Package 'coffee'

August 21, 2021

Type Package

Title Chronological Ordering for Fossils and Environmental Events
Version 0.1.1
Date 2021-08-20
Maintainer Maarten Blaauw maarten.blaauw@qub.ac.uk
Description While individual calibrated radiocarbon dates can span several centuries, combining multiple dates together with any chronological constraints can make a chronology much more robust and precise. This package uses Bayesian methods to enforce the chronological ordering of radiocarbon and other dates, for example for trees with multiple radiocarbon dates spaced at exactly known intervals (e.g., 10 annual rings). For methods see Christen 2003 doi:10.11141/ia.13.2. Another example is sites where the relative chronological position of the dates is taken into account - the ages of dates further down a site must be older than those of dates further up (Buck, Kenworthy, Litton and Smith 1991 doi:10.1017/S0003598X00080534; Nicholls and Jones 2001 doi:10.1111/14679876.00250).

License GPL (>=2)
Encoding UTF-8
RoxygenNote 7.1.1

NeedsCompilation no

Language en-GB
VignetteBuilder knitr
Suggests knitr, rmarkdown, utf8
Depends IntCal (>=0.2.2)
Author Maarten Blaauw [aut, cre] (https://orcid.org/0000-0002-5680-1515),
J. Andres Christen [ctb, cph] (https://orcid.org/0000-0002-5795-4345)

Repository CRAN

Date/Publication 2021-08-21 09:40:12 UTC

R topics documented:

coffee 2
draw.rings 3
draw.strat 5
IAT 8
rings 9
sim.rings 11
sim.strat 13
strat 14
Index 18
coffee coffee

Description

While individual calibrated radiocarbon dates can span several centuries, combining multiple dates together with any chronological constraints can make a chronology much more robust and precise. This package uses Bayesian methods to enforce the chronological ordering of radiocarbon and other dates, for example for trees with multiple radiocarbon dates spaced at exactly known intervals (e.g., every 10 annual rings; Christen 2003). Another example is sites where the relative chronological position of the dates is taken into account - the ages of dates further down a site must be older than those of dates further up (e.g., Buck et al. 1991). MCMC runs are done using the t -walk (Christen and Fox 2010).
examples include:
rings()
strat()
Note that several R packages exist to run and/or extract results from OxCal (see OxcAAR and https://github.com/gavinsimpson/roxcal). However, coffee is meant as a stand-alone package that doesn't rely on having OxCal installed. Additionally, the data files of coffee are meant to be more easily readable and writable by humans.

References Buck CE, Kenworthy JB, Litton CD, Smith AFM, 1991. Combining archaeological and radiocarbon information: a Bayesian approach to calibration. Antiquity 65, 808-821.
Christen JA, 2003. Bwigg: An Internet facility for Bayesian radiocarbon wiggle-matching. Internet Archaeology 13. doi: 10.11141/ia.13.2

Christen JA, Fox C 2010. A General Purpose Sampling Algorithm for Continuous Distributions (the t-walk). Bayesian Analysis 5, 263-282

Author(s)

Maarten Blaauw maarten.blaauw@qub.ac.uk J. Andres Christen jac@cimat.mx

Description

A plot with two panels. The top panel shows the calibrated distributions (in blue) and the wigglematch age-modelled age estimates for each dated ring (grey). The bottom panel shows the fit of the uncalibrated radiocarbon dates (steelblue dots and lab error bars) to the calibration curve (green), as well as the age estimate of the youngest ring (grey) and its hpd range (black).

Usage

draw.rings(
name = "mytree",
tree.dir = "trees",
sep = ",",
normal = TRUE,
dat $=c()$,
out = c() ,
cc = 1,
postbomb = FALSE,
BCAD = FALSE,
t.a = 3,
t. $b=4$,
x. $\lim =c()$,
x1.axis = TRUE,
x1.labels = FALSE,
x1.lab = c(),
rev.x = FALSE,
y1.lab = c(),
$x 2.1 a b=c()$,
$y 2 . l a b=c()$,
ex = 0.2,
plot.cc = TRUE,
plot.dists = TRUE,
mar. $1=c(1,3,1,1)$,
mar. $2=c(3,3,0,1)$,
$m g p=c(1.7,0.7,0)$,
dist.res $=500$,
date.col = "steelblue",
$\mathrm{cc} . \mathrm{col}=\mathrm{rgb}(0,0.5,0,0.5)$,
dist.col = rgb(0, 0, 0, 0.5),
calib.col $=\operatorname{rgb}(0,0,1,0.25)$,
range.col = "black",
set.layout = TRUE
)

Arguments

name	The name of the tree. The .csv file should be saved under a folder named exactly the same as name, and the folder should live under the tree. dir folder. Default names include Ulandryk4 and mytree.
tree.dir	The directory where the folders of the individual trees live. Defaults to treedir="trees".
sep	Separator for the fields in the .csv file. Defaults to a comma.
normal	Calculations can be done assuming that the measurements are normally distributed. By default this is set to FALSE and a student-t distribution is used (Christen and Perez 2009)
dat	If plot. rings is called from within rings(), both dat and out are provided. If an existing run has to be plotted again, dat and out are read from the files in the folder named name.
out	If plot.rings is called from within rings(), both dat and out are provided. If an existing run has to be plotted again, dat and out are read from the files in the folder named name.
CC	Calibration curve to be used. Could be 1 (IntCal20; default), 2 (Marine20), 3 (SHCal20) or 4 (custom curve).
postbomb	Negative C-14 ages should be calibrated using a postbomb curve. This could be 1 (northern-hemisphere region 1), 2 (NH region 2), 3 (NH region 3), 4 (southern hemisphere regions 1-2), or 5 (SH region 3).
BCAD	The calendar scale of graphs and age output-files is in cal BP by default, but can be changed to $B C / A D$ using $B C A D=T R U E$.
t.a	First parameter for the student-t distribution (defaults to 3; higher numbers make the distribution approximate the normal distribution more).
t.b	Second parameter for the student-t distribution (defaults to 4 ; higher numbers make the distribution approximate the normal distribution more).
x.lim	Limits of the x-axes. Calculated automatically by default.
x1.axis	Whether or not to plot the upper x -axis (slightly redundant since the bottom axis shows the values already). Defaults to TRUE.
x1.labels	Whether or not to plot the labels of the upper x-axis. (slightly redundant since the bottom axis shows the values already). Defaults to FALSE.
x1.lab	The labels for the calendar axis of the upper panel. Defaults to empty.
rev.x	Whether or not to reverse the x -axis. Defaults to FALSE.
y1.lab	The labels for the y-axis. Defaults to "rings".
x2.lab	The labels for the bottom calendar axis (default age. lab="cal BP" or "BC/AD" if $B C A D=T R U E)$.
y2.lab	The labels for the bottom y-axis. Defaults to 14 C BP with superscript 14 , so expression(""^14*C~BP).
ex	Exaggeration of the heights of the calibrated distributions. Defaults to 0.2 so there is plenty space to plot many distributions.
plot.cc	Whether or not to plot a panel with the calibration curve.
plot.dists	Whether or not to plot a panel with the distributions.

mar. 1	Margins around the first/top plot.
mar. 2	Margins around the first/bottom plot.
mgp	Axis text margins (where should titles, labels and tick marks be plotted). Defaults to $\mathrm{mgp}=\mathrm{c}(1.7, .7, .0)$.
dist.res	Resolution of the plot of the distribution. The default is 500 , which results in smooth plots.
date.col	Colour of the uncalibrated dates when plotted on top of the calibration curve. Defaults to "steelblue".
cc.col	Colour of the calibration curve. Defaults to semi-transparent darkgreen, cc.col=rgb(0 $0.5,0,0.5)$.
dist.col	Colour of the age-modelled distribution. Defaults to semi-transparent grey, dist.col=rgb(0,0,0,0.5).
calib.col	Colour of the calibrated distributions. Defaults to semi-transparent blue, dist.col=rgb ($0,0,1,0.5$)
range.col	Colour of the hpd ranges. Defaults to "black".
set.layout	By default, the layout of the two plots is set automatically (2 plots in one column).

Value

A plot with the calibrated distributions of the individual dates and the wiggle-match distributions (top), and the dates on the calibration curve together with the age distribution for ring 0 .

Author(s)

Maarten Blaauw, J. Andres Christen

Examples

```
treedir <- tempdir()
rings("Ulandryk4", tree.dir=treedir, draw=FALSE)
draw.rings("Ulandryk4", tree.dir=treedir)
```


Description

A plot with two panels. The top panel shows the MCMC output. The bottom panel shows the individually calibrated dates (in downward light gray) as well as the modelled ages constrained by chronological ordering (upward dark-grey) and lines with the hpd ranges (black).

Usage

```
draw.strat(
    name = "mystrat",
    set = get("info"),
    strat.dir = "strats",
    sep = ",",
    calibrated.ex = 0.5,
    calibrated.mirror = FALSE,
    calibrated.up = TRUE,
    modelled.ex = 0.5,
    modelled.mirror = FALSE,
    modelled.up = FALSE,
    BCAD = FALSE,
    threshold = 0.001,
    xtop.lab = c(),
    ytop.lab = c(),
    xbottom.lab = c(),
    ybottom.lab = "position",
    calibrated.col = rgb(0, 0, 0, 0.2),
    calibrated.border = NA,
    modelled.col = rgb(0, 0, 0, 0.5),
    modelled.border = rgb(0, 0, 0, 0.5),
    range.col = "black",
    simulation = FALSE,
    simulation.col = grey(0.5),
    mgp = c(2, 0.7, 0),
    mar.top = c(3, 3, 1, 1),
    mar.bottom = c(3, 3, 0.5, 1),
    heights = c(0.3, 0.7),
    iterations.warning = TRUE,
    warning.loc = "bottomleft",
    warning.col = "red"
)
```


Arguments

name Name of the stratigraphy dataset. Defaults to "mystrat".
set This option reads the 'info' variable, which contains the data and the model output.
strat.dir The directory where the folders of the individual stratigraphies live. Defaults to start.dir="strats".
sep Separator for the fields in the .csv file. Defaults to a comma.
calibrated.ex Exaggeration of the heights of the calibrated distributions. Defaults to 0.5. Note that more precise dates peak higher than dates with lower precision.
calibrated.mirror
Whether or not the individually calibrated (but not the modelled) distributions should be drawn both up and down, quite a bit like fish or swans. Defaults to

FALSE.

calibrated.up Whether the calibrated distributions should be drawn upward or downward (the default, resembling the reflections of islands in the sea, or swimming animals if you wish)
modelled.ex Exaggeration of the heights of the age-modelled distributions. Defaults to 0.5 . Note that more precise ages peak higher than ages with lower precision.
modelled.mirror
Whether or not the age-modelled distributions should be drawn both up and down, quite a bit like fish or swans. Defaults to FALSE.
modelled.up Whether the age-modelled distributions should be drawn downward or upward (the default, resembling islands in the sea)
BCAD The calendar scale of graphs and age output-files is in cal BP by default, but can be changed to $B C / A D$ using $B C A D=T R U E$.
threshold Value below which probabilities should not be drawn any more. Defaults to 0.001 of the distribution's peak.
xtop.lab The label for the x-axis of the top panel showing the MCMC run. Defaults to "iterations".
ytop.lab The label for the y-axis of the top panel showing the MCMC run. Defaults to "energy".
xbottom.lab The label for the x -axis of the bottom panel showing the age-model output. Defaults to "cal BP" or "BC/AD".
ybottom.lab The label for the y-axis of the bottom panel showing the age-model output. Defaults to "position".
calibrated.col Colour of the inside of the unmodelled, calibrated ages. Defaults to semitransparent light grey, $\operatorname{rgb}(0,0,0,0.5$.
calibrated.border
Colour of the border of the unmodelled, calibrated ages. Defaults to nothing, NA.
modelled.col Colour of the inside of the modelled ages. Defaults to semi-transparent dark grey, rgb (0, 0, 0, 0.5.
modelled.border
Colour of the border of the modelled ages. Defaults to semi-transparent dark grey, rgb ($0,0,0,0.5$.
range.col Colour of the hpd ranges. Defaults to "black".
simulation Whether or not the data are part of a simulated stratigraphy.
simulation.col If the data are part of a simulated stratigraphy, the 'true' ages can also be plotted.
mgp Axis text margins (where should titles, labels and tick marks be plotted). Defaults to $\mathrm{mgp}=\mathrm{c}(1.7, .7, .0)$.
mar.top \quad Margins around the top panel. Defaults to mar. top=c $(3,3,1,1)$.
mar.bottom Margins around the bottom panel. Defaults to mar. bottom=c (3, 3, 0.5, 1).
heights \quad Relative heights of the two panels in the plot. Defaults to 0.3 for the top and 0.7 for the bottom panel.
iterations.warning
Whether or not to plot a warning if there are <3000 iterations, too few for a reliable MCMC run.
warning.loc Location of the warning
warning.col Colour of the warning - defaults to red.

Value

A plot with two panels showing the MCMC run and the calibrated and modelled ages.

Author(s)

Maarten Blaauw

IAT

calculate the Integrated Autocorrelation Time

Description

Calculate the Tntegrated Autocorrelation Time, which gives the proposed value for thinning. E.g., if the IAT is 80 , it is good to thin the MCMC run by storing only every 80 iterations. This method is slower than GetAutoCov, but much better.

Usage

IAT (set, par = 0, from = 1, to)

Arguments

set This option reads the 'info' variable, which contains the data and the model output.
par \quad The parameter to test. Defaults to 0.
from The first of the iterations of the MCMC run to check. Defaults to the first one.
to The last of the iterations of the MCMC run to check. Defaults to the last one.

Value

The IAT value

Author(s)

Andres Christen
rings wiggle-match C-14 dating of a tree

Description

Produce a Bayesian wiggle-match date of a tree dated with multiple C-14 dates at exactly known spacing (e.g., every 10 tree-ring years).

Usage

rings(
name = "mytree",
ring $=0$,
tree.dir = "trees",
sep = ",",
normal = FALSE,
delta.R = 0,
delta.STD $=0$,
t.a $=3$,
t.b = 4,
ask = TRUE,
age.steps = 1 ,
cutoff $=1 \mathrm{e}-06$,
$\mathrm{cc}=1$,
postbomb = FALSE,
BCAD = FALSE,
times = 3,
talk = TRUE,
draw = TRUE,
)

Arguments

name name of the tree. The .csv file should be saved under a folder named exactly the same as name, and the folder should live under the treedir folder. Default names include Ulandryk4 and mytree.
ring The ring for which the age estimate should be calculated. Defaults to the youngest ring, 0 .
tree. dir The directory where the folders of the individual trees live. Defaults to treedir="trees".
sep
Separator for the fields in the .csv file. Defaults to a comma.
normal Calculations can be done assuming that the measurements are normally distributed. By default this is set to FALSE and a student-t distribution is used (Christen and Perez 2009)
delta.R The ages can be modelled to have an offset. The mean is 0 by default.

delta.STD	The error of the offset. Set to 0 by default.
t.a	First parameter for the student-t distribution (defaults to 3; higher numbers make the distribution approximate the normal distribution more).
t.b	Second parameter for the student-t distribution (defaults to 4 ; higher numbers make the distribution approximate the normal distribution more).
ask	Whether or not to ask if new folders should be written (if required)
age.steps	Steps in years for the calculations. Defaults to 1, every year.
cutoff	Value below which probabilities are no longer taken into account. Defaults to 0.000001 .
CC	Calibration curve to be used. Could be 1 (IntCal20; default), 2 (Marine20), 3 (SHCal20) or 4 (custom curve).
postbomb	Negative C-14 ages should be calibrated using a postbomb curve. This could be 1 (northern-hemisphere region 1), 2 (NH region 2), 3 (NH region 3), 4 (southern hemisphere regions 1-2), or 5 (SH region 3).
BCAD	The calendar scale of graphs and age output-files is in cal BP by default, but can be changed to $B C / A D$ using $B C A D=T R U E$.
times	The range of years to be calculated, as multiples of the uncertainties of the data points. E.g. if the lab error of the oldest date is 20 years, and times is set to 5, the calculation range will be extended by $20 * 5$ years.
talk	Whether or not to provide feedback on folders written into.
draw	Whether or not to draw plots.
	Options for the plot. See draw.rings.

Details

The calculations are based on Bwigg (Christen and Litton 1995; Christen 2003). In OxCal, this is called a D_Sequence (Bronk Ramsey et al. 2001).
Since only one parameter has to be estimated, a MCMC approach is not necessary nor recommended, and results are calculated analytically.
Files for tree wiggle-matching should contain the following columns: lab ID, C-14 age, error, ring, cc. Rings are counted from the outward ring (0 year old) inwards. cc should either be 1 (IntCal20; northern hemisphere \#' terrestrial, 2 (Marine20, though I've never heard of marine trees), 3 (SHCal20; southern hemisphere) or 4 (custom curve). The tree files should be in plain-text and fields separated by commas.

Default tree files include Ulandryk4 (Christen 2003) and a simulated tree (see sim. tree()).
By default, the data are calibrated assuming a student-t distribution, which has wider tails than the normal distribution and deals well with outliers ().

Value

the probabilities for the relevant calendar years.

Author(s)

Maarten Blaauw, J. Andres Christen

References

Bronk Ramsey C, van der Plicht J, Weninger B, 2001. 'Wiggle matching' radiocarbon dates. Radiocarbon 43, 381-389.

Christen JA, Litton CD, 1995. A Bayesian approach to wiggle-matching. Journal of Archaeological Science 22, 719-725 doi: 10.1016/03054403(95)900020

Christen JA, 2003. Bwigg: An Internet facility for Bayesian radiocarbon wiggle-matching. Internet Archaeology 13. doi: 10.11141/ia.13.2

Christen JA, Perez S, 2009. A new robust statistical model for radiocarbon data. Radiocarbon 51, 1047-1059

Examples

```
rings("Ulandryk4", tree.dir=tempdir())
rings("mytree", tree.dir=tempdir())
```

```
sim.rings Simulate the radiocarbon dating of tree-rings
```


Description

Simulate the dense radiocarbon dating of a tree or other deposit with exactly known yearly rings, and thus with gaps of exactly known age. The radiocarbon dates are assumed to have a degree of lab error and scatter. A (constant) offset can also be modelled.

Usage

```
sim.rings(
    name = "mytree",
    age.min = 100,
    length = 400,
    gaps = 20,
    offset = 0,
    scatter = 2 * error,
    error = 0.02,
    min.error = 10,
    tree.dir = "trees",
    sep = ",",
    cc = 1,
    postbomb = FALSE,
    ask = TRUE
)
```


Arguments

name	Name of the simulated tree-ring set. Defaults to "mytree".
age.min	Minimum age of the simulation.
length	Length of the sequence (if gaps are given as constant). Could be set at e.g 400 for an oak, but many trees will not live as long so shorter sequences could also make sense.
gaps	How many calendar years there are between the dated rings. Can be set constant (one value, e.g. 20), or alternatively the gaps can be provided as a list of values.
offset	The ages could be offset by some constant value. Defaults to 0 .
scatter	There is always a degree of scatter between measurements, and the amount of scatter can be modelled using, e.g., scatter=2*error. Set at 0 to model radiocarbon dates that are 100% faithful to the calibration curve (very unlikely!).
error	Laboratory error of the radiocarbon dates as percentage of the mean. Defaults to 0.02 .
min.error	Minimum laboratory to be reported. Defaults to 10 (C-14 year).
tree.dir	The directory where the folders of the individual trees live. Defaults to tree.dir="trees".
sep	Separator for the fields in the .csv file. Defaults to a comma.
CC	Calibration curve to be used. Could be 1 (IntCal20; default), 2 (Marine20), 3 (SHCal20) or 4 (custom curve).
postbomb	Negative C-14 ages (younger than 0 cal BP or AD 1950) should be modelled using a postbomb curve. This could be 1 (northern-hemisphere region 1), 2 (NH region 2), 3 (NH region 3), 4 (southern hemisphere regions 1-2), or 5 (SH region 3).
ask	Ask if a folder may be made and files written into it

Value

A file containing 5 columns: the simulated calendar ages, the radiocarbon ages, their errors, the rings (starting with year 0 and working backward in time), and the calibration curve to be used.

Author(s)

Maarten Blaauw, J. Andres Christen

Examples

```
    treedir <- tempdir()
    sim.rings("manyrings", age.min=1000, length=400, gaps=10, tree.dir=treedir)
    rings("manyrings", tree.dir=treedir)
```

sim.strat Simulate the radiocarbon dating of random depths of a sediment which has accumulated over time.

Description

Simulate the radiocarbon dating (or with dates that are already on the cal BP scale) of a deposit that is known to have accumulated over time, and for which therefore the dated depths can be safely assumed to be in chronological order.

Usage

```
sim.strat(
    name = "mystrat",
    age.min = 4321,
    length = 800,
    n = 5,
    offset = 0,
    scatter = 2 * error,
    error = 0.02,
    min.error = 10,
    rounded = 0,
    strat.dir = "strats",
    sep = ",",
    cc = 1,
    postbomb = FALSE,
    ask = TRUE
    )
```


Arguments

name	Name of the simulated tree-ring set. Defaults to "mytree".
age.min	Minimum age of the simulation.
length	Length of the sequence.
n	The amount of dated depths.
offset	The ages could be offset by some constant value. Defaults to 0. There is always a degree of scatter between measurements, and the amount of scatter can be modelled using, e.g., scat ter=2*error. Set at 0 to model radio- carbon dates that are 100% faithful to the calibration curve (very unlikely!).
error	Laboratory error of the radiocarbon dates as percentage of the mean. Defaults to 0.02.
min.error	Minimum laboratory to be reported. Defaults to 10 (C-14 year).
rounded	Rounding of the simulated calendar years. Rounds to single years by default. strat. dir

sep	Separator for the fields in the .csv file. Defaults to a comma.
cc	Calibration curve to be used. Could be 1 (IntCal20; default), 2 (Marine20), 3 (SHCal20) or 4 (custom curve).
postbomb	Negative C-14 ages (younger than 0 cal BP or AD 1950) should be modelled using a postbomb curve. This could be 1 (northern-hemisphere region 1), 2 (NH region 2), 3 (NH region 3), 4 (southern hemisphere regions 1-2), or 5 (SH region 3).
ask	Ask if a folder may be made and files written into it

Details

Dates further down the sequence should have older ages than dates further up, even though owing to scatter, the dates themselves might not be in exact chronological order. The modelling is performed in a Bayesian framework (see strat). The amount of scatter, the laboratory error and an offset can also be modelled.

Value

A file containing 5 columns: the simulated calendar ages, the radiocarbon ages, their errors, their relative positions (starting with the youngest one at top, and counting upward going down the sequence), and the calibration curve to be used.

Author(s)

Maarten Blaauw, J. Andres Christen

Examples

```
stratdir <- tempdir()
sim.strat("ordered.mud", age.min=1000, length=5000, \(n=10\), strat.dir=stratdir)
```

strat Model chronologically ordered dates

Description

Model radiocarbon dates (or dates that are already on the cal BP scale) of a deposit that is known to have accumulated over time, and for which therefore the dated depths can be safely assumed to are in chronological order.
Model the radiocarbon or cal BP ages of a deposit that is known to have accumulated over time, and for which therefore the dated depths can be safely assumed to be in chronological order.

Usage

```
strat (
    name = "mystrat",
    strat.dir = "strats",
    its = 50000,
    burnin = 100,
    thinning \(=c()\),
    init. ages \(=c()\),
    span \(=5000\),
    showrun = FALSE,
    sep \(=\) ",",
    normal = TRUE,
    delta.R = 0,
    delta. STD \(=0\),
    t.a = 3,
    t. \(b=4\),
    \(\mathrm{cc}=1\),
    postbomb = FALSE,
    BCAD = FALSE,
    ask = TRUE,
    talk = TRUE,
    draw \(=\) TRUE,
    )
```


Arguments

name	Name of the stratigraphy dataset. Defaults to "mystrat".
strat. dir	The directory where the folders of the individual stratigraphies live. Defaults to treedir="strats".
its	Amount of iterations to be run. Setting this to low numbers (e.g., 1000) will result in fast but less stable and less reliable runs. Higher values will take longer but result in more stable and robust runs. Defaults to 50000. Aim to set this to such values that at least 3000 iterations remain after removing the burnin and thinning.
burnin	Amount of iterations to remove at the start of the run. Defaults to 100. thinning\quadAfter running all iterations, only some will be stored. For example, if thinning is set at the default 50, only every 50 th MCMC iteration will be stored, and the oth- ers will be discarded. This is to remove the dependence between neighbouring
MCMC iterations. Defaults to a value calculated from the MCMC run itself.	

sep	Separator for the fields in the .csv file. Defaults to a comma.
normal	Calculations can be done assuming that the measurements are normally dis- tributed. By default this is set to FALSE and a student-t distribution is used (Christen and Perez 2009)
delta.R	The ages can be modelled to have an offset. The mean is 0 by default. delta.STD The error of the offset. Set to 0 by default.
t.a	First parameter for the student-t distribution (defaults to 3; higher numbers make the distribution approximate the normal distribution more).
t.b	Second parameter for the student-t distribution (defaults to 4; higher numbers make the distribution
cc	Calibration curve to be used. Could be 1 (IntCal20; default), 2 (Marine20), 3 (SHCal20) or 4 (custom curve).
postbomb	Negative C-14 ages should be calibrated using a postbomb curve. This could be 1 (northern-hemisphere region 1), 2 (NH region 2), 3 (NH region 3), 4 (southern hemisphere regions 1-2), or 5 (SH region 3).
ask	The calendar scale of graphs and age output-files is in cal BP by default, but can be changed to BC/AD using BCAD=TRUE.
talk	Whether or not to ask if a folder should be made (if required).
draw	Whether or not to provide feedback on folders written into.
I Whether or not to draw plots.	

Details

The calculations are made in a Bayesian framework. For each iteration, it is checked that all modelled age estimates are in chronological order - if not, the iteration is not accepted. See also Buck et al. 1991 and Nicholls \& Jones 2001. Other software that enables Bayesian chronological ordering includes Bcal (Buck et al. 1999) and OxCal (Sequence model; Bronk Ramsey 1995).
Dates further down the sequence should have older ages than dates further up, even though owing to scatter, the dates themselves might not be in exact chronological order. The amount of scatter, the laboratory error and an offset can also be modelled. The age estimates are obtained through a t-walk MCMC run (Christen and Fox 2010). In this process, initial ball-park point estimates for the ages of each dated depth are given, and then modified through many iterations. For each iteration, a random dated depth is chosen and its age changed by just a little nudge, a check is performed to ensure that all age estimates remain in chronological order, and the 'energy' or likelihood of the age estimates is calculated (iterations where all ages fit well within the calibrated distributions receive a higher energy; see l.calib). Then this iteration with the updated group of age estimates is either accepted or rejected. The acceptance probability depends on the iteration's energy; if its energy is higher than that of the previous iteration it is accepted, but if it is lower, it is accepted with a probability proportional to its relative energy. Therefore, over many iterations the process will 'learn' from the data and find high-energy combinations of parameter values that fit with the prior constraints that the ages should be ordered chronologically. Because the iterations are based on a process of modifying values of one parameter each iteration, and because some iterations will not be accepted, the MCMC output will often have a large degree of dependence between neighbouring iterations. Therefore, some thinning will have to be done, by storing only one every few iterations
(default 20). Also, since the initial ball-park estimates could be quite wrong, the first 100 or so iterations should also be discarded (burnin). It is thus important to check the time-series of the energy after the run. We don't want to see a remaining burn-in at the start, and we don't want to see a noticeable 'structure' where iterations remain in approximately or entirely the same spot for a long time. Instead, an ideal run will look like white noise.

Value

a variable 'info' which contains the dating and modelling information to produce a plot. Also calls the function draw. strat to produce a plot of the results.

References

Bronk Ramsey C, 1995. Radiocarbon calibration and analysis of stratigraphy: The OxCal program. Radiocarbon 37, 425 - 430.
Buck CE, Kenworthy JB, Litton CD, Smith AFM, 1991. Combining archaeological and radiocarbon information: a Bayesian approach to calibration. Antiquity 65, 808-821.

Buck et al. 1999. BCal: an on-line Bayesian radiocarbon calibration tool. Internet Archaeology 7.
Christen JA, Fox C 2010. A general purpose sampling algorithm for continuous distributions (the t-walk). Bayesian Analysis 5, 263-282.
Nicholls G, Jones M 2001. Radiocarbon dating with temporal order constraints. Journal of the Royal Statistical Society: Series C (Applied Statistics) 50, 503-521.

Examples

```
## Not run:
tmp <- tempdir()
strat(, strat.dir=tmp)
## End(Not run)
```


Index

coffee, 2
draw.rings, 3
draw.strat, 5
IAT, 8
rings, 9
sim.rings, 11
sim.strat, 13
strat, 14

