean).

Single character value, the directory in which produce the output files.

Character vector, the arguments to be passed to the DNAcopy method of the
cghRA.array class. Arguments are defined as a character string that will be
parsed, multiple values define multiple segmentation profiles to apply sequen-
tially.

Single character value, the arguments to be passed to the model.auto method
of the cghRA.array class. Arguments are defined as a character string that will
be parsed.

Single character value, ’segmentArgs’ or 'modelizeArgs’, the argument to get
the default value for. If missing, the list of profiles and arguments handled is
returned.

Single character value, altering the default values returned. If missing, the de-
fault profile is returned.

process 51

globalTopLevel This argument should be filled only when embedding this Tcl-Tk interface in
an other. It is the top level of the embedding interface, generally a call to
tktoplevel.

localTopLevel This argument should be filled only when embedding this Tcl-Tk interface in an
other. It is the local top level to use to build this interface, generally a tkframe
or ttkframe.

Value

Only process.default returns something : if argName is provided it returns the default value
for the queried argument, else a list of profiles available for each handled argument. When many
profiles are handled, the first value in the list is the default one (returned when profileName is
missing).

Processing steps

The complete workflow involves the following steps :

parse Read a raw data file and return a cghRA. array object.
probes Read a cghRA.probes object stored in a RDT file and return a cghRA. array object.
regions Reads one or many cghRA. regions file(s) stored in RDT file(s).

mask Discard flagged probes (saturated, high background ...) in a cghRA. array object. Any TRUE
value in a column whose name begins with "flag_" is enough to discard a probe (turn its
logRatio into NA. See the cghRA.array$maskByFlag() method for further details.

replicates Replace replicated probe groups (same "name") by a single representative value (all
logRatios are turned to NA except from the first one which will hold the representative value).
See the cghRA .array$replicates() method for further details.

waca Apply the WACA algorithm to the logRatios. See the cghRA.array$WACA() method for
further details.

spatial Produce a PNG file to visually check spatial biases. See the cghRA .array$spatial() method
for further details.

segment Compute regions with similar logRatios along the genome, using the CBS algorithm. See
the cghRA.array$DNAcopy() method for further details.

fill Extend segments to the right to join consecutive segments. See the cghRA. .regions$fillGaps()
method for further details.

modelize Fit a copy number model to segments, in order to convert logRatios to true copy num-
bers. If segmentArgs contains multiple values, each segmentation profile will lead to distinct
"copies" and "regions" files numbered according to its position in segmentArgs. See the
cghRA regions$model.auto() method for further details.

applyModel Convert a modelized cghRA.regions objects into cghRA. copies.

fittest If multiple segmentation profiles have been used, select the fittest model ("copies" and "re-
gions" files duplicated without number). For further details on the STM score used for fittest
model selection, see the model. auto function of the cghRA.copies package.

clean Erase "copies" and "regions" files of the different segmentation profiles tested, as "fittest"
should have saved the best.

52 segmentMap-class

Author(s)

Sylvain Mareschal

See Also

tk.design, cghRA.array

segmentMap-class Class "segmentMap”

Description

Efficient storage of a large collection of genomic intervals, located using probe IDs from a specific
array design rather than genomic coordinates. Objects of this class are essentially intended to be
produced by the map2design function, and used by the cnvScore function.

Extends

All reference classes extend and inherit methods from envRefClass.

Fields
designName: Single character value, the content of the name field of the cghRA. design object used
to produce the object.

designSize: Single integer value, the row count in the cghRA. design object used to produce the
object.

map: Integer matrix with one row for each distinct genomic interval in the mapped track. table
object. The columns are start and end, the indexes of the first and last design elements in
the interval and count, the amount of such intervals in the mapped object. Row names of this
matrix list the indexes of the corresponding mapped object intervals.

trackName: Single character value, the content of the name field of the mapped track.table ob-
ject.

trackSize: Single integer value, the row count in the mapped track. table object.

Methods

check(warn =): Raises an error if the object is not valid, else returns TRUE

initialize(map = , trackName = , trackSize = , designName = , designSize = ,

The following methods are inherited (from the corresponding class):

* callSuper (envRefClass)
* copy (envRefClass)

¢ export (envRefClass)

« field (envRefClass)

SRA & LRA 53

» getClass (envRefClass)
 getRefClass (envRefClass)

* import (envRefClass)

« initFields (envRefClass)

¢ show (envRefClass, overloaded)
e trace (envRefClass)

 untrace (envRefClass)

* usingMethods (envRefClass)

Author(s)

Sylvain Mareschal

See Also

map2design, cnvScore

SRA & LRA Short/Long Recurrent Abnormalities detection

Description

These functions extract Short Reccurent Abnormalities (SRA) and Long Reccurent Abnormalities
(LRA) from a CGH array series, as described by Lenz et al. (2008).

The processing core xRA is common for both analysis, but is not intended to be called directly. Use
the SRA and LRA wrappers instead.
Usage

xRA(segTables, value = "copies”, states = list(deletion=c(-Inf,-0.5), gain=c(0.5,Inf)),
sampleMin = 2, quiet = FALSE, lengthMax, lengthMin, gaps.width, gaps.ratio)

SRA(...)
LRA(...)
Arguments
segTables An eventually named list of data.frames to reshape. All the data.frames
must contain at least "chrom" (character), "start" (integer), "end" (integer) columns,
and the column defined by value.
Can also be a single data. frame containing all the segments, with a . sampleIdentity
integer column.
value Single character value, the column name from which extract values that will fill

the output cells.

54

states

sampleMin

quiet

lengthMax

lengthMin

gaps.width

gaps.ratio

Value

SRA & LRA

A named list of numerics defining the boundaries of each state. Each state
may be defined by a single value (the only value in segParallel to link to the
state) or by two boundaries (the lower boundary is part of the state, the upper
one is not). Inf and -Inf can be used as boundaries.

Single numeric value, minimal amount of samples in the ’overlapping group’.
If lesser than 1, interpreted as a proportion of the sample count. Large values
decrease processing time and SRA amounts.

Single logical value, whether to print diagnostic messages or not.

Single integer value, segments larger than this value will be filtered out (25 Mb
for SRA, NA for LRA). Use NA to disabled length filtering.

Single integer value, segments shorter than this value will be filtered out (NA for
SRA, 15 Mb for LRA). Use NA to disabled length filtering.

Single integer value, alterated segments separated by a gap shorter than this
value will be merged (see also "gaps.ratio’; 500 kb for SRA, 10 Mb for LRA).
Use NA to disabled gap filling.

Single numeric value, for a gap to be filled its two neighbors must be this value
larger than it (see also ’gaps.width’; 1 for SRA, 1.5 for LRA). Use NA to disabled
gap filling.

The SRA and LRA functions are only wrappers to xRA with distinct lengthMax,
lengthMin, gaps.width and gaps. ratio values, all other arguments are passed
through to xRA.

Returns a list with a data. frame for each state :

chrom

inPeak

Chromosomal location.

Numeric, proportion of the sample series in the *overlapping group’.

overlap.start, overlap.end

start, end

extended.start,

Note

Integer, position on the chromosome for the highest peak of the SRA (region
covered by the whole ’overlapping group’).

Integer, position on the chromosome for the SRA itself (largest region covered
by 2/3 of the ’overlapping group’).
extended.end

Integer, position on the chromosome for the extended SRA (largest region cov-
ered by 1/3 of the ’overlapping group’).

For Long Reccurent Abnormalities, Lenz et al. suggest to filter out regions involved in abnormal

chromosome arms.

Author(s)

Sylvain Mareschal

For technical reasons, this filter was NOT implemented.

STEPS 55

References
Lenz G et al. "Molecular subtypes of diffuse large B-cell lymphoma arise by distinct genetic path-
ways". Proc Natl Acad Sci U S A. 2008 Sep 9;105(36):13520-5 (Supporting Information)

See Also
STEPS

STEPS Selective Trends Evidenced by Penetrance Surge

Description

This function identifies and prioritize Selective Trends Evidenced by Penetrance Surge in a CGH

array series. STEPS is an alternative to the Minimal Common Region (MCR) algorithms, with the

aim to identify regions frequently amplified or deleted.
Usage

STEPS(segPenetrance, dpen = 2, vpen = 0.8, gpen = 0.3, threshold = NA,
nested = c("merge"”, "flag”, "none"), digits = 3, chromEnd = FALSE, quiet = FALSE)

Arguments

segPenetrance A data.frame, as a single element from the 1ist returned by the penetrance

function.

dpen Single numeric value, penalty to apply to penetrance increases.

vpen Single numeric value, penalty to apply to penetrance differences between wide
boundaries.

gpen Single numeric value, penalty to apply to genomic assymetry.

threshold Single numeric value, minimum STEPS score to filter results. O is the less strin-

gent threshold to use, as negative scores correspond to assymetric STEPS (as-
cending only on a side). Higher values will return less results (focusing on the
most significant ones), however scoring and boundaries of the results will not be
impacted.

nested Single character value, defining how to deal with overlapping STEPS. "merge"
will only keep for each set of overlapping STEPS the one with the highest score,
"flag" will preserve all the STEPS but add a "nest" column with a distinct ID for
each nest, and "none" won’t do anything about this.

digits Single integer value, to be passed to round for score computations.
chromEnd Single logical value, whether to consider chromosome ending as a penetrance
drop or not.

quiet Single logical value, whether to throw diagnosis messages or not.

56 tk.annotate

Details

When a specific gene alteration induces a cell selection (like in tumors), it leads to different altered
fragments from a patient to an other. All these fragments have a region in common : the region
containing the selecting gene (the Minimal Common Region). Such patterns can be extracted from
the penetrance, as they lead to ’stairway’ patterns in specific locations.

This function crawls along the penetrance from every available starting point, computing in both
directions a score : a descending step grants the penetrance difference (in percents) while an as-
cending step penalizes by the penetrance difference multiplied by penalty. In each direction, the
maximal score is used as boundary, and a total STEPS score for the starting point is computed as 2
* (leftMax + rightMax) - abs(leftMax - rightMax).

The greatest scores highlight symetric STEPS with high descending paths on both sides.

Value
Returns a subset of segPenetrance with the following additionnal columns :
score Numeric, the two-side score for the described starting point (see ’Details’).
leftBoundary Integer, position considered as the left boundary of the stairway pattern.
leftScore Numeric, score for the left side of the STEPS (see ’Details’).

rightBoundary Integer, position considered as the right boundary of the stairway pattern.

rightScore Numeric, score for the right side of the STEPS (see ’Details’).

Author(s)

Sylvain Mareschal

See Also

penetrance, SRA

tk.annotate Interactive cghRA track annotation

Description
This function provides a Tcl-Tk interface to annotate a region list and compute polymorphism
likelihood scores.

Usage

tk.annotate(globalTopLevel, localTopLevel)

tk.cghRA 57

Arguments

globalTopLevel This argument should be filled only when embedding this Tcl-Tk interface in
an other. It is the top level of the embedding interface, generally a call to
tktoplevel.

localTopLevel This argument should be filled only when embedding this Tcl-Tk interface in an
other. It is the local top level to use to build this interface, generally a tkframe
or ttkframe.

Author(s)

Sylvain Mareschal

See Also

tk.cghRA

tk.cghRA cghRA Tcl-Tk launcher

Description

This function produces a Tcl-Tk interface merging all the cghRA components installed.

Usage

tk.cghRA(blocking = FALSE, tkrplot.scale = 1)

Arguments

blocking Single logical value, whether to wait for the interface window to be closed before
unfreezing the R console. The FALSE default let you use R and the interface in
parallel, the codeTRUE is used essentially in the stand alone version.

tkrplot.scale Single numeric value to be passed to tk.modelize.

Author(s)

Sylvain Mareschal

See Also

tk.design, tk.process, tk.modelize, tk.annotate, tk.series, tk.convert, tk.browse

58 tk.design

tk.design Interactive cghRA design processing

Description

This function provides a Tcl-Tk interface to import a CGH array design file into a cghRA.design
object and apply various cghRA tools on it.

Usage

tk.design(organism = "Human", assembly = "GRCh37",
chromosomes = "1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,X,Y",

chromFiles = "", restrictionSites = "Alul=AG|CT, Rsal=GT|AC", globalTopLevel,
localTopLevel)
Arguments
organism Single character value, default value for the Organism field.
assembly Single character value, default value for the Assembly field.
chromosomes Single character value, default value for the Chromosomes field.
chromFiles Character vector, default chromosome files.
restrictionSites

Single character value, default value for the Restriction sites field.

globalTopLevel This argument should be filled only when embedding this Tcl-Tk interface in
an other. It is the top level of the embedding interface, generally a call to
tktoplevel.

localTopLevel This argument should be filled only when embedding this Tcl-Tk interface in an
other. It is the local top level to use to build this interface, generally a tkframe
or ttkframe.

Author(s)

Sylvain Mareschal

See Also

tk.cghRA, cghRA.design, Agilent.design, custom.design

tk.modelize 59

tk.modelize Interactive copy number modelization

Description

This function provides a Tcl-Tk interface to produce or adjust a CGH copy number model on single
or multiple arrays.

Usage
tk.modelize(compress = "gzip", compression_level = 9, exclude = c("X", "Y", "Xp", "Xq",
"Yp", "Yq"), globalTopLevel, localTopLevel, render = c("auto”, "png", "tkrplot"),
tkrplot.scale = 1, png.res = 100, png.file = tempfile(fileext=".png"))
Arguments
compress To be passed to cghRA-class toRdat method.

compression_level
To be passed to cghRA-class toRdat method.

exclude Vector, the chromosomes to exclude from the density computation and to plot
with distinct symbols (use NULL to disable this feature). Sexual chromosomes
should be excluded in heterogeneous DNA source, as their desequilibrium (2
X’ and no 'Y’ in women) impact normal cells AND tumoral ones.

globalTopLevel This argument should be filled only when embedding this Tcl-Tk interface in
an other. It is the top level of the embedding interface, generally a call to
tktoplevel.

localTopLevel This argument should be filled only when embedding this Tcl-Tk interface in an
other. It is the local top level to use to build this interface, generally a tkframe
or ttkframe.

render Single character value from the ones listed, defining the rendering engine for the
plot. "png" is recommended and the default on any platform supporting it (needs
Tcl-tk version 8.6 or higher, already available on Linux and MacOS and on
Windows with R version 3.4.0 or above), and consists in displaying an export to
a PNG file. "tkrplot" is more limited and kept only for backward compatibility,
it relies on the external package tkrplot and the Windows "metafile" format.
"auto" (the dzfault) will select the best engine considering to the capabilities of
your installation.

tkrplot.scale Single numeric value, defining a multiplying factor for plot size with the "tkr-
plot" engine. This argument is mainly provided to temper a bug with the "Font
size multiplication factor" feature of last Windows operating system, and get
plots filling the whole Tcl-tk window. As an example if you use a 150

png.res Single integer value, the resolution of the plot in Pixels Per Inches. Passed to
png, see the corresponding manual for further details. This has no effect with
the "tkrplot" engine used on Windows prior to R version 3.4.0.

60 tk.series

png.file Single character value, the path to the PNG file that is displayed in the main
window. The default behavior is to hide it in a temporary location, however you
can define this argument to have an easier access to the images displayed in Rgb
(the image will be replaced each time Rgb refresh its display). This has no effect
with the "tkrplot" engine used on Windows prior to R version 3.4.0.

Details

Currently two types of files are handled: cghRA.regions objects exported with saveRDT and cus-
tom tables of segments with an optional header line describing the model.

Custom files are supposed to meet the following criteria:

"

* Filename extension must be ".txt
 Table separated by tabulations, with dots as decimal separators.

* Each segment of the genome on a distinct row.

* A "chrom" column (preferably character) for segment chromosome location.
* "start" and "end" columns (1 based integers) for position on the chromosome.
 "probes" (integer) for probe amount in the segment.

* "logRatio" (numeric) for mean log-ratio of the segment.

* The first line can hold a model description, as returned by model. test. The line must begin

"non

with a "#" sign and describe values as "name=value" pairs separated by ", ".

Author(s)

Sylvain Mareschal

See Also

model.auto, model. test, tk.cghRA

tk.series Interactive cghRA series processing

Description

This function provides a Tcl-Tk interface to perform series analysis on processed arrays and designs.

Usage

tk.series(globalTopLevel, localToplLevel)

tk.value 61

Arguments

globalTopLevel This argument should be filled only when embedding this Tcl-Tk interface in
an other. It is the top level of the embedding interface, generally a call to
tktoplevel.

localTopLevel This argument should be filled only when embedding this Tcl-Tk interface in an
other. It is the local top level to use to build this interface, generally a tkframe
or ttkframe.

Author(s)

Sylvain Mareschal

See Also
tk.cghRA

tk.value Tk interface utilities

Description

This function prompt for a single value in a Tcl-tk interface.

Usage
tk.value(parent = NULL, type = c("character”, "integer”, "double"),
title = "Enter a value”, default = "", allowEmpty = FALSE)
Arguments
parent Tcl-tk top-level to bind the popup window to.
type Single character value defining the type of the expected value.
title Single character value that will be displayed as the title of the popup window.
default Single value that will be used as default.
allowEmpty Single logical value, whether to raise an error if the user does not provide any

value or not.

Value

Returns the entered value, casted to type.

Author(s)

Sylvain Mareschal

62 track. CNV.DGVsupp

trace2track Converts cnvScore traces to a drawable track

Description
This function converts the data.frame trace that can be produced by cnvScore into a track. table
object that can be browsed using Rgb’s functions tk.browse. and browsePlot.

Usage

trace2track(paths, dgv.map, dgv.track)

Arguments
paths A data. frame, as produced by cnvScore with trace=TRUE.
dgv.map An integer matrix as returned by map2design, corresponding to the mapping of
the polymorphism (CNV) dataset to a common design.
dgv.track A track. table-inheriting object, the original dataset used to produce dgv.map.
Value

Returns a copy of dgv. track, in which CNVs are grouped by paths labeled with the resulting score.

Author(s)

Sylvain Mareschal

See Also

cnvScore, map2design

track.CNV.DGVsupp DGV supporting variant parser

Description

This function constructs track.CNV objects from free annotation files provided by the Database of
Genomic Variants.

It is designed to parse supporting variants, as opposed to track.CNV.DGV provided by Rgb which
is designed to parse DGV Variants.

Usage

track.CNV.DGVsupp(file, name = "DGV CNV (supporting variants)"”, quiet = FALSE, ...

WACA 63

Arguments
file Single character value, the path to the raw file to parse. See the "References’
section below.
name Single character value, the name field for the track. table object.
quiet Single logical value, whether to print diagnostic messages or not.
Further arguments are passed to the class constructor, as a result most of the
handled arguments are track.table arguments. Consider notably .organism
and .assembly for track annotation.
Value

Return a track.CNV object.

Author(s)

Sylvain Mareschal

References

Example of raw file (human assembly "hg19’) : http://dgv.tcag.ca/dgv/docs/GRCh37_hg19_
supportingvariants_2014-10-16.txt

See Also

track.table-class, track.CNV-class, track.CNV.DGV

WACA Waves aCGH Correction Algorithm

Description

This function applies the Waves aCGH Correction Algorithm to a series a logRatio (usually a com-
plete series of probe logRatio from a single CGH array), using the probe-dependant biases computed
by the bias function.

Usage
WACA(probeNames, probelLogRatios, bias, forceBiasOrdering = TRUE)

Arguments

probeNames Character vector, the names of the probes to correct. All these names should be
present in bias row.names.

probeLogRatios Numeric vector, the logRatios of the probes to correct.

bias A data.frame, as returned by the bias function.

http://dgv.tcag.ca/dgv/docs/GRCh37_hg19_supportingvariants_2014-10-16.txt
http://dgv.tcag.ca/dgv/docs/GRCh37_hg19_supportingvariants_2014-10-16.txt

64 WACA

forceBiasOrdering

Single logical value, whether to force the bias data.frame ordering / subsetting
/ replication or not. bias must be ordered according to probeNames (that can
contain duplicates), if they are not the former needs to be reordered. If they have
different lengths, ordering is forced. If not, it is up to the user to assure they are
or to set forceBiasOrdering to TRUE (the default value). It might be time-
saving to order bias manually and set this parameter to FALSE when applying
WACA on several arrays from the same design.

Value

Returns a numeric vector with the corrected logRatios, preserving the probeNames and probeLogRatios
order.

Author(s)

Sylvain Mareschal

References
Lepretre F. et al. (2010) Waved aCGH: to smooth or not to smooth. Nucleic Acids Res. 2010
Apr;38(7):e94

See Also

bias

Index

*Topic classes
cghRA.array-class, 4
cghRA.copies-class, 7
cghRA.design-class, 11
cghRA.probes-class, 15
cghRA.regions-class, 17
cghRA.series-class, 22
segmentMap-class, 52

11,48

Agilent.design, 11, 14, 58
Agilent.design (Design file parser), 28
Agilent.probes, 17, 50

Agilent.probes (Probe file parser), 47
applyMap, 26, 34

applyMap (map2design), 34

bias, 2, 34, 63, 64
blatInstall (localize), 32
browsePlot, 62

cghRA.array, 4,4,7,11,15, 17, 30,49, 50, 52
cghRA.array-class, 4
cghRA.copies, 7, 10, 11,45, 46
cghRA.copies
(cghRA.copies-constructor), 10
cghRA.copies-class, 7
cghRA . copies-constructor, 10
cghRA.design, 4, 5, 11, 14, 29, 35,45, 52, 58
cghRA.design
(cghRA.design-constructor), 14
cghRA.design-class, 11
cghRA.design-constructor, 14
cghRA.probes, 4, 5, 17, 28, 29,47, 48, 50
cghRA.probes
(cghRA.probes-constructor), 17
cghRA.probes-class, 15
cghRA.probes-constructor, 17
cghRA.regions, 7-10, 17, 21-24, 45, 49, 60

65

cghRA.regions
(cghRA.regions-constructor), 21
cghRA.regions-class, 17
cghRA.regions-constructor, 21
cghRA.series, 22,22, 24
cghRA.series-class, 22
cnvScore, 24, 35, 52, 53, 62
copies, 26, 36, 39
crossable, 5-7,9, 11, 13,18, 20
custom.design, 11, 14, 58
custom.design (Design file parser), 28
custom.probes (Probe file parser), 47

density, 38, 39

Design file parser, 28
drawable, 4-13, 18-20
drawableFromClass.cghRA.probes, 29

envRefClass, 5-16, 18-22, 24, 52, 53
fillGaps, 30
GEDI, 31

LCN, 26, 42

LCN (copies), 26
library, 48
localize, 3,32
LRA (SRA & LRA), 53

makeCluster, 50
map2design, 25, 26, 34, 34, 35, 52, 53, 62
message, 25, 35, 54, 63
model.apply, 27, 35, 38, 40-42

model . auto, I8, 26, 27, 35, 36, 38, 41, 42, 60
model . test, 26, 35, 36, 40, 41, 41, 60

parallelize, 44, 46, 47
parseKaryo, 45
penetrance, 30, 45, 46, 55, 56
plot, 42

66 INDEX

png, 59

Probe file parser, 47
process, 15,17,21,47,48
process.mask, 48

refTable, 7-21
round, 3, 26, 44, 55

saveRDT, 60

segmentMap, 25, 35
segmentMap-class, 52
sliceable, 5-7,9,11, 13, 18, 20
SRA, 56

SRA (SRA & LRA), 53

SRA & LRA, 53

STEPS, 47, 55, 55

tk.annotate, 56, 57

tk.browse, 57, 62

tk.cghRA, 11,15,17,57,57, 58, 60, 61
tk.convert, 57
tk.design, 11, 14, 28, 29, 50, 52, 57, 58
tk.modelize, 57, 59

tk.process, 15-17,21, 57

tk.process (process), 48
tk.series, 57, 60

tk.value, 61

tkframe, 51, 57-59, 61
tktoplevel, 51, 57-59, 61
trace2track, 25, 26, 62
track.CNV, 62, 63
track.CNV.DGV, 62, 63
track.CNV.DGVsupp, 62
track.table, 7-14, 18-21, 34, 35, 52, 62, 63
ttkframe, 51, 57-59, 61

WACA, 3, 63

XRA (SRA & LRA), 53

	bias
	cghRA.array
	cghRA.array-class
	cghRA.copies-class
	cghRA.copies-constructor
	cghRA.design-class
	cghRA.design-constructor
	cghRA.probes-class
	cghRA.probes-constructor
	cghRA.regions-class
	cghRA.regions-constructor
	cghRA.series
	cghRA.series-class
	cnvScore
	copies
	Design file parser
	drawableFromClass.cghRA.probes
	fillGaps
	GEDI
	localize
	map2design
	model.apply
	model.auto
	model.test
	parallelize
	parseKaryo
	penetrance
	Probe file parser
	process
	segmentMap-class
	SRA & LRA
	STEPS
	tk.annotate
	tk.cghRA
	tk.design
	tk.modelize
	tk.series
	tk.value
	trace2track
	track.CNV.DGVsupp
	WACA
	Index

