Package 'clusterRepro'

October 15, 2018

October 13, 2016
Version 0.9
Date 2018-10-10
Title Reproducibility of Gene Expression Clusters
Author Amy Kapp <amy_kapp@hotmail.com> and Rob Tibshirani <tibs@stanford.edu></tibs@stanford.edu></amy_kapp@hotmail.com>
Maintainer Rob Tibshirani <tibs@stanford.edu></tibs@stanford.edu>
Depends R (>= $2.2.0$)
Description This is a function for validating microarray clusters via reproducibility, based on the paper referenced below.
<pre>URL https://www.ncbi.nlm.nih.gov/pubmed/16613834.</pre>
License GPL-2
Repository CRAN
NeedsCompilation no
Date/Publication 2018-10-15 18:20:14 UTC
R topics documented: clusterRepro
IGP.clusterRepro
Index
clusterRepro Gene expression clusters reproducibility and validation
Description
Validate gene expression clusters by determining whether or not they are reproducible
<pre>Usage clusterRepro(Centroids, New.data, Number.of.permutations)</pre>

2 clusterRepro

Arguments

Centroids The matrix of centroids with annotated rows. The labeled rows are either genes

(for gene clusters) or samples (for sample clusters) and the columns are the

centroids.

New.data The matrix of gene expression data (with annotated rows) independent of the

dataset used to form the centroids. For gene clusters, the rows are samples and the columns are genes. For sample clusters, the rows are genes and the columns

are samples.

Number.of.permutations

The number of times the centroids will be permuted to generate the null distri-

bution.

Details

This function looks for gene expression clusters found in one dataset in another independent dataset. The centroids from the first dataset are used to classify the independent data and the corresponding in-group proportions (IGPs) are computed. These in-group proportions are compared to null distributions of in-group proportions to produce p-values. The IGP null distributions are generated by repeatedly permuting the centroids within the box aligned with the principal components, classifying the independent data, and calculating the corresponding IGPs.

Value

Actual. Size The number of columns of New.data assigned to each centroid.

Actual.IGP The in-group proportions of the groups formed when New.data is classified us-

ing Centroids.

p.value The p-values for each of the groups represented by the centroids.

Number The number of permutations used to compute the corresponding p-value.

Author(s)

Amy Kapp and Robert Tibshirani

References

Amy Kapp and Robert Tibshirani. Are clusters in one dataset present in another dataset? To be published.

See Also

```
IGP.clusterRepro.
```

Examples

```
### Generate centroids with annotated rows
Centroids <- matrix(rnorm(30, sd = 10), 10)
rownames(Centroids) <- letters[1:nrow(Centroids)]</pre>
```

IGP.clusterRepro 3

```
### Generate data with annotated rows
Data <- cbind(matrix(rep(Centroids[,1], 10), 10),</pre>
matrix(rep(Centroids[,2], 15), 10), matrix(rep(Centroids[,3], 20), 10))
Data <- Data + matrix(rnorm(length(Data), sd = 10), nrow(Data))</pre>
rownames(Data) <- letters[1:nrow(Data)]</pre>
### Classify the data and calculate the corresponding in-group
### proportions and group size
Result <- clusterRepro(Centroids, Data, Number.of.permutations = 1)</pre>
Result$Actual IGP
Result$Actual.Size
### Generate null distributions and compare to actual in-group proportions to obtain p-values
Result2 <- clusterRepro(Centroids, Data, Number.of.permutations = 1000)
### If the number of rows in the centroid matrix does not match the
### number of rows in the data matrix and the row labels are unique, this
### function will only use the rows that the two matrices have in common.
Data <- matrix(rnorm(200), 20)</pre>
rownames(Data) <- letters[(nrow(Data)+6):7]</pre>
Result <- IGP.clusterRepro(Data, Centroids)
Result2 <- clusterRepro(Centroids, Data, Number.of.permutations = 1000)
```

IGP.clusterRepro

In-group proportion calculation

Description

This function classifies gene expression (microarray) data using centroids and calculates the ingroup proportions of the resulting groups.

Usage

IGP.clusterRepro(Data, Centroids)

Arguments

Data The matrix of gene expression data with annotated rows. For gene clusters, the

labeled rows are samples and the columns are genes. For sample clusters, the

labeled rows are genes and the columns are samples.

Centroids The matrix of centroids with annotated rows. The labeled rows are either genes

(for gene clusters) or samples (for sample clusters) and the columns are the

centroids.

Details

The Pearson's centered correlation coefficient between each datum and each centroid is calculated. The datum is then classified to the group whose centroid had the highest correlation with the datum. The in-group proportion is defined to be the proportion of data in a group whose nearest neighbors (Pearson's centered correlation) are also classified to the same group.

4 IGP.clusterRepro

Value

Class	The data classification made using the centroids
IGP	The in-group proportions for the groups found in the data
Size	The number of data classified to each of the groups

Author(s)

Amy Kapp and Robert Tibshirani

References

Amy Kapp and Robert Tibshirani. Are clusters in one dataset present in another dataset? To be published.

Examples

```
### Make centroid matrix with annotated rows
C <- matrix(rnorm(30), 10)
rownames(C) <- letters[1:nrow(C)]

### Make data matrix with annotated rows
D <- matrix(rnorm(100), 10)
rownames(D) <- letters[1:nrow(C)]

### Classify data and calculate in-group proportions
Result <- IGP.clusterRepro(D, C)

### If the number of rows in the centroid matrix does not match the
### number of rows in the data matrix and the row labels are unique, this
### function will only use the rows that the two matrices have in common.
D <- matrix(rnorm(200), 20)
rownames(D) <- letters[(nrow(D)+6):7]
Result <- IGP.clusterRepro(D, C)</pre>
```

Index

```
*Topic cluster
clusterRepro, 1
*Topic univar
IGP.clusterRepro, 3
clusterRepro, 1
IGP.clusterRepro, 2, 3
```