This document presents to you basic functionality offered by cohortBuilder
package. You’ll learn here about Source and Cohort objects, how to configure them with filters and filtering steps. Later on, we’ll present most common Cohort methods that allow to manipulate the object and extract useful information about Cohort data and state.
If you’re familiar with dplyr
(or any other data manipulation package) you may be wondering what cohortBuilder
has been created for.
Our main goal for creating cohortBuilder
was to provide a common syntax for operating (filtering) on any data source you need. This follows the idea for having dplyr
and its database counterpart dbplyr
package.
In order to achieve the goal, we put an emphasis on possibility to write custom extensions in terms of data source type, or operating backend (underneath cohortBuilder
uses dplyr
to operate on data frames, but you may create an extension using e.g. data.table
). See vignette("custom-extensions")
.
The second goal was integration of cohortBuilder
with shiny
. The GUI for cohortBuilder
is provided by shinyCohortBuilder
package. With this extension you may easily open Cohort configuration panel locally, or include it in you custom dashboard.
To present cohortBuilder
’s functionality we’ll be operating on librarian
dataset. librarian
is a list of four tables, storing a sample of book library management database.
::librarian
cohortBuilder#> $books
#> # A tibble: 17 × 6
#> isbn title genre publisher author copies
#> <chr> <chr> <chr> <chr> <chr> <int>
#> 1 0-385-50420-9 The Da Vinci Code Crime, Thril… Transworld Dan Brown 7
#> 2 0-7679-0817-1 A Short History … Popular Scie… Transworld Bill Brys… 4
#> 3 978-0-15-602943-8 The Time Travele… General & Li… Random Ho… Audrey Ni… 2
#> 4 0-224-06252-2 Atonement General & Li… Random Ho… Ian McEwan 8
#> 5 0-676-97376-0 Life of Pi General & Li… Canongate Yann Mart… 11
#> # … with 12 more rows
#>
#> $borrowers
#> # A tibble: 20 × 6
#> id registered address name phone_number program
#> <chr> <date> <chr> <chr> <chr> <chr>
#> 1 000001 2001-06-09 66 N. Evergreen Ave. No… Mrs. Freddie … 626-594-4729 premium
#> 2 000002 2002-08-10 8196 Windsor Road Musca… Ms. Jada Lesch 919-530-5272 standa…
#> 3 000003 2003-02-15 6 Wood Lane Calumet Cit… Inga Dach 706-669-5694 <NA>
#> 4 000004 2004-06-14 18 Nut Swamp Road Merri… Keyshawn Scha… 746-328-6598 standa…
#> 5 000005 2005-01-15 580 Chapel Rd. Delray B… Ferdinand Ber… 127-363-0738 premium
#> # … with 15 more rows
#>
#> $issues
#> # A tibble: 50 × 4
#> id borrower_id isbn date
#> <chr> <chr> <chr> <date>
#> 1 000001 000019 0-676-97976-9 2015-03-17
#> 2 000002 000010 978-0-7528-6053-4 2008-09-13
#> 3 000003 000016 0-09-177373-3 2014-09-28
#> 4 000004 000005 0-224-06252-2 2005-11-14
#> 5 000005 000004 0-340-89696-5 2006-03-19
#> # … with 45 more rows
#>
#> $returns
#> # A tibble: 30 × 2
#> id date
#> <chr> <date>
#> 1 000001 2015-04-06
#> 2 000003 2014-10-23
#> 3 000004 2005-12-29
#> 4 000005 2006-03-26
#> 5 000006 2016-08-30
#> # … with 25 more rows
To learn more check ?librarian
.
Every time you work with cohortBuilder
the crucial part is to properly define the data source with set_source
function. Source is an R6 object storing metadata about data and its origin. The metadata allows cohortBuilder
to distinct what methods to use when performing operations on it.
To define a new source you need to provide data (connection).
Let’s create now a new source storing librarian
data. To do so, we pass one obligatory parameter dtconn
to set_source
method.
dtconn
stores data connection responsible for informing cohortBuilder
on what data are we gonna work (and what extension to use, if any).
If you want to operate on R-loaded list of tables, provide tblist
class object. tblist
is just a named list of data frames having tblist
class.
Note. In order to create ‘tblist’ object use tblist
, e.g. tblist(mtcars, iris)
. Note. In order to convert list of data frames to ‘tblist’ just use as.tblist
.
str(as.tblist(librarian), max.level = 1)
#> List of 4
#> $ books : tibble [17 × 6] (S3: tbl_df/tbl/data.frame)
#> $ borrowers: tibble [20 × 6] (S3: tbl_df/tbl/data.frame)
#> $ issues : tibble [50 × 4] (S3: tbl_df/tbl/data.frame)
#> $ returns : tibble [30 × 2] (S3: tbl_df/tbl/data.frame)
#> - attr(*, "class")= chr "tblist"
Let’s proceed with creating the source:
<- set_source(
librarian_source as.tblist(librarian)
)class(librarian_source)
#> [1] "tblist" "Source" "R6"
To learn more about set_source
’s arguments check ?set_source
.
When Source
object is ready, the next step is to create a Cohort
object. Cohort
is again an R6 object, providing methods for operating on data included in Source
.
Cohort
is responsible in particular for:
In the standard workflow we build Cohort
on top of Source
. We achieve it with cohort
function:
<- librarian_source %>%
librarian_cohort cohort()
class(librarian_cohort)
#> [1] "Cohort" "R6"
With the existing Cohort
we may get underlying data with get_data
:
get_data(librarian_cohort)
#> $books
#> # A tibble: 17 × 6
#> isbn title genre publisher author copies
#> <chr> <chr> <chr> <chr> <chr> <int>
#> 1 0-385-50420-9 The Da Vinci Code Crime, Thril… Transworld Dan Brown 7
#> 2 0-7679-0817-1 A Short History … Popular Scie… Transworld Bill Brys… 4
#> 3 978-0-15-602943-8 The Time Travele… General & Li… Random Ho… Audrey Ni… 2
#> 4 0-224-06252-2 Atonement General & Li… Random Ho… Ian McEwan 8
#> 5 0-676-97376-0 Life of Pi General & Li… Canongate Yann Mart… 11
#> # … with 12 more rows
#>
#> $borrowers
#> # A tibble: 20 × 6
#> id registered address name phone_number program
#> <chr> <date> <chr> <chr> <chr> <chr>
#> 1 000001 2001-06-09 66 N. Evergreen Ave. No… Mrs. Freddie … 626-594-4729 premium
#> 2 000002 2002-08-10 8196 Windsor Road Musca… Ms. Jada Lesch 919-530-5272 standa…
#> 3 000003 2003-02-15 6 Wood Lane Calumet Cit… Inga Dach 706-669-5694 <NA>
#> 4 000004 2004-06-14 18 Nut Swamp Road Merri… Keyshawn Scha… 746-328-6598 standa…
#> 5 000005 2005-01-15 580 Chapel Rd. Delray B… Ferdinand Ber… 127-363-0738 premium
#> # … with 15 more rows
#>
#> $issues
#> # A tibble: 50 × 4
#> id borrower_id isbn date
#> <chr> <chr> <chr> <date>
#> 1 000001 000019 0-676-97976-9 2015-03-17
#> 2 000002 000010 978-0-7528-6053-4 2008-09-13
#> 3 000003 000016 0-09-177373-3 2014-09-28
#> 4 000004 000005 0-224-06252-2 2005-11-14
#> 5 000005 000004 0-340-89696-5 2006-03-19
#> # … with 45 more rows
#>
#> $returns
#> # A tibble: 30 × 2
#> id date
#> <chr> <date>
#> 1 000001 2015-04-06
#> 2 000003 2014-10-23
#> 3 000004 2005-12-29
#> 4 000005 2006-03-26
#> 5 000006 2016-08-30
#> # … with 25 more rows
#>
#> attr(,"class")
#> [1] "tblist"
#> attr(,"call")
#> as.tblist(librarian)
We’ll present more methods in the next sections.
The next step in cohortBuilder
workflow is configuration of filters. Filters are responsible for providing necessary logic for performing related data filtering.
The extensive description of filters can be found at vignette("custom-filters")
.
The current version of cohortBuilder
provides five types of build-in filters:
Let’s define discrete filter that will subset books
table listing books written by Dan Brown.
To do so, we have to define the following parameters calling filter
function:
type
- type of the filter (one of the above),dataset
- name of the dataset to apply the filter to,variable
- name of the variable in dataset
to apply the filter to,value
- vector of values to be applied in filter.So in our case:
<- filter(
author_filter "discrete",
dataset = "books",
variable = "author",
value = "Dan Brown"
)
In order to add the filter to existing Cohort we may use add_filter
method:
<- librarian_cohort %>%
librarian_cohort add_filter(author_filter)
Alternatively we may use %->%
operator that calls add_filter
underneath:
<- librarian_cohort %->%
librarian_cohort author_filter
Or define the filter while creating Cohort:
<- librarian_source %>%
librarian_cohort cohort(
author_filter )
There are much more options for defining filters. To learn more check vignette("cohort-configuration")
.
Note. Cohort is an R6 object, so you may skip reassignment above.
For example:
%>%
librarian_cohort add_filter(author_filter)
will also work.
Note. To verify if the filter was configured properly just run:
sum_up(librarian_cohort)
#> >> Step ID: 1
#> -> Filter ID: UJZCZ1654076765273
#> Filter Type: discrete
#> Filter Parameters:
#> dataset: books
#> variable: author
#> value: Dan Brown
#> keep_na: TRUE
#> description:
#> active: TRUE
The output highlights list of configured filters along with their parameters. You can see here the id attached to filter and some extra parameters such as keep_na
or active
which we describe in the next sections.
More to that we can realize the filter was defined in the step with ID equals to 1. That’s because cohortBuilder
allows to perform multi-stage filtering.
Let’s get back to filtering the books
. Configuring filters only adds proper metadata in the Cohort object, which means data filtering is not performed automatically. This allows to set the proper configuration first, and run calculation only once.
If you want to run data filtering, just call run
:
run(librarian_cohort)
Let’s check if the operation worked fine by checking the resulting data:
get_data(librarian_cohort)
#> $books
#> # A tibble: 2 × 6
#> isbn title genre publisher author copies
#> <chr> <chr> <chr> <chr> <chr> <int>
#> 1 0-385-50420-9 The Da Vinci Code Crime, Thriller & A… Transworld Dan Br… 7
#> 2 0-671-02735-2 Angels and Demons Crime, Thriller & A… Transworld Dan Br… 4
#>
#> $borrowers
#> # A tibble: 20 × 6
#> id registered address name phone_number program
#> <chr> <date> <chr> <chr> <chr> <chr>
#> 1 000001 2001-06-09 66 N. Evergreen Ave. No… Mrs. Freddie … 626-594-4729 premium
#> 2 000002 2002-08-10 8196 Windsor Road Musca… Ms. Jada Lesch 919-530-5272 standa…
#> 3 000003 2003-02-15 6 Wood Lane Calumet Cit… Inga Dach 706-669-5694 <NA>
#> 4 000004 2004-06-14 18 Nut Swamp Road Merri… Keyshawn Scha… 746-328-6598 standa…
#> 5 000005 2005-01-15 580 Chapel Rd. Delray B… Ferdinand Ber… 127-363-0738 premium
#> # … with 15 more rows
#>
#> $issues
#> # A tibble: 50 × 4
#> id borrower_id isbn date
#> <chr> <chr> <chr> <date>
#> 1 000001 000019 0-676-97976-9 2015-03-17
#> 2 000002 000010 978-0-7528-6053-4 2008-09-13
#> 3 000003 000016 0-09-177373-3 2014-09-28
#> 4 000004 000005 0-224-06252-2 2005-11-14
#> 5 000005 000004 0-340-89696-5 2006-03-19
#> # … with 45 more rows
#>
#> $returns
#> # A tibble: 30 × 2
#> id date
#> <chr> <date>
#> 1 000001 2015-04-06
#> 2 000003 2014-10-23
#> 3 000004 2005-12-29
#> 4 000005 2006-03-26
#> 5 000006 2016-08-30
#> # … with 25 more rows
#>
#> attr(,"class")
#> [1] "tblist"
#> attr(,"call")
#> as.tblist(librarian)
If you want to run data filtering automatically when the filter is defined you can set run_flow = TRUE
:
<- librarian_source %>%
librarian_cohort cohort() %>%
add_filter(author_filter, run_flow = TRUE)
when using add_filter
or:
<- librarian_source %>%
librarian_cohort cohort(
author_filter,run_flow = TRUE
)
when configuring filter along with creating cohort.
Now when the data filtered, how can we get data state before filtering? With get_data
it’s easy, just set state = "pre"
:
get_data(librarian_cohort, state = "pre")
#> $books
#> # A tibble: 17 × 6
#> isbn title genre publisher author copies
#> <chr> <chr> <chr> <chr> <chr> <int>
#> 1 0-385-50420-9 The Da Vinci Code Crime, Thril… Transworld Dan Brown 7
#> 2 0-7679-0817-1 A Short History … Popular Scie… Transworld Bill Brys… 4
#> 3 978-0-15-602943-8 The Time Travele… General & Li… Random Ho… Audrey Ni… 2
#> 4 0-224-06252-2 Atonement General & Li… Random Ho… Ian McEwan 8
#> 5 0-676-97376-0 Life of Pi General & Li… Canongate Yann Mart… 11
#> # … with 12 more rows
#>
#> $borrowers
#> # A tibble: 20 × 6
#> id registered address name phone_number program
#> <chr> <date> <chr> <chr> <chr> <chr>
#> 1 000001 2001-06-09 66 N. Evergreen Ave. No… Mrs. Freddie … 626-594-4729 premium
#> 2 000002 2002-08-10 8196 Windsor Road Musca… Ms. Jada Lesch 919-530-5272 standa…
#> 3 000003 2003-02-15 6 Wood Lane Calumet Cit… Inga Dach 706-669-5694 <NA>
#> 4 000004 2004-06-14 18 Nut Swamp Road Merri… Keyshawn Scha… 746-328-6598 standa…
#> 5 000005 2005-01-15 580 Chapel Rd. Delray B… Ferdinand Ber… 127-363-0738 premium
#> # … with 15 more rows
#>
#> $issues
#> # A tibble: 50 × 4
#> id borrower_id isbn date
#> <chr> <chr> <chr> <date>
#> 1 000001 000019 0-676-97976-9 2015-03-17
#> 2 000002 000010 978-0-7528-6053-4 2008-09-13
#> 3 000003 000016 0-09-177373-3 2014-09-28
#> 4 000004 000005 0-224-06252-2 2005-11-14
#> 5 000005 000004 0-340-89696-5 2006-03-19
#> # … with 45 more rows
#>
#> $returns
#> # A tibble: 30 × 2
#> id date
#> <chr> <date>
#> 1 000001 2015-04-06
#> 2 000003 2014-10-23
#> 3 000004 2005-12-29
#> 4 000005 2006-03-26
#> 5 000006 2016-08-30
#> # … with 25 more rows
#>
#> attr(,"class")
#> [1] "tblist"
#> attr(,"call")
#> as.tblist(librarian)
With cohortBuilder
you can define filters in groups named ‘steps’ or ‘filtering steps’.
Filtering steps allow you to sequentially perform groups of filtering operations. In order to define step, just wrap set of filters in step
function.
We will define three filters:
We’ll include filters 1. and 2. in the first step - filter 3. in the second one.
The below code does the job:
<- librarian_source %>%
librarian_cohort cohort(
step(
filter(
"discrete", id = "author", dataset = "books",
variable = "author", value = "Dan Brown"
),filter(
"discrete", id = "program", dataset = "borrowers",
variable = "program", value = "premium", keep_na = FALSE
)
),step(
filter(
"range", id = "copies", dataset = "books",
variable = "copies", range = c(-Inf, 5)
)
) )
Let’s note a few parts that occurred above:
id
parameter. This assigns provided id to each filter what makes accessing it later much easier.keep_na = FALSE
what results with excluding NA
values (the parameter is available for each filter type).range
filter, for which sub-setting value is defined with range
parameter.Let’s check the Cohort configuration:,
sum_up(librarian_cohort)
#> >> Step ID: 1
#> -> Filter ID: author
#> Filter Type: discrete
#> Filter Parameters:
#> dataset: books
#> variable: author
#> value: Dan Brown
#> keep_na: TRUE
#> description:
#> active: TRUE
#> -> Filter ID: program
#> Filter Type: discrete
#> Filter Parameters:
#> dataset: borrowers
#> variable: program
#> value: premium
#> keep_na: FALSE
#> description:
#> active: TRUE
#> >> Step ID: 2
#> -> Filter ID: copies
#> Filter Type: range
#> Filter Parameters:
#> dataset: books
#> variable: copies
#> range: -Inf, 5
#> keep_na: TRUE
#> description:
#> active: TRUE
We can see filters were correctly assigned to each step.
Having multiple steps defined, we can use get_data
to extract resulting data after each step. In order to precise the step we want to get data from, just pass its id as step_id
parameter:
run(librarian_cohort)
get_data(librarian_cohort, step_id = 1)
#> $books
#> # A tibble: 2 × 6
#> isbn title genre publisher author copies
#> <chr> <chr> <chr> <chr> <chr> <int>
#> 1 0-385-50420-9 The Da Vinci Code Crime, Thriller & A… Transworld Dan Br… 7
#> 2 0-671-02735-2 Angels and Demons Crime, Thriller & A… Transworld Dan Br… 4
#>
#> $borrowers
#> # A tibble: 6 × 6
#> id registered address name phone_number program
#> <chr> <date> <chr> <chr> <chr> <chr>
#> 1 000001 2001-06-09 66 N. Evergreen Ave. No… Mrs. Freddie … 626-594-4729 premium
#> 2 000005 2005-01-15 580 Chapel Rd. Delray B… Ferdinand Ber… 127-363-0738 premium
#> 3 000008 2006-11-15 9533 Delaware Dr. Peabo… Mrs. Ermine H… 460-779-8714 premium
#> 4 000011 2009-03-24 745 E. Sussex Drive Mah… Mr. Sullivan … 378-884-6509 premium
#> 5 000013 2011-09-30 534 Iroquois Ave. Water… Dr. Sharif Ku… 104-832-8013 premium
#> # … with 1 more row
#>
#> $issues
#> # A tibble: 50 × 4
#> id borrower_id isbn date
#> <chr> <chr> <chr> <date>
#> 1 000001 000019 0-676-97976-9 2015-03-17
#> 2 000002 000010 978-0-7528-6053-4 2008-09-13
#> 3 000003 000016 0-09-177373-3 2014-09-28
#> 4 000004 000005 0-224-06252-2 2005-11-14
#> 5 000005 000004 0-340-89696-5 2006-03-19
#> # … with 45 more rows
#>
#> $returns
#> # A tibble: 30 × 2
#> id date
#> <chr> <date>
#> 1 000001 2015-04-06
#> 2 000003 2014-10-23
#> 3 000004 2005-12-29
#> 4 000005 2006-03-26
#> 5 000006 2016-08-30
#> # … with 25 more rows
#>
#> attr(,"class")
#> [1] "tblist"
#> attr(,"call")
#> as.tblist(librarian)
get_data(librarian_cohort, step_id = 2)
#> $books
#> # A tibble: 1 × 6
#> isbn title genre publisher author copies
#> <chr> <chr> <chr> <chr> <chr> <int>
#> 1 0-671-02735-2 Angels and Demons Crime, Thriller & A… Transworld Dan Br… 4
#>
#> $borrowers
#> # A tibble: 6 × 6
#> id registered address name phone_number program
#> <chr> <date> <chr> <chr> <chr> <chr>
#> 1 000001 2001-06-09 66 N. Evergreen Ave. No… Mrs. Freddie … 626-594-4729 premium
#> 2 000005 2005-01-15 580 Chapel Rd. Delray B… Ferdinand Ber… 127-363-0738 premium
#> 3 000008 2006-11-15 9533 Delaware Dr. Peabo… Mrs. Ermine H… 460-779-8714 premium
#> 4 000011 2009-03-24 745 E. Sussex Drive Mah… Mr. Sullivan … 378-884-6509 premium
#> 5 000013 2011-09-30 534 Iroquois Ave. Water… Dr. Sharif Ku… 104-832-8013 premium
#> # … with 1 more row
#>
#> $issues
#> # A tibble: 50 × 4
#> id borrower_id isbn date
#> <chr> <chr> <chr> <date>
#> 1 000001 000019 0-676-97976-9 2015-03-17
#> 2 000002 000010 978-0-7528-6053-4 2008-09-13
#> 3 000003 000016 0-09-177373-3 2014-09-28
#> 4 000004 000005 0-224-06252-2 2005-11-14
#> 5 000005 000004 0-340-89696-5 2006-03-19
#> # … with 45 more rows
#>
#> $returns
#> # A tibble: 30 × 2
#> id date
#> <chr> <date>
#> 1 000001 2015-04-06
#> 2 000003 2014-10-23
#> 3 000004 2005-12-29
#> 4 000005 2006-03-26
#> 5 000006 2016-08-30
#> # … with 25 more rows
#>
#> attr(,"class")
#> [1] "tblist"
#> attr(,"call")
#> as.tblist(librarian)
Note. When step_id
is not provided, the method returns the last step data.
Note. You may precise if you want to extract data before or after filtering using state
parameter. Because the proceeding step uses result from the previous one, we have:
identical(
get_data(librarian_cohort, step_id = 1, state = "post"),
get_data(librarian_cohort, step_id = 2, state = "pre")
)#> [1] TRUE
Having Cohort object created, you may want to use its methods for exploring underlying data.
With methods such as:
stat
,plot_data
,attrition
you can:
stat(librarian_cohort, step_id = 1, filter_id = "program")
#> $n_data
#> [1] 6
#>
#> $choices
#> $choices$premium
#> [1] 6
#>
#>
#> $n_missing
#> [1] 0
stat(librarian_cohort, step_id = 2, filter_id = "copies")
#> $n_data
#> [1] 1
#>
#> $frequencies
#> level count l_bound u_bound
#> 1 1 1 4 4
#>
#> $n_missing
#> [1] 0
plot_data(librarian_cohort, step_id = 1, filter_id = "program")
plot_data(librarian_cohort, step_id = 2, filter_id = "copies")
attrition(librarian_cohort, dataset = "books")
attrition(librarian_cohort, dataset = "borrowers")