Package 'ciftiTools'

July 1, 2022

Type Package

Title Tools for Reading, Writing, Viewing and Manipulating CIFTI Files

Version 0.10.2

Maintainer Amanda Mejia <mandy.mejia@gmail.com>

Description CIFTI files contain brain imaging data in ``grayordinates," which represent the gray matter as cortical surface vertices (left and right) and subcortical voxels (cerebellum, basal ganglia, and other deep gray matter). 'ciftiTools' provides a unified environment for reading, writing, visualizing and manipulating CIFTI-format data. It supports the ``dscalar," ``dlabel," and ``dtseries" intents. Grayordinate data is read in as a ``xifti" object, which is structured for convenient access to the data and metadata, and includes support for surface geometry files to enable spatially-dependent functionality such as static or interactive visualizations and smoothing.

Depends R (>= 3.5.0)

License GPL-3

Encoding UTF-8

Imports fields, gifti (> 0.7.5), grDevices, oro.nifti, RNifti, RColorBrewer, rgl, viridisLite, xml2

Suggests covr, ggplot2, ggpubr, grid, gridExtra, htmlwidgets, manipulateWidget, knitr, rmarkdown, png, testthat (>= 3.0.0)

RoxygenNote 7.2.0

URL https://github.com/mandymejia/ciftiTools

BugReports https://github.com/mandymejia/ciftiTools/issues

NeedsCompilation no

Author Amanda Mejia [aut, cre],

Damon Pham [aut] (https://orcid.org/0000-0001-7563-4727),

John Muschelli [ctb] (https://orcid.org/0000-0001-6469-1750)

Repository CRAN

Date/Publication 2022-07-01 08:50:02 UTC

R topics documented:

add_surf
apply_xifti
as.matrix.xifti
as.xifti
ciftiTools
ciftiTools.files
ciftiTools.getOption
ciftiTools.listOptions
ciftiTools.setOption
combine_xifti
dim.xifti
expand_color_pal
fix_xifti
get_wb_cmd_path
infer_resolution
info_cifti
is.cifti
is.surf
is.xifti
load_parc
load_surf
make_color_pal
merge_xifti
move_from_mwall
move_to_mwall
newdata_xifti
parc_borders
plot.surf
plot.xifti
read_cifti
read_surf
read_xifti2
remove_xifti
resample_cifti
resample_cifti_from_template
1 1
resample_gifti
1 —
rotate_surf
ROY_BIG_BL
run_wb_cmd
S3_Math
S3_Ops
S3_Summary
scale_xifti
select_xifti
separate_cifti

add_surf 3

add_s	surf	Add	surj	face	e(s)	to d	a ":	xif	ti	,,									
Index																			82
	_																		
	write_xifti2																		
	write_surf_gifti																		
	write_subcort_nifti																		
	write_metric_gifti .																		
	write cifti																		
	view_xifti_volume																		
	view_xifti_surface																		
	view_xifti																		
	view_surf																		
	view_comp																		
	use_color_pal																		
	unmask_subcortex																		
	transform_xifti unmask_cortex																		
	supported_intents .																		
	summary.xifti																		
	summary.surf																		
	substructure_table.																		
	smooth_gifti																		
	smooth_cifti																		

Description

Add left or right cortical surface geometry to a "xifti" object.

Usage

```
add_surf(xifti, surfL = NULL, surfR = NULL)
```

Arguments

xifti	A "xifti" object.
surfL	(Optional) Left brain surface model. Can be a file path to a GIFTI surface geometry file (ends in "*.surf.gii"), a "gifti" object representing surface geometry, or a "surf" object.
surfR	(Optional) Right brain surface model. Can be a file path to a GIFTI surface geometry file (ends in "*.surf.gii"), a "gifti" object representing surface geometry, or a "surf" object.

Details

surfL will be added to xifti\$surf\$cortex_left and surfR will be added to xifti\$surf\$cortex_right. Any existing surfaces will be overwritten.

4 apply_xifti

Value

the "xifti" object with added surface geometry components.

See Also

```
Other functions for manipulating 'xifti' objects: apply_xifti(), combine_xifti(), convert_to_dlabel(), merge_xifti(), newdata_xifti(), remove_xifti(), select_xifti(), transform_xifti()
```

apply_xifti

Apply a function along the rows or columns of a "xifti"

Description

Apply a many-to-N function (e.g. mean) to the rows or columns of a "xifti". If applied row-wise, a "xifti" with N data column(s) is returned. (If the "xifti" had the dlabel intent, and values that are not labels are created, then it is converted to dscalar.) If applied column-wise, a numeric matrix with N rows is returned.

For univariate functions, use transform_xifti instead.

Usage

```
apply_xifti(xifti, margin = c(1, 2), FUN, ...)
```

Arguments

xifti	A "xifti" object.
margin	The dimension along which to apply FUN: 1 for rows (default) and 2 for columns.
FUN	The function. It should take in a numeric vector and return a length-N numeric vector.
	Additional arguments to FUN

Value

```
A "xifti" if margin == 1, or a numeric matrix if margin == 2
```

See Also

```
Other functions for manipulating 'xifti' objects: add_surf(), combine_xifti(), convert_to_dlabel(), merge_xifti(), newdata_xifti(), remove_xifti(), select_xifti(), transform_xifti()
```

as.matrix.xifti 5

as.matrix.xifti

Convert a "xifti" to a matrix

Description

Converts a "xifti" to a matrix by concatenating the data from each brainstructure along the rows. Surfaces and metadata are discarded.

Usage

```
## S3 method for class 'xifti'
as.matrix(x, ...)
```

Arguments

```
x A "xifti" object.
... Unused
```

Value

The input as a matrix. Each brainstructure's data is concatenated.

as.xifti

Assemble a "xifti" from data

Description

Assembles cortical data, subcortical data, and/or surface geometry to form a "xifti". The inputs must be data objects (vectors, matrices or arrays, depending on the argument).

Usage

```
as.xifti(
  cortexL = NULL,
  cortexL_mwall = NULL,
  cortexR = NULL,
  cortexR_mwall = NULL,
  mwall_values = c(NA, NaN),
  subcortVol = NULL,
  subcortLabs = NULL,
  subcortMask = NULL,
  surfL = NULL,
  surfR = NULL,
  col_names = NULL,
  HCP_32k_auto_mwall = TRUE,
```

6 as.xifti

```
validate = TRUE
)
as_xifti(
  cortexL = NULL,
  cortexL_mwall = NULL,
  cortexR = NULL,
  cortexR_mwall = NULL,
 mwall\_values = c(NA, NaN),
  subcortVol = NULL,
  subcortLabs = NULL,
  subcortMask = NULL,
  surfL = NULL,
  surfR = NULL
)
as.cifti(
  cortexL = NULL,
  cortexL_mwall = NULL,
  cortexR = NULL,
  cortexR_mwall = NULL,
 mwall\_values = c(NA, NaN),
  subcortVol = NULL,
  subcortLabs = NULL,
  subcortMask = NULL,
  surfL = NULL,
  surfR = NULL
)
as_cifti(
  cortexL = NULL,
  cortexL_mwall = NULL,
  cortexR = NULL,
  cortexR_mwall = NULL,
 mwall\_values = c(NA, NaN),
  subcortVol = NULL,
  subcortLabs = NULL,
  subcortMask = NULL,
  surfL = NULL,
  surfR = NULL
)
```

Arguments

```
cortexL, cortexL_mwall
```

Left cortex data and ROI. Each must be a data matrix or vector.

If cortexL_mwall is not provided, cortexL should have data for all vertices on the left cortical surface (V_LxT data matrix). There will not be a mask for the medial wall. Not providing the medial wall mask is appropriate for ".dlabels.nii"

as.xifti 7

files where the medial wall may have its own label and therefore should not be treated as missing data.

If cortexL_mwall is provided, cortexL should either have data for all vertices on the left cortical surface (V_LxT data matrix, with filler values e.g. 0 or NaN for medial wall vertices), or have data only for non-medial wall vertices (($V_L-mwall_L$)xT data matrix). The medial wall mask will be the 0 values in cortexL_mwall. The medial wall mask should be provided whenever the medial wall should be treated as missing data.

Since the unmasked cortices must have the same number of vertices, V_L should match V_R .

cortexR, cortexR_mwall

Right cortex data and ROI. Each must be a data matrix or vector.

If cortexR_mwall is not provided, cortexR should have data for all vertices on the right cortical surface (V_RxT data mre will not be a mask for the medial wall. Not providing the medial wall mask is appropriate for ".dlabels.nii" files where the medial wall may have its own label and therefore should not be treated as missing data.

If cortexR_mwall is provided, cortexR should either have data for all vertices on the right cortical surface (V_RxT data matrix, with filler values e.g. 0 or NaN for medial wall vertices), or have data only for non-medial wall vertices (($V_R - mwall_R$)xT data matrix). The medial wall mask will be the 0 values in cortexR_mwall. The medial wall mask should be provided whenever the medial wall should be treated as missing data.

Since the unmasked cortices must have the same number of vertices, V_L should match V_R.

mwall_values

If cortex[L/R]_mwall was not provided, or if it was invalid (i.e. bad length or all TRUE), the medial wall mask will be inferred from rows in cortex[L/R] that are constantly one of these values. Default: c(NA, NaN). If NULL, do not attempt to infer the medial wall from the data values. NULL should be used if NA or NaN are legitimate values that non-medial wall vertices might take on.

subcortVol, subcortLabs, subcortMask

subcortVol represents the data values of the subcortex. It is either a 3D/4D numeric array (ixjxkxT), or a vectorized matrix $(V_S \text{ voxels by } T \text{ measurements})$. If it's vectorized, the voxels should be in spatial order (i index increasing fastest), then j, then k).

subcortLabs represents the brainstructure labels of each voxel: see substructure_table. It is either a 3D data array (ixjxk) of integer brainstructure indices, or a V_S length vector in spatial order with brainstructure names as factors or integer indices. The indices should be 3-21 (1 and 2 correspond to left and right cortex, respectively) or 1-19 (cortex labels omitted), with 0 representing out-of-mask voxels.

subcortMask is logical 3D data array (ixjxk) where TRUE values indicate subcortical voxels (in-mask). If it is not provided, the mask will be inferred from voxels with labels 0, NA, or NaN in subcortLabs. If subcortLabs are vectorized and subcortMask is not provided, the mask cannot be inferred so an error will occur.

8 ciftiTools

surfL, surfR (Optional) Surface geometries for the left or right cortex. Can be a surface GIFTI file path or "surf" object; see make_surf for a full description of valid inputs.

col_names Names of each measurement/column in the data.

HCP_32k_auto_mwall

If left and/or right cortex data is provided, and the number of vertices matches that of the HCP 32k mesh (29696 on left, and 29716 on right), should the medial wall masks be added to the "xifti" if not provided? Default: TRUE.

Validate that the result is a "xifti"? Default: TRUE. If FALSE, the result may

not be properly formatted if the inputs were invalid.

Details

validate

Each data or surface component is optional. Metadata components (cortex[L/R]_mwall, subcortLabs, and subcortMask) will be ignored if its corresponding data component is not provided. If no data or surface components are provided, then the template_xifti will be returned.

If cortical data are provided without a corresponding medial wall mask, or if the provided mask is invalid or empty, then the medial wall will be inferred from data rows that are constantly a value in mwall_values. But if mwall_values is NULL, no attempt to infer the medial wall will be made and the medial wall metadata entry will be NULL.

The total number of grayordinates will be $G = (V_L - mwall_L) + (V_R - mwall_R) + V_S$: $V_L - mwall_L$ left vertices, $V_R - mwall_R$ right vertices and V_S subcortical voxels. T, the total number of measurements (columns of data), must be the same for each brainstructure.

Value

A "xifti"

See Also

Other functions for reading in CIFTI or GIFTI data: info_cifti(), load_parc(), load_surf(), read_cifti(), read_surf(), read_xifti2()

ciftiTools

ciftiTools: Tools for Reading and Visualizing CIFTI Brain Files

Description

Here are groups of commonly-used functions in ciftiTools:

Details

Functions for reading in CIFTI or GIFTI data:

- read_xifti: Read in a CIFTI file as a "xifti"
- read_xifti2: Read in GIFTI files as a "xifti"
- as.xifti: Combine numeric data to form a "xifti"

ciftiTools 9

- read_surf: Read in a surface GIFTI file as a "surf"
- info cifti: Read the metadata in a CIFTI file
- load_surf: Read in a surface included in ciftiTools
- load_parc: Read in a parcellation included in ciftiTools

Functions for writing CIFTI or GIFTI data:

- write_cifti: Write a "xifti" to a CIFTI file
- write_xifti2: Write a "xifti" to GIFTI and NIFTI files
- write_metric_gifti: Write a numeric data matrix to a metric GIFTI file
- write_surf_gifti: Write a "surf" to a surface GIFTI file
- write_subcort_nifti: Write subcortical data to NIFTI files
- separate_cifti: Separate a CIFTI file into GIFTI and NIFTI files

Functions for manipulating "xifti"s:

- apply_xifti: Apply a function along the rows or columns of the "xifti" data matrix
- combine_xifti: Combine multiple "xifti"s with non-overlapping brain structures
- convert_xifti: Convert the intent of a "xifti"
- merge_xifti: Concatenate data matrices from multiple "xifti"s
- newdata_xifti: Replace the data matrix in a "xifti"
- remove_xifti: Remove a brain structure or surface from a "xifti"
- select_xifti: Select data matrix columns of a "xifti"
- transform_xifti: Apply a univariate transformation to a "xifti" or pair of "xifti"s
- add_surf: Add surfaces to a "xifti"
- move_from_mwall: Move medial wall vertices back into the "xifti" data matrix
- move_to_mwall: Move rows with a certain value into the "xifti" medial wall mask

S3 methods for "xifti"s:

- summary and print: Summarize the contents.
- as.matrix: Convert data to a locations by measurements numeric matrix.
- dim: Obtain number of locations and number of measurements.
- plot: Visualize the cortical surface and/or subcortical data.
- +, -, *, /, ^, %%, %/%: Operation between a "xifti" and a scalar, or between two "xifti"s.
- abs, ceiling, exp, floor, log, round, sign, and sqrt: Univariate transformation of "xifti" data.

Functions for working with surfaces:

- read_surf: Read in a surface GIFTI file as a "surf"
- is.surf: Verify a "surf"
- write_surf_gifti: Write a "surf" to a surface GIFTI file
- view_surf: Visualize a "surf"
- resample_surf: Resample a "surf"
- rotate_surf: Rotate the geometry of a "surf"

10 ciftiTools.getOption

ciftiTools.files

ciftiTools files

Description

CIFTI and surface GIFTI files included in the ciftiTools package

Usage

```
ciftiTools.files()
```

Details

The CIFTI files are from NITRC: cifti-2_test_data-1.2.zip at https://www.nitrc.org/frs/?group_id=454

The surfaces are from the HCP and are included according to these data use terms: Data were provided [in part] by the Human Connectome Project, WU-Minn Consortium (Principal Investigators: David Van Essen and Kamil Ugurbil; 1U54MH091657) funded by the 16 NIH Institutes and Centers that support the NIH Blueprint for Neuroscience Research; and by the McDonnell Center for Systems Neuroscience at Washington University.

Only the inflated surfaces are available as GIFTI files. To access the other surfaces included in the package (very inflated and midthickness), see load_surf.

Value

a list of file paths

```
{\tt ciftiTools.getOption} \quad \textit{Get a} \ {\tt ciftiTools} \ \textit{option}
```

Description

Gets an R option (with prefix "ciftiTools_") value. See ciftiTools.listOptions.

Usage

```
ciftiTools.getOption(opt)
```

Arguments

opt

The option.

Value

The value, val

ciftiTools.listOptions 11

```
{\tt ciftiTools.listOptions}
```

 ${\it List} \; {\tt ciftiTools} \; {\it options} \\$

Description

 $List\ {\tt ciftiTools}\ options$

Usage

```
ciftiTools.listOptions()
```

Value

data.frame describing the options

ciftiTools.setOption Set a ciftiTools option

Description

Sets an R option (with prefix "ciftiTools_"). See ciftiTools.listOptions.

Usage

```
ciftiTools.setOption(opt, val)
```

Arguments

opt The option.

val The value to set the option as.

Value

The new value, val

12 dim.xifti

combine_xifti

Combine "xifti"s with non-overlapping brain structures

Description

Combine two to three "xifti"s with non-overlapping brain structures into a single "xifti". The names, intent, and surfaces of the first will be used, if present. To add more surfaces to the result, use add_surf.

Usage

```
combine_xifti(..., xii_list = NULL, meta = c("first", "all"))
```

Arguments

... The "xifti" objects

xii_list Alternatively, a list of "xifti" objects. If specified, will ignore . . .

meta "first" (default) to just use the metadata from the first argument, or "all" to

include the other metadata in a list.

Value

A "xifti" with data from the inputs

See Also

```
Other functions for manipulating 'xifti' objects: add_surf(), apply_xifti(), convert_to_dlabel(), merge_xifti(), newdata_xifti(), remove_xifti(), select_xifti(), transform_xifti()
```

dim.xifti

Dimensions of a "xifti"

Description

Returns the number of rows (vertices + voxels) and columns (measurements) in the "xifti" data.

Usage

```
## S3 method for class 'xifti'
dim(x)
```

Arguments

Х

A "xifti" object.

Value

The number of rows and columns in the "xifti" data.

expand_color_pal 13

expand_color_pal	Interpolates between entries in the input palette to make a larger
	palette with COLOR_RES entries.

Description

Interpolates between entries in the input palette to make a larger palette with COLOR_RES entries.

Usage

```
expand_color_pal(pal, COLOR_RES = 255)
```

Arguments

pal The color palette to expand, as a data.frame with two columns: "color" (char-

acter: color hex codes) and "value" (numeric).

COLOR_RES The number of entries to have in the output palette.

Value

A data.frame with two columns: "color" (character: color hex codes) and "value" (numeric)

fix_xifti	Fix a "xifti"	

Description

Make adjustments to a putative "xifti" so that it is valid. Each adjustment is reported.

Usage

```
fix_xifti(xifti, verbose = TRUE)
```

Arguments

xifti A "xifti" object.

verbose Report each adjustment? Default: TRUE

Details

Right now it only coerces the data to numeric matrices.

Value

The fixed "xifti"

infer_resolution

get_wb_cmd_path Get the Connectome workbench commana path	get_wb_cmd_path	Get the Connectome Workbench command path
---	-----------------	---

Description

Retrieves the path to the Connectome Workbench executable from a file path that may point to the executable itself, or to the Workbench folder which contains it (i.e., "path/to/workbench/bin_linux64/wb_command" or "path/to/workbench".)

Usage

```
get_wb_cmd_path(wb_path)
```

Arguments

wb_path

(Optional) Path to the Connectome Workbench folder or executable.

Value

The path to the Connectome Workbench executable

Description

Infer the numbers of vertices on each cortex of a "xifti" object. Also supports the result of info_cifti.

Usage

```
infer_resolution(xifti, surfL = NULL, surfR = NULL)
```

Arguments

xifti A "xifti" object.
surfL Left surface
surfR Right surface

Value

The inferred resolution

info_cifti 15

info_cifti

Get CIFTI metadata

Description

Get CIFTI metadata from the NIFTI header and XML using the Connectome Workbench command -nifti-information. The information is formatted as the meta component in a "xifti" object (see template_xifti), and includes:

- 1. medial wall masks for the left and right cortex
- 2. the subcortical labels (ordered spatially)
- 3. the subcortical mask
- 4. other NIFTI intent-specific metadata

Usage

```
info_cifti(cifti_fname)
infoCIfTI(cifti_fname)
infocii(cifti_fname)
```

Arguments

```
cifti_fname File path to a CIFTI file (ending in ".d*.nii").
```

Details

Additional metadata depends on the type of CIFTI file:

- 1. "dtseries"
 - (a) time_start: Start time
 - (b) time_step: The TR
 - (c) time_unit: Unit of time
- 2. "dscalar"
 - (a) names: Name of each data column
- 3. "dlabels"
 - (a) names:(Names of each data column.)
 - (b) labels:(List of Lx5 data.frames. Row names are the label names. Column names are Key, Red, Green, Blue, and Alpha. List entry names are the names of each data column.)

Value

The metadata component of a "xifti" for the input CIFTI file

16 info_cifti

Connectome Workbench

This function interfaces with the "-nifti-information" Workbench command.

Label Levels

xifti\$meta\$subcort\$labels is a factor with the following levels:

- 1. Cortex-L
- 2. Cortex-R
- 3. Accumbens-L
- 4. Accumbens-R
- 5. Amygdala-L
- 6. Amygdala-R
- 7. Brain Stem
- 8. Caudate-L
- 9. Caudate-R
- 10. Cerebellum-L
- 11. Cerebellum-R
- 12. Diencephalon-L
- 13. Diencephalon-R
- 14. Hippocampus-L
- 15. Hippocampus-R
- 16. Pallidum-L
- 17. Pallidum-R
- 18. Putamen-L
- 19. Putamen-R
- 20. Thalamus-L
- 21. Thalamus-R

These correspond to the same structures as given by ft_read_cifti in the cifti-matlab MAT-LAB toolbox. Note that the first two levels (left and right cortex) are not used.

See Also

```
Other functions for reading in CIFTI or GIFTI data: as.xifti(), load_parc(), load_surf(), read_cifti(), read_surf(), read_xifti2()
```

is.cifti 17

is.cifti

Validate a "xifti" object

Description

Check if object is valid for a "xifti". This alias for is.xifti is offered as a convenience, and a message will warn the user. We recommend using is.xifti instead.

Usage

```
is.cifti(x, messages = TRUE)
is_cifti(x, messages = TRUE)
isCIfTI(x, messages = TRUE)
```

Arguments

```
x The putative "xifti".

messages If x is not a "xifti", print messages explaining the problem? Default is TRUE.
```

Details

Requirements: it is a list with the same structure as template_xifti. The size of each data entry must be compatible with its corresponding mask (medial wall for the cortex and volumetric mask for the subcortex). Metadata should be present if and only if the corresponding data is also present. The surfaces can be present whether or not the cortex data are present.

See the "Label Levels" section for the requirements of xifti\$meta\$subcort\$labels.

Value

```
Logical. Is x a valid "xifti"?
```

Label Levels

xifti\$meta\$subcort\$labels is a factor with the following levels:

- 1. Cortex-L
- 2. Cortex-R
- 3. Accumbens-L
- 4. Accumbens-R
- 5. Amygdala-L
- 6. Amygdala-R
- 7. Brain Stem
- 8. Caudate-L

18 is.surf

- 9. Caudate-R
- 10. Cerebellum-L
- 11. Cerebellum-R
- 12. Diencephalon-L
- 13. Diencephalon-R
- 14. Hippocampus-L
- 15. Hippocampus-R
- 16. Pallidum-L
- 17. Pallidum-R
- 18. Putamen-L
- 19. Putamen-R
- 20. Thalamus-L
- 21. Thalamus-R

These correspond to the same structures as given by ft_read_cifti in the cifti-matlab MAT-LAB toolbox. Note that the first two levels (left and right cortex) are not used.

See Also

Other commonly-used functions: read_cifti(), resample_cifti(), smooth_cifti(), view_xifti_surface(), view_xifti_volume(), write_cifti()

is.surf

Validate a "surf" *object (vertices + faces)*

Description

Check if object is valid for xifti\$surf\$cortex_left or xifti\$surf\$cortex_right, where xifti is a "xifti" object.

Usage

```
is.surf(x)
```

Arguments

Х

The putative "surf".

Details

This is a helper function for is.xifti.

Requirements: the "surf" must be a list of three components: "vertices", "faces", and "hemisphere". The first two should each be a numeric matrix with three columns. The values in "vertices" represent spatial coordinates whereas the values in "faces" represent vertex indices defining the face. Thus, values in "faces" should be integers between 1 and the number of vertices. The last list entry, "hemisphere", should be "left", "right", or NULL indicating the brain hemisphere which the surface represents.

is.xifti 19

Value

```
Logical. Is x a valid "surf"?
```

See Also

Other functions for working with GIFTI surface geometry data: read_surf(), resample_surf(), rotate_surf(), view_surf(), write_surf_gifti()

is.xifti

Validate a "xifti" object.

Description

Check if object is valid for a "xifti" object.

Usage

```
is.xifti(x, messages = TRUE)
is_xifti(x, messages = TRUE)
```

Arguments

x The putative "xifti" object.

messages If x is not a "xifti" object, print messages explaining the problem? Default is

TRUE.

Details

Requirements: it is a list with the same structure as template_xifti. The size of each data entry must be compatible with its corresponding mask (medial wall for the cortex and volumetric mask for the subcortex). Metadata should be present if and only if the corresponding data is also present. The surfaces can be present whether or not the cortex data are present.

See the "Label Levels" section for the requirements of xifti\$meta\$subcort\$labels.

Value

```
Logical. Is x a valid "xifti" object?
```

Label Levels

xifti\$meta\$subcort\$labels is a factor with the following levels:

- 1. Cortex-L
- 2. Cortex-R
- 3. Accumbens-L

20 load_parc

- 4. Accumbens-R
- 5. Amygdala-L
- 6. Amygdala-R
- 7. Brain Stem
- 8. Caudate-L
- 9. Caudate-R
- 10. Cerebellum-L
- 11. Cerebellum-R
- 12. Diencephalon-L
- 13. Diencephalon-R
- 14. Hippocampus-L
- 15. Hippocampus-R
- 16. Pallidum-L
- 17. Pallidum-R
- 18. Putamen-L
- 19. Putamen-R
- 20. Thalamus-L
- 21. Thalamus-R

These correspond to the same structures as given by ft_read_cifti in the cifti-matlab MAT-LAB toolbox. Note that the first two levels (left and right cortex) are not used.

load_parc

Load a parcellation included in ciftiTools

Description

Load a parcellation included in ciftiTools.

Usage

```
load_parc(
  name = c("Schaefer_100", "Schaefer_400", "Schaefer_1000", "Yeo_7", "Yeo_17")
)
```

load_surf 21

Arguments

name

The name of the parcellation to load:

- "Schaefer_100": (2018) 100 parcels based on the "local-global" approach.
- "Schaefer_400": (2018) 400 parcels based on the "local-global" approach.
- "Schaefer_1000": (2018) 1000 parcels based on the "local-global" approach.
- "Yeo_7": (2011) 7 networks based on fcMRI clustering. Networks are further divided into 51 components.
- "Yeo_17": (2011) 17 networks based on fcMRI clustering. Networks are further divided into 114 components.

NULL (default) will load the first choice, where applicable. This argument will affect the indices, colors, and names of each parcel, but not the parcel boundaries.

Details

When using these parcellations, please cite the corresponding paper(s):

- 1. Yeo, B. T. T. et al. The organization of the human cerebral cortex estimated by intrinsic functional connectivity. J Neurophysiol 106, 1125-1165 (2011).
- 2. Schaefer, A. et al. Local-Global Parcellation of the Human Cerebral Cortex from Intrinsic Functional Connectivity MRI. Cereb Cortex 28, 3095-3114 (2018).
- 3. Kong, R. et al. Individual-Specific Areal-Level Parcellations Improve Functional Connectivity Prediction of Behavior. Cerebral Cortex (2021+) doi:10.1093/cercor/bhab101.

Note that the Schaefer parcels have been matched to networks from Kong (2021+).

Value

The parcellation as a dlabel "xifti" with one column. Each key represents one unique parcel.

See Also

```
Other functions for reading in CIFTI or GIFTI data: as.xifti(), info_cifti(), load_surf(), read_cifti(), read_surf(), read_xifti2()
```

load_surf

Load a "surf" included in ciftiTools

Description

Load a "surf" object from one of the three 32k surface geometries included in ciftiTools.

22 make_color_pal

Usage

```
load_surf(
  hemisphere = c("left", "right"),
  name = c("inflated", "very inflated", "midthickness"),
  resamp_res = NULL
)
```

Arguments

hemisphere "left" (default) or "right"

name The name of the surface geometry to load: "inflated" (default), "very inflated",

and "midthickness".

resamp_res The resolution to resample the surfaces to. If NULL (default) or 32492, do not

resample.

Details

The surfaces are from the HCP and are included according to these data use terms: Data were provided [in part] by the Human Connectome Project, WU-Minn Consortium (Principal Investigators: David Van Essen and Kamil Ugurbil; 1U54MH091657) funded by the 16 NIH Institutes and Centers that support the NIH Blueprint for Neuroscience Research; and by the McDonnell Center for Systems Neuroscience at Washington University.

Value

```
The "surf" object
```

See Also

```
Other functions for reading in CIFTI or GIFTI data: as.xifti(), info_cifti(), load_parc(), read_cifti(), read_surf(), read_xifti2()
```

make_color_pal

Make a color palette.

Description

Control the mapping of values to colors with colors, color_mode, and zlim.

Usage

```
make_color_pal(
  colors = NULL,
  color_mode = c("sequential", "qualitative", "diverging"),
  zlim = NULL
)
```

make_color_pal 23

Arguments

colors (Optional) "ROY_BIG_BL", the name of a ColorBrewer palette (see RColorBrewer::brewer.pal.info

and colorbrewer2.org), the name of a viridisLite palette, or a character vector of colors. NULL (default) will use "ROY_BIG_BL" if color_mode is "sequential" or "diverging", and "Set2" if color_mode is "qualitative". See the de-

scription for more details.

color_mode (Optional) "sequential", "qualitative", or "diverging". Default: "sequential".

See the description for more details.

zlim (Optional) Controls the mapping of values to each color in colors. See the

description for more details.

Details

There are three kinds of arguments for colors: "ROY_BIG_BL", the name of a ColorBrewer palette (see RColorBrewer::brewer.pal.info and colorbrewer2.org), the name of a viridisLite palette, or a character vector of color names.

If colors=="ROY_BIG_BL", the "ROY_BIG_BL" palette will be used. It is the same palette as the default for the Connectome Workbench application (https://github.com/Washington-University/workbench/blob/master/src/F The midpoint will be colored black. From the midpoint toward the upper bound, colors will proceed from black to red to yellow. From the midpoint toward the lower bound, colors will proceed from black to blue to purple to green to aqua. Here is how each color mode behaves if colors=="ROY_BIG_BL":

- color_mode=="sequential" Only half of the palette will be used. If zlim is length 2, the higher value will be the maximum and the lower value will be the minimum. Set zlim[1] > zlim[2] to reverse the color scale. (Note that the second half, black -> red -> yellow, is used by default. To use the negative half specify colors=="ROY_BIG_BL_neg" instead. It will also be used automatically by xifti_read_surface when the data range is negative.) zlim can also be length 10, in which case each value corresponds to the position of an individual color in the half palette.
- color_mode=="qualitative" "ROY_BIG_BL" is not recommended for qualitative data, so a warning will be issued. Palette colors will be selected from the landmark "ROY_BIG_BL" colors, with interpolated colors added if the number of colors in the palette (18) is less than this range. zlim should be a single number: the number of unique colors to get.
- color_mode=="diverging" If zlim is length 2 or 3, the lowest number will be the lower bound and the highest number will be the upper bound. If zlim is length 3, the middle number will be the midpoint (black). The lower and upper bounds will be aqua and yellow, respectively, except if zlim is in descending order, in which case the color scale will be reversed (lowest is yellow; highest is aqua). zlim can also be length 19, in which case each value corresponds to the position of an individual color in the palette.

If colors is the name of an RColorBrewer palette (see RColorBrewer::brewer.pal.info) or viridisLite palette, the colors in that palette will be used, and the following behavior applies. If colors is a character vector of color names (hex codes or standard R color names), the following behavior applies directly:

color_mode=="sequential" If zlim is length 2, the higher value will be the maximum and the lower value will be the minimum. Set zlim[1] > zlim[2] to reverse the color scale. zlim can 24 merge_xifti

also be the same length as the palette, in which case each value corresponds to the position of an individual color in the palette.

color_mode=="qualitative" zlim should be a single number: the number of unique colors to
 get. Color interpolation will be used if the number of colors in the palette is less than this
 range. If length(zlim)==length(colors), each color will be mapped to each corresponding
 value.

color_mode=="diverging" If zlim is length 2 or 3, the lowest number will be the lower bound and the highest number will be the upper bound. If zlim is length 3, the middle number will be the midpoint. Set zlim in descending order to reverse the color scale. zlim can also be the same length as the palette, in which case each value corresponds to the position of an individual color in the palette.

Value

A data frame with two columns: "color" (character: color hex codes) and "value" (numeric)

merge_xifti

Concatenate "xifti"s

Description

Concatenate "xifti" objects along the columns. They must have the same brainstructures and resolutions. The first "xifti"'s metadata will be retained, including its intent.

Usage

```
merge_xifti(..., xifti_list = NULL)
```

Arguments

```
..., xifti_list
```

Provide as arguments the "xifti"s to concatenate, OR the single argument xifti_list which should be a list of "xifti"s. (If xifti_list is provided all other inputs will be ignored.)

Value

The concatenated "xifti"

See Also

```
Other functions for manipulating 'xifti' objects: add_surf(), apply_xifti(), combine_xifti(), convert_to_dlabel(), newdata_xifti(), remove_xifti(), select_xifti(), transform_xifti()
```

move_from_mwall 25

move_from_mwall

Move data locations from medial wall

Description

Move all medial wall locations into the cortical data matrices by assigning them a specific value (e.g. NA).

Usage

```
move_from_mwall(xifti, value = NA, name = "Medial_Wall", RGBA = c(1, 1, 1, 0))
```

Arguments

xifti A "xifti" object.

value The value to assign the medial wall locations. Default: NA.

name, RGBA Only used if the

Only used if the "xifti" has the dlabel intent and value is not an already-existing Key. This is the name to assign to the new key for the medial wall locations, as well as a length-four numeric vector indicating the red, green, blue, and alpha values for the color to assign to the new key. These will be reflected in the updated label table. Note that RGBA values must all be in [0, 1].

Currently, only one name and set of RGBA values are supported, meaning that the medial wall locations will have the same Key, name, and color across all data columns in the "xifti". An error will occur if the Key already exists for some columns but not others.

Defaults: "Medial_Wall" for "name" and white with 0 alpha for RGBA.

Value

The "xifti" with re-organized data and medial wall masks

See Also

```
move_to_mwall
unmask_cortex
```

26 newdata_xifti

maya	+ ^	mwall
IIIOVE	LU	IIIWall

Move data locations to the medial wall

Description

Move cortical data locations with a specific value(s) to the medial wall mask. For example, dlabel CIFTIs often have medial wall vertices set to a specific key value, rather than a medial wall mask. This function can move those data locations from the data matrix to the medial wall mask in the metadata.

Usage

```
move_to_mwall(xifti, values = c(NA, NaN), drop = FALSE)
```

Arguments

xifti A "xifti" object.

values Medial wall values. Default: NA and NaN. Data locations in the left and right

cortex that are one of these values (across all columns) will be moved to the

medial wall mask in the metadata.

drop Only used if the "xifti" has the dlabel intent. Drop the key(s) in values from

the label tables, for columns in which they no longer exist? Default: FALSE.

Value

The "xifti" with re-organized data and medial wall masks

See Also

move_from_mwall

newdata_xifti

Replace the data in a "xifti"

Description

Replace the data in a "xifti" with new data from a data matrix.

Usage

```
newdata_xifti(xifti, newdata, newnames = NULL)
```

parc_borders 27

Arguments

xifti The "xifti"

newdata The $V \times T$ matrix of data values to replace those in xifti with. The left cortex

vertices should be at the top, right cortex vertices in the middle, and subcortex

vertices at the bottom (when present).

If newdata is instead a $V \times Q$ matrix where Q is not T, then any column names or label tables will be removed. (A "dlabel" will be converted to a "dscalar".)

Can also be a length-one vector to set all values equally.

newnames Replaces the names in the xifti. If NULL (default), keep the original names,

except if the number of columns in newdata doesn't match that of xifti, in

which case no names will be used.

Details

If the "xifti" has V grayordinates and T measurements\, newdata should be a $V \times Q$ matrix. If Q is not equal to T, then any column names or label tables will be removed. (A "dlabel" will be converted to a "dscalar".)

Value

The new "xifti"

See Also

Other functions for manipulating 'xifti' objects: add_surf(), apply_xifti(), combine_xifti(), convert_to_dlabel(), merge_xifti(), remove_xifti(), select_xifti(), transform_xifti()

parc_borders

Parcellation borders

Description

Identify vertices which lie on the border of different parcels.

Usage

```
parc_borders(parc, surf = NULL, hemisphere = c("left", "right"))
```

Arguments

parc Integer vector the same length as the number of vertices. Each entry indicates

the parcel that vertex belongs to.

surf The surface which the vertices belong to, or just the "faces" component (Fx3)

matrix where each row indicates the vertices which comprise a face). If not provided, the (resampled) default hemisphere surface included with ciftiTools

will be used.

hemisphere Only used to choose which default surface to use if is.null(surf). Should be

"left" (default) or "right".

28 plot.xifti

Value

Logical vector the same length as parc indicating if the vertex lies on a border.

plot.surf

S3 method: plot surface

Description

Visualize a single surface

Usage

```
## S3 method for class 'surf' plot(x, ...)
```

Arguments

x A "surf" object

Additional arguments to view_xifti_surface. But, the hemisphere argument behaves differently: it can be either left or right to indicate which hemisphere x represents. It is only used if the "hemisphere" metadata entry in x is NULL. If both the argument and the metadata entry are NULL, the surface will be treated as the left hemisphere.

plot.xifti

S3 method: use view_xifti to plot a "xifti" object

Description

```
S3 method: use view_xifti to plot a "xifti" object
```

Usage

```
## S3 method for class 'xifti' plot(x, ...)
```

Arguments

```
x A "xifti" object.
```

... Additional arguments to view_xifti, except what, which will be set to NULL.

read_cifti 29

read_cifti

Read a CIFTI file

Description

Read in a CIFTI file as a "xifti" object.

Usage

```
read_cifti(
 cifti_fname = NULL,
  surfL_fname = NULL,
  surfR_fname = NULL,
 brainstructures = c("left", "right"),
  idx = NULL,
  resamp_res = NULL,
 flat = FALSE,
 mwall_values = c(NA, NaN),
 verbose = FALSE,
)
readCIfTI(
 cifti_fname = NULL,
  surfL_fname = NULL,
  surfR_fname = NULL,
 brainstructures = c("left", "right"),
  idx = NULL,
  resamp_res = NULL,
  flat = FALSE,
 mwall_values = c(NA, NaN),
 verbose = FALSE,
)
readcii(
  cifti_fname = NULL,
  surfL_fname = NULL,
  surfR_fname = NULL,
 brainstructures = c("left", "right"),
  idx = NULL,
  resamp_res = NULL,
  flat = FALSE,
 mwall\_values = c(NA, NaN),
 verbose = FALSE,
)
```

30 read_cifti

```
read_xifti(
  cifti_fname = NULL,
  surfL_fname = NULL,
  surfR_fname = NULL,
 brainstructures = c("left", "right"),
  idx = NULL,
  resamp_res = NULL,
  flat = FALSE,
 mwall\_values = c(NA, NaN),
 verbose = FALSE,
)
```

Arguments

cifti_fname File path to a CIFTI file (ending in ".d*.nii").

surfL_fname (Optional) File path to a GIFTI surface geometry file representing the left cortex.

surfR_fname (Optional) File path to a GIFTI surface geometry file representing the right cor-

tex.

brainstructures

Character vector indicating which brain structure(s) to obtain: "left" (left cortex), "right" (right cortex) and/or "subcortical" (subcortex and cerebellum). Can also be "all" (obtain all three brain structures). Default: c("left", "right") (cortex only).

If a brain structure is indicated but does not exist in the CIFTI file, a warning will occur and that brain structure will be skipped.

idx

Numeric vector indicating the data indices (columns) to read. If NULL (default), read in all the data. Must be a subset of the indices present in the file, or an error will occur.

For high-resolution CIFTI files, reading in only a subset of the data saves memory, but will be slower than reading in the entire file due to the required intermediate steps.

resamp_res

Resolution to resample the cortical data and surface to. Default: NULL (do not resample). If not NULL, the data will have to be read in with -cifti-separate, which is slower than -cifti-convert -to-gifti-ext.

flat

Should the result be flattened into a single matrix?

If FALSE (default), the result will be a "xifti" object.

If TRUE, the result will be a TxG matrix (T measurements, G grayordinates not including the medial wall if it's excluded from the ROI). All below arguments will be ignored because the brain structures cannot be identified. Surfaces will not be appended. Resampling is also not possible. flat==TRUE is the fastest way to read in just the CIFTI data.

If TRUE, the grayordinates will be ordered by left cortex, right cortex, and then subcortex. Subcortical voxels will be ordered by alphabetical label. However, where each brainstructure (and subcortical structure) begins and ends cannot be

read_cifti 31

determined. The medial wall locations and subcortical brain mask are also not included. The data matrix will be identical to that created by -cifti-convert

-to-gifti-ext.

infer the medial wall mask. Default: c(NA, NaN). If NULL, do not attempt to

infer the medial wall.

verbose Should occasional updates be printed? Default: FALSE.

... Additional arguments to read_cifti_convert or read_cifti_separate.

Details

First, metadata is obtained with info_cifti. Then, if no resampling is requested, the -cifti-convert -to-gifti-ext Workbench Command is used to "flatten" the data and save it as a metric or label GIFTI file, which is read in and separated by brainstructure according to the metadata (read_cifti_convert). Otherwise, if sampling is requested, then the CIFTI is separated into its GIFTI and NIFTI components, resampled, and then re-assembled (read_cifti_separate). The former is much faster for large CIFTI files, so the latter is only used when necessary for resampling.

If cifti_fname is not provided, then only the surfaces are read in.

Value

If !flat, a "xifti" object. Otherwise, a TxG matrix (T measurements, G grayordinates).

Connectome Workbench

This function interfaces with the "-cifti-convert" Workbench command if resampling is not needed, and the "-cifti-separate" Workbench command if resampling is needed.

Label Levels

xifti\$meta\$subcort\$labels is a factor with the following levels:

- 1. Cortex-L
- 2. Cortex-R
- 3. Accumbens-L
- 4. Accumbens-R
- 5. Amygdala-L
- 6. Amygdala-R
- 7. Brain Stem
- 8. Caudate-L
- 9. Caudate-R
- 10. Cerebellum-L
- 11. Cerebellum-R
- 12. Diencephalon-L
- 13. Diencephalon-R

32 read_surf

- 14. Hippocampus-L
- 15. Hippocampus-R
- 16. Pallidum-L
- 17. Pallidum-R
- 18. Putamen-L
- 19. Putamen-R
- 20. Thalamus-L
- 21. Thalamus-R

These correspond to the same structures as given by ft_read_cifti in the cifti-matlab MAT-LAB toolbox. Note that the first two levels (left and right cortex) are not used.

See Also

```
Other commonly-used functions: is.cifti(), resample_cifti(), smooth_cifti(), view_xifti_surface(), view_xifti_volume(), write_cifti()

Other functions for reading in CIFTI or GIFTI data: as.xifti(), info_cifti(), load_parc(), load_surf(), read_surf(), read_xifti2()
```

read_surf

Get a "surf" object

Description

Coerce a file path to a surface GIFTI, a "gifti" object, a list with entries "pointset" and "triangle", or a "surf" to a "surf".

Usage

```
read_surf(surf, expected_hemisphere = NULL, resamp_res = NULL)
make_surf(surf, expected_hemisphere = NULL, resamp_res = NULL)
```

Arguments

surf

Either a file path to a surface GIFTI; a "gifti" read by readgii; a list with entries "pointset" and "triangle"; or, a "surf" object.

expected_hemisphere

The expected hemisphere ("left" or "right") of surf. If the hemisphere indicated in the GIFTI metadata is the opposite, an error is raised. If NULL (default), use the GIFTI hemisphere.

resamp_res

The resolution to resample the surfaces to. If NULL (default), do not resample.

read_xifti2 33

Value

The "surf": a list with components "vertices" (3D spatial locations), "faces" (defined by three vertices), and "hemisphere" ("left", "right", or NULL if unknown).

See Also

```
Other functions for reading in CIFTI or GIFTI data: as.xifti(), info_cifti(), load_parc(), load_surf(), read_cifti(), read_xifti2()

Other functions for working with GIFTI surface geometry data: is.surf(), resample_surf(), rotate_surf(), view_surf(), write_surf_gifti()
```

read_xifti2

Read in GIFTI files as a "xifti" object

Description

Read in GIFTI metric or label files as a "xifti" object. May also include surface geometry GIFTI files and perform resampling.

Usage

```
read_xifti2(
  cortexL = NULL,
  cortexR_mwall = NULL,
  cortexR_mwall = NULL,
  mwall_values = c(NA, NaN),
  surfL = NULL,
  surfR = NULL,
  resamp_res = NULL,
  col_names = NULL,
  HCP_32k_auto_mwall = TRUE,
  read_dir = NULL,
  validate = TRUE
)
```

Arguments

```
cortexL, cortexL_mwall
```

Left cortex data and ROI. Each must be a path to a metric or label GIFTI file.

If cortexL_mwall is not provided, cortexL should have data for all vertices on the left cortical surface (V_LxT data matrix). There will not be a mask for the medial wall. Not providing the medial wall mask is appropriate for ".dlabels.nii" files where the medial wall may have its own label and therefore should not be treated as missing data.

If cortexL_mwall is provided, cortexL should either have data for all vertices on the left cortical surface (V_LxT data matrix, with filler values e.g. 0

34 read_xifti2

or NaN for medial wall vertices), or have data only for non-medial wall vertices $((V_L - mwall_L)xT)$ data matrix). The medial wall mask will be the 0 values in cortexL_mwall. The medial wall mask should be provided whenever the medial wall should be treated as missing data.

Since the unmasked cortices must have the same number of vertices, V_L should match V_R, or resamp_res must be set.

cortexR, cortexR_mwall

Right cortex data and ROI. Each must be a path to a metric or label GIFTI file.

If cortexR_mwall is not provided, cortexR should have data for all vertices on the right cortical surface (V_RxT data mre will not be a mask for the medial wall. Not providing the medial wall mask is appropriate for ".dlabels.nii" files where the medial wall may have its own label and therefore should not be treated as missing data.

If cortexR_mwall is provided, cortexR should either have data for all vertices on the right cortical surface (V_RxT data matrix, with filler values e.g. 0 or NaN for medial wall vertices), or have data only for non-medial wall vertices ($(V_R-mwall_R)xT$ data matrix). The medial wall mask will be the 0 values in cortexR_mwall. The medial wall mask should be provided whenever the medial wall should be treated as missing data.

Since the unmasked cortices must have the same number of vertices, V_L should match V_R, or resamp_res must be set.

mwall_values

If cortex[L/R]_mwall was not provided, or if it was invalid (i.e. bad length or all TRUE), the medial wall mask will be inferred from rows in cortex[L/R] that are constantly one of these values. Default: c(NA, NaN). If NULL, do not attempt to infer the medial wall from the data values. NULL should be used if NA or NaN are legitimate values that non-medial wall vertices might take on.

surfL, surfR

(Optional) File path(s) to surface GIFTI(s) for the left or right cortex.

resamp_res

Resolution to resample the cortical data and surface to. Default: NULL (do not resample). If provided, the original resolutions of the cortex data and surfaces may differ.

col_names

Names of each measurement/column in the data. Overrides names indicated in the data components.

HCP_32k_auto_mwall

If left and/or right cortex data is provided, and the number of vertices matches that of the HCP 32k mesh (29696 on left, and 29716 on right), should the medial wall masks be added to the "xifti" if not provided? Default: TRUE.

read_dir

(Optional) Append a directory to all file names in the arguments. If NULL (default), do not modify file names.

validate

Validate that the result is a "xifti" object? Default: TRUE. If FALSE, the result may not be properly formatted if the inputs were invalid.

Value

The "xifti" object containing all the data in the input giftis.

remove_xifti 35

See Also

Other functions for reading in CIFTI or GIFTI data: as.xifti(), info_cifti(), load_parc(), load_surf(), read_cifti(), read_surf()

remove_xifti

Remove a component from a "xifti"

Description

Remove a brain structure, surface, or subcortical structure from a "xifti".

Usage

```
remove_xifti(xifti, remove = NULL, remove_sub = NULL)
```

Arguments

xifti A "xifti" object.

remove A character vector containing one or more of the following: "cortex_left",

"cortex_right", "subcortical", "surf_left", and "surf_right". Each of

these components will be removed from xifti.

remove_sub A vector containing subcortical structures to be removed from xifti. Can be

specified with names, or with numeric factor values: see substructure_table.

Value

The new "xifti" with the requested component(s) removed

See Also

```
Other functions for manipulating 'xifti' objects: add_surf(), apply_xifti(), combine_xifti(), convert_to_dlabel(), merge_xifti(), newdata_xifti(), select_xifti(), transform_xifti()
```

resample_cifti

Resample CIFTI data

Description

Performs spatial resampling of CIFTI data on the cortical surface by separating it into GIFTI and NIFTI files, resampling the GIFTIs, and then putting them together. (The subcortex is not resampled.)

36 resample_cifti

Usage

```
resample_cifti(
 x = NULL
  cifti_target_fname = NULL,
  surfL_original_fname = NULL,
  surfR_original_fname = NULL,
  surfL_target_fname = NULL,
  surfR_target_fname = NULL,
  resamp_res,
 write_dir = NULL,
 mwall\_values = c(NA, NaN),
  verbose = TRUE
)
resampleCIfTI(
  x = NULL,
  cifti_target_fname = NULL,
  surfL_original_fname = NULL,
  surfR_original_fname = NULL,
  surfL_target_fname = NULL,
  surfR_target_fname = NULL,
  resamp_res,
 write_dir = NULL,
 mwall_values = c(NA, NaN),
  verbose = TRUE
)
resamplecii(
  x = NULL,
  cifti_target_fname = NULL,
  surfL_original_fname = NULL,
  surfR_original_fname = NULL,
  surfL_target_fname = NULL,
  surfR_target_fname = NULL,
  resamp_res,
 write_dir = NULL,
 mwall_values = c(NA, NaN),
 verbose = TRUE
)
resample_xifti(
  x = NULL,
  cifti_target_fname = NULL,
  surfL_original_fname = NULL,
  surfR_original_fname = NULL,
  surfL_target_fname = NULL,
  surfR_target_fname = NULL,
  resamp_res,
```

resample_cifti 37

```
write_dir = NULL,
mwall_values = c(NA, NaN),
verbose = TRUE
)
```

Arguments

Х

The CIFTI file name or "xifti" object to resample. If NULL, the result will be a "xifti" with resampled surfaces given by surfL_original_fname and surfR_original_fname.

cifti_target_fname

File name for the resampled CIFTI. Will be placed in write_dir. If NULL, will be written to "resampled.d*.nii". write_dir will be appended to the beginning of the path.

surfL_original_fname, surfR_original_fname

(Optional) Path to a GIFTI surface geometry file representing the left/right cortex. One or both can be provided. These will be resampled too, and are convenient for visualizing the resampled data.

If x is a "xifti" object with surfaces, these arguments will override the surfaces in the "xifti".

surfL_target_fname, surfR_target_fname

(Optional) File names for the resampled GIFTI surface geometry files. Will be placed in write_dir. If NULL (default), will use default names created by resample_cifti_default_fname.

resample_cirti_deradit_filam

resamp_res Target resolution for resampling (number of cortical surface vertices per hemi-

sphere).

write_dir Where to write the resampled CIFTI (and surfaces if present.) If NULL (default),

will use the current working directory if x was a CIFTI file, and a temporary

directory if x was a "xifti" object.

infer the medial wall mask. Default: c(NA, NaN). If NULL, do not attempt to

infer the medial wall.

Correctly indicating the medial wall locations is important for resampling, be-

cause the medial wall mask is taken into account during resampling calculations.

verbose Should occasional updates be printed? Default: TRUE.

Details

Can accept a "xifti" object as well as a path to a CIFTI-file.

Value

A named character vector of written files: "cifti" and potentially "surfL" (if surfL_original_fname was provided) and/or "surfR" (if surfR_original_fname was provided).

Connectome Workbench

This function interfaces with the "-metric-resample", "-label-resample", and/or "-surface-resample" Workbench commands, depending on the input.

38 resample_gifti

See Also

```
Other commonly-used functions: is.cifti(), read_cifti(), smooth_cifti(), view_xifti_surface(), view_xifti_volume(), write_cifti()
```

```
resample_cifti_from_template
```

Resample a CIFTI from a template

Description

Resample a CIFTI from a template, ensuring the new CIFTI's resolution matches that of the template.

Usage

```
resample_cifti_from_template(original_fname, template_fname, target_fname)
```

Arguments

```
original_fname A CIFTI file to resample.
```

template_fname A CIFTI file to use as the template.

Value

The target_fname, invisibly

Connectome Workbench

This function interfaces with the "-cifti-resample" Workbench command.

resample_gifti

Resample a GIFTI file (with its ROI)

Description

Perform spatial resampling of GIFTI data on the cortical surface (metric and label), or of GIFTI surface geometry data itself.

resample_gifti 39

Usage

```
resample_gifti(
  original_fname,
  target_fname,
  hemisphere = c("left", "right"),
  file_type = NULL,
  original_res = NULL,
  resamp_res = NULL,
  ROIcortex_original_fname = NULL,
 ROIcortex_target_fname = NULL,
  sphere_original_fname = NULL,
  sphere_target_fname = NULL,
  read_dir = NULL,
 write_dir = NULL
)
resampleGIfTI(
  original_fname,
  target_fname,
  hemisphere,
  file_type = NULL,
  original_res = NULL,
  resamp_res,
 ROIcortex_original_fname = NULL,
 ROIcortex_target_fname = NULL,
  read_dir = NULL,
 write_dir = NULL
)
resamplegii(
  original_fname,
  target_fname,
  hemisphere,
  file_type = NULL,
  original_res = NULL,
  resamp_res,
  ROIcortex_original_fname = NULL,
 ROIcortex_target_fname = NULL,
  read_dir = NULL,
 write_dir = NULL
)
```

Arguments

original_fname The GIFTI file to resample.

target_fname Where to save the resampled file.

hemisphere "left" (default) or "right". An error will occur if the hemisphere indicated in the GIFTI metadata does not match.

40 resample_surf

file_type "metric", "label", "surf", or NULL (default) to infer from original_fname.

tively, provide sphere_original_fname which will override original_res. In general, original_res should be used when the original file is in registration with the spheres created by the Workbench command -surface-create-sphere,

and sphere_original_fname should be used when it is not compatible.

resamp_res Target resolution for resampling (number of cortical surface vertices per hemi-

sphere). Alternatively, provide sphere_target_fname which will override resamp_res.

In general, resamp_res should be used when the target file will be in registration with the spheres created by the Workbench command -surface-create-sphere,

and sphere_target_fname should be used when it is not compatible.

ROIcortex_original_fname

The name of the ROI file corresponding to original_fname. Leave as NULL (default) if this doesn't exist or shouldn't be resampled.

ROIcortex_target_fname

The name of the resampled ROI file. Only applicable if ROIcortex_original_fname is provided.

sphere_original_fname, sphere_target_fname

File paths to the sphere surfaces in the original and target resolutions. If possible, the simpler arguments original_res and resamp_res can be used instead. But those depend on the surface being compatible with that created by

-surface-create-sphere, which isn't always true. Therefore sphere_original_fname

and sphere_target_fname can be used if needed.

read_dir Directory to append to the path of every file name in original_fname and

ROIcortex_original_fname. If NULL (default), do not append any directory

to the path.

write_dir Directory to append to the path of every file name in target_fname and ROIcortex_target_fname.

If NULL (default), do not append any directory to the path.

Value

The resampled GIFTI file name, invisibly

Connectome Workbench

This function interfaces with the "-metric-resample", "-label-resample", and/or "-surface-resample" Workbench commands, depending on the input.

resample_surf Resample a "surf" object

Description

Resample a "surf" by writing it to a GIFTI, using the Connectome Workbench to resample it, and then reading the new file.

rotate_surf 41

Usage

```
resample_surf(surf, resamp_res, hemisphere = c("left", "right"))
```

Arguments

surf A "surf"

resamp_res The desired resolution

hemisphere "left" or "right". Only used if not indicated by surf\$hemisphere. An error

will be raised if it does not match the hemisphere indicated in the intermediate

written GIFTI.

Value

The new "surf"

Connectome Workbench

This function interfaces with the "-surface-resample" Workbench command.

See Also

Other functions for working with GIFTI surface geometry data: is.surf(), read_surf(), rotate_surf(), view_surf(), write_surf_gifti()

rotate_surf

Rotate a "surf" object

Description

Rotate a "surf". Can be used to adjust the mesh orientation prior to view_xifti_surface.

Usage

```
rotate_surf(surf, r1 = 0, r2 = 0, r3 = 0, units = c("radians", "degrees"))
```

Arguments

surf The "surf" object: see is.surf.

r1, r2, r3 Angle to rotate along the first, second, and third column's axis, in units (e.g.

changing r1 will change the vertex positions in the second and third dimensions/columns, since the mesh is being rotated with respect to the first column's

axis). Default: 0.

With view_xifti_surface and other mesh rendering functions that use rgl,

these rotations seem to correspond to yaw, pitch, and roll, respectively.

units "radians" (default) or "degrees".

42 ROY_BIG_BL

Value

The rotated "surf"

See Also

Other functions for working with GIFTI surface geometry data: is.surf(), read_surf(), resample_surf(), view_surf(), write_surf_gifti()

ROY_BIG_BL

"ROY_BIG_BL" color palette

Description

"ROY_BIG_BL", the default palette from the Connectome Workbench.

Usage

```
ROY_BIG_BL(min = 0, max = 1, mid = NULL, half = NULL, pos_half = FALSE)
```

Arguments

min	The minimum value for the color mapping. As in the original palette, the last color (aqua) is actually placed at the bottom .5\ the minimum and maximum. Default: 0
max	The maximum value for the color mapping. If this value is lower than the minimum, the color mapping will be reversed. If this is equal to the minimum, a palette with only the color black will be returned. Default: 1.
mid	(Optional) The midpoint value for the color mapping. If NULL (default), the true midpoint is used.
half	"positive" or "negative" to use the positive half (black -> red -> yellow) or negative half (black -> blue -> purple -> green -> aqua) only. NULL (default) or FALSE to use entire palette.
pos_half	Deprecated. Use half.

Details

Yields the landmark color hex codes and values for the "ROY_BIG_BL" palette. This is the same color palette as the default Connectome Workbench palette. Source: https://github.com/Washington-University/workbench/blob/master/src/Files/PaletteFile.cxx

Value

A data.frame with two columns: "color" (character: color hex codes) and "value" (numeric)

run_wb_cmd 43

run_wb_cmd

Wrapper for Connectome Workbench Commands

Description

Runs a Connectome Workbench command that has already been formatted.

Usage

```
run_wb_cmd(cmd, intern = TRUE, ignore.stdout = NULL, ignore.stderr = NULL)
```

Arguments

cmd The full command, beginning after the workbench path.

intern Return printed output? If FALSE, return logical indicating success instead. De-

fault: TRUE. ignore.stdout, ignore.stderr

The "ignore.stdout" and "ignore.stderr" arguments to system. Should be logical

or NULL. If NULL (default), messages will be controlled by ciftiTools.getOption("suppress_msgs")

and errors will not be ignored.

Value

If intern==TRUE, the printed output of the command. If intern==FALSE, a logical indicating if the command finished successfully.

S3_Math

"xifti" S3 Math methods

Description

Math methods for "xifti" objects.

Usage

```
## S3 method for class 'xifti' Math(x, ...)
```

Arguments

x The "xifti"

... Additional arguments to the function

Details

Uses transform_xifti.

S3_Summary

S3_0ps

"xifti" S3 Ops methods

Description

Ops methods for "xifti" objects.

Usage

```
## S3 method for class 'xifti'
Ops(e1, e2 = NULL)
```

Arguments

e1, e2

The arguments to the operation. "xifti" objects will be converted to matrices temporarily

Details

Uses transform_xifti.

S3_Summary

"xifti" S3 Summary methods

Description

Summary methods for "xifti" objects.

Usage

```
## S3 method for class 'xifti'
Summary(..., na.rm = FALSE)
```

Arguments

... The "xifti" and additional numeric arguments will be converted to matrices na.rm Remove NA values? Default: FALSE.

scale_xifti 45

scale_xifti	Scale CIFTI
-------------	-------------

Description

Scale CIFTI data. Similar to scale.

Usage

```
scale_xifti(xifti, center = TRUE, scale = TRUE)
```

Arguments

```
xifti A "xifti" object.
center, scale Arguments to scale.
```

Value

The input "xifti" with scaled columns.

select_xifti	Select columns of a "xifti"

Description

Select column indices to keep in a "xifti". Can also be used to reorder the columns.

Usage

```
select_xifti(xifti, idx, add_meta = "select")
```

Arguments

xifti A "xifti" object.

idx The column indices to keep, in order.

add_meta Add idx to xifti\$meta\$cifti\$misc[[add_meta]] for reference. Default:

"select". If NULL or an empty string, do not add a metadata entry.

Value

The "xifti" with only the selected columns.

See Also

```
Other functions for manipulating 'xifti' objects: add_surf(), apply_xifti(), combine_xifti(), convert_to_dlabel(), merge_xifti(), newdata_xifti(), remove_xifti(), transform_xifti()
```

46 separate_cifti

separate_cifti

Separate a CIFTI file

Description

Separate a CIFTI file into GIFTI files for the cortical data and NIFTI files for the subcortical data and labels. ROIs can also be written to indicate the medial wall mask (cortex) and volume mask (subcortex). This uses the Connectome Workbench command -cifti-separate.

Usage

```
separate_cifti(
  cifti_fname,
  brainstructures = c("left", "right"),
  cortexL_fname = NULL,
  cortexR_fname = NULL,
  subcortVol_fname = NULL,
  subcortLabs_fname = NULL,
  ROI_brainstructures = "all",
  ROIcortexL_fname = NULL,
  ROIcortexR_fname = NULL,
 ROIsubcortVol_fname = NULL,
 write_dir = NULL
)
separateCIfTI(
  cifti_fname,
  brainstructures = c("left", "right"),
  cortexL_fname = NULL,
  cortexR_fname = NULL,
  subcortVol_fname = NULL,
  subcortLabs_fname = NULL,
  ROI_brainstructures = "all",
  ROIcortexL_fname = NULL,
  ROIcortexR_fname = NULL,
 ROIsubcortVol_fname = NULL,
 write_dir = NULL
)
separatecii(
  cifti_fname,
  brainstructures = c("left", "right"),
  cortexL_fname = NULL,
  cortexR_fname = NULL,
  subcortVol_fname = NULL,
  subcortLabs_fname = NULL,
  ROI_brainstructures = "all",
```

separate_cifti 47

```
ROIcortexL_fname = NULL,
ROIcortexR_fname = NULL,
ROIsubcortVol_fname = NULL,
write_dir = NULL
```

Arguments

cifti_fname

File path to a CIFTI file (ending in ".d*.nii").

brainstructures

Character vector indicating which brain structure(s) to obtain: "left" (left cortex), "right" (right cortex) and/or "subcortical" (subcortex and cerebellum). Can also be "all" (obtain all three brain structures). Default: c("left", "right") (cortex only).

If a brain structure is indicated but does not exist in the CIFTI file, a warning will occur and that brain structure will be skipped.

cortexL_fname, cortexR_fname

(Optional) GIFTI file names (*.[func/label].gii) to save the [left/right] cortex data to. If not provided, defaults to "*[L/R].\[func/label\].gii", where * is the file name component of cifti_fname. Will be written in write_dir.

dtseries and dscalar files should use "func", whereas dlabel files should use "label".

subcortVol_fname, subcortLabs_fname

(Optional) NIFTI file names to save the subcortical [volume/labels] to. If not provided, defaults to "*[/.labels].nii", where * is the file name component of cifti_fname. Will be written in write_dir.

ROI_brainstructures

Which ROIs should be obtained? "all" (default) to obtain ROIs for each of the brainstructures. NULL to not obtain any ROIs. This should be a subset of brainstructures.

ROIcortexL_fname, ROIcortexR_fname

(Optional) GIFTI file names (*.[func/label].gii) to save the [left/right] cortex ROI to. If not provided, defaults to "*ROI_[L/R].\[func/label\].gii", where * is the file name component of cifti_fname. The cortical ROIs typically represent the medial wall mask, with values of 1 for in-ROI (non-medial wall) vertices and 0 for out-of-ROI (medial wall) vertices. Will be written in write_dir.

dtseries and dscalar files should use "func", whereas dlabel files should use "label".

ROIsubcortVol_fname

(Optional) NIFTI file names to save the subcortical ROI to. If not provided, defaults to "*ROI.nii", where * is the file name component of cifti_fname. The subcortical ROI typically represents the volumetric mask for the entire subcortical structure, with values of 1 for in-ROI (in subcortex) voxels and 0 for out-of-ROI (not in subcortex) voxels. Will be written in write_dir.

write_dir

Where should the separated files be placed? NULL (default) will write them to the current working directory.

write_dir must already exist, or an error will occur.

48 smooth_cifti

Details

Time unit, start, and step (dtseries files) will not be written to the GIFTI/NIFTIs. Column names (dscalar files) will not be written to the GIFTIs, as well as label names and colors (dlabel files). (Haven't checked the NIFTIs yet.)

ROI/medial wall behavior: If there are 32k vertices in the left cortex with 3k representing the medial wall, then both cortexL_fname and ROIcortexL_fname will have 32k entries, 3k of which having a value of 0 indicating the medial wall. The non-medial wall entries will have the data values in cortexL_fname and a value of 1 in ROIcortexL_fname. Thus, exporting ROIcortexL_fname is vital if the data values include 0, because 0-valued non-medial wall vertices and medial wall vertices cannot be distinguished from one another within cortexL_fname alone.

Value

A named character vector with the file paths to the written NIFTI and GIFTI files

Connectome Workbench

This function interfaces with the "-cifti-separate" Workbench command.

See Also

```
Other functions for writing CIFTI or GIFTI data: write_cifti(), write_metric_gifti(), write_subcort_nifti(), write_surf_gifti()
```

smooth_cifti

Smooth CIFTI data

Description

Spatially smooth the metric data of a CIFTI file or "xifti" object.

Usage

```
smooth_cifti(
    x,
    cifti_target_fname = NULL,
    surf_FWHM = 5,
    vol_FWHM = 3,
    surfL_fname = NULL,
    surfR_fname = NULL,
    cerebellum_fname = NULL,
    subcortical_zeroes_as_NA = FALSE,
    cortical_zeroes_as_NA = FALSE,
    subcortical_merged = FALSE
)

smoothCIfTI(
```

smooth_cifti 49

```
Х,
  cifti_target_fname = NULL,
  surf_FWHM = 5,
  vol_FWHM = 5,
  surfL_fname = NULL,
  surfR_fname = NULL,
  cerebellum_fname = NULL,
  subcortical_zeroes_as_NA = FALSE,
  cortical_zeroes_as_NA = FALSE,
  subcortical_merged = FALSE
)
smoothcii(
  cifti_target_fname = NULL,
  surf_FWHM = 5,
  vol_FWHM = 5,
  surfL_fname = NULL,
  surfR_fname = NULL,
  cerebellum_fname = NULL,
  subcortical_zeroes_as_NA = FALSE,
  cortical_zeroes_as_NA = FALSE,
  subcortical_merged = FALSE
)
smooth_xifti(
  cifti_target_fname = NULL,
  surf_FWHM = 5,
  vol_FWHM = 5,
  surfL_fname = NULL,
  surfR_fname = NULL,
  cerebellum_fname = NULL,
  subcortical_zeroes_as_NA = FALSE,
  cortical_zeroes_as_NA = FALSE,
  subcortical_merged = FALSE
)
```

Arguments

x The CIFTI file name or "xifti" object to smooth.

cifti_target_fname

File name for the smoothed CIFTI. If NULL, will be written to "smoothed.d*.nii" in the current working directory if x was a CIFTI file, and in a temporary directory if x was a "xifti" object.

surf_FWHM, vol_FWHM

The full width at half maximum (FWHM) parameter for the gaussian surface or volume smoothing kernel, in mm. Default: 5 for cortex (surface) and 3 for

50 smooth_gifti

subcortex (volume).

surfL_fname, surfR_fname

(Required if the corresponding cortex is present) Surface GIFTI files for the left and right cortical surfaces. If not provided, the surfaces in x are used, but if those are also not present, the default surfaces will be used.

cerebellum_fname

(Optional) Surface GIFTI file for the cerebellar surface

subcortical_zeroes_as_NA, cortical_zeroes_as_NA

Should zero-values in the subcortical volume or cortex be treated as NA? Default: FALSE

subcortical_merged

Smooth across subcortical structure boundaries? Default: FALSE.

Details

If the CIFTI is a ".dlabel" file (intent 3007), then it will be converted to a ".dscalar" file because the values will no longer be integer indices. Unless the label values were ordinal, this is probably not desired so a warning will be printed.

Can accept a "xifti" object as well as a path to a CIFTI-file.

Surfaces are required for each hemisphere in the CIFTI. If they are not provided, the default inflated surfaces will be used.

Conversion for sigma: $\sigma * 2 * sqrt(2 * log(2)) = FWHM$

Value

The cifti_target_fname, invisibly, if x was a CIFTI file name. A "xifti" object if x was a "xifti" object.

Connectome Workbench

This function interfaces with the "-cifti-smoothing" Workbench command.

See Also

```
Other commonly-used functions: is.cifti(), read_cifti(), resample_cifti(), view_xifti_surface(), view_xifti_volume(), write_cifti()
```

smooth_gifti

Smooth a metric GIFTI file

Description

Smooths metric GIFTI data along the cortical surface. The results are written to a new GIFTI file.

smooth_gifti 51

Usage

```
smooth_gifti(
 original_fname,
  target_fname,
  surf_fname = NULL,
  surf_FWHM = 5,
 hemisphere = c("left", "right"),
 ROI_fname = NULL,
 zeroes_as_NA = FALSE
)
smoothGIfTI(
  original_fname,
  target_fname,
  surf_fname,
 surf_FWHM = 5,
  zeroes_as_NA = FALSE
)
smoothgii(
 original_fname,
 target_fname,
 surf_fname,
 surf_FWHM = 5,
  zeroes_as_NA = FALSE
)
```

Arguments

original_fname	The GIFTI file to smooth.
target_fname	Where to save the smoothed file.
surf_fname	Surface GIFTI files cortical surface along which to smooth. If not provided, the default inflated surfaces will be used.
surf_FWHM	The full width at half maximum (FWHM) parameter for the gaussian surface smoothing kernel, in mm. Default: 5
hemisphere	The cortex hemisphere: "left" or "right". Only used if surf_fname is NULL.
ROI_fname	The ROI to limit smoothing to, as a metric file. This is used to exclude the medial wall from smoothing. If not provided (default) all the data is smoothed across the surface.
zeroes_as_NA	Should zero-values be treated as NA? Default: FALSE.

Value

The smoothed GIFTI file name, invisibly

52 summary.surf

Connectome Workbench

This function interfaces with the "-metric-smoothing" Workbench command.

substructure_table Substructure table

Description

Table of labels for cortex hemispheres (left and right) and subcortical substructures. The names used by the CIFTI format and the names used by ciftiTools are given.

Usage

```
substructure_table()
```

Details

The names used by ciftiTools are based on those in FT_READ_CIFTI from the FieldTrip MATLAB toolbox.

Value

A data.frame with each substructure along the rows. The first column gives the CIFTI format name and the second column gives the ciftiTools name.

summary.surf

Summarize a "surf" object

Description

Summary method for class "surf"

Usage

```
## $3 method for class 'surf'
summary(object, ...)
## $3 method for class 'summary.surf'
print(x, ...)
## $3 method for class 'surf'
print(x, ...)
```

Arguments

```
object Object of class "surf". See is.surf and make_surf.
... further arguments passed to or from other methods.
x bject of class "surf".
```

summary.xifti 53

summary.xifti

Summarize a "xifti" object

Description

Summary method for class "xifti"

Usage

```
## S3 method for class 'xifti'
summary(object, ...)
## S3 method for class 'summary.xifti'
print(x, ...)
## S3 method for class 'xifti'
print(x, ...)
```

Arguments

object Object of class "xifti".... further arguments passed to or from other methods.x A "xifti" object.

supported_intents

The NIFTI intents supported by ciftiTools

Description

Table of CIFTI file types (NIFTI intents) supported by ciftiTools.

Usage

```
supported_intents()
```

Details

See https://www.nitrc.org/forum/attachment.php?attachid=334&group_id=454&forum_id=1955 for information about the different NIFTI intents.

Value

A data.frame with each supported file type along the rows, and column names "extension", "intent_code", "value", and "intent_name"

54 transform_xifti

transform_xifti	Apply a univariate transformation to a "xifti" or pair of "xifti"s.	

Description

Apply a univariate transformation to each value in a "xifti" or pair of "xifti"s. If a pair, they must share the same dimensions (brainstructures) and number of measurements.

Usage

```
transform_xifti(xifti, FUN, xifti2 = NULL, idx = NULL, ...)
```

Arguments

xifti	The xifti
FUN	The function. If xifti2 is not provided, it should be a univariate function like log or sqrt. If xifti2 is provided, it should take in two arguments, like `+` or pmax.
xifti2	The second xifti, if applicable. Otherwise, NULL (default)
idx	The column indices for which to apply the transformation. If NULL (default), apply to all columns. If two "xifti" objects, were provided, the values in the first (xifti) will be retained for columns that are not transformed.
	Additional arguments to FUN

Details

If the "xifti" had the dlabel intent, and the transformation creates any value that is not a label value (e.g. a non-integer), then it is converted to a dscalar.

Technically, the function does not have to be univariate: it only has to return the same number of values as the input. The function will be applied to the matrix for each brain structure separately. For example, the function function(q)(q - mean(q)) / sd(q) will scale each brainstructure, while scale will scale each column of each brainstructure.

Value

A "xifti" storing the result of applying FUN to the input(s). The data dimensions will be the same. The metadata of xifti will be retained, and the metadata of xifti2 will be discarded (if provided).

See Also

```
Other functions for manipulating 'xifti' objects: add_surf(), apply_xifti(), combine_xifti(), convert_to_dlabel(), merge_xifti(), newdata_xifti(), remove_xifti(), select_xifti()
```

unmask_cortex 55

unmask_cortex <i>L</i>	Inmask cortex
------------------------	---------------

Description

Get cortex data with medial wall vertices

Usage

```
unmask_cortex(cortex, mwall, mwall_fill = NA)
```

Arguments

V vertices x T measurements matrix cortex Logical vector with T TRUE values. mwa11

mwall_fill The fill value to use for medial wall vertices.

Value

The unmasked cortex data

ocortex Undo a volumetric mask	unmask_subcortex Undo a v
--------------------------------	---------------------------

Description

Un-applies a mask to vectorized data to yield its volumetric representation. The mask and data should have compatible dimensions: the number of rows in dat should equal the number of locations within the mask. This is used for the subcortical CIFTI data.

Usage

```
unmask_subcortex(dat, mask, fill = NA)
```

Arguments

dat	Data matrix with locations along the rows and measurements along the columns.
	If only one set of measurements were made, this may be a vector.

Volumetric binary mask. TRUE indicates voxels inside the mask.

mask

fill The value for locations outside the mask. Default: NA.

Value

The 3D or 4D unflattened volume array

56 view_comp

use_color_pal

Use a color palette

Description

Applies a palette to a data vector to yield a vector of colors.

Usage

```
use_color_pal(data_values, pal, color_NA = "white", indices = FALSE)
```

Arguments

pal The palette to use to map values to colors

color_NA The color to use for NA values. Default: "white".

indices Return the numeric indices of colors in pal\$value rather than the colors them-

selves. A value of 0 will be used for missing data. Default: FALSE.

Value

A character vector of color names (or integers if indices).

view_comp

View composite of images

Description

Create a single image which displays multiple image files. Tailored to support composite layouts of plots from view_xifti.

Usage

```
view_comp(
  img,
  ncol = NULL,
  nrow = NULL,
  legend = NULL,
  title = NULL,
  legend_height = 0.3,
  title_height = 0.1,
  title_fsize = 5,
  newpage = is.null(fname),
  fname = NULL,
  ...
)
```

view_surf 57

Arguments

img Character vector of paths to images to include. They will be arranged by row.

ncol, nrow Control the layout of the composite image. NULL (default) will use approxi-

mately same numbers of rows and columns.

legend File path to a legend image to add, or NULL (default) to not add a legend.

title A length-one character vector to use as the title, or NULL (default) to not add a

title.

legend_height, title_height

Heights of the legend and title, if applicable. Specified relative to all the plots, so .1 would mean the height is a tenth of the height of all the plots. Default: .1

for the title and .3 for the legend.

title_fsize Multiplier for font size. Default: 5

newpage Call grid::grid.newpage before rendering? Default: is.null(fname).

fname If NULL (default), print the result. Otherwise, save to a PNG file at this location.

Will override newpage to FALSE.

. . . Additional arguments to gridExtra::arrangeGrob. The arguments grobs and

layout_matrix should be avoided because they are determined based on img. adjusting widths may be useful, e.g. to make the subcortex subplot be less wide

than the cortex subplot.

Details

Requires the following packages: png, grid, gridExtra

How it works: the non-legend images (plots) are composited in a call to grid::arrangeGrob. If a title or legend exists, it's added to the top and bottom, respectively, of the plots after with another call to grid::arangeGrob.

Value

The composite plot

view_surf View "surf" object(s)

Description

Visualize one or two "surf" objects(s), or the "surf" component(s) in a "xifti" using an interactive Open GL window made with rgl. The rgl package is required.

58 view_surf

Usage

```
view_surf(
  view = c("both", "lateral", "medial"),
 widget = NULL,
  title = NULL,
  fname = FALSE,
  cex.title = NULL,
  text_color = "black",
  bg = NULL,
  alpha = 1,
  edge_color = NULL,
  vertex_color = NULL,
  vertex_size = 0,
  material = NULL,
 width = NULL,
 height = NULL,
  zoom = NULL
)
```

Arguments

One of: A "surf" object; two "surf" objects; or, a "xifti" object. If a "surf" object has an empty "hemisphere" metadata entry, it will be set to the opposite side of the other's if known; otherwise, it will be set to the left side. If both are unknown, the first will be taken as the left and the second as the right.

view

Which view to display: "lateral", "medial", or "both". If NULL (default), both views will be shown. Each view will be plotted in a separate panel row.

widget

Display the plot in an htmlwidget? Should be logical or NULL (default), in which case a widget will be used only if needed (length(idx)>1 & isFALSE(fname), fname is a file path to an .html file, or if rgl.useNULL()).

Optional title(s) for the plot(s). It will be printed at the top in a separate subplot with 1/4 the height of the brain cortex subplots.

Default: NULL will not use any title if length(idx)==1. Otherwise, it will use the time index (".dtseries") or name (.dscalar or .dlabel) of each data column.

To use a custom title(s), use a length 1 character vector (same title for each plot) or length length(idx) character vector (different title for each plot). Set to NULL or an empty character to omit the title.

If the title is non-empty but does not appear, try lowering cex.title.

Save the plot(s) (and color legend if applicable)?

If isFALSE(fname) (default), no files will be written.

If fname is a length-1 character vector ending in ".html", an html with an interactive widget will be written.

If neither of the cases above apply, a png image will be written for each idx. If isTRUE(fname) the files will be named by the data column names (underscores will replace spaces). Or, set fname to a length 1 character vector to name files by

title

fname

59 view_surf

this suffix followed by the fname_suffix. Or, set fname to a character vector

with the same length as idx to name the files exactly.

Font size multiplier for the title. NULL (default) will use 2 for titles less than 20

characters long, and smaller sizes for increasingly longer titles.

text_color Color for text in title and colorbar legend. Default: "black".

Background color. NULL will use "white". Does not affect the color legend or bg

color bar if printed separately: those will always have white backgrounds.

alpha Transparency value for mesh coloring, between 0 and 1. Default: 1.0 (no trans-

parency).

cex.title

edge_color Outline each edge in this color. Default: NULL (do not outline the edges).

vertex_color Draw each vertex in this color. Default: "black". Vertices are only drawn if

vertex_size > 0

vertex_size Draw each vertex with this size. Default: 0 (do not draw the vertices).

material A list of materials from rgl.material to use. For example, list(lit=FALSE,

smooth=FALSE) will use exact colors from the color scale, rather than adding

geometric shading and interpolating vertex colors. If NULL, use defaults.

width, height The dimensions of the RGL window, in pixels. If both are NULL (default), these

dimensions depend on type of output (Open GL window or widget) and subplots (hemisphere, view, title, and slider_title) and are chosen to be the largest plot within a 1500 x 700 area (Open GL window) or 600 x 700 area (widget) that maintains a brain hemisphere subplot dimensions ratio of 10 x 7. Specifying only one will set the other to maintain this aspect ratio. Both can be specified to set the dimensions exactly, but note that the dimensions cannot be larger than the screen resolution. (These arguments do not affect the size of the legend, which

cannot be controlled.)

The plot will be taller than height to accommodate a title or color bar.

If multiple idx are being composited with together, these arguments refer to a single idx within the composited plot, and not the composited plot itself.

Adjust the sizes of the brain meshes. Default: NULL (will be set to 0.6 or 160\

widget.)

Details

zoom

This function works as a wrapper to view_xifti_surface, but some arguments are not applicable (e.g. color scheme and legend). Also, instead of using the hemisphere argument, name the surface arguments surfL or surfR (see description for parameter . . .). Finally, the default value for param is "surf", not "xifti".

Navigating and Embedding the Interactive Plots

To navigate the interactive Open GL window and html widget, left click and drag the cursor to rotate the meshes. Use the scroll wheel or right click and drag to zoom. Press the scroll wheel and drag to change the field-of-view. For Open GL windows, execute snapshot to save the current window as a .png file, rgl.close to close the window, and rgl.viewpoint to programmatically control the perspective.

60 view_xifti

To embed an interactive plot in an R Markdown document, first execute rgl::setupKnitr() to prepare the document for embedding the widget. Then execute the plot command as you normally would to create a widget (i.e. without specifying fname, and by requesting more than one idx or by setting widget to TRUE). When the R Markdown document is knitted, the interactive widget should be displayed below the chunk in which the plot command was executed. See the vignette for an example.

Embedding the Static Plots

To embed a static plot in an R Markdown document, first execute rgl::setupKnitr() to prepare the document for embedding the snapshot of the Open GL window. Then execute the plot command as you normally would to create an Open GL window (i.e. without specifying fname, and by requesting only one idx). In the options for the chunk in which the plot command is executed, set rgl=TRUE, format="png". You can also control the image dimensions here e.g. fig.height=3.8, fig.width=5. When the R Markdown document is knitted, the static plots should be displayed below the chunk in which the plot command was executed. See the vignette for an example.

See Also

```
Other functions for working with GIFTI surface geometry data: is.surf(), read_surf(), resample_surf(), rotate_surf(), write_surf_gifti()
```

view_xifti

View a "xifti" object

Description

Displays the data in a "xifti" object using view_xifti_surface and/or view_xifti_volume. Compared to calling these two functions separately on the same data, this function may be more convenient since the automatic choice of color mode and limits is determined across the entire data and shared between the two plots. Also, if writing files the subcortical plots will not overwrite the cortical plots.

Usage

```
view_xifti(xifti, what = NULL, ...)
view_cifti(xifti, ...)
viewCIfTI(xifti, ...)
viewcii(xifti, ...)
```

Arguments

xifti A "xifti" object.

what "surface", "volume", or "both". NULL will infer based on the contents of the "xifti": if there is data, plot the surface cortex data if present, and the volumetric subcortical data otherwise. If there is no data, plot the surface geometry if present, and do nothing otherwise.

... Additional arguments to pass to either view function.

Value

The return value of view_xifti_surface or view_xifti_volume.

view_xifti_surface View cortical surface data in a "xifti"

Description

Visualize "xifti" cortical data using an interactive Open GL window or htmlwidget made with rgl. The rmarkdown package is required for the htmlwidget functionality.

Usage

```
view_xifti_surface(
  xifti = NULL,
  surfL = NULL,
  surfR = NULL,
  color_mode = "auto",
  zlim = NULL,
  colors = NULL,
  idx = NULL,
  hemisphere = NULL,
  together = NULL,
  together_ncol = NULL,
  together_title = NULL,
  view = c("both", "lateral", "medial"),
  widget = NULL,
  title = NULL,
  slider_title = "Index",
  fname = FALSE,
  fname_suffix = c("names", "idx"),
  legend_fname = "[fname]_legend",
  legend_ncol = NULL,
  legend_alllevels = FALSE,
  legend_embed = NULL,
  digits = NULL,
  cex.title = NULL,
```

```
text_color = "black",
  bg = NULL,
  borders = FALSE,
  alpha = 1,
  edge_color = NULL,
  vertex_color = NULL,
  vertex_size = 0,
  material = NULL,
 width = NULL,
 height = NULL,
  zoom = NULL
)
view_cifti_surface(
  xifti = NULL,
  surfL = NULL,
  surfR = NULL,
  color_mode = "auto",
  zlim = NULL,
  colors = NULL,
  idx = NULL,
  hemisphere = NULL,
  together = NULL,
  together_ncol = NULL,
  together_title = NULL,
  view = c("both", "lateral", "medial"),
  widget = NULL,
  title = NULL,
  slider_title = "Index",
  fname = FALSE,
  fname_suffix = c("names", "idx"),
  legend_fname = "[fname]_legend",
  legend_ncol = NULL,
  legend_alllevels = FALSE,
  legend_embed = NULL,
  digits = NULL,
  cex.title = NULL,
  text_color = "black",
  bg = NULL,
  borders = FALSE,
  alpha = 1,
  edge_color = NULL,
  vertex_color = NULL,
  vertex_size = 0,
  width = NULL,
  height = NULL,
  zoom = NULL
)
```

```
viewCIfTI_surface(
  xifti = NULL,
  surfL = NULL,
  surfR = NULL,
  color_mode = "auto",
  zlim = NULL,
  colors = NULL,
  idx = NULL,
  hemisphere = NULL,
  together = NULL,
  together_ncol = together_ncol,
  together_title = NULL,
  view = c("both", "lateral", "medial"),
  widget = NULL,
  title = NULL,
  slider_title = "Index",
  fname = FALSE,
  fname_suffix = c("names", "idx"),
  legend_fname = "[fname]_legend",
  legend_ncol = NULL,
  legend_alllevels = FALSE,
  legend_embed = NULL,
  digits = NULL,
  cex.title = NULL,
  text_color = "black",
  bg = NULL,
  borders = FALSE,
  alpha = 1,
  edge_color = NULL,
  vertex_color = NULL,
  vertex_size = 0,
  width = NULL,
  height = NULL,
  zoom = NULL
)
viewcii_surface(
  xifti = NULL,
  surfL = NULL,
  surfR = NULL,
  color_mode = "auto",
  zlim = NULL,
  colors = NULL,
  idx = NULL,
  hemisphere = NULL,
  together = NULL,
  together_ncol = together_ncol,
```

```
together_title = NULL,
  view = c("both", "lateral", "medial"),
 widget = NULL,
  title = NULL,
  slider_title = "Index",
  fname = FALSE,
  fname_suffix = c("names", "idx"),
  legend_fname = "[fname]_legend",
  legend_ncol = NULL,
  legend_alllevels = FALSE,
  legend_embed = NULL,
  digits = NULL,
  cex.title = NULL,
  text_color = "black",
  bg = NULL,
  borders = FALSE,
 alpha = 1,
  edge_color = NULL,
  vertex_color = NULL,
  vertex_size = 0,
 width = NULL,
 height = NULL,
 zoom = NULL
)
```

Arguments

xifti A "xifti" object.

surfL, surfR (Optional) T

(Optional) The brain surface model to use. Each can be a "surf" object, any valid argument to read_surf, or one of "very inflated", "inflated", or "midthickness". If provided, it will override xifti\$surf\$cortex_left or

xifti\$surf\$cortex_right if it exists. Leave as NULL (default) to use xifti\$surf\$cortex_left

or xifti\$surf\$cortex_right if it exists, or the default inflated surfaces if it

does not exist.

 ${\tt color_mode} \qquad \qquad (Optional) \ "{\tt sequential"}, \ "{\tt qualitative"}, \ "{\tt diverging"}, \ {\tt or} \ "{\tt auto"} \ ({\tt default}).$

Auto mode will use the qualitative color mode if the "xifti" object represents a .dlabel CIFTI (intent 3007). Otherwise, it will use the diverging mode if the data contains both positive and negative values, and the sequential mode if the

data contains >90\ make_color_pal for more details.

zlim (Optional) Controls the mapping of values to each color in colors. If the length is longer than one, using -Inf will set the value to the data minimum, and Inf will

set the value to the data maximum. See make_color_pal description for more

details.

colors (Optional) "ROY_BIG_BL", vector of colors to use, the name of a ColorBrewer

palette (see RColorBrewer::brewer.pal.info and colorbrewer2.org), the name of a viridisLite palette, or a data.frame with columns "color" and "value" (will override zlim). If NULL (default), will use the positive half of "ROY_BIG_BL"

> (sequential), "Set2" (qualitative), or the full "ROY_BIG_BL" (diverging). An exception to these defaults is if the "xifti" object represents a .dlabel CIFTI (intent 3007), in which case the colors in the label table will be used. See make_color_pal for more details.

idx The time/column index of the data to display. NULL (default) will display the first column.

> If its length is greater than one, and isFALSE(fname), a widget must be used since a single OpenGL window cannot show multiple indexes. A slider will be added to the widget to control what time/column is being displayed.

Which brain cortex to display: "both" (default), "left", or "right". Each will be plotted in a separate panel column.

If a brain cortex is requested but no surface is available, a default inflated surface will be used.

This argument can also be NULL (default). In this case, the default inflated surface included with ciftiTools will be used for each cortex with data (i.e. if xifti\$data\$cortex_left and/or xifti\$data\$cortex_right exist).

Surfaces without data will be colored white.

Only applies if saving image files (!isFALSE(fname)). Use this argument to create and save a composite image which combines multiple plots. NULL (default) will not combine any plots. Otherwise, this argument should be a character vector with one or more of the following entries:

"leg" to combine the color legend with each "xifti" data plot. Overrides/ignores legend_embed.

"idx" to place all the plots for the different "idx" in a grid. If the data is not qualitative, a shared color bar will be added to the bottom of the composite. If the data is qualitative, a shared color legend will be added to the bottom only if "leg" is in together. For greater control see view_comp or grid::arrangeGrob.

If "idx" %in% together, this determines the number of columns to use in the array of subplots for different indices. By default, the number of columns and

rows will be determined such that they are about equal.

together_title If a composite image is made based on together, use this argument to add a grand title to the composite image. Should be a length-one character vector or NULL (default) to not add a grand title.

> Which view to display: "lateral", "medial", or "both". If NULL (default), both views will be shown. Each view will be plotted in a separate panel row.

> Display the plot in an htmlwidget? Should be logical or NULL (default), in which case a widget will be used only if needed (length(idx)>1 & isFALSE(fname), fname is a file path to an .html file, or if rgl.useNULL()).

> Optional title(s) for the plot(s). It will be printed at the top in a separate subplot with 1/4 the height of the brain cortex subplots.

> Default: NULL will not use any title if length(idx)==1. Otherwise, it will use the time index (".dtseries") or name (.dscalar or .dlabel) of each data column. To use a custom title(s), use a length 1 character vector (same title for each plot) or length length(idx) character vector (different title for each plot). Set to NULL or an empty character to omit the title.

hemisphere

together

together_ncol

widget

view

title

If the title is non-empty but does not appear, try lowering cex.title.

slider_title Text at bottom of plot that will be added if a slider is used, to provide a title for

it. Default: "Index". If NULL or an empty character, no title will be added.

fname Save the plot(s) (and color legend if applicable)?

If isFALSE(fname) (default), no files will be written.

If fname is a length-1 character vector ending in ".html", an html with an inter-

active widget will be written.

If neither of the cases above apply, a png image will be written for each idx. If isTRUE(fname) the files will be named by the data column names (underscores will replace spaces). Or, set fname to a length 1 character vector to name files by this suffix followed by the fname_suffix. Or, set fname to a character vector

with the same length as idx to name the files exactly.

fname_suffix Either the data column names ("names") or the index value ("idx").

legend_fname Save the color legend? Since the legend is the same for each idx only one legend

is written even if length(idx)>1. This argument can be NULL to not save the legend, an exact file path, or a length-one character vector with "[fname]" in it, which will name the legend based on fname\[1\]. For example, if fname\[1\] is "plots/my_cifti.png" and legend_fname is "\[fname\]_legend" (default), then the legend plot will be saved to "plots/my_cifti_legend.png".

legend_ncol Number of columns in color legend. If NULL (default), use 10 entries per row. Only applies if the color legend is used (qualitative data).

legend_alllevels

Show all label levels in the color legend? If FALSE (default), just show the levels present in the data being viewed. Only applies if the color legend is used

(qualitative data).

legend_embed Should the colorbar be embedded in the plot? It will be positioned in the bottom-

left corner, in a separate subplot with 1/4 the height of the brain cortex subplots.

Default: TRUE. If FALSE, print/save it separately instead.

Only applies if the color bar is used (sequential or diverging data) or if "leg" %in% together. Otherwise the color legend (qualitative data) cannot be embed-

ded at the moment.

digits The number of digits for the colorbar legend ticks. If NULL (default), let format

decide.

cex.title Font size multiplier for the title. NULL (default) will use 2 for titles less than 20

characters long, and smaller sizes for increasingly longer titles.

text_color Color for text in title and colorbar legend. Default: "black".

bg Background color. NULL will use "white". Does not affect the color legend or

color bar if printed separately: those will always have white backgrounds.

borders Only applicable if color_mode is "qualitative". Border vertices will be iden-

tified (those that share a face with at least one vertex of a different value) and colored over. If this argument is TRUE borders will be colored in black; provide the name of a different color to use that instead. If FALSE or NULL (default), do

not draw borders.

alpha Transparency value for mesh coloring, between 0 and 1. Default: 1.0 (no trans-

parency).

edge_color Outline each edge in this color. Default: NULL (do not outline the edges).

vertex_color Draw each vertex in this color. Default: "black". Vertices are only drawn if

vertex_size > 0

vertex_size Draw each vertex with this size. Default: 0 (do not draw the vertices).

material A list of materials from rgl.material to use. For example, list(lit=FALSE,

smooth=FALSE) will use exact colors from the color scale, rather than adding

geometric shading and interpolating vertex colors. If NULL, use defaults.

The dimensions of the RGL window, in pixels. If both are NULL (default), these dimensions depend on type of output (Open GL window or widget) and subplots (hemisphere, view, title, and slider_title) and are chosen to be the largest plot within a 1500 x 700 area (Open GL window) or 600 x 700 area (widget) that maintains a brain hemisphere subplot dimensions ratio of 10 x 7. Specifying only one will set the other to maintain this aspect ratio. Both can be specified to set the dimensions exactly, but note that the dimensions cannot be larger than the

cannot be controlled.)

The plot will be taller than height to accommodate a title or color bar.

If multiple ${\tt idx}$ are being composited with together, these arguments refer to a

screen resolution. (These arguments do not affect the size of the legend, which

single idx within the composited plot, and not the composited plot itself.

zoom Adjust the sizes of the brain meshes. Default: NULL (will be set to 0.6 or 160\

widget.)

Value

If a png or html file(s) were written, the names of the files for each index (and color legend if applicable) will be returned. Otherwise, the widget itself is returned if a widget was used, and the rgl object IDs are returned if an Open GL window was used. The rgl object IDs are useful for further programmatic manipulation of the Open GL window.

Navigating and Embedding the Interactive Plots

To navigate the interactive Open GL window and html widget, left click and drag the cursor to rotate the meshes. Use the scroll wheel or right click and drag to zoom. Press the scroll wheel and drag to change the field-of-view. For Open GL windows, execute snapshot to save the current window as a .png file, rgl.close to close the window, and rgl.viewpoint to programmatically control the perspective.

To embed an interactive plot in an R Markdown document, first execute rgl::setupKnitr() to prepare the document for embedding the widget. Then execute the plot command as you normally would to create a widget (i.e. without specifying fname, and by requesting more than one idx or by setting widget to TRUE). When the R Markdown document is knitted, the interactive widget should be displayed below the chunk in which the plot command was executed. See the vignette for an example.

Embedding the Static Plots

To embed a static plot in an R Markdown document, first execute rgl::setupKnitr() to prepare the document for embedding the snapshot of the Open GL window. Then execute the plot command

as you normally would to create an Open GL window (i.e. without specifying fname, and by requesting only one idx). In the options for the chunk in which the plot command is executed, set rgl=TRUE, format="png". You can also control the image dimensions here e.g. fig.height=3.8, fig.width=5. When the R Markdown document is knitted, the static plots should be displayed below the chunk in which the plot command was executed. See the vignette for an example.

See Also

```
Other commonly-used functions: is.cifti(), read_cifti(), resample_cifti(), smooth_cifti(), view_xifti_volume(), write_cifti()
```

view_xifti_volume

View subcortical data in a "xifti"

Description

Visualize the subcortical data in a "xifti" using a series of 2D slices (based on overlay) or an interactive widget (based on papayar::papaya). Note: papayar has been removed from CRAN so the widget is not available. If papayar returns to CRAN the widget will be made available again.

Usage

```
view_xifti_volume(
 xifti,
  structural_img = "MNI",
  color_mode = "auto",
  zlim = NULL,
  colors = NULL,
  structural_img_colors = gray(0:255/280),
  title = NULL,
  idx = NULL.
  plane = c("axial", "sagittal", "coronal"),
  convention = c("neurological", "radiological"),
  n_slices = 9,
  slices = NULL,
  together = NULL,
  together_ncol = NULL,
  together_title = NULL,
  widget = FALSE,
  fname = FALSE,
  fname_suffix = c("names", "idx"),
  fname_sub = FALSE,
  legend_fname = "[fname]_legend",
  legend_ncol = NULL,
  legend_alllevels = FALSE,
  legend_embed = NULL,
  digits = NULL,
```

```
cex.title = NULL,
  ypos.title = 0,
  xpos.title = 0,
  orientation_labels = FALSE,
  text_color = "white",
  bg = NULL,
 width = NULL,
 height = NULL,
)
view_cifti_volume(
  xifti,
  structural_img = "MNI",
  color_mode = "auto",
  zlim = NULL,
  colors = NULL,
  structural_img_colors = gray(0:255/280),
  title = NULL,
  idx = NULL,
  plane = c("axial", "sagittal", "coronal"),
  n_slices = 9,
  slices = NULL,
  together = NULL,
  together_ncol = NULL,
  together_title = NULL,
  widget = FALSE,
  fname = FALSE,
  fname_suffix = c("names", "idx"),
  fname_sub = FALSE,
  legend_fname = "[fname]_legend",
  legend_ncol = NULL,
  legend_alllevels = FALSE,
  legend_embed = NULL,
  digits = NULL,
  cex.title = NULL,
  ypos.title = 0,
  xpos.title = 0,
  text_color = "white",
  bg = NULL,
 width = NULL,
  height = NULL,
)
viewCIfTI_volume(
  xifti,
  structural_img = "MNI",
```

```
color_mode = "auto",
  zlim = NULL,
  colors = NULL,
  structural_img_colors = gray(0:255/280),
  title = NULL,
  idx = NULL,
  plane = c("axial", "sagittal", "coronal"),
  n_slices = 9,
  slices = NULL,
  together = NULL,
  together_ncol = NULL,
  together_title = NULL,
 widget = FALSE,
  fname = FALSE,
  fname_suffix = c("names", "idx"),
  fname_sub = FALSE,
  legend_fname = "[fname]_legend",
  legend_ncol = NULL,
  legend_alllevels = FALSE,
  legend_embed = NULL,
  digits = NULL,
  cex.title = NULL,
  ypos.title = 0,
  xpos.title = 0,
  text_color = "white",
 bg = NULL,
 width = NULL,
 height = NULL,
)
viewcii_volume(
  xifti,
  structural_img = "MNI",
  color_mode = "auto",
  zlim = NULL,
  colors = NULL,
  structural_img_colors = gray(0:255/280),
  title = NULL,
  idx = NULL,
 plane = c("axial", "sagittal", "coronal"),
 n_slices = 9,
  slices = NULL,
  together = NULL,
  together_ncol = NULL,
  together_title = NULL,
 widget = FALSE,
  fname = FALSE,
```

```
fname_suffix = c("names", "idx"),
  fname_sub = FALSE,
  legend_fname = "[fname]_legend",
  legend_ncol = NULL,
  legend_alllevels = FALSE,
  legend_embed = NULL,
  digits = NULL,
  cex.title = NULL,
 ypos.title = 0,
  xpos.title = 0,
  text_color = "white",
  bg = NULL,
 width = NULL,
 height = NULL,
)
```

Arguments

xifti

A "xifti" object.

structural_img The structural MRI image on which to overlay the subcortical plot. Can be a file name, "MNI" (default) to use the MNI T1-weighted template included in ciftiTools, or NULL to use a blank image.

color_mode

(Optional) "sequential", "qualitative", "diverging", or "auto" (default). Auto mode will use the qualitative color mode if the "xifti" object represents a .dlabel CIFTI (intent 3007). Otherwise, it will use the diverging mode if the data contains both positive and negative values, and the sequential mode if the data contains >90\ make_color_pal for more details.

zlim

(Optional) Controls the mapping of values to each color in colors. If the length is longer than one, using -Inf will set the value to the data minimum, and Inf will set the value to the data maximum. See make_color_pal description for more details.

colors

(Optional) "ROY_BIG_BL", vector of colors to use, the name of a ColorBrewer palette (see RColorBrewer::brewer.pal.info and colorbrewer2.org), the name of a viridisLite palette, or a data.frame with columns "color" and "value" (will override zlim). If NULL (default), will use the positive half of "ROY_BIG_BL" (sequential), "Set2" (qualitative), or the full "ROY_BIG_BL" (diverging). An exception to these defaults is if the "xifti" object represents a .dlabel CIFTI (intent 3007), in which case the colors in the label table will be used. See make_color_pal for more details.

structural_img_colors

Colors to use for the background image. These will be assigned in order from lowest to highest value with equal spacing between the colors. (color_mode, zlim and colors have no bearing on the background image colors.) This argument is used as the col.x argument to oro.nifti::overlay directly. Default: gray(0:255/280). To use the oro.nifti::overlay default instead set this argument to gray (0:64/64).

title Optional title(s) for the plot(s). It will be printed at the top.

> Default: NULL will not use any title if length(idx)==1. Otherwise, it will use the time index (".dtseries") or name (.dscalar or .dlabel) of each data column.

> To use a custom title(s), use a length 1 character vector (same title for each plot) or length length(idx) character vector (different title for each plot). Set to NULL or an empty character to omit the title.

If the title is non-empty but does not appear, try lowering cex.title.

The time/column index of the data to display. NULL (default) will display the first column.

If widget, only one index at a time may be displayed.

If !widget and the length of idx is greater than one, a new plot will be created for each idx. These can be toggled between using the arrows at the top of the display window if working interactively in RStudio; or, these will be written to separate files if !isFALSE(fname).

The plane to display for the slices: "axial" (default), "sagittal" or "coronal". Ignored if widget.

"neurological" (default) or "radiological". Neurological convention will display the left side of the brain on the left side of axial and coronal images, and in the first few slices of a series of sagittal images. Radiological convention will display the right side of the brain on the left side of axial and coronal images,

and in the first few slices of a series of sagittal images.

The number of slices to display. Default: 9. The slices will be selected in a way that visualizes as much of the subcortex as possible. Ignored if widget.

Which slices to display. If provided, this argument will override n_slices. Should be a numeric vector with integer values between one and the number of slices in plane. Ignored if widget.

Only applies if saving image files (!isFALSE(fname)). Use this argument to create and save a composite image which combines multiple plots. NULL (default) will not combine any plots. Otherwise, this argument should be a character vector with one or more of the following entries:

"leg" to combine the color legend with each "xifti" data plot. Overrides/ignores legend_embed.

"idx" to place all the plots for the different "idx" in a grid. If the data is not qualitative, a shared color bar will be added to the bottom of the composite. If the data is qualitative, a shared color legend will be added to the bottom only if "leg" is in together. For greater control see view_comp or grid::arrangeGrob.

If "idx" %in% together, this determines the number of columns to use in the array of subplots for different indices. By default, the number of columns and rows will be determined such that they are about equal.

together_title If a composite image is made based on together, use this argument to add a grand title to the composite image. Should be a length-one character vector or NULL (default) to not add a grand title.

> Create an interactive widget using papayar? Otherwise display static 2D slices. Default: FALSE.

idx

plane

convention

n_slices

slices

together

together_ncol

widget

view_xifti_volume 73

Note that the widget can only display one idx at a time.

Note: papayar has been removed from CRAN so the widget is not available. If papayar returns to CRAN the widget will be made available again.

fname, fname_suffix

Save the plot(s) (and color legend if applicable)?

If isFALSE(fname) (default), no files will be written.

If widget, these arguments are ignored.

If neither of the cases above apply, a png image will be written for each idx. If isTRUE(fname) the files will be named by the data column names (underscores will replace spaces). Or, set fname to a length 1 character vector to name files by this suffix followed by the fname_suffix: either the data column names ("names") or the index value ("idx"). Or, set fname to a character vector with the same length as idx to name the files exactly.

fname_sub

Add "_sub" to the end of the names of the files being saved? Default: FALSE. This is useful if cortical plots of the same data are being saved too.

legend_fname

Save the color legend? Since the legend is the same for each idx only one legend is written even if length(idx)>1. This argument can be NULL to not save the legend, an exact file path, or a length-one character vector with "[fname]" in it, which will name the legend based on fname\[1\]. For example, if fname\[1\] is "plots/my_cifti.png" and legend_fname is "\[fname\]_legend" (default), then the legend plot will be saved to "plots/my_cifti_legend.png".

legend_ncol

Number of columns in color legend. If NULL (default), use 10 entries per row. Only applies if the color legend is used (qualitative data).

legend_alllevels

Show all label levels in the color legend? If FALSE (default), just show the levels present in the data being viewed. Only applies if the color legend is used (qualitative data).

legend_embed

Should the colorbar be embedded in the plot? It will be positioned at the bottom. Default: TRUE. If FALSE, print/save it separately instead.

Only applies if the color bar is used (sequential or diverging data). The color legend (qualitative data) cannot be embedded at the moment.

digits

The number of digits for the colorbar legend ticks. If NULL (default), let format decide.

cex.title

Font size multiplier for the title. NULL (default) will use 1.2 for titles less than 20 characters long, and smaller sizes for increasingly longer titles. If saving a PNG and PDF file, the default will also scale with width relative to the default value of width.

ypos.title, xpos.title

The positioning of the title can be finicky, especially when using an R Markdown document interactively in which case it appears too high in the plot. Use these arguments to nudge the title up or down (ypos.title) or left or right (xpos.title).

orientation_labels

Show orientation labels at the top left and top right of the plot? These will indicate the directions along the left-right axis for each slice image. Default:

74 view_xifti_volume

FALSE. Ignored if widget. The vertical positioning is controlled by ypos.title,

and the font size is controlled by cex.title.

text_color Color for text in title and colorbar legend. Default: "white". If "white", will

use black instead for the color

bg Background color. NULL will use "black". Does not affect the color legend or

color bar if printed separately: those will always have white backgrounds.

width, height The dimensions of the plot, in pixels. Only affects saved images (if !isFALSE(fname)).

If NULL, file dimensions will be 400 x 600 pixels for PNGs and 4 x 6 in. for

PDFs.

Currently, there is no way to control the dimensions of the plot if working interactively in RStudio or creating a knitted R Markdown document. The default

appears to be a wide aspect ratio.

.. Additional arguments to pass to papayar::papaya or oro.nifti::overlay.

Note that for oro.nifti::overlay the following additional arguments should not be provided since they are pre-determined inside this function or by the arguments listed above: x, y, plane, col.y, col.x, zlim.y, oma, plot.type,

bg.

Details

Note that color_mode, zlim, and colors only affect the color scale of the data values whereas structural_img_colors only affects the color scale of the background image.

Currently, the color-related arguments only affect the 2D slice view. The color limits and palette must be edited using the widget controls once it's rendered.

Arguments concerning anatomical orientation assume that the subcortical data is stored in the following way: first dimension is normal to the sagittal plane, going left to right; second dimension is normal to the coronal plane, going from the front of the head (anterior) to the back (posterior); third dimension is normal to the axial plane, going from the top of the head (superior) to the neck (inferior).

For non-interactive plots, if n_slices > 1 and convention="neurological", axial slices are ordered from the neck (inferior) to the top of the head (superior), sagittal slices are ordered left to right, and coronal slices are ordered back (posterior) to front (anterior). If convention="radiological", sagittal slices are instead ordered right to left.

Value

If a png or pdf file(s) were written, the names of the files for each index (and color legend if applicable) will be returned. Otherwise, NULL is invisibly returned.

See Also

Other commonly-used functions: is.cifti(), read_cifti(), resample_cifti(), smooth_cifti(), view_xifti_surface(), write_cifti()

write_cifti 75

write_cifti

Write a CIFTI file from a "xifti" object

Description

Write out a "xifti" object as a CIFTI file and (optionally) GIFTI surface files.

Usage

```
write_cifti(
  xifti,
  cifti_fname,
  surfL_fname = NULL,
  surfR_fname = NULL,
  verbose = TRUE
)
writeCIfTI(
  xifti,
  cifti_fname,
  surfL_fname = NULL,
  surfR_fname = NULL,
  verbose = TRUE
)
writecii(
  xifti,
  cifti_fname,
  surfL_fname = NULL,
  surfR_fname = NULL,
  verbose = TRUE
)
write_xifti(
  xifti,
  cifti_fname,
  surfL_fname = NULL,
  surfR_fname = NULL,
  verbose = TRUE
)
```

Arguments

```
xifti A "xifti" object.
cifti_fname File path to a CIFTI file (ending in ".d*.nii").
```

76 write_metric_gifti

```
surfL_fname, surfR_fname
```

If the [left/right] surface is present, it will be a written to a GIFTI file at this file path. If NULL (default), do not write out the surface.

verbose

Should occasional updates be printed? Default: TRUE.

Value

Named character vector of the written files

Connectome Workbench

This function interfaces with the "-cifti-create-dense-timeseries", "-cifti-create-dense-scalar", or "-cifti-create-label" Workbench Command, depending on the input.

See Also

```
Other commonly-used functions: is.cifti(), read_cifti(), resample_cifti(), smooth_cifti(), view_xifti_surface(), view_xifti_volume()

Other functions for writing CIFTI or GIFTI data: separate_cifti(), write_metric_gifti(), write_subcort_nifti(), write_surf_gifti()
```

write_metric_gifti

Write a data matrix to a GIFTI metric file

Description

Write the data for the left or right cortex to a metric GIFTI file.

Usage

```
write_metric_gifti(
    x,
    gifti_fname,
    hemisphere = c("left", "right"),
    intent = NULL,
    data_type = NULL,
    encoding = NULL,
    endian = c("LittleEndian", "BigEndian"),
    col_names = NULL,
    label_table = NULL
)
```

write_metric_gifti 77

Arguments

 \mathbf{x} A VxT data matrix (V vertices, T measurements). This can also be an object

from gifti::readgii, or a length T list of length V vectors.

gifti_fname Where to write the GIFTI file.

hemisphere "left" (default) or "right". Ignored if data is already a "gifti" object.

intent "NIFTI_INTENT_*". NULL (default) will use metadata if data is a "gifti"

object, or "NONE" if it cannot be inferred. If not NULL and data is a "gifti" object, it will overwrite the existing intent. See https://nifti.nimh.nih.gov/nifti-

1/documentation/nifti1fields/nifti1fields_pages/group__NIFTI1__INTENT__CODES.html/document_vi

•

data_type the type of data: "NIFTI_TYPE_*" where * is "INT32" or "FLOAT32". If

NULL (default), the data type will be inferred. If not NULL and data is a "gifti"

object, it will overwrite the existing data type.

encoding One of "ASCII", "Base64Binary", or "GZipBase64Binary". If NULL (default),

will use the metadata if data is a GIFTI object, or "ASCII" if the data_type is

"NIFTI_TYPE_INT32" and "GZipBase64Binary" if the data_type is "NIFTI_TYPE_FLOAT32".

If not NULL and data is a "gifti" object, it will overwrite the existing data type.

endian "LittleEndian" (default) or "BigEndian". If data is a "gifti" object, it will

overwrite the existing endian.

col_names The names of each data column in gii (or entries in gii\$data).

label_table A data.frame with labels along rows. The row names should be the label names.

The column names should be among: "Key", "Red", "Green", "Blue", and "Alpha". The "Key" column is required whereas the others are optional (but very often included). Values in the "Key" column should be non-negative integers, typically beginning with 0. The other columns should be floating-point numbers

between 0 and 1.

Although CIFTI files support a different label table for each data column, GIFTI files only support a single label table. So this label table should be applicable to

each data column.

Value

Whether the GIFTI was successfully written

See Also

Other functions for writing CIFTI or GIFTI data: separate_cifti(), write_cifti(), write_subcort_nifti(), write_surf_gifti()

78 write_subcort_nifti

```
write_subcort_nifti Write subcortical data to NIFTI files
```

Description

Write subcortical data to NIFTI files representing the data values, subcortical structure labels, and volumetric mask. The input formats of subcortVol, subcortLabs, and subcortMask correspond to the data structures of xifti\$data\$subcort, xifti\$meta\$subcort\$labels, and xifti\$meta\$subcort\$mask respectively. subcortVol and subcortLabs should be vectorized, so if they are volumes consider using RNifti::writeNIfTI.

Usage

```
write_subcort_nifti(
   subcortVol,
   subcortLabs,
   subcortMask,
   trans_mat = NULL,
   trans_units = NULL,
   subcortVol_fname,
   subcortLabs_fname,
   ROIsubcortVol_fname = NULL,
   fill = 0
)
```

Arguments

subcortVol	A vectorized data matrix: V voxels by T measurements	
subcortLabs	Numeric (0 and 3-21) or factor vector corresponding to subcortical structure labels. See $substructure_table$.	
subcortMask	$Logical\ volumetric\ mask.\ Values\ of\ 0\ represent\ out-of-mask\ voxels\ (not\ subcortical),$ and values\ of\ 1\ represent\ in-mask\ voxels\ (subcortical),	
trans_mat	The TransformationMatrixIJKtoXYZ, or equivalently the desired sform matrix (srow_x, srow_y and srow_z) to write. If NULL, do not write it (all zeroes).	
trans_units	The units of trans_mat. Currently not used.	
<pre>subcortVol_fname, subcortLabs_fname, ROIsubcortVol_fname</pre>		
	File path to a NIFTI to save the corresponding data. $ROIsubcortVol_fname$ is optional but the rest is required.	
fill	Values to use for out-of-mask voxels. Default: 0.	

Details

All file path arguments are required except ROIsubcortVol_fname. If not provided, the volumetric mask will not be written. (It's redundant with the 0 values in subcortLabs_fname because valid labels have positive indexes.)

write_surf_gifti 79

Value

Named character vector with the "subcortVol", "subcortLabs", and "ROIsubcortVol" file names (if written)

Connectome Workbench

This function interfaces with the "-volume-label-import" Workbench Command.

See Also

```
Other functions for writing CIFTI or GIFTI data: separate_cifti(), write_cifti(), write_metric_gifti(), write_surf_gifti()
```

write_surf_gifti

Write a "surf" to a GIFTI surface file

Description

Write the data for the left or right surface to a surface GIFTI file.

Usage

```
write_surf_gifti(
    x,
    gifti_fname,
    hemisphere = c("left", "right"),
    encoding = NULL,
    endian = c("LittleEndian", "BigEndian")
)

write_surf(
    x,
    gifti_fname,
    hemisphere = c("left", "right"),
    encoding = NULL,
    endian = c("LittleEndian", "BigEndian")
)
```

Arguments

```
x A "surf" object, an object from gifti::readgii, or a list with elements "pointset" and "triangle".

gifti_fname Where to write the GIFTI file.

hemisphere "left" (default) or "right". Ignored if data is already a "gifti" object, or if it is a "surf" object with the hemisphere metadata already specified.
```

80 write_xifti2

encoding A length-2 vector with elements chosen among "ASCII", "Base64Binary", and

"GZipBase64Binary". If NULL (default), will use the metadata if data is a "gifti" object, or "GZipBase64Binary" for the "pointset" and "ASCII" for the "trian-

gles" if data is not already a GIFTI.

endian "LittleEndian" (default) or "BigEndian".

Value

Whether the GIFTI was successfully written

See Also

```
Other functions for writing CIFTI or GIFTI data: separate_cifti(), write_cifti(), write_metric_gifti(), write_subcort_nifti()
```

Other functions for working with GIFTI surface geometry data: is.surf(), read_surf(), resample_surf(), rotate_surf(), view_surf()

write_xifti2

Write a "xifti" object to GIFTI and NIFTI files

Description

Write metric or label GIFTIs for the cortical surface data and NIFTIs for the subcortical labels and mask in a "xifti" object. Each present brainstructure will be written; if a brainstructure is absent the corresponding file is not written.

Usage

```
write_xifti2(
  xifti,
  brainstructures = NULL,
  cortexL_fname = NULL,
  cortexR_fname = NULL,
  subcortVol_fname = NULL,
  subcortLabs_fname = NULL,
  ROI_brainstructures = "all",
  ROIcortexL_fname = NULL,
  ROIsubcortVol_fname = NULL,
  write_dir = NULL,
  verbose = FALSE
)
```

write_xifti2 81

Arguments

xifti

A "xifti" object.

brainstructures

Character vector indicating which brain structure(s) to obtain: "left" (left cortex), "right" (right cortex) and/or "subcortical" (subcortex and cerebellum). Can also be "all" (obtain all three brain structures). Default: c("left", "right") (cortex only).

If a brain structure is indicated but does not exist in the CIFTI file, a warning will occur and that brain structure will be skipped.

cortexL_fname, cortexR_fname

(Optional) GIFTI file names (*.[func/label].gii) to save the [left/right] cortex data to. If not provided, defaults to "*[L/R].\[func/label\].gii", where * is the file name component of cifti_fname. Will be written in write_dir.

dtseries and dscalar files should use "func", whereas dlabel files should use "label".

subcortVol_fname, subcortLabs_fname

(Optional) NIFTI file names to save the subcortical [volume/labels] to. If not provided, defaults to "*[/.labels].nii", where * is the file name component of cifti_fname. Will be written in write_dir.

ROI_brainstructures

Which ROIs should be obtained? "all" (default) to obtain ROIs for each of the brainstructures. NULL to not obtain any ROIs. This should be a subset of brainstructures.

ROIcortexL_fname, ROIcortexR_fname

(Optional) GIFTI file names (*.[func/label].gii) to save the [left/right] cortex ROI to. If not provided, defaults to "*ROI_[L/R].\[func/label\].gii", where * is the file name component of cifti_fname. The cortical ROIs typically represent the medial wall mask, with values of 1 for in-ROI (non-medial wall) vertices and 0 for out-of-ROI (medial wall) vertices. Will be written in write_dir.

dtseries and dscalar files should use "func", whereas dlabel files should use "label".

ROIsubcortVol_fname

(Optional) NIFTI file names to save the subcortical ROI to. If not provided, defaults to "*ROI.nii", where * is the file name component of cifti_fname. The subcortical ROI typically represents the volumetric mask for the entire subcortical structure, with values of 1 for in-ROI (in subcortex) voxels and 0 for out-of-ROI (not in subcortex) voxels. Will be written in write_dir.

write_dir

Where should the separated files be placed? NULL (default) will write them to the current working directory.

write_dir must already exist, or an error will occur.

verbose

Should occasional updates be printed? Default: FALSE.

Value

List of written files

Index

* common	apply_xifti, 4, 4, 12, 24, 27, 35, 45, 54
is.cifti, 17	as.cifti(as.xifti),5
read_cifti, 29	as.matrix.xifti,5
resample_cifti,35	as.xifti, 5, 16, 21, 22, 32, 33, 35
smooth_cifti, 48	as_cifti(as.xifti),5
view_xifti_surface, 61	as_xifti(as.xifti),5
view_xifti_volume, 68	
write_cifti, 75	ciftiTools, 8
* manipulating	ciftiTools.files, 10
add_surf, 3	ciftiTools.getOption, 10
apply_xifti,4	ciftiTools.listOptions, 10, 11, 11
combine_xifti, 12	ciftiTools.setOption, 11
merge_xifti, 24	combine_xifti, 4, 12, 24, 27, 35, 45, 54
newdata_xifti, 26	convert_to_dlabel, 4, 12, 24, 27, 35, 45, 54
remove_xifti,35	
select_xifti, 45	dim.xifti, 12
transform_xifti, 54	
* reading	expand_color_pal, 13
as.xifti,5	0
info_cifti, 15	fix_xifti, 13
load_parc, 20	format, 66, 73
load_surf, 21	mak ide and makle 14
read_cifti, 29	get_wb_cmd_path, 14
read_surf, 32	infer_resolution, 14
read_xifti2,33	info_cifti, 8, 14, 15, 21, 22, 31–33, 35
* surfing	infoCIfTI (info_cifti), 15
is.surf, 18	infocii (info_cifti), 15
read_surf, 32	is.cifti, 17, 32, 38, 50, 68, 74, 76
resample_surf, 40	is.surf, 18, 33, 41, 42, 52, 60, 80
rotate_surf, 41	is.xifti, 17, 18, 19
view_surf, 57	is_cifti (is.cifti), 17
write_surf_gifti,79	is_xifti (is.xifti), 19
* writing	isCIfTI (is.cifti), 17
separate_cifti, 46	1501111 (15.01111), 17
write_cifti, 75	load_parc, 8, 16, 20, 22, 32, 33, 35
write_metric_gifti, 76	load_surf, 8, 10, 16, 21, 21, 32, 33, 35
write_subcort_nifti, 78	1000_5011, 0, 10, 10, 21, 21, 32, 33, 33
write_subcort_Hirti,78 write_surf_gifti,79	make_color_pal, 22, 64, 65, 71
wi 100_30i i _g1i 01, //	make_surf, 8, 52
add_surf, 3, 4, 12, 24, 27, 35, 45, 54	make_surf (read_surf), 32
= , - , . , - = , = . , = . , = . , ,	(/ ,

INDEX 83

Math.xifti (S3_Math), 43	S3_Summary, 44
merge_xifti, 4, 12, 24, 27, 35, 45, 54	scale, 45
move_from_mwall, 25	scale_xifti, 45
move_to_mwall, 26	select_xifti, 4, 12, 24, 27, 35, 45, 54
	separate_cifti, 46, 76, 77, 79, 80
newdata_xifti, 4, 12, 24, 26, 35, 45, 54	<pre>separateCIfTI (separate_cifti), 46</pre>
	separatecii (separate_cifti), 46
Ops.xifti(S3_Ops), 44	smooth_cifti, 18, 32, 38, 48, 68, 74, 76
overlay, 68	<pre>smooth_gifti, 50</pre>
	<pre>smooth_xifti (smooth_cifti), 48</pre>
parc_borders, 27	<pre>smoothCIfTI (smooth_cifti), 48</pre>
plot.surf, 28	<pre>smoothcii (smooth_cifti), 48</pre>
plot.xifti, 28	<pre>smoothGIfTI (smooth_gifti), 50</pre>
<pre>print.summary.surf(summary.surf), 52</pre>	smoothgii (smooth_gifti), 50
<pre>print.summary.xifti(summary.xifti), 53</pre>	snapshot, <i>59</i> , <i>67</i>
print.surf (summary.surf), 52	substructure_table, <i>7</i> , <i>35</i> , <i>52</i> , <i>78</i>
print.xifti(summary.xifti),53	summary.surf, 52
	Summary.xifti(S3_Summary),44
read_cifti, 8, 16, 18, 21, 22, 29, 33, 35, 38,	summary.xifti,53
50, 68, 74, 76	supported_intents, 53
read_cifti_convert, 31	system, 43
read_cifti_separate, 31	Cy
read_surf, 8, 16, 19, 21, 22, 32, 32, 35, 41,	template_xifti, 8, 15, 17, 19
42, 60, 64, 80	transform_xifti, 4, 12, 24, 27, 35, 43–45, 54
read_xifti (read_cifti), 29	transform_x1ft1, 4, 12, 24, 27, 33, 43, 43, 34
read_xifti2, 8, 16, 21, 22, 32, 33, 33	unmask_cortex, 55
readCIfTI (read_cifti), 29	unmask_subcortex, 55
readcii (read_cifti), 29	use_color_pal, 56
readgii, 32	use_color_par, 50
remove_xifti, 4, 12, 24, 27, 35, 45, 54	
resample_cifti, 18, 32, 35, 50, 68, 74, 76	view_cifti (view_xifti), 60
resample_cifti_default_fname, 37	view_cifti_surface
resample_cifti_from_template, 38	(view_xifti_surface), 61
resample_gifti,38	<pre>view_cifti_volume(view_xifti_volume),</pre>
resample_surf, 19, 33, 40, 42, 60, 80	68
resample_xifti (resample_cifti), 35	view_comp, 56
resampleCIfTI (resample_cifti), 35	view_surf, 19, 33, 41, 42, 57, 80
resamplecii (resample_cifti), 35	view_xifti, 28, 56, 60
resampleGIfTI (resample_gifti), 38	view_xifti_surface, 18, 28, 32, 38, 41, 50,
resamplegii (resample_gifti), 38	59, 60, 61, 74, 76
rgl.close, <i>59</i> , <i>67</i>	view_xifti_volume, 18, 32, 38, 50, 60, 68,
rgl.material, <i>59</i> , <i>67</i>	68, 76
rgl.viewpoint, 59,67	viewCIfTI (view_xifti), 60
rotate_surf, 19, 33, 41, 41, 60, 80	<pre>viewCIfTI_surface (view_xifti_surface),</pre>
ROY_BIG_BL, 42	61
run_wb_cmd, 43	<pre>viewCIfTI_volume (view_xifti_volume), 68</pre>
00.14.14.40	viewcii (view_xifti), 60
S3_Math, 43	viewcii_surface(view_xifti_surface), 61
S3_0ps, 44	<pre>viewcii_volume (view_xifti_volume), 68</pre>

INDEX