Package 'clr'

July 29, 2019

Type Package
Title Curve Linear Regression via Dimension Reduction
Version 0.1.2
Author Amandine Pierrot with contributions and/or help from Qiwei Yao, Haeran Cho, Yannig Goude and Tony Aldon.
Maintainer Amandine Pierrot <amandine.m.pierrot@gmail.com></amandine.m.pierrot@gmail.com>
Copyright EDF R&D 2017
Description A new methodology for linear regression with both curve response and curve regressors, which is described in Cho, Goude, Brossat and Yao (2013) <doi:10.1080 01621459.2012.722900=""> and (2015) <doi:10.1007 978-3-319-18732-7_3="">. The key idea behind this methodology is dimension reduction based on a singular value decomposition in a Hilbert space, which reduces the curve regression problem to several scalar linear regression problems.</doi:10.1007></doi:10.1080>
License LGPL (>= 2.0)
Encoding UTF-8
LazyData true
RoxygenNote 6.1.1
Depends R (>= 2.10)
Imports magrittr, lubridate, dplyr, stats
NeedsCompilation no
Repository CRAN
Date/Publication 2019-07-29 09:00:02 UTC

R topics documented:

clr-package	
clr	
clrdata	 4
$clust_test \ . \ . \ . \ . \ . \ . \ . \ . \ . \ $	 5

clust_train	 6
gb_load	 6
predict.clr	 7

clr-package Curve Linear Regression

Description

clr provides functions for curve linear regression via dimension reduction.

Details

The package implements a new methodology for linear regression with both curve response and curve regressors, which is described in Cho et al. (2013) and Cho et al. (2015). The CLR model performs a data-driven dimension reduction, based on a singular value decomposition in a Hilbert Space, as well as a data transformation so that the relationship between the transformed data is linear and can be captured by simple regression models.

Author(s)

Amandine Pierrot <amandine.m.pierrot@gmail.com>

with contributions and help from Qiwei Yao, Haeran Cho, Yannig Goude and Tony Aldon.

References

These provide details for the underlying clr methods.

Cho, H., Y. Goude, X. Brossat, and Q. Yao (2013) Modelling and Forecasting Daily Electricity Load Curves: A Hybrid Approach. Journal of the American Statistical Association 108: 7-21.

Cho, H., Y. Goude, X. Brossat, and Q. Yao (2015) Modelling and Forecasting Daily Electricity Load via Curve Linear Regression. In *Modeling and Stochastic Learning for Forecasting in High Dimension*, edited by Anestis Antoniadis and Xavier Brossat, 35-54, Springer.

clr

Curve Linear Regression via dimension reduction

Description

Fits a curve linear regression (CLR) model to data, using dimension reduction based on singular value decomposition.

Usage

```
clr(Y, X, clust = NULL, qx_estimation = list(method = "pctvar", param =
0.999), ortho_Y = TRUE, qy_estimation = list(method = "pctvar", param
= 0.999), d_estimation = list(method = "cor", param = 0.5))
```

Arguments

Y	An object of class clrdata or matrix, of the response curves (one curve a row).
Х	An object of class clrdata or matrix, of the regressor curves (one curve a row).
clust	If needed, a list of row indices for each cluster, to obtain (approximately) homo- geneous dependence structure inside each cluster.
qx_estimation	
	A list containing both values for 'method' (among 'ratio', 'ratioM', 'pctvar', 'fixed') and for 'param' (depending on the selected method), in order to choose how to estimate the dimension of X (in the sense that its Karhunen-Lo\'eve decomposition has qx terms only.
ortho_Y	If TRUE then Y is orthogonalized.
qy_estimation	
	Same as for qx_estimation, if ortho_Y is set to TRUE.
d_estimation	A list containing both values for 'method' (among 'ratio', 'pctvar', 'cor') and for 'param' (depending on the selected method), in order to choose how to estimate the correlation dimension.

Value

An object of class clr, which can be used to compute predictions. This clr object is a list of lists: one list by cluster of data, each list including:

residuals	The matrix of the residuals of d_hat simple linear regressions.
b_hat	The vector of the estimated coefficient of the d_hat simple straight line regressions.
eta	The matrix of the projections of X.
xi	The matrix of the projections of Y.
qx_hat	The estimated dimension of X.
qy_hat	The estimated dimension of Y.
d_hat	The estimated correlation dimension.
X_mean	The mean of the regressor curves.
X_sd	The standard deviation of the regressor curves.
Y_mean	The mean of the response curves.
ortho_Y	The value which was selected for ortho_Y.
GAMMA	The standardized transformation for X.
INV_DELTA	The standardized transformation for Y to predict if ortho_Y was set to TRUE.
phi	The eigenvectors for Y to predict if ortho_Y was set to FALSE.
idx	The indices of the rows selected from X and Y for the current cluster.

See Also

clr-package, clrdata and predict.clr.

Examples

```
library(clr)
data(gb_load)
data(clust_train)
clr_load <- clrdata(x = gb_load$ENGLAND_WALES_DEMAND,</pre>
                     order_by = gb_load$TIMESTAMP,
                     support_grid = 1:48)
## data cleaning: replace zeros with NA
clr_load[rowSums((clr_load == 0) * 1) > 0, ] <- NA
matplot(t(clr_load), ylab = 'Daily loads', type = 'l')
Y <- clr_load[2:nrow(clr_load), ]</pre>
X <- clr_load[1:(nrow(clr_load) - 1), ]</pre>
begin_pred <- which(substr(rownames(Y), 1, 4) == '2016')[1]</pre>
Y_train <- Y[1:(begin_pred - 1), ]</pre>
X_train <- X[1:(begin_pred - 1), ]</pre>
## Example without any cluster
model <- clr(Y = Y_train, X = X_train)</pre>
## Example with clusters
model <- clr(Y = Y_train, X = X_train, clust = clust_train)</pre>
```

```
clrdata
```

Create an object of clrdata

Description

clrdata is used to create a clrdata object from raw data inputs.

Usage

```
clrdata(x, order_by, support_grid)
```

Arguments

Х	A vector containing the time series values
order_by	A corresponding vector of unique time-dates - must be of class 'POSIXct'
support_grid	A vector corresponding to the support grid of functional data

Value

An object of class clrdata with one function a row. As it inherits the matrix class, all matrix methods remain valid. If time-dates are missing in x, corresponding NA functions are added by clrdata so that time sequence is preserved between successive rows.

4

clust_test

Examples

```
library(clr)
data(gb_load)
clr_load <- clrdata(x = gb_load$ENGLAND_WALES_DEMAND,</pre>
                     order_by = gb_load$TIMESTAMP,
                     support_grid = 1:48)
head(clr_load)
dim(clr_load)
summary(clr_load)
matplot(t(clr_load), ylab = 'Daily loads', type = 'l')
lines(colMeans(clr_load, na.rm = TRUE),
      col = 'black', lwd = 2)
clr_weather <- clrdata(x = gb_load$TEMPERATURE,</pre>
                        order_by = gb_load$TIMESTAMP,
                        support_grid = 1:48)
summary(clr_weather)
plot(1:48,
     colMeans(clr_weather, na.rm = TRUE),
     xlab = 'Instant', ylab = 'Mean of temperatures',
     type = 'l', col = 'cornflowerblue')
```

```
clust_test Electricity load example: clusters on test set
```

Description

A list with observations by cluster for prediction

Usage

clust_test

Format

A list of length 14:

14 clusters of loads, depending on both daily and seasonal classification, banking holidays being removed

Author(s)

Amandine Pierrot <amandine.m.pierrot@gmail.com>

clust_train

Description

A list with observations by cluster for fitting

Usage

```
clust_train
```

Format

A list of length 14:

14 clusters of loads, depending on both daily and seasonal classification, banking holidays being removed

Author(s)

Amandine Pierrot <amandine.m.pierrot@gmail.com>

qb_load

Electricity load from Great Britain

Description

A dataset containing half-hourly electricity load from Great Britain from 2011 to 2016, together with observed temperatures. Temperatures are computed from weather stations all over the country. It is a weighted averaged temperature depending on population geographical distribution.

Usage

gb_load

Format

A data frame with 105216 rows and 7 variables:

SETTLEMENT_DATE date, the time zone being Europe/London

SETTLEMENT_PERIOD time of the day

TIMESTAMP date-time, the time zone being Europe/London

ENGLAND_WALES_DEMAND British electric load, measured in MW, on average over the half hour

TEMPERATURE observed temperature in Celsius

predict.clr

- **MV** percentage of missing values when averaging over weather stations, depending on the weight of the station
- **DAY_TYPE** type of the day of the week, from 1 for Sunday to 7 for Saturday, 8 being banking holidays

Author(s)

Amandine Pierrot <amandine.m.pierrot@gmail.com>

Source

National Grid¹ National Centers for Environmental Information²

predict.clr Prediction from fitted CLR model(s)

Description

Takes a fitted clr object produced by clr() and produces predictions given a new set of functions or the original values used for the model fit.

Usage

S3 method for class 'clr'
predict(object, newX = NULL, newclust = NULL,
 newXmean = NULL, simplify = FALSE, ...)

Arguments

object	A fitted clr object produced by clr ().
newX	An object of class clrdata or a matrix with one function a row. If this is not provided then predictions corresponding to the original data are returned. If newX is provided then it should contain the same type of functions as the original ones (same dimension, same clusters eventually,).
newclust	A new list of indices to obtain (approximately) homogeneous dependence struc- ture inside each cluster of functions.
newXmean	To complete when done
simplify	If TRUE, one matrix of predicted functions is returned instead of a list of ma- trices (one matrix by cluster). In the final matrix, rows are sorted by increasing row numbers.
	Further arguments are ignored.

Ihttp://www2.nationalgrid.com/UK/Industry-information/Electricity-transmission-operational-data/ Data-Explorer/

²https://gis.ncdc.noaa.gov/maps/ncei/cdo/alltimes

Value

predicted functions

Examples

```
library(clr)
data(gb_load)
clr_load <- clrdata(x = gb_load$ENGLAND_WALES_DEMAND,</pre>
                      order_by = gb_load$TIMESTAMP,
                      support_grid = 1:48)
# data cleaning: replace zeros with NA
clr_load[rowSums((clr_load == 0) * 1) > 0, ] <- NA</pre>
Y <- clr_load[2:nrow(clr_load), ]</pre>
X <- clr_load[1:(nrow(clr_load) - 1), ]</pre>
begin_pred <- which(substr(rownames(Y), 1, 4) == '2016')[1]</pre>
Y_train <- Y[1:(begin_pred - 1), ]</pre>
X_train <- X[1:(begin_pred - 1), ]</pre>
Y_test <- Y[begin_pred:nrow(Y), ]</pre>
X_test <- X[begin_pred:nrow(X), ]</pre>
## Example without any cluster
model <- clr(Y = Y_train, X = X_train)</pre>
pred_on_train <- predict(model)</pre>
head(pred_on_train[[1]])
pred_on_test <- predict(model, newX = X_test)</pre>
head(pred_on_test[[1]])
## Example with clusters
model <- clr(Y = Y_train, X = X_train, clust = clust_train)</pre>
pred_on_train <- predict(model)</pre>
str(pred_on_train)
head(pred_on_train[[1]])
pred_on_test <- predict(model, newX = X_test, newclust = clust_test,</pre>
                          simplify = TRUE)
str(pred_on_test)
head(pred_on_test)
# With dates as row names
rownames(pred_on_test) <- rownames(Y_test)[as.numeric(rownames(pred_on_test))]</pre>
```