
How-to guide to cghRA

Last edition February 23rd 2017

Sylvain Mareschal

http://bioinformatics.ovsa.fr/cghRA

http://bioinformatics.ovsa.fr/cghRA

Contents

1 Introduction 2
1.1 Installation . 2
1.2 Quick-start . 2
1.3 Reference . 3

2 Design processing 4
2.1 Importing an Agilent design . 4
2.2 Importing a custom design . 4

2.2.1 Graphical interface . 5
2.2.2 R command lines . 6
2.2.3 Extend cghRA capabilities . 7

2.3 Remapping a design . 8
2.3.1 Both methods : BLAT setup . 8
2.3.2 Both methods : required files . 8
2.3.3 Graphical interface . 9
2.3.4 R command lines . 9

2.4 WACA pre-computation . 9
2.5 Chromosome arm split . 10

3 Array processing 12
3.1 Importing Agilent arrays . 12
3.2 Importing custom arrays . 13

3.2.1 Graphical interface . 13
3.2.2 R command lines . 14
3.2.3 Extend cghRA capabilities . 14

3.3 Preprocessing steps . 16
3.3.1 Mask flagged probes . 16
3.3.2 Replicated probes . 16
3.3.3 WACA correction . 16
3.3.4 Spatial distributions . 16
3.3.5 CPU cores . 17

3.4 Segmentation . 17
3.4.1 Fill gaps . 17
3.4.2 Segmentation parameters . 17

3.5 Copy number modelization . 17

4 Model visualization and tuning 19
4.1 R command lines . 19
4.2 Graphical interface . 19

4.2.1 Adjust plot size . 20
4.2.2 Keys to plot interpretation . 20
4.2.3 Model parameters . 20
4.2.4 Automatized modeling . 21

5 Annotate regions 22
5.1 Cytogenetic coordinates . 22
5.2 Gene list . 23
5.3 Polymorphism likelihood (cnvScore) . 24
5.4 Export to a spread-sheet editor . 25

6 Series processing 27
6.1 Produce Rgb track files . 27
6.2 Compute regions of interest . 28

7 Visualize results with Rgb 31
7.1 Graphical interface . 31
7.2 R command lines . 32

1

1 Introduction

This document describes how to use the cghRA package, showing the step-by-step analysis of a few arrays
available in ArrayExpress. Questions and feedback may be sent to mareschal@ovsa.fr, news and updates will
be made available on the package web page.

The analysis of a batch of CGH arrays that were published in the ArrayExpress archive, under the E-MTAB-
4497 accession number, will be developped in this document. While the whole dataset could be analyzed in a
similar fashion, we will focus on 5 representative arrays in order to limit downloads and computation: CHB-
02048, CHB-04234, CHB-05212, CHB-05967 and CHB-06016. The raw data files can be downloaded from
the archive, as they were produced by the array scanner software FeatureExtraction.

For each step on the analysis, we will introduce both the command line (CLI) and the graphical user (GUI)
interfaces, to highlight cghRA duality. Command line users should refer to Rgb’s ”How-to” vignette first, in
order to get familiar with the track.table reference class from which most cghRA classes inherit.

1.1 Installation

cghRA has two mandatory dependencies : Rgb and DNAcopy.

Rgb is distributed through the CRAN, and thus can be installed by classical R means. More recent stable
version may however be available on its dedicated webpage, and here again installed as usual (install.packages
function or any GUI you may be used to). Finaly the latest development version can be downloaded from its
GitHub page as a source package.

DNAcopy is a stand-alone part of Bioconductor. It can be installed using Bioconductor’s biocLite helper
function as described on its webpage, or downloaded and installed directly using install.packages or any
other GUI substitute.

Finally cghRA can be downloaded from its webpage as a .zip (Windows) or .tar.gz (MacOS / Linux)
package to install with R install.packages. Latest development version and sources can be found on its
decicated GitHub page. cghRA may join the CRAN or Bioconductor repositories in a near future.

1.2 Quick-start

Users comfortable with CGH array analysis and computers in general may consider the following workflow to
get a quick grasp of cghRA capabilities :

1. Download and uncompress the original Agilent design file for E-MTAB-4497 on the cghRA website.

2. Download original array files as produced by Agilent’s FeatureExtraction software, for the 5 aforemen-
tioned samples of the E-MTAB-4497 accession, from the corresponding ArrayExpress archive.

3. Download human annotation tracks for the GRCh37 assembly (NCBI genes, UCSC cytobands and DGV
supporting variants) from the Rgb website.

4. Launch R, load the cghRA package and execute the command tk.cghRA().

5. In the Design processing panel, select the file downloaded at step 1 as ”Input file”, uncheck the ”Remap
probes”and ”Compute WACA biases”boxes and hit the ”Process design”blue button. More details about
this panel and other formats of design files are provided in chapter 2. A log text file should open, and
the computation end in a few seconds.

6. In the Array processing panel, select the 5 files downloaded at step 2 as ”Probe files”, the .design.rdt
file produced in current R working directory by step 5 as ”Design file”, uncheck the ”WACA correction”
box and hit the ”Process arrays” button. Here again a log file should pop up, and the computation end
in less than a minute. More details about this panel and other formats of array files are provided in
chapter 3.

7. In the Copy number modelization panel, click ”Select files” to select the .regions.rdt files produced
in current R working directory at step 6 and use the ”Next” and ”Previous” buttons to visualize their
copy-number models. These models should be well fit, however feel free to move the cursors to observe
how changing parameters influence the copy number modelization. Details about these parameters and
the whole modeling process are provided in section 3.5 and chapter 4.

2

mailto:mareschal@ovsa.fr
http://bioinformatics.ovsa.fr/cghRA
https://www.ebi.ac.uk/arrayexpress/
http://bioinformatics.ovsa.fr/Rgb
https://github.com/maressyl/R.Rgb
http://bioconductor.org/packages/release/bioc/html/DNAcopy.html
http://bioinformatics.ovsa.fr/cghRA
https://github.com/maressyl/R.cghRA
http://bioinformatics.ovsa.fr/files/014950_D_DNABack_BCLeft_20111015.txt.gz
https://www.ebi.ac.uk/arrayexpress/experiments/E-MTAB-4497/samples/
http://bioinformatics.ovsa.fr/Rgb

8. In the Annotate regions panel, click ”Track(s) to process” to select the .copies.rdt files produced in
current R working directory at step 6 and hit the ”Export to CSV” blue button. For each selected file,
there should now be a .csv file located in the same folder that can be browsed with Excel or any other
spread-sheet editor. More details about this step can be found in section 5.4.

9. In the same Annotate regions panel, select the ”GRCh37.UCSC bands.rdt”file downloaded at step 3 as
”Annotation track”, select ”cytoband” as ”Crossing type” and hit the ”Compute annotation” blue button.
Perform again step 8 to observe the new ”UCSC bands.cytoband” column. More details about this step
can be found in section 5.1.

10. In the same Annotate regions panel, select the ”GRCh37.NCBI genes.rdt” file downloaded at step 3
as ”Annotation track”, select ”name” as ”Crossing type” and hit the ”Compute annotation” blue button.
Perform again step 8 to observe the new ”NCBI genes.name” column. More details about this step can
be found in section 5.2.

11. In the same Annotate regions panel, select the .design.rdt file produced at step 5 as ”Design file”, the
”GRCh37.DGV supp.rdt” file downloaded at step 3 as ”Polymorphism track”, uncheck the ”Filter” box
and hit the ”Compute CNV score” blue button. Perform again step 8 to observe the new ”cnvScore”
column. More details about polymorphism filtering can be found in chapter 5.3. Feel free to check the
”Filter” box and perform this step again to see the difference.

12. In the Series processing panel, enter ”cghRA vignette” as ”Series name”, select the .copies.rdt files
produced at step 6 as ”Region files” and hit the first blue ”Compute” button. Feel free to observe the
PNG image files that were produced, the rest of the files will be visualized later. Further details about
all these files can be found in section 6.1.

13. In the same Series processing panel, hit the first ”Compute”blue button on ”STEPS”row. The resulting
files will be visualized later, further details about them can be found in section 6.2.

14. Close cghRA window and execute the command tk.browse() to use Rgb in interactive mode.

15. Click the ”Track” button, then ”Add from file” and select the following files : .design.rdt produced at
step 5, the set of .probes.rdt, .regions.rdt and .copies.rdt produced at step 6 for sample ”CHB-05212”,
”GRCh37.NCBI genes.rdt” and ”GRCh37.UCSC bands.rdt” files downloaded at step 3. Then hit ”Done”.

16. Type ”CDKN2A”in the text field right to the ”Find”button, select ”NCBI genes”in the nearby menu and
hit the ”Find” button. The selected tracks should appear in the main window, around the locus of the
CDKN2A gene which is frequently deleted in lymphomas. You can use the arrow keys to move around
this locus, or refer to chapter 7 for further details about Rgb usage.

17. Click the ”Track” button again and add penetrance and pool files produced at step 13. You may want
to hide some of the previous tracks checking the ”Hide” boxes, to keep them readable on small screens.
Once back to the main window, hit the ”Jump” button to refresh the plot.

18. Repeat the previous operation with the ”STEPS” file produced at step 14.

1.3 Reference

Mareschal S, Ruminy P, Alcantara M, Villenet C, Figeac M, Dubois S, Bertrand P, Bouzelfen A, Viailly
PJ, Penther D, Tilly H, Bastard C, Jardin F. Application of the cghRA framework to the genomic
characterization of Diffuse Large B-Cell Lymphoma.
Article in submission

3

2 Design processing

There are many types of commercial CGH arrays, and all differ in their design, i.e. the amount of probes
spotted on the slide and the genomic regions they monitor. Each manufacturer provides information on these
designs under various formats, that need to be converted by cghRA into a format suitable for computation.
cghRA offers several tools to enhance this information, as we will see.

To obtain such a RDT design file, one can use the graphical interface or R command lines. Using the
graphical interface consists mainly in filling the form in the ”Design processing” panel and press the blue
”Process design” button. Once cghRA is launched, a text log file is filled continuously until the end or a
blocking error is met, and should be open automatically. If any error is encountered, one can correct the form
and press the button again to restart the analysis from the beginning.

2.1 Importing an Agilent design

As cghRA was developed using Agilent CGH arrays, several features facilitate their use with this software.
The manufacturer provides TDT text files describing the array design, that are handled in cghRA by the
Agilent.design() function. For the example we are developing, the GRCh37 TDT file can be downloaded
(and unzipped) from cghRA website and selected using the ”Input file”button. Organism and assembly names
should also be provided, to track assembly inconsistencies between files during the analysis. The chromosome
list is also optional, but providing it allows to enforce the order of their display (the default alphabetical order
is a bit messy for human chromosomes).

> # Parse an Agilent TDT file

> design <- Agilent.design(

+ file = "014950_D_DNABack_BCLeft_20111015.txt",

+ organism = "Human",

+ assembly = "GRCh37",

+ chromosomes = c(1:22, "X", "Y")

+)

> # Export as a cghRA-compliant file

> saveRDT(design, file="design.rdt")

The same features are proposed in the ”Extraction” frame on the ”Design processing” tab :

2.2 Importing a custom design

As a TDT file may not always be available, a few manual steps may be required to convert a random annotation
file to something cghRA can handle. This can be achieved in R directly, taking advantages of its powerful
table-handling capabilities, or using a spread-sheet editor. To illustrate custom design import, we will use the
E-MTAB-4497 design as it is provided by ArrayExpress (hg18 ADF file) rather than from the Agilent TDT file.

4

http://bioinformatics.ovsa.fr/files/014950_D_DNABack_BCLeft_20111015.txt.gz
https://www.ebi.ac.uk/arrayexpress/arrays/A-MEXP-1841/?ref=E-MTAB-4497

2.2.1 Graphical interface

Aside Agilent TDT files, the graphical interface is able to import any text file, as long as it provides the
requested columns (at least ’chrom’, ’start’ and ’end’, preferably ’strand’, ’name’ and ’id’ as well) and respect
the expected format (columns separated by tabulations, periods as decimal separators, first row as column
headers). Thus it is possible to edit the ADF file we use as an example using a spread-sheet editor, to enforce
these few constraints.

Notice that the ’id’ column must be filled with caution, as it is used to match rows between design and
probe files. Agilent files provide it in both files as ”FeatureNum”columns, but it may be required to build them
with other array types. In our case, we will rebuild it for the design and let cghRA reads the ”FeatureNum”
column from probe files to match with. ”FeatureNum” IDs are attributed to probes from the left to the right,
and then from the top to the bottom.

For this example, we will have to :

� Remove unnecessary header lines at the beginning of the file.

� Split ’Reporter Database Entry[chromosome coordinate:unknown]’ into 3 columns named ’chrom’, ’start’
and ’end’.

� Remove ’chr’ from the chromosome names (optional).

� Rename ’Column’, ’Row’ and ’Reporter Name’ into ’col’, ’row’ and ’name’ respectively.

� Create a new ’id’ column, filled with the formula (row - 1L) * max(col) + col. This is a quite
generic function that can be used on any array providing row and column numbers for each probe.

� Remove or rename additional columns (’Block Column’, ’Block Row’, ’Reporter Database Entry[hugo]’,
’Reporter Database Entry[refseq]’, ’Reporter Database Entry[embl]’, ’Reporter Group[role]’, ’Control
Type’).

� Export the table using the ’CSV’ format, with tabulations as column separators.

Here are the first rows of the resulting file, to illustrate the expected output. Blues arrows represent
tabulations and paragraph marks a line break (any of usual Windows, Linux or Mac styles).

Once the file ready it can be handled by cghRA, the only difference with Agilent TDT files being that the
file will be processed by the custom.design() function rather than Agilent.design(). This implies that it
can be imported using R command lines as follows, or that the ”Input file parser” parameter in the graphical
interface must be switched accordingly.

> # Parse a manually edited ADF file

> design <- custom.design(

+ file = "A-MEXP-1841.adf.csv",

+ organism = "Human",

+ assembly = "hg18",

+ chromosomes = c(1:22, "X", "Y")

+)

> # Export as a cghRA-compliant file

> saveRDT(design, file="design.rdt")

5

2.2.2 R command lines

Within R, the custom design file should be imported as a classic R data.frame, and appropriate columns
must be passed to the cghRA.design class constructor (see this function’s help page for further details). All
the steps manually performed in the previous section can easily be automatized in R :

> # Import file

> rawDesign <- read.table(

+ file="A-MEXP-1841.adf.txt", sep="\t", skip=18,

+ header=TRUE, quote=NULL, stringsAsFactors=FALSE

+)

> # Split coordinates

> coords <- rawDesign$"Reporter.Database.Entry.chromosome_coordinate.unknown."

> rawDesign$chrom <- sub("^chr(.+):([0-9]+)-([0-9]+)$", "\\1", coords)

> rawDesign$start <- sub("^chr(.+):([0-9]+)-([0-9]+)$", "\\2", coords)

> rawDesign$end <- sub("^chr(.+):([0-9]+)-([0-9]+)$", "\\3", coords)

> # Rebuild FeatureNum

> row <- rawDesign$Row

> col <- rawDesign$Column

> rawDesign$FeatureNum <- (row - 1L) * max(col) + col

> # Build design

> design <- cghRA.design(

+ name = rawDesign$Reporter.Name,

+ chrom = rawDesign$chrom,

+ strand = NA,

+ start = as.integer(rawDesign$start),

+ end = as.integer(rawDesign$end),

+ id = rawDesign$FeatureNum,

+ row = rawDesign$Row,

+ col = rawDesign$Column,

+ .name = "Agilent 014950",

+ .organism = "Human",

+ .assembly = "hg18",

+ .chromosomes = c(1:22, "X", "Y")

+)

> # Export as a cghRA-compliant file

> saveRDT(design, file="design.rdt")

6

2.2.3 Extend cghRA capabilities

Additionally, the user can define its own parsing functions to make cghRA able to directly read files from
other manufacturers using the graphical interface. The Agilent.design() and custom.design() functions
defined in cghRA are good examples of the function to define in the R global environment before cghRA is
launched. Once this done, the user can simply write in the ”Input file parser” field of the graphical interface
the name of the R function to use for reading the provided design file. Note however that the function will
have to be redefined in each session, as it will be lost at R closure.

As an example, here is a custom parsing function embedding the R commands we used previously to parse
the ArrayExpress ADF file. Notice the fixed arguments, that will be filled by the graphical interface. Additional
arguments can also be set for command line usage only, but default values will be required for the graphical
interface to work.

> ADF.design <- function(

+ file,

+ name = "Custom ADF file",

+ organism = as.character(NA),

+ assembly = as.character(NA),

+ chromosomes = NULL,

+ ...

+) {

+ # Import file

+ rawDesign <- read.table(

+ file=file, sep="\t", skip=18,

+ header=TRUE, quote=NULL, stringsAsFactors=FALSE

+)

+

+ # Split coordinates

+ coords <- rawDesign$"Reporter.Database.Entry.chromosome_coordinate.unknown."

+ rawDesign$chrom <- sub("^chr(.+):([0-9]+)-([0-9]+)$", "\\1", coords)

+ rawDesign$start <- sub("^chr(.+):([0-9]+)-([0-9]+)$", "\\2", coords)

+ rawDesign$end <- sub("^chr(.+):([0-9]+)-([0-9]+)$", "\\3", coords)

+

+ # Rebuild FeatureNum

+ row <- rawDesign$Row

+ col <- rawDesign$Column

+ rawDesign$FeatureNum <- (row - 1L) * max(col) + col

+

+ # Build design

+ design <- cghRA.design(

+ name = rawDesign$Reporter.Name,

+ chrom = rawDesign$chrom,

+ strand = NA,

+ start = as.integer(rawDesign$start),

+ end = as.integer(rawDesign$end),

+ id = rawDesign$FeatureNum,

+ row = rawDesign$Row,

+ col = rawDesign$Column,

+ .name = name,

+ .organism = organism,

+ .assembly = assembly,

+ .chromosomes = chromosomes

+)

+

+ return(design)

+ }

7

Of course, R command line users should use this custom function directly to obtain design objects :

> design <- ADF.design(

+ file = "A-MEXP-1841.adf.txt",

+ name = "Agilent 014950",

+ organism = "Human",

+ assembly = "hg18",

+ chromosomes = c(1:22, "X", "Y")

+)

2.3 Remapping a design

As the assembly of well-studied genomes such as the human one evolves on a regular basis, you may want to
work with a specific assembly for which design files are not provided. cghRA can be used to remap the probes
to the assembly of your choice, using fast alignment software, through the GUI or directly using R commands.

2.3.1 Both methods : BLAT setup

The first step is to download the BLAT executable from its author website, in a version that matches your
operating system (Windows, Mac OS, Linux...). It is usually packaged as a ”blatSuite” archive, the only file
we will use in it this archive is the ”blat” / ”blat.exe” executable file.

On Windows, you will also require Cygwin’s ”cygwin1.dll” file, that you can obtain by freely installing the
whole software. Alternatively you may extract it from a compressed archive provided by mirror sites like this
one (64 bits) or this one (32 bits), usually in the /usr/bin directory.

Once you have collected the required files, execute the following command (update the file names and
paths according to your downloads) :

> # On Windows

> blatInstall(blat="blat.exe", cygwin="cygwin1.dll")

> # On Linux or MacOS

> blatInstall(blat="blat")

2.3.2 Both methods : required files

You will also require the sequence of the studied organism chromosomes, as separated (uncompressed) FASTA
files. For human and numerous model organism genomes, they can be downloaded from the University of
California Santa Cruz (UCSC) repository, e.g. here for the hg38 / GRCh38 assembly of the human genome.
Files should be renamed to discard the ’chr’ prefix, and alternative versions or unmapped chromosome files
should be discarded as well.

You will finally require the sequences of the probes, as a single multi-FASTA file with probe names as
comments. While Agilent provides this file, you may be required to rebuild it in other cases (ArrayExpress’
ADF file may or may not contain a sequence column). For the example we are developing, the multi-FASTA
probe file can be downloaded (and unzipped) from cghRA website.

8

https://genome.ucsc.edu/FAQ/FAQblat.html
http://hgwdev.cse.ucsc.edu/~kent/exe/
http://www.cygwin.com/
http://cygwin.mirror.uk.sargasso.net/x86_64/release/cygwin/z
http://cygwin.mirror.uk.sargasso.net/x86/release/cygwin/
http://hgdownload.cse.ucsc.edu/goldenPath/hg38/bigZips/hg38.chromFa.tar.gz
http://bioinformatics.ovsa.fr/files/014950_D_Fasta_20111015.txt.gz

2.3.3 Graphical interface

To apply the remapping through cghRA GUI, just tick the ”Remap probes” checkbox during the design pro-
cessing, and provide the files discussed above. Select the multi-FASTA probe file using the ”Probe file”button,
and select all the chromosome FASTA files using the ”Chromosome Files” button. Finally remeber to update
the ”Assembly” field with the remapped assembly name, not the assembly of the original file.

The processing can take several minutes, even a few hours for a high-resolution array. A ”design.log”file is
regularly populated as the processing goes on, you can monitor progress and errors in it.

2.3.4 R command lines

For designs built using command lines, apply the remap() method to the previously built design file. This
method proposes several options to handle probes that map to distinct locations or overlap, as well as atypical
chromosome file names. The example below is the simplest case in which the FASTA chromosome files were
stored in the ”hg38” directory and were named ”chr1.fa”, ”chr2.fa”... See the help page of the underlying
localize() function for further details.

> # Import the design we previously built

> design <- readRDT(file="design.rdt")

> # Apply remapping

> design$remap(

+ probeFile = "014950_D_Fasta_20111015.txt",

+ chromFiles = dir("hg38", full.names=TRUE)

+)

> # Update assembly name

> design$assembly <- "GRCh38"

> # Export the remapped design

> saveRDT(design, file="design_hg38.rdt")

2.4 WACA pre-computation

In order to use the WACA (Waved Array-cgh Correction Algorithm, Leprêtre et al, Nucleic Acids Res. 2010
Apr;38(7):e94), some precomputations must be performed at the time of the design processing. As for the
remapping described above, this step will require the full chromosome sequences in individual FASTA files.
You will also be required to describe the restriction enzymes used for the genomic DNA fragmentation, and
more precisely the restriction sites recognized by each of them.

Graphical interface

With the GUI, simply provide the chromosome files as described previously, and the restriction sites as shown
in the example.

9

R command lines

In the R console, apply the bias() method to a previously built design file, with the same arguments. Note
that the chromosome files must correspond to the design assembly at the time of the bias() method call, so
this step should be performed after the remapping if any has to occur. Here again, additional details on this
method can be found in the help page of the underlying bias() function.

> # Import the previously remapped design

> design <- readRDT(file="design_hg38.rdt")

> # Apply WACA bias computation

> design$bias(

+ chromFiles = dir("hg38", full.names=TRUE),

+ fragSites = c(AluI="AG|CT", RsaI="GT|AC")

+)

> # Export the remapped / WACA compliant design

> saveRDT(design, file="design_hg38_WACA.rdt")

2.5 Chromosome arm split

According to the user preference, cghRA may work with chromosomes separated in two arms (e.g. ”1p” for
the short arm of chromosome 1 and ”1q” for the long arm), and can build designs that distinguish them or
not. To incorporate chromosome arm information in your design, simply provide a cytoband annotation file
matching the organism and assembly of your (eventually remapped) design. For the GRCh38 assembly of the
human genome, this file can be downloaded directly from the Rgb website. In other cases, please refer to the
help page of the track.bands.UCSC() function for further details.

Working with arm-split designs require arm-split annotation files as well, at most steps of the
analysis. Annotation files that can be downloaded from Rgb website are not, and require to be split as show
below. As most of this vignette is written with non-split designs, new users are discouraged to use chromo-
some arm split. Otherwise, users should be particularly attentive to error messages indicating mismatches in
chromosome lists, as chromosome arms are considered as individual chromosomes after the split.

> # Import a cytoband file to use for split

> bands <- readRDT(file="GRCh37.UCSC_bands.rdt")

> # Import an annotation file to arm-split

> genes <- readRDT(file="GRCh37.NCBI_genes.rdt")

> # Add arms

> genes$addArms(bands)

> # Save as RDT with a distinct name

> saveRDT(genes, file="GRCh37.arm.NCBI_genes.rdt")

10

http://bioinformatics.ovsa.fr/files/GRCh38.UCSC_bands.rdt
http://bioinformatics.ovsa.fr/Rgb

Graphical interface

With the GUI, provide the corresponding RDT file using the ”Cytoband file (arm split)” button to obtain an
arm-aware design, or leave it blank to obtain a design that will not differentiate them.

R command lines

In the R console, import the content of this RDT file and apply the addArms() method to a previously built
design file. An eraseArms() method is also provided to perform the opposite operation.

> # Import the previously remapped / WACA compliant design

> design <- readRDT(file="design_hg38_WACA.rdt")

> # Import the cytoband annotation

> bands <- readRDT(file="GRCh38.UCSC_bands.rdt")

> # Add arm information

> design$addArms(bands)

> # Export the remapped / WACA compliant design

> saveRDT(design, file="design_hg38_WACA_arm.rdt")

11

3 Array processing

Once the design ready, multiple files corresponding to multiple arrays can be processed. cghRA performs
this processing for each array independently from the others as a straight pipeline, each step taking as input
the output of the previous one. The currently implemented steps are shortly described here-after and more
extensively described in sections 3.3, 3.4 and 3.5; custom steps can be added as well (see the process() help
page for further details). Currently the graphical interface only handles the full default pipeline, but custom
pipelines can easily be built using the process() function.

� parse will read data from provided files, using a parsing function. A parser for Agilent’s FeatureExtraction
format is provided, but an example of custom parsing will be developed here-after.

� mask will turn to NA the log-ratios of probes showing specified flags (saturated or control probe...).

� replicates will replace the log-ratio of replicated probes with a single representative value (mean, me-
dian...), and set other replicates to NA.

� waca will correct the log-ratios using the WACA algorithm (Waved Array-cgh Correction Algorithm,
Leprêtre et al, Nucleic Acids Res. 2010 Apr;38(7):e94).

� spatial will produce a physical representation of the array, to visually identify spatial biases.

� segment will produce one or many genomic segmentation of the log-ratios, using CBS (see 3.4).

� fill will fill gaps between segments to make their coordinates perfectly jointed (see 3.4.1).

� modelize will apply the cghRA copy-calling model (see 3.5).

� fittest will select the fittest copy-calling model (see 3.5).

� applyModel will transform log-ratios into copy-numbers, applying the selected model.

� export will produce a RDT file from its input. This step may be used many times in a pipeline to save
results from each other steps.

Using the graphical interface consists mainly in filling the form in the ”Array processing” panel and press
the blue ”Process arrays” button. Arrays will be processed independently (possibly in parallel, see 3.3.5, and a
text log file is filled continuously until the end or a blocking error is met. If any error is encountered, one can
correct the form (possibly unselecting arrays successfully analyzed) and press the button again to restart the
analysis from the beginning.

3.1 Importing Agilent arrays

To stick to the example developed in the current document, raw data files can be downloaded from the
ArrayExpress archive, under the E-MTAB-4497 accession number. The CHB-02048, CHB-04234, CHB-05212,
CHB-05967 and CHB-06016 samples are recommended for the alterations they present.

To analyze Agilent arrays scanned using Feature Extraction, the procedure is straight-forward: click ”Probe
files” to select one or many text files produced by Feature Extraction, select the ”Output directory” and the
design file (in RDT format, as produced using the previous panel) and click ”Process arrays”. Selected files
must relate to a single design, but several analyses corresponding to distinct designs can be ran separately.
Results from these distinct analyses can be merged at later steps, keeping in mind that distinct designs imply
distinct resolutions in the discovery of chromosomal imbalances (see 6).

12

https://www.ebi.ac.uk/arrayexpress/

The mouse cursor should change to a sand timer (or anything related according to the operating system)
while the analysis runs, and a ”process.log” file should be populated in real time with diagnostic messages.
Notice that due to the multi-threading architecture, messages will only appear in the log file when the analysis
of an array is complete, which can take from a few seconds (44k probe arrays) to half an hour (1M probe
arrays) depending on the array size and computer speed.

3.2 Importing custom arrays

As for design files, data files from other manufacturers are not handled by cghRA in a ”out of the box”fashion
but can be dealt with in several ways. Array files can be reshapped manually with a spread-sheet editor or
with R directly, or a new parsing function can be integrated to cghRA. To illustrate this feature, we will try to
import the Agilent raw data files of the E-MTAB-4497 ArrayExpress accession without using cghRA built-in
support for this format.

3.2.1 Graphical interface

Only few columns are really useful for us in the raw data files, essentially the log-ratio of fluorescences and a
numeric probe ID matching the ’id’ column provided during the design import (please refer to 2.2.1 for further
details on the ’id’ column). Any additional columns can be kept as well and won’t interfere with cghRA
processing.

The log-ratio can be already present in the data file or computed manually from the red and green
fluorescence signals using the following formula : logRatio = log2(G/R), where G and R refer to the
green (sample) and red (reference) fluorescence respectively. If dyes were swapped, always use the color
corresponding to the (supposed normal) reference sample as the denominator of the ratio. The column name
must be ’logRatio’ to be recognized by cghRA.

cghRA also handles ’flags’, which are usually quality-check outputs formatted as a single logical value for
each probe. These columns can be included in the custom file, and referred to later for probe filtering (probes
with a flag set to TRUE will be discarded during this step). Please refer to 3.3.1 for further details on this
optional step of the cghRA pipeline.

In the current example, the following steps will be required to convert the Agilent TXT file into the
custom file format handled by cghRA (CSV-like file using tabulations as column separators, periods as decimal
separators and the first row as column headers) :

� Remove the first lines containing two small tables on top of the main table.

� Remove the first header line with column types.

� Keep only columns B (’FeatureNum’), P (’LogRatio’), BA (’gIsSaturated’), BB (’rIsSaturated’), and BE
(’gIsFeatNonUnifOL’) to BL (’rIsBGPopnOL’).

� Rename ’FeatureNum’ into ’id’ and ’LogRatio’ into ’logRatio’ (beware of the case !).

� Add ’flag ’ in front of the names of all the flag columns to use for probe filtering.

� Export the table using the ’CSV’ format, with tabulations as column separators.

13

Here are the first rows of the resulting file, to illustrate the expected output. Blues arrows represent
tabulations and paragraph marks represent line breaks (any of usual Windows, Linux or Mac styles). Notice
the first line is truncated on the following image (truncation is represented by the ’[...]’ sign), but column
names are similar until the end of the line.

Once the file ready, it can be handled by cghRA as Agilent data files, the only difference being that the
file will be processed by the custom.probes() function rather than Agilent.probes(). This implies that
the ”Probe file parser” parameter in the graphical interface must be switched accordingly.

3.2.2 R command lines

Within R, the custom data file should be imported as a classic R data.frame, and appropriate columns must
be passed to the cghRA.probes class constructor (see this function’s help page for further details). All the
steps manually performed in the previous section can easily be automatized in R :

> # Import file

> rawFile <- read.table(

+ file="DLBCL_Feb2016_CHB02048.txt", sep="\t", skip=9,

+ header=TRUE, quote=NULL, stringsAsFactors=FALSE

+)

> # Select columns

> rawFile <- rawFile[, c(2, 16, 53, 54, 57:64)]

> # Rename columns

> colnames(rawFile)[colnames(rawFile) == "FeatureNum"] <- "id"

> colnames(rawFile)[colnames(rawFile) == "LogRatio"] <- "logRatio"

> colnames(rawFile)[3:12] <- sprintf("flag_%s", colnames(rawFile)[3:12])

> # Build probes

> probes <- cghRA.probes(

+ rawFile,

+ .name = "CHB02048"

+)

> # Export as a cghRA-compliant file

> saveRDT(probes, file="DLBCL_Feb2016_CHB02048.probes.rdt")

3.2.3 Extend cghRA capabilities

Additionally, the user can define its own parsing functions to make cghRA able to directly read files from
other manufacturers using the graphical interface. The Agilent.probes() and custom.probes() functions
defined in cghRA are good examples of the function to define in the R global environment before cghRA is

14

launched. Once this done, the user can simply write in the ”Probe file parser” parameter the name of the R
function to use for reading the provided design file. Note however that the function will have to be redefined
in each session, as it will be lost at R closure.

As an example, here is a custom parsing function embedding the R commands we used previously to parse
the Agilent data file in a custom way. Notice the fixed arguments, that will be filled by the graphical interface.
Additional arguments can also be set for command line usage only, but default values will be required for the
graphical interface to work.

> example.probes <- function(

+ file,

+ columns = NULL,

+ ...

+) {

+ # Import file

+ rawFile <- read.table(

+ file=file, sep="\t", skip=9,

+ header=TRUE, quote=NULL, stringsAsFactors=FALSE

+)

+

+ # Select columns

+ rawFile <- rawFile[, c(2, 16, 53, 54, 57:64)]

+

+ # Rename columns

+ colnames(rawFile)[colnames(rawFile) == "FeatureNum"] <- "id"

+ colnames(rawFile)[colnames(rawFile) == "LogRatio"] <- "logRatio"

+

+ # Rename only flag columns mentioned in the interface

+ if(length(columns) > 0L) {

+ for(i in 1:length(columns)) {

+ colnames(dat)[colnames(dat) == columns[i]] <- names(columns)[i]

+ }

+ }

+

+ # Build probes

+ probes <- cghRA.probes(

+ rawFile,

+ .name = basename(file)

+)

+

+ return(probes)

+ }

Command line users can consider to pass this function to process via the probeParser argument, which
will be used at the ”parse” step.

15

3.3 Preprocessing steps

3.3.1 Mask flagged probes

As many array scanning software, Feature Extraction populates several ”flags”for each probe, in order to identify
probes of poor quality. This ranges from a saturated channel to heterogeneous intensity of the marking, and
the full description of these flags can be found in the Feature Extraction Reference Guide provided by the
manufacturer. The standard behavior of cghRA is to import these flags as logical values appending ”flag ” at
the beginning of their names, and to filter out (turn log-ratio to NA) any probe that shows any of these flags.
The list of the flags to consider is present in the interface, as a comma-separated list of column names.

3.3.2 Replicated probes

Several array designs include replicated probes, i.e. probes with identical nucleotidic sequence spotted at
distinct locations on the array. Such replicated signals are useful to compute the technical noise or identify
spatial artifacts, but may introduce biases during the segmentation step. cghRA proposes to replace these
multiple replicated values (as identified by their identical probe name) by a single representative one, turning
log-ratios of the other group members to NA. This representative value is computed from the values of all the
replicates, using the function named here in the interface. This must be the name of a R function (typically
”mean”or ”median”, but custom functions available in the R global environment may also be used) that accepts
a single numeric vector as argument and return a numeric scalar.

3.3.3 WACA correction

Checking this box will introduce a step of wave correction, using a new implementation of the WACA algorithm
(Waved Array-cgh Correction Algorithm, Leprêtre et al, Nucleic Acids Res. 2010 Apr;38(7):e94). Notice that
this requires specific cares during the design file production, as mentionned earlier (see 2.4).

3.3.4 Spatial distributions

In most CGH array designs, there is no correlation at all between the physical location of the probe on the
array and its genomic location. This fact proves particularly useful to detect hybridization problems, which
lead to an unexpected correlation between signal intensity and physical position. Checking this box triggers
the production of ”spatial plots”, on which each probe of the array is represented by a distinct pixel at its
physical location, with a color depending on the probe log-ratio. Examples of a clean sample (on the left) and
various artifacts that can be expected are illustrated below.

As genomically consecutive probes are far from each other, such artifacts should not lead to the observance
of false segments, but rather contribute to the experiment noise. This can lead to poor copy-calling models,
and the simplest way to deal with such arrays is to discard them.

Users willing to get more information and tools to deal with this phenomenon can refer to Neuvial et
al, BMC Bioinformatics. 2006 May 22;7:264 and the corresponding R package MANOR, available from
Bioconductor. cghRA currently does not handle this correction itself, but data can easily be exported from
and to the cghRA.probes and cghRA.array classes by users with sufficient R CLI skills to operate MANOR.

16

https://www.bioconductor.org/packages/release/bioc/html/MANOR.html

3.3.5 CPU cores

Most computers have several processors nowadays, and cghRA can take benefit from this to run faster. As
each array is analyzed independently from the others, many arrays can be analyzed simultaneously by distinct
processors of the same machine, using the ”parallel” R package. This is what is proposed here, the user being
required to choose how many arrays should be analyzed in the same time. The default value is populated
by the ”parallel” R package as the amount of CPUs detected on the machine, but can freely be increased or
decreased. Notice that increasing it beyond the CPU count is very likely to slow the computation rather than
speeding it.

3.4 Segmentation

As usual in CGH-array analysis, the second step once the probe signals are filtered and normalized is to segment
the genome into regions of homogeneous log-ratios. This is performed in cghRA by the CBS algorithm,
as implemented in the DNAcopy package (Venkatraman and Olshen, Bioinformatics 2007). The resulting
segments will be exported in ”.regions.rdt” files, that will be used for down-stream analysis.

3.4.1 Fill gaps

As CBS starts and ends segments on a probe, there is usually a short gap of undetermined copy number
between segments. These gaps can disrupt the down-stream analysis based on penetrance, and it is generally
preferable to ask cghRA to fill these gaps. This filling is performed by extending each segment on its right
until it reaches the start of the following segment. In the graphical interface, this feature can be disabled by
unchecking the corresponding box. Using R command lines, one can simply remove the ”fill” step from the
”steps” argument of process().

3.4.2 Segmentation parameters

CBS has numerous arguments with strong influence on the results for which optimal values can be hard to
predict. To minimize this problem, cghRA is able to perform several segmentations with distinct parameters
and select the copy number model which seems to fit best to the data. For further details on the model and
the selection criterion, one can refer to the publication associated with cghRA (reference at the beginning of
this file). Of course multiple segmentations imply more computation, and a good balance needs to be found
between the precision of the model and the time spent in computation.

In the graphical interface, the user can switch between the various segmentation profiles proposed by
cghRA (’accurate’, ’fast’ and ’fastest’). A ’CBS default’ profile is also provided, which consists in a single
segmentation using the default parameters in the DNAcopy package. Finally a ’custom’ profile is available for
the user to define how many segmentations should be tried and with which arguments. Each line in the text
area beneath the profile selection will define the arguments to be passed to the segment() function of the
DNAcopy package, as an R expression (see the existing profiles for examples).

Using R command lines, segmentation profiles are passed via the ”segmentArgs” argument of process().
The profiles proposed in the interface can be obtained using the process.default function, as shown below.
For further details on the usage of process(), one can refer to its R manual page.

> process.default("segmentArgs", "fastest")

3.5 Copy number modelization

Once the segmentation done, cghRA will apply its original model to infer copy numbers from the average
log-ratio of each segment. Here again, one can refer to the cghRA publication mentioned at the beginning of
this tutorial for theoretical aspects of this model.

When multiple segmentations are performed (see 3.4), each of them is modelized independently from the
others. Checking the ”Fittest segmentation” box in the graphical interface or using the ”fittest” step in the
process() function will ask cghRA to select the best one from these. Each segmentation attempt produces
a ”.regions.rdt” file numbered according to its order in the segmentation profile, which will be updated during
modelization. When cghRA is asked for a selection, the best one will simply be copied without numbering.

As an example, if a sample named ”Sample1”is processed with the ”accurate”segmentation profile, 10 files
named ”Sample1#1.regions.rdt”, ”Sample1#2.regions.rdt”etc will be produced. If cghRA is asked to select the
fittest segmentation and the third one proves to be the best according to its criterion, ”Sample1#3.regions.rdt”

17

will be copied as ”Sample1.regions.rdt”, which is the only one that should be considered for down-stream
analysis.

Finally cghRA proposes default values for all the modelization parameters, but the user is free to update
some of them (see 4 for an interactive way to change these parameters and observe how the model is affected).
In the graphical interface, the user can define arguments for the model.auto() function in the ”Custom
parameters” text area. Name / value pairs are simply to be written here separated by commas, as in any R
function call. Parameters not defined there will keep their default values, so only parameters to change need
to be mentioned. Using R command lines, the user can provide the same string as in the graphical interface
via the ”modelizeArgs” argument of the process() function.

18

4 Model visualization and tuning

The cghRA copy number model assumes that genomic segments have actually very few distinct average log-
ratio values, and that these values follow a simple distribution depending essentially on the tumoral burden of
the sample. An appropriate plot of a sample segments make this assumption very easy to check, and cghRA
proposes an interactive way to use this representation to adjust the model parameters in real time.

4.1 R command lines

In R, this representation is produced by the model.test() function. While the function is generic enough to
be used with any data structure, the cghRA classes makes it easier to use via a method. Here is an example,
assuming that the array file was preprocessed, segmented and modelized as explained in 3.

> regions <- readRDT(file="DLBCL_Feb2016_CHB02048.regions.rdt")

> regions$model.test()

The model.test() function will plot the model stored in the file, but can also use an alternative model
defined via its arguments (notably ”width” and ”center”). To automatically fit a new model, one can use the
model.auto() function and method in the same way, eventually providing distinct constraints to the fitting
via its arguments.

> regions$model.auto()

> regions$model.auto(minWidth=0.5, maxWidth=0.7)

Notice that the interactive interface can be summoned at any time in R command lines, just calling the
tk.modelize() function.

4.2 Graphical interface

The ”Copy number modelization”panel of the graphical interface allows to visualize and assess the modelization
of a sample, and update its parameters if the automatic one is not satisfactory. To begin, click the ”Select
files” button and select one or many ”.regions.rdt” files produced during the segmentation (see chapter 3).

You will then be able to switch between the selected files using ”Previous”and ”Next”. Don’t forget however
to save your changes to the model using the ”Update files” button before switching, else they will be lost.

A click on a point of the plot will moreover summon a small popup window, in which you will find various
information about the segment it represents (size, genomic location, log-ratio...).

19

4.2.1 Adjust plot size

cghRA will try its best to adjust automatically the size of the plot (delimited by a white background) to the
size of the bordered frame containing it, each time the plot is refreshed. This is particularly important for the
mouse clicks to be correctly mapped to the points which were clicked at.

However on Windows it seems that the magnifying factor that can be set on high resolution screens to
keep readable texts and icons is not handled properly by the tkrplot package on which cghRA relies. If you
experience such a case where the plot is constantly smaller than its enclosing frame, click the ”Adjust plot
size” button. You will be asked for an expansion factor that will be applied to the plot size, and that should
correspond to the magnifying factor set in Windows settings (150% in Windows = 1.5 in cghRA). Once the
correct value found, notice that you can launch tk.modelize and tk.cghRA directly with the correct setting,
filling the tkrplot.scale argument.

This bug should not be present on Linux and MacOS, and should disappear from Windows starting with R
version 3.4.0. In these cases, the rendering is no longer performed by tkrplot but using PNG images instead.
Here the ”Adjust plot size”button will only refresh the plot, which can still be useful to make it fill the window
again after manually resizing it.

4.2.2 Keys to plot interpretation

The plot corresponding to the first selected file should appear in the main frame. In this plot, each genomic
segment of the sample is represented by a cross, with the X axis describing its average log-ratio (top axis) or
modelized copy number (bottom axis) and the Y axis describing its size (in consecutive probe count). Notice
that segments located on sexual chromosomes are plotted with circles rather than crosses, highlighting the
fact that they are not considered in the analysis.

cghRA will estimate a density function from this segment distribution, drawn with a solid grey line. In a
sample with at least a few genomic alterations, this distribution should display multiple peaks regularly spaced,
each peak grouping segments with similar log-ratios and probably similar copy numbers.

If this distribution shows peaks, they will be detected by cghRA and marked with vertical red bars. The
median distance between two consecutive peaks define the ”width” parameter of the model, while the highest
peak is used to define the ”center” of the model (assuming that the most frequent copy number is of known
ploidy, usually 2n).

cghRA computes several scores able to quantify the model fitness to the data. Currently only STM is
actively used during modelization (and fully described in the publication associated with cghRA), other scores
should be disregarded. The smaller STM is for a sample, the more precise is the model.

To conclude, a successful CGH experiment should show multiple regularly spaced groups of points, each
materialized by a peak in the distribution and a vertical red bar. Overlap between point groups will hamper
the modelization, and can occur for the following main reasons :

� high technical noise / poor DNA quality : peaks are very diffuse and wide, meaning that regions
with same copy numbers show poorly reproducible log-ratios.

� high normal cell contamination of the sample : peaks are very close to each others, meaning that
log-ratios show little variation on the array.

� poor clonality of the sample : some peaks correspond to the copy number states in one clone and some
other peaks to the copy number states in another. cghRA assumes that the sample is (mostly) clonal
and will focus on the most represented one, but can fail if secondary clones are significantly represented.

4.2.3 Model parameters

Beside the plot, the graphical interface offers several slide buttons that can be used to modify the parameters
of the model, i.e. the bottom axis linking log-ratios to copy-numbers. Modifying one of these parameters will
instantly update the plot, so the cursors can be slid around to find the best value.

Bandwidth controls the width of the peaks in the density function estimator (grey line). As only the
maximum of the peak is used by cghRA this parameter has limited impact, except from the cases where some
peaks are very close to each others and the user thinks they should be merged. A large bandwidth will merge
peaks more easily, and only suit samples with high tumoral cell content.

Center defines the shift between the theoretical normal state (log-ratio = 0) and what is observed in the
data, assuming that the highest peak (most frequent copy number in the genome) corresponds to this normal

20

state. Larger values shift this state toward higher log-ratios, while smaller values shift it toward lower and
possibly negative log-ratios.

Width defines the distance between consecutive peaks, assuming that most copy number states are rep-
resented in the data (consecutive peaks should differ of one copy number exactly). This parameter is the
hardest to define, especially when subclones are present in the sample or if the sample shows very few genomic
alterations. In the later case (essentially one narrow peak is visible), cghRA will probably fail at proposing a
model, and a large width value (typically 1) should be used to consider most segments as unaltered.

PeakFrom and PeakTo controls the window in which the model is computed (displayed by a gray shading
of the excluded intervals). Peaks with extreme log-ratios are usually describing very high or very low copy
numbers, rarely found in the sample genome and thus associated with higher noise. Limiting the model to
most recurrent peaks (in most cases -1, n and +1 are enough) will render the model more stable, and actually
lead to better estimates of the copy number of these extreme regions.

4.2.4 Automatized modeling

The graphical interface also offers a simple way to fit automatically a model to the data, as can be performed
during the array processing step (3). Here you will however be able to change the constraints to apply to
the fitting and visualize immediately how it improves or not the modelization of the data. All the parameters
proposed in the graphical interface are directly linked to arguments for the model.auto() R function, however
you will find here after a quick description of each of them.

Bandwidth from, to and by describe the values allowed for the bandwidth parameter of the model (see
4.2.3). cghRA will try all possible values between ’from’ and ’to’, using a step of ’by’, in order to find the
best value for this parameter. In some rare cases cghRA will prefer bandwidths resulting in peaks too wide or
narrow according to what is suspected of the tumoral burden of the sample, and changing the extremes allows
to force it to find an optimal solution closer to your expectations. The bandwidth of the model can also be
forced to a specific value just defining ’from’ and ’to’ to the expected value.

Precision sets the amount of computed points in the density estimation (grey line). Higher values would
imply higher resolution in the drawing of this curve and the detection of the peak maxima, however this has
usually little consequence on the resulting model.

MinDensity sets the minimal height for a density peak (grey line) to be detected (red vertical bar), as
a proportion of the highest peak in the sample. The more copy number states will be detected, the more
accurate the model can be. It is thus important that small peaks which seems to be regularly spaced from
reliable copy number states are detected, and very small spurious peaks resulting from a single segment with
unusual log-ratios are not.

MaxPeaks sets the maximum amount of peaks (copy number states) allowed in a model to be retained.
Models resulting in more than this number of peaks will be silently discarded, however considering that extreme
copy number states are usually poorly represented in the genome and thus not detected as peaks, the default
value is rarely reached, except in subclonal or poor quality samples. Notice that the minimal amount of peaks
is 2, considering that the ”width” parameter of the model is computed as the difference between consecutive
peaks.

Width min and max sets the boundaries of allowed values fr the width parameter of the model (see 4.2.3).
Models in which the median shift between consecutive detected peaks fall outside of these boundaries will be
silently discarded. Please remind that this parameter can be interpreted as an estimate of the tumoral burden,
thus pure tumoral samples like cell-line derived samples (expected width of 1) or samples containing very high
amounts of normal cells may require to tune these parameters. The default values were optimized to what
was encountered during cghRA development on Diffuse Large B-Cell Lymphoma biopsies in our institution.

Method names the score to minimize for model selection. The ”STM” score should always be used, other
scores are provided for historical reasons. More details about these scores can be found in the R manual page
of the model.auto() R function.

Ploidy defines the copy number to attribute to the highest peak in the distribution, i.e. the most common
copy number state in the genome. Other copy number states are then assigned according to their distance
to this supposedly known copy number. This value can be inferred using ”wet” lab methods or assumed from
what is known of the pathology (tumors with few genomic alterations will have a ploidy of 2 in most cases).
If one prefer to not assume anything about the tumor ploidy, a value of 0 can be used to obtain relative rather
than absolute copy numbers. This value is simply a fixed value added to copy number estimates, and won’t
impact the fitting of the model itself.

21

5 Annotate regions

Once amplified and deleted regions have been discovered, analyzing them usually require to look at how they
intersect with genomic annotation, such as genes, polymorphisms or cytogenetic banding. This can be achieved
by adding columns to regions files, as described in this chapter, or visually using the R genome browser packed
with cghRA (see 7). The ”Annotate regions” panel of the graphical interface provides an interactive way to
produce such additional columns, which can also be obtained using R commands and methods. While both are
generic enough to work with any pair of Rgb-compliant track files, we will illustrate this annotating ”regions”
files produced by cghRA in chapter 3.

5.1 Cytogenetic coordinates

A first annotation of interest would be to obtain cytogenetic coordinates of the amplified and deleted regions,
which may be easier to picture than raw numeric coordinates. For this purpose we will require a CNV banding
annotation track, as produced using Rgb track.bands() or track.bands.UCSC() functions (please refer to
Rgb documentation for further details). Such a track for the human genome can be downloaded from Rgb
website, for GRCh37 and GRCh38 assemblies.

Graphical interface

To perform the annotation, select the RDT files to annotate using the ”Track(s) to process” button and the
cytoband file using the ”Annotation track”button. Then change the ”Crossing type”to ”cytoband”, which only
applies in this specific case, and press ”Compute annotation”. In this particular case, the two other parameters
won’t have any effect on the result.

Files will be processed one by one, the new column being added in the same RDT file. The name of the
new column will be generated combining the name of the annotation track and the name of the crossing type,
which should be in our case ”UCSC bands.cytoband”.

To observe the results, the RDT files can be converted to CSV and read with a spread-sheet editor, as
described in section 5.4.

R command lines

The same result can be obtained using the cross() method of the track.table class :

> # Import files to process

> bands <- readRDT("GRCh37.UCSC_bands.rdt")

> regions <- readRDT("DLBCL_Feb2016_CHB02048.copies.rdt")

> # Before annotation

> print(regions$extract(1:3))

22

http://bioinformatics.ovsa.fr/files/GRCh37.UCSC_bands.rdt
http://bioinformatics.ovsa.fr/files/GRCh38.UCSC_bands.rdt

> # Annotate

> regions$cross(

+ annotation = bands,

+ colname = "UCSC banding",

+ type = "cytoband"

+)

> # After annotation

> print(regions$extract(1:3))

Notice the colname argument allows to set the name of the newly produced column to any custom value.
Alternatively, colname can be set to NULL to produce a vector that will be returned by the method rather
than stored in the object.

5.2 Gene list

Listing the genes located in a region could also prove to be very usefull when assessing CGH array results.
Data to perform such an annotation can be produced using track.genes() or track.genes.NCBI() Rgb
functions (please refer to Rgb documentation for further details). The human genes with HGNC symbols for
the human genome can be found on Rgb website as well, for GRCh37 and GRCh38 assemblies.

Graphical interface

Select the RDT files to annotate using the ”Track(s) to process”button and the gene file using the ”Annotation
track” button. This time the ”Crossing type” will be different : actually you can name here a column whose
value should be listed for each overlap found. In this case, you can type ”name” in the field to list HGNC
symbols or ”GeneID” to list numeric NCBI Gene IDs instead. This behavior can be generalized to any column
available in the annotation track.

Considering that regions can widely vary in size, the two other parameters can be helping. The ”Fuzziness”
describes how regions to annotate will be extended on both sides before looking for overlaps, in order to list
genes nearby but not strictly overlapping the annotated region. The ”Max elements” value avoids to produce
huge files listing hundreds or thousands of genes for large regions. When this value is exceeded for a region,
only the amount of overlaps will be reported rather than the complete list of symbols or IDs.

Once the parameters set to your convenience, hit the ”Compute annotation” button. The selected RDT
files should be updated with a new column, whose name corresponds to the name of the annotation track and
the crossing type. To visualize this result, please refer to section 5.4.

R command lines

The same result can be obtained using the cross() method of the track.table class :

23

http://bioinformatics.ovsa.fr/files/GRCh37.NCBI_genes.rdt
http://bioinformatics.ovsa.fr/files/GRCh38.NCBI_genes.rdt

> # Import files to process

> genes <- readRDT("GRCh37.NCBI_genes.rdt")

> regions <- readRDT("DLBCL_Feb2016_CHB02048.copies.rdt")

> # Before annotation

> print(regions$extract(1:3))

> # Annotate using HGNC symbols

> regions$cross(

+ annotation = genes,

+ colname = "NCBI gene symbols",

+ type = "name"

+)

> # Annotate using GeneID

> regions$cross(

+ annotation = genes,

+ colname = "NCBI gene IDs",

+ type = "GeneID"

+)

> # After annotation

> print(regions$extract(1:3))

5.3 Polymorphism likelihood (cnvScore)

When CGH is performed using a pool of normal DNA as control rather than germline DNA from matching
patients, amplified and deleted regions can be specific to the tumor (somatic) or only a reflect of the patient’s
genome uniqueness (polymorphism). As only somatic events are usually targeted when performing CGH on
tumoral DNA, cghRA provides an original algorithm to classify regions as somatic or polymorphic, using the
Database of Genomic Variants. More details about this algorithm can be found in the article related to cghRA,
cited in the beginning of this document.

To compute such a score for segments obtained in a CGH experiment, one first needs to prepare a bank of
polymorphisms to compare segments to. Any list of amplified or deleted regions found in a cohort of healthy
individuals can be used as a polymorphism bank, however cghRA proposes the track.CNV.DGVsupp() function
to parse files downloaded from the Database of Genomic Variants. The resulting track file can be downloaded
from Rgb website, for the GRCh37 and GRCh38 assemblies.

Graphical interface

The first step will consist in remapping the polymorphism bank to the CGH array design used in our experiment.
Indeed depending on the resolution of the array and the location of the probes (which tend to avoid highly
polymorphic regions), the set of polymorphisms that can be detected and their apparent locations vary from a
design to another. This implies that if multiple designs were used in a data set, each sample will have
to be scored with a polymorphism bank remapped to the corresponding design.

Using the graphical interface, the bank remapping will be performed for the first sample, and the resulting
map stored in the same directory as the polymorphism bank. Next samples will use the same map as long as
it matches their design, else you will have to remove the map file to allow another one to be produced. This
implies that the computation can be quite long for the first sample (more than ten minutes for high-resolution
arrays), but should be faster for the next ones (usually a few seconds).

To compute a cnvScore for each genomic region in a RDT file (whether they were produced by cghRA
as described in chapter 3 or not), first select these target files using the ”Track(s) to process” button. Then
click the ”Design file” button to select the matching RDT design file, as produced in chapter 2, and a RDT
file containing polymorphisms using the ”Polymorphism track” button. You may then hit the ”Compute CNV
score”button to launch the processing. A new ”cnvScore”column will be added to all selected files, which can
be visualized following instructions in section 5.4.

24

http://dgv.tcag.ca/dgv/app/home
http://dgv.tcag.ca/dgv/app/home
http://bioinformatics.ovsa.fr/files/GRCh37.DGV_supp.rdt
http://bioinformatics.ovsa.fr/files/GRCh38.DGV_supp.rdt

cghRA also proposes to filter regions according to their cnvScore, in order to remove polymorphisms before
down-stream analyses. To do so, just check the ”Filter”box and provide a threshold above which a region will
be considered as a polymorphism. The recommended threshold of 1 is a good balance between sensitivity and
specificity, increasing it will enhance specificity (removed regions are certain polymorphisms but some may be
missed) while decreasing it will enhance sensitivity (more regions are removed, including more misclassified
somatic events). Please refer to cghRA publication for further details on the cnvScore thresholds.

R command lines

The same steps as described for the graphical interface can be performed using R command lines :

> # Import files to process

> dgv <- readRDT("GRCh37.DGV_supp.rdt")

> design <- readRDT(file="design.rdt")

> target <- readRDT(file="DLBCL_Feb2016_CHB02048.copies.rdt")

> # Remap the polymorphism bank

> dgvMap <- map2design(dgv, design)

> # Compute cnvScore for a sample

> sampleMap <- map2design(target, design)

> score <- cnvScore(sampleMap, dgvMap)

> # Add cnvScore in sample table

> target$addColumn(content=score, name="cnvScore")

> print(target)

> # Filter using cnvScore

> target$rowOrder(which(target$extract(,"cnvScore") < 1))

> print(target)

5.4 Export to a spread-sheet editor

While the RDT format is convenient to store tables of genomic regions in an efficient way, only Rgb and
software relying on it support this format. Thus users not familiar with Rgb would find more convenient to
extract the content of RDT files to flat text files that can be processed with Excel or any other spread-sheet
editor. Keep in mind however that the RDT format is an efficiently compressed format, meaning that some
datasets stored in such files (e.g. exons from an entire genome or probes from a high-resolution array) can
become huge when exported to CSV.

Notice finally that the resulting files will only be an export at time t of the RDT files, and that cghRA and
Rgb are unable to directly work with this format. This implies that a new export may be required each time
the source RDT file is updated, cghRA will not keep the two file content synchronized.

25

Graphical interface

The last section of the ”Annotate regions” panel offers to convert selected tracks to CSV. Simply select the
RDT files to export using the ”Track(s) to process” button, define the format of the CSV file(s) to produce
and hit the ”Export to CSV”button. Files will be produced in the same directory as source files, replacing the
”.rdt” file extension by ”.csv”.

As the CSV (originally standing for ”Comma-Separated Values”) file format can vary from a platform to
another, several parameters can be set to obtain CSV files compatible to your spread-sheet editor. In Europe,
where the decimal separator is usually a comma (”,”), CSV files use semi-colons (”;”) to differentiate columns
and commas for decimal numbers. In other countries using the period (”.”) as decimal separator, CSV files
generally use commas to separate columns. An alternative is to use tabulations (represented by ”\t”) to
separate columns.

The user is proposed to enable or disable the cell quoting mechanism, which consists in putting the
content of cells between double-quotes to protect special characters they may contain. This is only useful if
a cell is susceptible to contain line breaks or characters used for column separation, and some spread-sheet
editor may need specific configuration to handle this.

Finally the user is proposed to enable or disable the addition of a header to the CSV file. This header
consists of a few lines beginning with a ”#” symbol before the table, providing meta-data that were stored in
the RDT file. Keeping this header is recommended, as it usually helps to identify and interpret the content of
the table.

R command lines

Exporting the content of a RDT using R is straight-forward. Please refer to R documentation on data export
and on the write.table() function in particular for more control of the exported file format.

> object <- readRDT(file="DLBCL_Feb2016_CHB02048.copies.rdt")

> content <- object$extract()

> write.csv(content, file="DLBCL_Feb2016_CHB02048.copies.csv")

26

6 Series processing

While all other steps of the analysis described in here focused on one sample at a time, tools provided in the
”Series processing” panel allow to widen one’s point of view to the level of a series of samples, in order to
identify recurring events. To do so, cghRA proposes to summarize a series of samples into various tables, that
can be exported to Excel or visualized interactively in Rgb. This comprises condensed packings of the data,
and output from several algorithms aiming at identifying ”Minimal Common Regions” (MCR), i.e. the most
recurrent overlaps between altered segments across a series.

6.1 Produce Rgb track files

Output types

A copy number matrix is an exhaustive representation of modelized copy-numbers in a two-dimension matrix,
with samples in columns and genomic regions in rows. The genome is split in as many rows as necessary to
describe all breakpoints found in the series of samples considered, which can be quite high when considering
large series of highly rearranged genomes. While not directly visualizable in Rgb, it can be interesting to export
such a matrix to CSV and open it with a spread-sheet editor.

A penetrance track is a table describing what proportion of the samples show one specific type of alteration
(gain, deletion, loss...) for any region of the genome. As for the copy number matrix, the table contains as
many rows as necessary to exhaustively describe all the breakpoints in the sample. This is typically what is
used by the STEPS algorithm to highlight regions of interest (see 6.2).

An altered segment pool consists in the gathering of all segments found as altered (amplified, deleted...)
across a series in a single table, with a column describing which sample it originates from. This is probably
the best track to browse with Rgb, in order to visually identify regions in which many distinct samples show
similar alterations (see 7).

Summary plots can also be produced from penetrance and pool tracks. These are image files representing
the content of the corresponding track(s) allong the 22 autosomes, as produced by Rgb function singlePlot.
They allow to get an overview of the whole series in the whole genome.

Graphical interface

To produce one or many of these files using the graphical interface, fill the first ”Series to analyze” block of
the form. You will be required to provide a name for the series (mainly used to name output files and to be
displayed in Rgb), the ”.copies.rdt” files of the samples to include in the series and a directory in which the
files produced will be stored.

You will also be required to describe the copy-number states you are interested in. To do so, fill the
”Alteration intervals” field with as many alteration states you want, separated by white spaces. For each of
them provide a name (e.g. ”deletion”or ”gain”) and between parenthesis describe which copy numbers are part
of this state, providing the lower boundary (which is included in the interval) and the upper boundary (which
is not included in the interval). As can be seen in default values, Inf and -Inf (positive and negative infinite)
can be used ensure that any value is classified.

27

While the recommended workflow consists in modelizing copy-numbers with cghRA and use these copy-
numbers as states in this panel, one can also define alteration using log-ratios thresholds. To do so, switch the
spin box at the end of the ”Alteration intervals”to indicate that numeric values in your alteration state definitions
are log-ratios and not modelized copy numbers. When working with log-ratio thresholds, ”.regions.rdt” files
can be used alternatively to the ”.copies.rdt” files produced by the model at sections 3.5 and 4.

For copy number matrix, only the ”log-ratio” vs ”copies” choice will be used, to define the type of values
to export in the matrix. However one distinct penetrance track will be produced for each alteration state
you define, and the altered segment pool will only contain segments matching one these states.

If the ”Plot” box is checked, a PNG file will also be produced for the penetrance (if penetrance tracks are
produced) and the altered segment pool (if checked here again). These images represent the content of the
track along the 22 chromosomes, providing a convenient overview of all the samples in the whole genome.
You can define the size of the image file to produce in pixels (widths and height), as well as its resolution
(in pixels per inches), in order to produce figures of the quality of your choice. Such representations can be
further refined using Rgb function singlePlot, please refer to section 7.2 for further details and an example
of output.

R command lines

These files can be produced using methods from the cghRA.series class. Notice that these methods rely on
more generic R functions defined in the cghRA package, that can also be used on data.frames without using
cghRA.series objects (please refer to cghRA package R manual for further details). Moreover these methods
can provide additional parameters absent from the graphical interface, see the cghRA.series manual for more
information.

> # Aggregate sample files as a series object

> files <- dir(pattern=".copies.rdt$")

> series <- cghRA.series(files, .name="cghRA vignette")

> # Produce and export a copy-number matrix

> mtx <- series$parallelize(value="copies")

> write.csv(mtx, file="CN_matrix.csv")

> # Produce and export a penetrance track (deletion)

> pen <- series$penetrance(

+ value = "copies",

+ states = list(deletion=c(-Inf, -0.5))

+)

> saveRDT(pen$del, file="Penetrance_del.rdt")

> # Produce and export an altered segment pool

> pool <- series$pool(

+ value = "copies",

+ states = list(deletion=c(-Inf, -0.5), gain=c(0.5, Inf))

+)

> saveRDT(pool, file="Segment_pool.rdt")

6.2 Compute regions of interest

When analyzing multiple samples from the same tumor type, it is common to focus on Minimal Common
Regions (MCR), i.e. the most recurrently altered regions, as they are the most likely to harbor genes of
interest in this tumor type. Several algorithms were developed to infer such regions, and cghRA proposes three
algorithms developed in Diffuse Large B-Cell Lymphomas : STEPS, SRA and LRA.

The first proposed algorithm is STEPS, standing for ”Selective Trends Evidenced by Penetrance Surges”,
which was developed specifically for cghRA and described thoroughly in the associated publication referenced
at the beginning of the current document. This algorithm will prioritize regions of interest attributing them
a score, assessing several criterion found in confirmed regions of interest. Briefly, this algorithm identifies
local maxima in the penetrance, and expand these regions on both sides to locate where in the genome the
piling of altered segments starts and ends. It will then attribute a score to these regions, favoring regions
presenting symmetric patterns (expanded starts and stops are at the same penetrance levels and the same
distance from the MCR) and high penetrance in the MCR area. This controlled expansion step allows to

28

discard chromosome-wide alterations from the analysis, and focus on local alterations only, which are the only
ones supporting the involvement of a specific locus and its genes.

The two other ones, called ”Short / Long Recurrent Abnormalities” (SRA / LRA), were described in the
supplemental methods of Lenz et al, PNAS 2008 Sep 9;105(36):13520-5. For each region of interest they
report several sets of coordinates of various width, corresponding to arbitrary proportions of the maximal
penetrance met (1/3 and 2/3). SRA is more suitable to study narrow recurring events (less than 1 Mb) while
LRA is intended to work with large segments. None of them provide scoring of the MCR, that can only be
prioritized by decreasing penetrance, despite the fact that chromosome-wide alterations independent from the
MCR will somehow blur this ordering.

Graphical interface

To apply one of these three algorithms, you will be required to fill the same form as described for Rgb track
files (see section 6.1). Here again the analysis will be run independently for each alteration state you define,
using the thresholds you provide.

For STEPS, the user can change the 3 main weights of the computation, despite it is not recommended.
dpen is the penalty applied when the penetrance increases rather than decreases when moving away from
the MCR. Higher values will expand further and allow more nesting, as small penetrance peaks will be passed
through rather than stop the region expansion. vpen is the vertical symmetry weight, larger values will put
a strongest focus on regions with boundaries at the same penetrance level. gpen is the genomic symmetry
weight, larger values will emphasize on regions with boundaries at the same genomic distance from the MCR.
Finally nested controls how to deal with regions that overlap when expanded and thus share some altered
segments. With the ”merge” behavior, only the highest MCR will be retained in the results, considering other
MCR as bystanders. With ”flag”, all MCRs will be retained in the results and overlaping MCRs will be attributed
a common nest ID, which will allow to identify them easily. With ”none”, no action is performed regarding
nested MCRs, which will all be reported.

For SRA and LRA, one can solely enable or disable the computation of one of them, which are usually
computed together.

Once the corresponding ”Compute” button is hit, a new RDT file will be produced for the corresponding
algorithm(s) and for each alteration state, in the output directory you choosed.

R command lines

As for Rgb tracks, regions of interest can be computed using methods from the cghRA.series class :

> # Aggregate sample files as a series object

> files <- dir(pattern=".copies.rdt$")

> series <- cghRA.series(files, .name="cghRA vignette")

> # Produce and export STEPS (deletion)

> steps <- series$STEPS(

+ value = "copies",

+ states = list(deletion=c(-Inf, 0))

29

+)

> saveRDT(steps$del, file="STEPS_del.rdt")

> # Produce and export SRA (deletion)

> sra <- series$SRA(

+ value = "copies",

+ states = list(deletion=c(-Inf, 0))

+)

> saveRDT(sra$del, file="SRA_del.rdt")

> # Produce and export LRA (deletion)

> lra <- series$LRA(

+ value = "copies",

+ states = list(deletion=c(-Inf, 0))

+)

> saveRDT(lra$del, file="LRA_del.rdt")

30

7 Visualize results with Rgb

This section only gives a glimpse of Rgb visualization capabilities. For more details on Rgb and its usage,
please refer to its own vignette that can be found in the Rgb package. Most of the files produced or used in
this vignette can be directly imported in Rgb for visualization, and notably :

� .design.rdt files resulting from the design processing (chapter 2).

� .probes.rdt files resulting from the array import and preprocessing (chapter 3). Notice you will be asked
to select the matching ”.design.rdt” as well when importing such a file.

� .regions.rdt files resulting from the segmentation (section 3.4).

� .copies.rdt files resulting from the copy-number modelization (sections 3.5 and 4).

� All annotation tracks that can be used in chapter 5, and downloaded from Rgb website.

7.1 Graphical interface

To do so in an interactive mode, one simply needs to launch Rgb using the tk.browse() R command or any
alternative way that Rgb may provide in the future (refer to Rgb package documentation for further details).
Click Tracks and ”Add from file”to select the RDT files to add to the current view, and ”Done”to come back
to the main screen.

Then to visualize a region of the genome, you can enter its coordinates in the first part of the form
(chromosome name, starting and ending position in Mb) and hit the Jump button. Notice that starting and
ending positions are optional, leaving these fields blanks will display the whole selected chromosome.

Alternatively, you can set the window to a specific locus searching one of the selected tracks (e.g. zoom
on a specific gene providing its symbol). To do so, the track to be searched (”GRCh37.NCBI genes.rdt” in our
example) needs to be part of the selected tracks (but can be hidden though). Then simply type in the Find
field the symbol of the gene you are looking for, select the track to search in the menu and hit the ”Find”

31

http://bioinformatics.ovsa.fr/Rgb

button. If multiple hits are found, click again on ”Find” to switch from one to another. More experienced
users can also check the ”using regexp” box to enter a regular expression rather than a fixed string to search.
This ”Find”feature can work on any track, just keep in mind that the string will be searched for in the ”name”
column of the track you select, not any other.

Once a region is displayed, you can use the left and right arrow keys of your keyboard to move along
the chromosome, and the up and down arrows to zoom in or out. Zooming in and out can also be performed
using the mouse wheel, or by selecting a region to zoom in with the left mouse button (press the button
over a genomic location, move your mouse to another and release the button).

Visible data tracks can be managed in the panel summoned clicking the ”Tracks” button, where they can
notably be ordered, hidden or edited. Various graphical parameters can be changed for most tracks, just don’t
forget to save your changes before closing the window and reload the graphics (hitting the ”Jump” button or
the ”R” key from your keyboard).

7.2 R command lines

Such representations can also be produced using R commands, or a mix of R commands and interactive panels.
Notice however that only tk.browse() will provide a full interactive experience with chromosome walking
using the mouse and the keyboard.

The first step will be to gather the data tracks to visualize into a drawable.list object. More details
about this class and the methods it offers can be found in R manual pages.

> # Import some data tracks into R memory

> design <- readRDT(file="design.rdt")

> sample <- readRDT(file="DLBCL_Feb2016_CHB05212.copies.rdt")

> # Create an empty drawable list

> dl <- drawable.list()

> # Bind tracks from R memory

> dl$add(file=NA, track=design)

> dl$add(file=NA, track=sample)

> # Bind tracks from file

> dl$add(file="GRCh37.NCBI_genes.rdt")

> # Or use the interactive interface

> dl$fix.files()

> dl <- tk.tracks()

Then one can simply use Rgb’s browsePlot() function to visualize a specific region of the genome.

> # Visualize a region

> browsePlot(dl, chrom=9, start=19.18e6, end=23.76e6)

Such plots can be exported to files, using classical R mechanisms.

> # Export into a PNG file

> png("export.png", width=800, height=600, res=100)

> browsePlot(dl, chrom=9, start=19.18e6, end=23.76e6)

> dev.off()

The whole interactive interface can still be summoned at any time :

> # Visualize the drawable list in Rgb

> tk.browse(dl)

To find regions of interest, one can use tracks for any type of computation or filtering, as extensively
described in Rgb vignette. Tracks can be extracted from the drawable.list object using the get, getBy-
Classes or getByNames methods or be stored apart in R memory.

> # Select a gene track stored in the list

> genes <- dl$getByClasses("track.genes")[[1]]

32

> # Visualize CDKN2A locus

> locus <- genes$extract(expression(name == "CDKN2A"))

> browsePlot(

+ drawables = dl,

+ chrom = locus$chrom,

+ start = locus$start - 1e5,

+ end = locus$end + 1e5

+)

Drawing parameters can be set for any track, using the interface or the setParam method of the drawable
class. Details about drawing parameters are provided by the interface and explained in Rgb documentation.

> # Update parameters of an existing list using the interface

> dl$fix.param()

> # Update parameters of a specific track from the list

> genes <- dl$getByClasses("track.genes")[[1]]

> genes$setParam("colorVal", "#FF8888")

Keep in mind that classes in Rgb and cghRA are reference classes, so copying a variable will not duplicate
its content but only the reference to the memory address it is stored in. It implies that modifications to one of
the copies of the object will be propagated to all of them, especially for objects added to a drawable.list.

> # Import a track and "copy" it

> genes <- readRDT(file="GRCh37.NCBI_genes.rdt")

> copy <- genes

> # Add it to a drawable list

> dl <- drawable.list()

> dl$add(file=NA, track=genes)

> # Update one of the copies

> genes$setParam("ylab", "Updated gene list name")

> # All copies were updated

> print(genes$getParam("ylab"))

> print(copy$getParam("ylab"))

> print(dl$get(1)$getParam("ylab"))

Alternatively to single locus plot, one can use the singlePlot() function to plot a representation of the
selected tracks in the whole genome.

Keep in mind however that most tracks are not optimized for such a large zoom level, so one or many
parameters will probably need to be tuned to obtain neat figures. The ”height” drawing parameter is one of
them for most annotation tracks, as it is usually set in centimeters rather than relative units. Moreover the
default plot window summoned by R may prove too small to hold such a large picture (”figure region too large”
or ”Plot area too small”errors), so you should consider to plot directly to a file or resize the plot window before
calling singlePlot().

33

> # Create a drawable list

> dl <- drawable.list()

> dl$add("cghRA vignette penetrance (deletion).rdt")

> dl$add("GRCh37.UCSC_bands.rdt")

> dl$add("cghRA vignette penetrance (gain).rdt")

> # Tune cytoband track parameters

> bands <- dl$getByClasses("track.bands")[[1]]

> bands$setParam("height", 0.5)

> bands$setParam("label", FALSE)

> # Produce penetrance summary plot

> png("Penetrance summary.png", width=1600, height=800, res=100)

> singlePlot(dl)

> dev.off()

> # Replace penetrance tracks with the pool track

> dl$remove(c(1, 3))

> dl$add("cghRA vignette pool (copies).rdt")

> # Produce altered pool summary plot

> png("Pool summary.png", width=1600, height=800, res=100)

> singlePlot(dl)

> dev.off()

34

	Introduction
	Installation
	Quick-start
	Reference

	Design processing
	Importing an Agilent design
	Importing a custom design
	Graphical interface
	R command lines
	Extend cghRA capabilities

	Remapping a design
	Both methods : BLAT setup
	Both methods : required files
	Graphical interface
	R command lines

	WACA pre-computation
	Chromosome arm split

	Array processing
	Importing Agilent arrays
	Importing custom arrays
	Graphical interface
	R command lines
	Extend cghRA capabilities

	Preprocessing steps
	Mask flagged probes
	Replicated probes
	WACA correction
	Spatial distributions
	CPU cores

	Segmentation
	Fill gaps
	Segmentation parameters

	Copy number modelization

	Model visualization and tuning
	R command lines
	Graphical interface
	Adjust plot size
	Keys to plot interpretation
	Model parameters
	Automatized modeling

	Annotate regions
	Cytogenetic coordinates
	Gene list
	Polymorphism likelihood (cnvScore)
	Export to a spread-sheet editor

	Series processing
	Produce Rgb track files
	Compute regions of interest

	Visualize results with Rgb
	Graphical interface
	R command lines

