Package ‘clustermq’

January 26, 2022

Title Evaluate Function Calls on HPC Schedulers (LSF, SGE, SLURM,
PBS/Torque)

Version 0.8.95.3
Maintainer Michael Schubert <mschu.dev@gmail.com>

Description Evaluate arbitrary function calls using workers on HPC schedulers
in single line of code. All processing is done on the network without
accessing the file system. Remote schedulers are supported via SSH.

URL https://mschubert.github.io/clustermq/

BugReports https://github.com/mschubert/clustermg/issues
Depends R (>=3.5.0)

LinkingTo Rcpp

SystemRequirements C++11, ZeroMQ (libzmq)

Imports methods, narray, progress, purrr, R6, Rcpp, utils

License Apache License (== 2.0) | file LICENSE

Encoding UTF-8

Suggests callr, devtools, dplyr, foreach, iterators, knitr, parallel,
rmarkdown, roxygen2 (>= 5.0.0), testthat, tools

VignetteBuilder knitr

RoxygenNote 7.1.0

NeedsCompilation yes

Author Michael Schubert [aut, cre] (<https://orcid.org/0000-0002-6862-5221>)
Repository CRAN

Date/Publication 2022-01-26 21:50:07 UTC

R topics documented:

https://mschubert.github.io/clustermq/
https://github.com/mschubert/clustermq/issues
https://orcid.org/0000-0002-6862-5221

register_dopar_Cmq i e e e e e e e e e e e e e 6
WOTKETS o o e e e e e e e e e 6
ZeroMQ L e e e e 7
Index 8
clustermq Evaluate Function Calls on HPC Schedulers (LSF, SGE, SLURM)
Description

Provides the Q function to send arbitrary function calls to workers on HPC schedulers without
relying on network-mounted storage. Allows using remote schedulers via SSH.

Details

Under the hood, this will submit a cluster job that connects to the master via TCP the master will
then send the function and argument chunks to the worker and the worker will return the results to
the master until everything is done and you get back your result

Computations are done entirely on the network and without any temporary files on network-mounted
storage, so there is no strain on the file system apart from starting up R once per job. This removes
the biggest bottleneck in distributed computing.

Using this approach, we can easily do load-balancing, i.e. workers that get their jobs done faster
will also receive more function calls to work on. This is especially useful if not all calls return after
the same time, or one worker has a high load.

For more detailed usage instructions, see the documentation of the Q function.

Q Queue function calls on the cluster

Description

Queue function calls on the cluster

Usage
Q(

fun,

const = list(),
export = list(),
pkgs = c(),

seed = 128965,
memory = NULL,
template = list(),

n_jobs = NULL,
job_size = NULL,
split_array_by = -1,
rettype = "list",
fail_on_error = TRUE,
workers = NULL,
log_worker = FALSE,
chunk_size = NA,
timeout = Inf,
max_calls_worker = Inf,
verbose = TRUE

)
Arguments

fun A function to call
Objects to be iterated in each function call

const A list of constant arguments passed to each function call

export List of objects to be exported to the worker

pkgs Character vector of packages to load on the worker

seed A seed to set for each function call

memory Short for template=list(memory=value)

template A named list of values to fill in template

n_jobs The number of LSF jobs to submit; upper limit of jobs if job_size is given as
well

job_size The number of function calls per job

split_array_by The dimension number to split any arrays in ‘...°; default: last

rettype Return type of function call (vector type or ’list’)

fail_on_error If an error occurs on the workers, continue or fail?

workers Optional instance of QSys representing a worker pool
log_worker Write a log file for each worker
chunk_size Number of function calls to chunk together defaults to 100 chunks per worker

or max. 10 kb per chunk

timeout Maximum time in seconds to wait for worker (default: Inf)

max_calls_worker
Maxmimum number of function calls that will be sent to one worker

verbose Print status messages and progress bar (default: TRUE)

Value

A list of whatever ‘fun‘ returned

4 Q_rows

Examples

Not run:

Run a simple multiplication for numbers 1 to 3 on a worker node
fx = function(x) x * 2

Q(fx, x=1:3, n_jobs=1)

list(2,4,6)

Run a mutate() call in dplyr on a worker node
iris %>%

mutate(area = Q(**‘, el=Sepal.Length, e2=Sepal.Width, n_jobs=1))
iris with an additional column 'area’

End(Not run)

Q_rows Queue function calls defined by rows in a data.frame

Description

Queue function calls defined by rows in a data.frame

Usage

Q_rows(
df,
fun,
const = list(),
export = list(),
pkgs = c(),
seed = 128965,
memory = NULL,
template = list(),
n_jobs = NULL,
job_size = NULL,
rettype = "list",
fail_on_error = TRUE,
workers = NULL,
log_worker = FALSE,
chunk_size = NA,
timeout = Inf,
max_calls_worker = Inf,
verbose = TRUE

Arguments

df data.frame with iterated arguments

Q_rows 5

fun A function to call

const A list of constant arguments passed to each function call

export List of objects to be exported to the worker

pkgs Character vector of packages to load on the worker

seed A seed to set for each function call

memory Short for template=list(memory=value)

template A named list of values to fill in template

n_jobs The number of LSF jobs to submit; upper limit of jobs if job_size is given as
well

job_size The number of function calls per job

rettype Return type of function call (vector type or ’list’)

fail_on_error If an error occurs on the workers, continue or fail?

workers Optional instance of QSys representing a worker pool
log_worker Write a log file for each worker
chunk_size Number of function calls to chunk together defaults to 100 chunks per worker

or max. 10 kb per chunk

timeout Maximum time in seconds to wait for worker (default: Inf)

max_calls_worker
Maxmimum number of function calls that will be sent to one worker

verbose Print status messages and progress bar (default: TRUE)

Examples

Not run:

Run a simple multiplication for data frame columns x and y on a worker node
fx = function (x, y) x *y

df = data.frame(x =5, y = 10)

Q_rows(df, fx, job_size = 1)

[1] 50

Q_rows also matches the names of a data frame with the function arguments
fx = function (x, y) x -y

df = data.frame(y = 5, x = 10)

Q_rows(df, fx, job_size = 1)

[115

End(Not run)

workers

register_dopar_cmq Register clustermq as ‘foreach’ parallel handler

Description

Register clustermq as ‘foreach® parallel handler

Usage

register_dopar_cmq(...)

Arguments
List of arguments passed to the ‘Q° function, e.g. n_jobs
workers Creates a pool of workers
Description

Creates a pool of workers

Usage

workers(
n_jobs,

data = NULL,

reuse =
template

log_worker

list(),
FALSE,

gsys_id = getOption("clustermq.scheduler”, qsys_default),

verbose

Arguments

n_jobs
data

reuse
template
log_worker
gsys_id

verbose

FALSE,

Number of jobs to submit (0 implies local processing)
Set common data (function, constant args, seed)
Whether workers are reusable or get shut down after call
A named list of values to fill in template

Write a log file for each worker

Character string of QSys class to use

Print message about worker startup

Additional arguments passed to the gsys constructor

ZeroMQ 7

Value

An instance of the QSys class

ZeroMQ Wrap C++ Rcpp module in R6 to get reliable argument matching

Description

This is an R6 wrapper of the C++ class in order to support R argument matching. Ideally, Rcpp will
at some point support this natively and this file will no longer be necessary. Until then, it causes
redundancy with zeromq.cpp, but this is a small inconvenience and much less error-prone than only
relying on positional arguments.

Index

clustermq, 2

Q,2

Q_rows, 4
register_dopar_cmq, 6
workers, 6

ZeroMq, 7

	clustermq
	Q
	Q_rows
	register_dopar_cmq
	workers
	ZeroMQ
	Index

