
Package ‘colorspace’
February 21, 2022

Version 2.0-3

Date 2022-02-19

Title A Toolbox for Manipulating and Assessing Colors and Palettes

Description Carries out mapping between assorted color spaces including RGB, HSV, HLS,
CIEXYZ, CIELUV, HCL (polar CIELUV), CIELAB, and polar CIELAB.
Qualitative, sequential, and diverging color palettes based on HCL colors
are provided along with corresponding ggplot2 color scales.
Color palette choice is aided by an interactive app (with either a Tcl/Tk
or a shiny graphical user interface) and shiny apps with an HCL color picker and a
color vision deficiency emulator. Plotting functions for displaying
and assessing palettes include color swatches, visualizations of the
HCL space, and trajectories in HCL and/or RGB spectrum. Color manipulation
functions include: desaturation, lightening/darkening, mixing, and
simulation of color vision deficiencies (deutanomaly, protanomaly, tritanomaly).
Details can be found on the project web page at <https:
//colorspace.R-Forge.R-project.org/>
and in the accompanying scientific paper: Zeileis et al. (2020, Journal of Statistical
Software, <doi:10.18637/jss.v096.i01>).

Depends R (>= 3.0.0), methods

Imports graphics, grDevices, stats

Suggests datasets, utils, KernSmooth, MASS, kernlab, mvtnorm, vcd,
tcltk, shiny, shinyjs, ggplot2, dplyr, scales, grid, png, jpeg,
knitr, rmarkdown, RColorBrewer, rcartocolor, scico, viridis,
wesanderson

VignetteBuilder knitr

License BSD_3_clause + file LICENSE

URL https://colorspace.R-Forge.R-project.org/, https://hclwizard.org/

BugReports https://colorspace.R-Forge.R-project.org/contact.html

LazyData yes

RoxygenNote 7.1.2

NeedsCompilation yes

1

https://colorspace.R-Forge.R-project.org/
https://colorspace.R-Forge.R-project.org/
https://doi.org/10.18637/jss.v096.i01
https://colorspace.R-Forge.R-project.org/
https://hclwizard.org/
https://colorspace.R-Forge.R-project.org/contact.html

2 R topics documented:

Author Ross Ihaka [aut],
Paul Murrell [aut] (<https://orcid.org/0000-0002-3224-8858>),
Kurt Hornik [aut] (<https://orcid.org/0000-0003-4198-9911>),
Jason C. Fisher [aut] (<https://orcid.org/0000-0001-9032-8912>),
Reto Stauffer [aut] (<https://orcid.org/0000-0002-3798-5507>),
Claus O. Wilke [aut] (<https://orcid.org/0000-0002-7470-9261>),
Claire D. McWhite [aut] (<https://orcid.org/0000-0001-7346-3047>),
Achim Zeileis [aut, cre] (<https://orcid.org/0000-0003-0918-3766>)

Maintainer Achim Zeileis <Achim.Zeileis@R-project.org>

Repository CRAN

Date/Publication 2022-02-21 09:50:02 UTC

R topics documented:
adjust_transparency . 3
choose_palette . 5
color-class . 7
contrast_ratio . 8
coords . 10
cvd . 11
cvd_emulator . 12
cvd_image . 12
demoplot . 13
desaturate . 15
divergingx_hcl . 16
hclplot . 18
hcl_color_picker . 21
hcl_palettes . 22
hex . 27
hex2RGB . 28
HLS . 29
HSV . 30
LAB . 31
lighten . 32
LUV . 35
max_chroma . 36
mixcolor . 37
polarLAB . 38
polarLUV . 39
rainbow_hcl . 40
readhex . 43
readRGB . 44
RGB . 45
scale_colour_binned_diverging . 46
scale_colour_binned_divergingx . 48
scale_colour_binned_qualitative . 50
scale_colour_binned_sequential . 52

https://orcid.org/0000-0002-3224-8858
https://orcid.org/0000-0003-4198-9911
https://orcid.org/0000-0001-9032-8912
https://orcid.org/0000-0002-3798-5507
https://orcid.org/0000-0002-7470-9261
https://orcid.org/0000-0001-7346-3047
https://orcid.org/0000-0003-0918-3766

adjust_transparency 3

scale_colour_continuous_diverging . 55
scale_colour_continuous_divergingx . 57
scale_colour_continuous_qualitative . 60
scale_colour_continuous_sequential . 62
scale_colour_discrete_diverging . 64
scale_colour_discrete_divergingx . 66
scale_colour_discrete_qualitative . 69
scale_colour_discrete_sequential . 70
simulate_cvd . 73
specplot . 74
sRGB . 77
swatchplot . 78
USSouthPolygon . 79
whitepoint . 80
writehex . 81
XYZ . 82

Index 84

adjust_transparency Adjust or Extract Transparency of Colors

Description

Adjust (i.e., add, remove, or modify) or extract alpha transparency of a vector of colors.

Usage

adjust_transparency(col, alpha = TRUE)

extract_transparency(col, mode = "numeric", default = 1)

Arguments

col vector of R colors. Can be any of the three kinds of R colors, i.e., either a color
name (an element of colors), a hexadecimal (hex) string of the form "#rrggbb"
or "#rrggbbaa" (see rgb), or an integer i meaning palette()[i]. Addition-
ally, col can be a formal color-class object or a matrix with three rows con-
taining R/G/B (0-255) values.

alpha either a new alpha transparency value or logical (to add/remove alpha) or NULL.
See details.

mode character specifying the output mode for the alpha transparency, can be "numeric",
"integer", "character" or "hexmode". See details.

default vector of length 1 specifying the default alpha transparency that should be re-
turned for colors that do not specify any explicitly (defaulting to fully opaque).
Can either be numeric, integer, character, or hexmode.

4 adjust_transparency

Details

Alpha transparency is useful for making colors semi-transparent, e.g., for overlaying different ele-
ments in graphics. An alpha value of 0 (or 00 in hex strings) corresponds to fully transparent and an
alpha value of 1 (or FF in hex strings) corresponds to fully opaque. If a color hex string in R does
not provide an explicit alpha transparency, the color is assumed to be fully opaque.

The adjust_transparency function can be used to adjust the alpha transparency of a set of col-
ors. It always returns a hex color specification. This hex color can have the alpha transparency
added/removed/modified depending on the specification of alpha:

• alpha = NULL: Returns a hex vector with alpha transparency only if needed. Thus, it keeps the
alpha transparency for the colors (if any) but only if different from opaque.

• alpha = TRUE: Returns a hex vector with alpha transparency for all colors, using opaque (FF)
as the default if missing.

• alpha = FALSE: Returns a hex vector without alpha transparency for all colors (even if the
original colors had non-opaque alpha).

• alpha numeric: Returns a hex vector with alpha transparency for all colors set to the alpha
argument (recycled if necessary).

The extract_transparency function can be used to extract the alpha transparency from a set of
colors. It allows to specify the default value - that should be used for colors without an explicit
alpha transparency (defaulting to fully opaque) - and mode of the return value. This can either be
numeric (in [0, 1]), integer (0L, 1L, . . . , 255L), character (“00”, “01”, . . . , “FF”), or an object of
class hexmode (internally represented as integer with printing as character). The default can use
any of these modes as well (independent of the output mode) or be NA.

Value

For adjust_transparency character vector with hexadecimal color strings with alpha transparency
corresponding to alpha argument. For extract_transparency a vector of alpha transparency
values with the indicated mode.

References

Zeileis A, Fisher JC, Hornik K, Ihaka R, McWhite CD, Murrell P, Stauffer R, Wilke CO (2020).
“colorspace: A Toolbox for Manipulating and Assessing Colors and Palettes.” Journal of Statistical
Software, 96(1), 1–49. doi: 10.18637/jss.v096.i01

See Also

rgb, desaturate, lighten

Examples

modify transparency of a color (in different formats)
adjust_transparency("black", alpha = c(0, 0.5, 1)) ## name
adjust_transparency("#000000", alpha = c(0, 0.5, 1)) ## hex string
adjust_transparency(1, alpha = c(0, 0.5, 1)) ## palette() integer

three shades of gray (in different formats:

https://doi.org/10.18637/jss.v096.i01

choose_palette 5

name/opaque, hex/opaque, hex/semi-transparent)
x <- c("gray", "#BEBEBE", "#BEBEBE80")

adjust transparency
adjust_transparency(x, alpha = NULL) ## only if necessary
adjust_transparency(x, alpha = TRUE) ## add
adjust_transparency(x, alpha = FALSE) ## remove
adjust_transparency(x, alpha = 0.8) ## modify

extract transparency in different formats
extract_transparency(x, mode = "numeric") ## default
extract_transparency(x, mode = "integer")
extract_transparency(x, mode = "character")
extract_transparency(x, mode = "hexmode")

extract transparency with different default values
extract_transparency(x, default = NA)
extract_transparency(x, default = 0.5)
extract_transparency(x, default = 128L)
extract_transparency(x, default = "80", mode = "integer")

choose_palette Graphical User Interface for Choosing HCL Color Palettes

Description

A graphical user interface (GUI) for viewing, manipulating, and choosing HCL color palettes.

Usage

choose_palette(pal = diverging_hcl, n = 7L, parent = NULL, gui = "tcltk", ...)

hclwizard(n = 7L, gui = "shiny", ...)

Arguments

pal function; the initial palette, see ‘Value’ below. Only used if gui = "tcltk".

n integer; the initial number of colors in the palette.

parent tkwin; the GUI parent window. Only used if gui = "tcltk".

gui character; GUI to use. Available options are tcltk and shiny, see ‘Details’
below.

... used for development purposes only.

6 choose_palette

Details

Computes palettes based on the HCL (hue-chroma-luminance) color model (as implemented by
polarLUV). The GUIs interface the palette functions qualitative_hcl for qualitative palettes,
sequential_hcl for sequential palettes with a single or multiple hues, and diverging_hcl for
diverging palettes (composed from two single-hue sequential palettes).

Two different GUIs are implemented and can be selected using the function input argument gui
("tcltk" or "shiny"). Both GUIs allows for interactive modification of the arguments of the
respective palette-generating functions, i.e., starting/ending hue (wavelength, type of color), min-
imal/maximal chroma (colorfulness), minimal maximal luminance (brightness, amount of gray),
and a power transformations that control how quickly/slowly chroma and/or luminance are changed
through the palette. Subsets of the parameters may not be applicable depending on the type of
palette chosen. See qualitative_hcl and Zeileis et al. (2009, 2019) for a more detailed explana-
tion of the different arguments. Stauffer et al. (2015) provide more examples and guidance.

Optionally, active palette can be illustrated by using a range of examples such as a map, heatmap,
scatter plot, perspective 3D surface etc.

To demonstrate different types of deficiencies, the active palette may be desaturated (emulating
printing on a grayscale printer) and collapsed to emulate different types of color-blindness (without
red-green or green-blue contrasts) using the simulate_cvd functions.

choose_palette by default starts the Tcl/Tk version of the GUI while hclwizard by default starts
the shiny version. hcl_wizard is an alias for hclwizard.

Value

Returns a palette-generating function with the selected arguments. Thus, the returned function takes
an integer argument and returns the corresponding number of HCL colors by traversing HCL space
through interpolation of the specified hue/chroma/luminance/power values.

Author(s)

Jason C. Fisher, Reto Stauffer, Achim Zeileis

References

Zeileis A, Hornik K, Murrell P (2009). Escaping RGBland: Selecting Colors for Statistical Graph-
ics. Computational Statistics & Data Analysis, 53, 3259–3270. doi: 10.1016/j.csda.2008.11.033
Preprint available from https://www.zeileis.org/papers/Zeileis+Hornik+Murrell-2009.
pdf.

Stauffer R, Mayr GJ, Dabernig M, Zeileis A (2015). Somewhere over the Rainbow: How to Make
Effective Use of Colors in Meteorological Visualizations. Bulletin of the American Meteorological
Society, 96(2), 203–216. doi: 10.1175/BAMSD1300155.1

Zeileis A, Fisher JC, Hornik K, Ihaka R, McWhite CD, Murrell P, Stauffer R, Wilke CO (2020).
“colorspace: A Toolbox for Manipulating and Assessing Colors and Palettes.” Journal of Statistical
Software, 96(1), 1–49. doi: 10.18637/jss.v096.i01

See Also

simulate_cvd, desaturate, qualitative_hcl.

https://doi.org/10.1016/j.csda.2008.11.033
https://www.zeileis.org/papers/Zeileis+Hornik+Murrell-2009.pdf
https://www.zeileis.org/papers/Zeileis+Hornik+Murrell-2009.pdf
https://doi.org/10.1175/BAMS-D-13-00155.1
https://doi.org/10.18637/jss.v096.i01

color-class 7

Examples

if(interactive()) {
Using tcltk GUI
pal <- choose_palette()
or equivalently: hclwizard(gui = "tcltk")

Using shiny GUI
pal <- hclwizard()
or equivalently: choose_palette(gui = "shiny")

use resulting palette function
filled.contour(volcano, color.palette = pal, asp = 1)
}

color-class Class "color"

Description

Objects from the class color represent colors in a number of color spaces. In particular, there are
subclasses of color which correspond to RGB, HSV, HLS, CIEXYZ, CIELUV, CIELAB and polar
versions of the last two spaces.

Objects from the Class

Objects can be created by calls to the functions RGB, sRGB, HSV, HLS, XYZ, LUV, LAB, polarLUV, and
polarLAB. These are all subclasses of the virtual class color.

Slots

coords: An object of class "matrix".

Methods

[signature(x = "color"): This method makes it possible to take subsets of a vector of colors.
coerce signature(from = "color",to = "RGB"): convert a color vector to RGB.
coerce signature(from = "color",to = "sRGB"): convert a color vector to sRGB.
coerce signature(from = "color",to = "XYZ"): convert a color vector to XYZ.
coerce signature(from = "color",to = "LAB"): convert a color vector to LAB.
coerce signature(from = "color",to = "polarLAB"): convert a color vector to polarLAB.
coerce signature(from = "color",to = "HSV"): convert a color vector to HSV.
coerce signature(from = "color",to = "HLS"): convert a color vector to HLS.
coerce signature(from = "color",to = "LUV"): convert a color vector to LUV.
coerce signature(from = "color",to = "polarLUV"): convert a color vector to polarLUV.
coords signature(color = "color"): extract the color coordinates from a color vector.
plot signature(x = "color"): plot a color vector
show signature(object = "color"): show a color vector.

8 contrast_ratio

Author(s)

Ross Ihaka

See Also

RGB, XYZ, HSV, HLS, LAB, polarLAB, LUV, polarLUV, mixcolor.

Examples

x <- sRGB(runif(1000), runif(1000), runif(1000))
plot(as(x, "LUV"))

contrast_ratio W3C Contrast Ratio

Description

Compute (and visualize) the contrast ratio of pairs of colors, as defined by the World Wide Web
Consortium (W3C).

Usage

contrast_ratio(
col,
col2 = "white",
algorithm = c("WCAG", "APCA"),
plot = FALSE,
border = FALSE,
cex = 2,
off = 0.05,
mar = rep(0.5, 4),
digits = 2L,
...

)

Arguments

col, col2 vectors of any of the three kind of R colors, i.e., either a color name (an element
of colors), a hexadecimal string of the form "#rrggbb" or "#rrggbbaa" (see
rgb), or an integer i meaning palette()[i]. Both can be vectors and are
recycled as necessary.

algorithm character specifying whether the established standard "WCAG" 2.1 algorithm should
be used or the improved "APCA" 0.98G-4g algorithm, still under development.

plot logical indicating whether the contrast ratios should also be visualized by sim-
ple color swatches. Can also be a vector of length 2, indicating whether the
foreground color should be visualized on the background color and/or the back-
ground color on the foreground color.

contrast_ratio 9

border logical or color specification for the borders around the color swatches (only
used if plot = TRUE). The default is FALSE which is equivalent to "transparent".
If TRUE the border is drawn in the same color as the text in the rectangle.

cex numeric. Size of the text in the color color swatches (only if plot = TRUE).

off numeric. Vertical offset between the different color swatches (only if plot =
TRUE). Can also be of length 2 giving both vertical and horizontal offsets, re-
spectively.

mar numeric. Size of the margins around the color swatches (only if plot = TRUE).

digits numeric. Number of digits for the contrast ratios displayed in the color swatches
(only if plot = TRUE)

... further arguments passed to the plot of the color swatches (only if plot = TRUE).

Details

The W3C Content Accessibility Guidelines (WCAG) recommend a contrast ratio of at least 4.5
for the color of regular text on the background color, and a ratio of at least 3 for large text. See
https://www.w3.org/TR/WCAG21/#contrast-minimum.

The contrast ratio is defined in https://www.w3.org/TR/WCAG21/#dfn-contrast-ratio as (L1
+ 0.05) / (L2 + 0.05) where L1 and L2 are the relative luminances (see https://www.w3.org/
TR/WCAG21/#dfn-relative-luminance) of the lighter and darker colors, respectively. The rela-
tive luminances are weighted sums of scaled sRGB coordinates: 0.2126 * R + 0.7152 * G + 0.0722
* B where each of R, G, and B is defined as ifelse(RGB <= 0.03928,RGB/12.92,((RGB + 0.055)/1.055)^2.4)
based on the RGB coordinates between 0 and 1.

For use in the next major revision of the WCAG a new advanced perceptual contrast algorithm
(APCA) has been proposed by Somers (2022), see also Muth (2022) for more background and de-
tails. APCA is still under development, here version 0.98G-4g is implemented. Unlike the standard
WCAG algorithm, APCA takes into account which color is the text and which is the background.
Hence for the APCA algorithm a matrix with normal and reverse polarity is returned. An absolute
value of 45 is "sort of" like a WCAG ratio of 3, 60 is "sort of" like 4.5.

Value

A numeric vector with the contrast ratios is returned (invisibly, if plot is TRUE).

References

W3C (2018). “Web Content Accessibility Guidelines (WCAG) 2.1.” https://www.w3.org/TR/
WCAG21/

Somers A (2022). “Advanced Perceptual Contrast Algorithm.” https://github.com/Myndex/
SAPC-APCA

Muth LC (2022). “It’s Time for a More Sophisticated Color Contrast Check for Data Visualiza-
tions.” Datawrapper Blog. https://blog.datawrapper.de/color-contrast-check-data-vis-wcag-apca/

See Also

desaturate

https://www.w3.org/TR/WCAG21/#contrast-minimum
https://www.w3.org/TR/WCAG21/#dfn-contrast-ratio
https://www.w3.org/TR/WCAG21/#dfn-relative-luminance
https://www.w3.org/TR/WCAG21/#dfn-relative-luminance
https://www.w3.org/TR/WCAG21/
https://www.w3.org/TR/WCAG21/
https://github.com/Myndex/SAPC-APCA
https://github.com/Myndex/SAPC-APCA
https://blog.datawrapper.de/color-contrast-check-data-vis-wcag-apca/

10 coords

Examples

check contrast ratio of default palette on white background
contrast_ratio(palette(), "white")

visualize contrast ratio of default palette on white and black background
contrast_ratio(palette(), "white", plot = TRUE)
contrast_ratio(palette()[-1], "black", plot = TRUE)

APCA algorithm
contrast_ratio(palette(), "white", algorithm = "APCA")
contrast_ratio(palette(), "white", algorithm = "APCA", plot = TRUE, digits = 0)

coords Extract the Numerical Coordinates of a Color

Description

This function returns a matrix with three columns which give the coordinates of a color in its natural
color space.

Usage

coords(color)

Arguments

color A color.

Value

A numeric matrix giving the coordinates of the color.

Author(s)

Ross Ihaka

See Also

RGB, XYZ, LAB, polarLAB, LUV, polarLUV, mixcolor.

Examples

x <- sRGB(1, 0, 0)
coords(as(x, "HSV"))

cvd 11

cvd Color Vision Deficiency (CVD) Conversion Tables

Description

Conversion tables for simulating different types of color vision deficiency (CVD): Protanomaly,
deutanomaly, tritanomaly.

Usage

protanomaly_cvd

deutanomaly_cvd

tritanomaly_cvd

Format

Lists of 3x3 RGB-color transformation matrices for the various types of CVD. Each list contains
11 transformation matrices representing increasingly severe color vision deficiency.

Details

Machado et al. (2009) have established a novel model, that allows to handle normal color vi-
sion, anomalous trichromacy, and dichromacy in a unified way. They also provide conversion
formulas along with tables of certain constants that allow to simulate various types of CVD. See
simulate_cvd for the corresponding simulation functions.

References

Machado GM, Oliveira MM, Fernandes LAF (2009). A Physiologically-Based Model for Sim-
ulation of Color Vision Deficiency. IEEE Transactions on Visualization and Computer Graph-
ics. 15(6), 1291–1298. doi: 10.1109/TVCG.2009.113 Online version with supplements at http:
//www.inf.ufrgs.br/~oliveira/pubs_files/CVD_Simulation/CVD_Simulation.html.

Zeileis A, Fisher JC, Hornik K, Ihaka R, McWhite CD, Murrell P, Stauffer R, Wilke CO (2020).
“colorspace: A Toolbox for Manipulating and Assessing Colors and Palettes.” Journal of Statistical
Software, 96(1), 1–49. doi: 10.18637/jss.v096.i01

See Also

simulate_cvd

https://doi.org/10.1109/TVCG.2009.113
http://www.inf.ufrgs.br/~oliveira/pubs_files/CVD_Simulation/CVD_Simulation.html
http://www.inf.ufrgs.br/~oliveira/pubs_files/CVD_Simulation/CVD_Simulation.html
https://doi.org/10.18637/jss.v096.i01

12 cvd_image

cvd_emulator Graphical User Interface to Check Images for Color Constraints

Description

A graphical user interface (GUI) to check an existing jpg/png image for (possible) color constraints.
The image will be converted to protanope vision, deuteranope vision, and a desaturated version
(monochromatic vision). Allows a rapid check whether the colors used in the image show some
constraints with respect to color deficiency or color blindness.

Usage

cvd_emulator(file, overwrite = FALSE, shiny.trace = FALSE)

Arguments

file If not set, an interactive GUI will be started. If x is of type character it has to
be the full path to an image of type png or jpg/jpeg. The image will be converted
and stored on disc, no GUI.

overwrite logical. Only used if file is provided. Allow the function to overwrite files
on disc if they exist.

shiny.trace logical. Can be set to TRUE for more verbose output when the GUI is started
(development flag).

Author(s)

Reto Stauffer, Claus O. Wilke, Achim Zeileis

References

Zeileis A, Fisher JC, Hornik K, Ihaka R, McWhite CD, Murrell P, Stauffer R, Wilke CO (2020).
“colorspace: A Toolbox for Manipulating and Assessing Colors and Palettes.” Journal of Statistical
Software, 96(1), 1–49. doi: 10.18637/jss.v096.i01

cvd_image Convert Colors of an Image

Description

Used in cvd_emulator. Takes an image object and converts the colors using deutan, protan,
tritan, desaturate functions. The image will be written to disc as a PNG file.

Usage

cvd_image(img, type, file, severity = 1)

https://doi.org/10.18637/jss.v096.i01

demoplot 13

Arguments

img array as returned by readPNG and readJPEG of size height x width x depth.
The depth coordinate contains R/G/B and alpha if given (png).

type string name of the function which will be used to convert the colors (deutan,
protan, tritan, desaturate). If set to original the image will be written as
is.

file string with (full) path to resulting image. Has to be a png image name.

severity numeric. Severity of the color vision defect, a number between 0 and 1.

demoplot Color Palette Demonstration Plot

Description

Demonstration of color palettes in various kinds of statistical graphics.

Usage

demoplot(
x,
type = c("map", "heatmap", "scatter", "spine", "bar", "pie", "perspective", "mosaic",

"lines"),
...

)

Arguments

x character vector containing color hex codes.

type character indicating the type of demonstration plot.

... currently not used.

Details

To demonstrate how different kinds of color palettes work in different kinds of statistical displays,
demoplot provides a simple convenience interface to some base graphics with (mostly artificial)
data sets. All types of demos can deal with arbitrarily many colors. However, some displays are
much more suitable for a low number of colors (e.g., the pie chart) while others work better with
more colors (e.g., the heatmap).

Value

demoplot returns invisibly what the respective base graphics functions return that are called inter-
nally.

14 demoplot

References

Zeileis A, Fisher JC, Hornik K, Ihaka R, McWhite CD, Murrell P, Stauffer R, Wilke CO (2020).
“colorspace: A Toolbox for Manipulating and Assessing Colors and Palettes.” Journal of Statistical
Software, 96(1), 1–49. doi: 10.18637/jss.v096.i01

See Also

specplot, hclplot

Examples

all built-in demos with the same sequential heat color palette
par(mfrow = c(3, 3))
cl <- sequential_hcl(5, "Heat")
for (i in c("map", "heatmap", "scatter", "spine", "bar", "pie", "perspective", "mosaic", "lines")) {

demoplot(cl, type = i)
}

qualitative palettes: light pastel colors for shading areas (pie)
and darker colorful palettes for points or lines
demoplot(qualitative_hcl(4, "Pastel 1"), type = "pie")
demoplot(qualitative_hcl(4, "Set 2"), type = "scatter")
demoplot(qualitative_hcl(4, "Dark 3"), type = "lines")

sequential palettes: display almost continuous gradients with
strong luminance contrasts (heatmap, perspective) and colorful
sequential palette for spine plot with only a few ordered categories
demoplot(sequential_hcl(99, "Purple-Blue"), type = "heatmap")
demoplot(sequential_hcl(99, "Reds"), type = "perspective")
demoplot(sequential_hcl(4, "Viridis"), type = "spine")

diverging palettes: display almost continuous gradient with
strong luminance contrast bringing out the extremes (map),
more colorful palette with lower luminance contrasts for displays
with fewer colors (mosaic, bar)
demoplot(diverging_hcl(99, "Tropic", power = 2.5), type = "map")
demoplot(diverging_hcl(5, "Green-Orange"), type = "mosaic")
demoplot(diverging_hcl(5, "Blue-Red 2"), type = "bar")

some palettes that work well on black backgrounds
par(mfrow = c(2, 3), bg = "black")
demoplot(sequential_hcl(9, "Oslo"), "heatmap")
demoplot(sequential_hcl(9, "Turku"), "heatmap")
demoplot(sequential_hcl(9, "Inferno", rev = TRUE), "heatmap")
demoplot(qualitative_hcl(9, "Set 2"), "lines")
demoplot(diverging_hcl(9, "Berlin"), "scatter")
demoplot(diverging_hcl(9, "Cyan-Magenta", l2 = 20), "lines")

https://doi.org/10.18637/jss.v096.i01

desaturate 15

desaturate Desaturate Colors by Chroma Removal in HCL Space

Description

Transform a vector of given colors to the corresponding colors with chroma reduced (by a tunable
amount) in HCL space.

Usage

desaturate(col, amount = 1, ...)

Arguments

col vector of R colors. Can be any of the three kinds of R colors, i.e., either a color
name (an element of colors), a hexadecimal string of the form "#rrggbb" or
"#rrggbbaa" (see rgb), or an integer i meaning palette()[i]. Input col can
also be a matrix with three rows containing R/G/B (0-255) values, see details.

amount numeric specifying the amount of desaturation where 1 corresponds to complete
desaturation, 0 to no desaturation, and values in between to partial desaturation.

... additional arguments. If severity is specified it will overrule the input argu-
ment amount (for convenience).

Details

If input col is a vector given colors are first transformed to RGB (either using hex2RGB or col2rgb)
and then to HCL (polarLUV). In HCL, chroma is reduced and then the color is transformed back to
a hexadecimal string.

If input col is a matrix with three rows named R, G, and B (top down) they are interpreted as Red-
Green-Blue values within the range [0-255]. The desaturation takes place in the HCL space as
well. Instead of an (s)RGB color vector a matrix of the same size as the input col with desaturated
Red-Green-Blue values will be returned. This can be handy to avoid too many conversions.

Value

A character vector with (s)RGB codings of the colors in the palette if input col is a vector. If input
col is a matrix with R/G/B values a matrix of the same form and size will be returned.

References

Zeileis A, Fisher JC, Hornik K, Ihaka R, McWhite CD, Murrell P, Stauffer R, Wilke CO (2020).
“colorspace: A Toolbox for Manipulating and Assessing Colors and Palettes.” Journal of Statistical
Software, 96(1), 1–49. doi: 10.18637/jss.v096.i01

See Also

polarLUV, hex, lighten

https://doi.org/10.18637/jss.v096.i01

16 divergingx_hcl

Examples

rainbow of colors and their desaturated counterparts
rainbow_hcl(12)
desaturate(rainbow_hcl(12))

convenience demo function
wheel <- function(col, radius = 1, ...)

pie(rep(1, length(col)), col = col, radius = radius, ...)

compare base and colorspace palettes
(in color and desaturated)
par(mar = rep(0, 4), mfrow = c(2, 2))
rainbow color wheel
wheel(rainbow_hcl(12))
wheel(rainbow(12))
wheel(desaturate(rainbow_hcl(12)))
wheel(desaturate(rainbow(12)))

apply desaturation directly on RGB values
RGB <- t(hex2RGB(rainbow(3))@coords * 255)
desaturate(RGB)

divergingx_hcl (More) Flexible Diverging HCL Palettes

Description

Diverging HCL color palettes generated through combination of two fully flexible (and possibly
unbalanced) multi-hue sequential palettes.

Usage

divergingx_hcl(
n,
palette = "Geyser",
...,
fixup = TRUE,
alpha = 1,
rev = FALSE,
h1,
h2,
h3,
c1,
c2,
c3,
l1,
l2,
l3,

divergingx_hcl 17

p1,
p2,
p3,
p4,
cmax1,
cmax2

)

divergingx_palettes(palette = NULL, plot = FALSE, n = 7L, ...)

Arguments

n the number of colors (≥ 1) to be in the palette.

palette character with the name (see details).

... arguments passed to hex.

fixup logical. Should the color be corrected to a valid RGB value?

alpha numeric vector of values in the range [0,1] for alpha transparency channel (0
means transparent and 1 means opaque).

rev logical. Should the palette be reversed?

h1 numeric. Starting hue coordinate.

h2 numeric. Center hue coordinate.

h3 numeric. Ending hue coordinate.

c1 numeric. Chroma coordinate corresponding to h1.

c2 numeric. Chroma coordinate corresponding to h2 (if NA, set to 0).

c3 numeric. Chroma coordinate corresponding to h3.

l1 numeric. Luminance coordinate corresponding to h1.

l2 numeric. Luminance coordinate corresponding to h2.

l3 numeric. Luminance coordinate corresponding to h3 (if NA, l1 is used).

p1 numeric. Power parameter for chroma coordinates in first sequential palette.

p2 numeric. Power parameter for luminance coordinates in first sequential palette
(if NA, p1 is used).

p3 numeric. Power parameter for chroma coordinates in second sequential palette
(if NA, p1 is used).

p4 numeric. Power parameter for luminance coordinates in second sequential palette
(if NA, p3 is used).

cmax1 numeric. Maximum chroma coordinate in first sequential palette (not used if
NA).

cmax2 numeric. Maximum chroma coordinate in second sequential palette (if NA, cmax1
is used).

plot logical. Should the selected HCL color palettes be visualized?

18 hclplot

Details

The divergingx_hcl function simply calls sequential_hcl twice with a prespecified set of hue,
chroma, and luminance parameters. This is similar to diverging_hcl but allows for more flex-
ibility: diverging_hcl employs two single-hue sequential palettes, always uses zero chroma for
the neutral/central color, and restricts the chroma/luminance path to be the same in both “arms” of
the palette. In contrast, divergingx_hcl relaxes this to two full multi-hue palettes that can thus
go through a non-gray neutral color (typically light yellow). Consequently, the chroma/luminance
paths can be rather unbalanced between the two arms.

With this additional flexibility various diverging palettes suggested by https://ColorBrewer2.
org/ and CARTO (https://carto.com/carto-colors/), can be emulated along with the Zissou
1 palette from wesanderson, Cividis from viridis, and Roma from scico.

Available CARTO palettes: ArmyRose, Earth, Fall, Geyser, TealRose, Temps, and Tropic (with
Tropic also available in diverging_hcl).

Available ColorBrewer.org palettes: PuOr, RdBu, RdGy, PiYG, PRGn, BrBG, RdYlBu, RdYlGn,
Spectral.

Value

A character vector with (s)RGB codings of the colors in the palette.

References

Zeileis A, Fisher JC, Hornik K, Ihaka R, McWhite CD, Murrell P, Stauffer R, Wilke CO (2020).
“colorspace: A Toolbox for Manipulating and Assessing Colors and Palettes.” Journal of Statistical
Software, 96(1), 1–49. doi: 10.18637/jss.v096.i01

See Also

sequential_hcl, diverging_hcl

Examples

show emulated CARTO/ColorBrewer.org palettes
divergingx_palettes(plot = TRUE)

compared to diverging_hcl() the diverging CARTO palettes are typically warmer
but also less balanced with respect to chroma/luminance, see e.g.,
specplot(divergingx_hcl(7, "ArmyRose"))

hclplot Palette Plot in HCL Space

Description

Visualization of color palettes in HCL space projections.

https://ColorBrewer2.org/
https://ColorBrewer2.org/
https://carto.com/carto-colors/
https://doi.org/10.18637/jss.v096.i01

hclplot 19

Usage

hclplot(
x,
type = NULL,
h = NULL,
c = NULL,
l = NULL,
xlab = NULL,
ylab = NULL,
main = NULL,
cex = 1,
axes = TRUE,
bg = "white",
lwd = 1,
size = 2.5,
...

)

Arguments

x character vector containing color hex codes, or a color-class object.

type type character specifying which type of palette should be visualized ("qualitative",
"sequential", or "diverging"). For qualitative palettes a hue-chroma plane
is used, otherwise a chroma-luminance plane. By default, the type is inferred
from the luminance trajectory corresponding to x.

h numeric hue(s) to be used for type = "sequential" and type = "diverging".
By default, these are inferred from the colors in x.

c numeric. Maximal chroma value to be used.

l numeric luminance(s) to be used for type = "qualitative". By default, this is
inferred from the colors in x.

xlab, ylab, main

character strings for annotation, by default generated from the type of color
palette visualized.

cex numeric character extension.

axes logical. Should axes be drawn?

bg, lwd, size graphical control parameters for the color palette trajectory.

... currently not used.

Details

The function hclplot is an auxiliary function for illustrating the trajectories of color palettes in two-
dimensional HCL space projections. It collapses over one of the three coordinates (either the hue
H or the luminance L) and displays a heatmap of colors combining the remaining two dimensions.
The coordinates for the given color palette are highlighted to bring out its trajectory.

The function hclplot has been designed to work well with the hcl_palettes in this package.
While it is possible to apply it to other color palettes as well, the results might look weird or

20 hclplot

confusing if these palettes are constructed very differently (e.g., as in the highly saturated base R
palettes).

More specifically, the following palettes can be visualized well:

• Qualitative with (approximately) constant luminance. In this case, hclplot shows a hue-
chroma plane (in polar coordinates), keeping luminance at a fixed level (by default displayed
in the main title of the plot). If the luminance is, in fact, not approximately constant, the
luminance varies along with hue and chroma, using a simple linear function (fitted by least
squares). hclplot shows a chroma-luminance plane, keeping hue at a fixed level (by default
displayed in the main title of the plot). If the hue is, in fact, not approximately constant, the
hue varies along with chroma and luminance, using a simple linear function (fitted by least
squares.

• Diverging with two (approximately) constant hues: This case is visualized with two back-to-
back sequential displays.

To infer the type of display to use, by default, the following heuristic is used: If luminance is not
approximately constant (range > 10) and follows rougly a triangular pattern, a diverging display is
used. If luminance is not constant and follows roughly a linear pattern, a sequential display is used.
Otherwise a qualitative display is used.

Value

hclplot invisibly returns a matrix with the HCL coordinates corresponding to x.

References

Zeileis A, Fisher JC, Hornik K, Ihaka R, McWhite CD, Murrell P, Stauffer R, Wilke CO (2020).
“colorspace: A Toolbox for Manipulating and Assessing Colors and Palettes.” Journal of Statistical
Software, 96(1), 1–49. doi: 10.18637/jss.v096.i01

See Also

specplot

Examples

for qualitative palettes luminance and chroma are fixed, varying only hue
hclplot(qualitative_hcl(9, c = 50, l = 70))

single-hue sequential palette (h = 260) with linear vs. power-transformed trajectory
hclplot(sequential_hcl(7, h = 260, c = 80, l = c(35, 95), power = 1))
hclplot(sequential_hcl(7, h = 260, c = 80, l = c(35, 95), power = 1.5))

advanced single-hue sequential palette with triangular chroma trajectory
(piecewise linear vs. power-transformed)
hclplot(sequential_hcl(7, h = 245, c = c(40, 75, 0), l = c(30, 95), power = 1))
hclplot(sequential_hcl(7, h = 245, c = c(40, 75, 0), l = c(30, 95), power = c(0.8, 1.4)))

multi-hue sequential palette with small hue range and triangular chroma vs.
large hue range and linear chroma trajectory
hclplot(sequential_hcl(7, h = c(260, 220), c = c(50, 75, 0), l = c(30, 95), power = 1))

https://doi.org/10.18637/jss.v096.i01

hcl_color_picker 21

hclplot(sequential_hcl(7, h = c(260, 60), c = 60, l = c(40, 95), power = 1))

balanced diverging palette constructed from two simple single-hue sequential
palettes (for hues 260/blue and 0/red)
hclplot(diverging_hcl(7, h = c(260, 0), c = 80, l = c(35, 95), power = 1))

hcl_color_picker Graphical User Interface to Pick Colors in HCL Space

Description

The app visualizes colors either along the hue-chroma plane for a given luminance value or along
the luminance-chroma plane for a given hue. Colors can be entered by specifying the hue (H),
chroma (C), and luminance (L) values via sliders, by entering an RGB hex code, or by clicking on
a color in the hue-chroma or luminance-chroma plane. It is also possible to select individual colors
and add them to a palette for comparison and future reference.

Usage

hcl_color_picker(shiny.trace = FALSE)

choose_color(shiny.trace = FALSE)

Arguments

shiny.trace logical: used for debugging the shiny interface.

Details

choose_color is a convenience alias for hcl_color_picker to go along with choose_palette.
Another alias is hclcolorpicker.

Value

hclcolorpicker invisibly returns a vector of colors choosen. If no colors have been selected NULL
will be returned.

Author(s)

Claus O. Wilke, Reto Stauffer, Achim Zeileis

References

Zeileis A, Fisher JC, Hornik K, Ihaka R, McWhite CD, Murrell P, Stauffer R, Wilke CO (2020).
“colorspace: A Toolbox for Manipulating and Assessing Colors and Palettes.” Journal of Statistical
Software, 96(1), 1–49. doi: 10.18637/jss.v096.i01

https://doi.org/10.18637/jss.v096.i01

22 hcl_palettes

See Also

choose_palette

Examples

Not run:
hcl_color_picker()

End(Not run)

hcl_palettes HCL Color Palettes

Description

Qualitative, sequential (single-hue and multi-hue), and diverging color palettes based on the HCL
(hue-chroma-luminance) color model.

Usage

hcl_palettes(type = NULL, palette = NULL, plot = FALSE, n = 5L, ...)

S3 method for class 'hcl_palettes'
print(x, ...)

S3 method for class 'hcl_palettes'
summary(object, ...)

S3 method for class 'hcl_palettes'
plot(x, n = 5L, fixup = TRUE, off = NULL, border = NULL, ...)

qualitative_hcl(
n,
h = c(0, 360 * (n - 1)/n),
c = 80,
l = 60,
fixup = TRUE,
alpha = 1,
palette = NULL,
rev = FALSE,
register = "",
...,
h1,
h2,
c1,
l1

)

hcl_palettes 23

sequential_hcl(
n,
h = 260,
c = 80,
l = c(30, 90),
power = 1.5,
gamma = NULL,
fixup = TRUE,
alpha = 1,
palette = NULL,
rev = FALSE,
register = "",
...,
h1,
h2,
c1,
c2,
l1,
l2,
p1,
p2,
cmax,
c.

)

diverging_hcl(
n,
h = c(260, 0),
c = 80,
l = c(30, 90),
power = 1.5,
gamma = NULL,
fixup = TRUE,
alpha = 1,
palette = NULL,
rev = FALSE,
register = "",
...,
h1,
h2,
c1,
l1,
l2,
p1,
p2,
cmax

)

24 hcl_palettes

Arguments

type character indicating type of HCL palette.

palette character. Name of HCL color palette.

plot logical. Should the selected HCL color palettes be visualized?

n the number of colors (≥ 1) to be in the palette.

... Other arguments passed to hex.

x, object A hcl_palettes object.

fixup logical. Should the color be corrected to a valid RGB value?

off numeric. Vector of length 2 indicating horizontal and vertical offsets between
the color rectangles displayed.

border character. Color of rectangle borders.

h, h1, h2 hue value in the HCL color description, has to be in [0, 360].

c, c., c1, c2 chroma value in the HCL color description.

l, l1, l2 luminance value in the HCL color description.

alpha numeric vector of values in the range [0,1] for alpha transparency channel (0
means transparent and 1 means opaque).

rev logical. Should the color palette vector be returned in reverse order?

register character. If set to a non-empty character string, the corresponding palette is
registered with that name for subsequent use (within the same session).

power, p1, p2 control parameter determining how chroma and luminance should be increased
(1 = linear, 2 = quadratic, etc.).

gamma Deprecated.

cmax Maximum chroma value in the HCL color description.

Details

The HCL (hue-chroma-luminance) color model is a perceptual color model obtained by using polar
coordinates in CIE LUV space (i.e., polarLUV), where steps of equal size correspond to approxi-
mately equal perceptual changes in color. By taking polar coordinates the resulting three dimen-
sions capture the three perceptual axes very well: hue is the type of color, chroma the colorful-
ness compared to the corresponding gray, and luminance the brightness. This makes it relatively
easy to create balanced palettes through trajectories in this HCL space. In contrast, in the more
commonly-used HSV (hue-saturation-value) model (a simple transformation of RGB), the three axes
are confounded so that luminance changes along with the hue leading to very unbalanced palettes
(see rainbow_hcl for further illustrations).

Three types of palettes are derived based on the HCL model:

• Qualitative: Designed for coding categorical information, i.e., where no particular ordering of
categories is available and every color should receive the same perceptual weight.

• Sequential: Designed for coding ordered/numeric information, i.e., where colors go from high
to low (or vice versa).

• Diverging: Designed for coding numeric information around a central neutral value, i.e.,
where colors diverge from neutral to two extremes.

hcl_palettes 25

The corresponding functions are qualitative_hcl, sequential_hcl, and diverging_hcl. Their
construction principles are explained in more detail below. At the core is the luminance axis (i.e.,
light-dark contrasts): These are easily decoded by humans and matched to high-low differences
in the underlying data. Therefore, sequential_hcl palettes are always based on a monotonic
luminance sequence whereas the colors in a qualitative_hcl palette all have the same luminance.
Finally, diverging_hcl palettes use the same monotonic luminance sequence in both “arms” of the
palette, i.e., correspond to two balanced sequential palettes diverging from the same neutral value.
The other two axes, hue and chroma, are used to enhance the luminance information and/or to
further discriminate the color.

All three palette functions specify trajectories in HCL space and hence need either single values or
intervals of the coordinates h, c, l. Their interfaces are always designed such that h, c, l can take
vector arguments (as needed) but alternatively or additionally h1/h2, c1/c2/cmax, and l1/l2 can be
specified. If so, the latter coordinates overwrite the former.

qualitative_hcl distinguishes the underlying categories by a sequence of hues while keeping
both chroma and luminance constant to give each color in the resulting palette the same perceptual
weight. Thus, h should be a pair of hues (or equivalently h1 and h2 can be used) with the starting
and ending hue of the palette. Then, an equidistant sequence between these hues is employed, by
default spanning the full color wheel (i.e, the full 360 degrees). Chroma c (or equivalently c1) and
luminance l (or equivalently l1) are constants.

sequential_hcl codes the underlying numeric values by a monotonic sequence of increasing (or
decreasing) luminance. Thus, the l argument should provide a vector of length 2 with starting and
ending luminance (equivalently, l1 and l2 can be used). Without chroma (i.e., c = 0), this simply
corresponds to a grayscale palette like gray.colors. For adding chroma, a simple strategy would
be to pick a single hue (via h or h1) and then decrease chroma from some value (c or c1) to zero
(i.e., gray) along with increasing luminance. For bringing out the extremes (a dark high-chroma
color vs. a light gray) this is already very effective. For distinguishing also colors in the middle
two strategies can be employed: (a) Hue can be varied as well by specifying an interval of hues in
h (or beginning hue h1 and ending hue h2). (b) Instead of a decreasing chroma a triangular chroma
trajectory can be employed from c1 over cmax to c2 (or equivalently a vector c of length 3). This
yields high-chroma colors in the middle of the palette that are more easily distinguished from the
dark and light extremes. Finally, instead of employing linear trajectories, power transformations are
supported in chroma and luminance via a vector power (or separate p1 and p2). If power[2] (or p2)
for the luminance trajectory is missing, it defaults to power[1]/p1 from the chroma trajectory.

diverging_hcl codes the underlying numeric values by a triangular luminance sequence with dif-
ferent hues in the left and in the right arm of the palette. Thus, it can be seen as a combination of
two sequential palettes with some restrictions: (a) a single hue is used for each arm of the palette,
(b) chroma and luminance trajectory are balanced between the two arms, (c) the neutral central
value has zero chroma. To specify such a palette a vector of two hues h (or equivalently h1 and
h2), either a single chroma value c (or c1) or a vector of two chroma values c (or c1 and cmax), a
vector of two luminances l (or l1 and l2), and power parameter(s) power (or p1 and p2) are used.
For more flexible diverging palettes without the restrictrictions above (and consequently more pa-
rameters) divergingx_hcl is available. For backward compatibility, diverge_hcl is a copy of
diverging_hcl.

To facilitate using HCL-based palettes a wide range of example palettes are provided in the package
and can be specified by a name instead of a set of parameters/coordinates. The examples have
been taken from the literature and many approximate color palettes from other software packages
such as ColorBrewer.org (RColorBrewer), CARTO colors (rcartocolor), scico, or virids. The

26 hcl_palettes

function hcl_palettes can be used to query the available pre-specified palettes. It comes with
a print method (listing names and types), a summary method (additionally listing the underlying
parameters/coordinates), and a plot method that creates a swatchplot with suitable labels.

Value

qualitative_hcl, sequential_hcl, diverging_hcl return a vector of n color strings (hex codes).

The function hcl_palettes returns a data frame of class "hcl_palettes" where each row contains
information about one of the requested palettes (name, type, HCL trajectory coordinates). Suitable
print, summary, and plot methods are available.

References

Zeileis A, Hornik K, Murrell P (2009). Escaping RGBland: Selecting Colors for Statistical Graph-
ics. Computational Statistics & Data Analysis, 53, 3259–3270. doi: 10.1016/j.csda.2008.11.033
Preprint available from https://www.zeileis.org/papers/Zeileis+Hornik+Murrell-2009.
pdf.

Stauffer R, Mayr GJ, Dabernig M, Zeileis A (2015). Somewhere Over the Rainbow: How to Make
Effective Use of Colors in Meteorological Visualizations. Bulletin of the American Meteorological
Society, 96(2), 203–216. doi: 10.1175/BAMSD1300155.1

Zeileis A, Fisher JC, Hornik K, Ihaka R, McWhite CD, Murrell P, Stauffer R, Wilke CO (2020).
“colorspace: A Toolbox for Manipulating and Assessing Colors and Palettes.” Journal of Statistical
Software, 96(1), 1–49. doi: 10.18637/jss.v096.i01

See Also

divergingx_hcl

Examples

overview of all _named_ HCL palettes
hcl_palettes()

visualize
hcl_palettes("qualitative", plot = TRUE)
hcl_palettes("sequential (single-hue)", n = 7, plot = TRUE)
hcl_palettes("sequential (multi-hue)", n = 7, plot = TRUE)
hcl_palettes("diverging", n = 7, plot = TRUE)

inspect a specific palette
(upper-case, spaces, etc. are ignored for matching)
hcl_palettes(palette = "Dark 2")
hcl_palettes(palette = "dark2")

set up actual colors
qualitative_hcl(4, h = c(0, 288), c = 50, l = 60) ## by hand
qualitative_hcl(4, palette = "dark2") ## by name
qualitative_hcl(4, palette = "dark2", c = 80) ## by name plus modification

how HCL palettes are constructed:

https://doi.org/10.1016/j.csda.2008.11.033
https://www.zeileis.org/papers/Zeileis+Hornik+Murrell-2009.pdf
https://www.zeileis.org/papers/Zeileis+Hornik+Murrell-2009.pdf
https://doi.org/10.1175/BAMS-D-13-00155.1
https://doi.org/10.18637/jss.v096.i01

hex 27

by varying the perceptual properties via hue/chroma/luminance
swatchplot(

"Hue" = sequential_hcl(5, h = c(0, 300), c = c(60, 60), l = 65),
"Chroma" = sequential_hcl(5, h = 0, c = c(100, 0), l = 65, rev = TRUE, power = 1),
"Luminance" = sequential_hcl(5, h = 260, c = c(25, 25), l = c(25, 90), rev = TRUE, power = 1),
off = 0

)

for qualitative palettes luminance and chroma are fixed, varying only hue
hclplot(qualitative_hcl(9, c = 50, l = 70))

single-hue sequential palette (h = 260) with linear vs. power-transformed trajectory
hclplot(sequential_hcl(7, h = 260, c = 80, l = c(35, 95), power = 1))
hclplot(sequential_hcl(7, h = 260, c = 80, l = c(35, 95), power = 1.5))

advanced single-hue sequential palette with triangular chroma trajectory
(piecewise linear vs. power-transformed)
hclplot(sequential_hcl(7, h = 245, c = c(40, 75, 0), l = c(30, 95), power = 1))
hclplot(sequential_hcl(7, h = 245, c = c(40, 75, 0), l = c(30, 95), power = c(0.8, 1.4)))

multi-hue sequential palette with small hue range and triangular chroma vs.
large hue range and linear chroma trajectory
hclplot(sequential_hcl(7, h = c(260, 220), c = c(50, 75, 0), l = c(30, 95), power = 1))
hclplot(sequential_hcl(7, h = c(260, 60), c = 60, l = c(40, 95), power = 1))

balanced diverging palette constructed from two simple single-hue sequential
palettes (for hues 260/blue and 0/red)
hclplot(diverging_hcl(7, h = c(260, 0), c = 80, l = c(35, 95), power = 1))

to register a particular adapted palette for re-use in the same session
with a new name the register=... argument can be used once, e.g.,
diverging_hcl(7, palette = "Tropic", h2 = 0, register = "mytropic")

subsequently palete="mytropic" is available in diverging_hcl() and the diverging
ggplot2 scales such as scale_color_continuous_diverging() etc.
demoplot(diverging_hcl(11, "mytropic"), type = "map")

to register this palette in all R sessions you could place the following
code in a startup script (e.g., .Rprofile):
colorspace::diverging_hcl(7, palette = "Tropic", h2 = 0, register = "mytropic")

hex Convert Colors to Hexadecimal Strings

Description

This functions converts color-class objects into hexadecimal strings.

28 hex2RGB

Usage

hex(from, gamma = NULL, fixup = FALSE)

Arguments

from The color object to be converted.

gamma Deprecated.

fixup Should the color be corrected to a valid RGB value before correction. The de-
fault is to convert out-of-gamut colors to the string "NA".

Details

The color objects are first converted to sRGB color objects. They are then multiplied by 255 and
rounded to obtain an integer value. These values are then converted to hexadecimal strings of the
form "#RRGGBB" and suitable for use as color descriptions for R graphics. Out of gamut values are
either corrected to valid RGB values by translating the the individual primary values so that they lie
between 0 and 255.

Value

A vector of character strings.

Author(s)

Ross Ihaka

See Also

hex2RGB, RGB, sRGB, HSV, XYZ, LAB, polarLAB, LUV, polarLUV.

Examples

hsv <- HSV(seq(0, 360, length.out = 7)[-7], 1, 1)
hsv
hex(hsv)
barplot(rep(1,6), col = hex(hsv))

hex2RGB Convert Hexadecimal Color Specifications to sRGB Objects

Description

This function takes a vector of strings of the form "#RRGGBB" (hexadecimal color descriptions) into
sRGB objects.

Usage

hex2RGB(x, gamma = FALSE)

HLS 29

Arguments

x a vector of hexadecimal color descriptions.

gamma Whether to apply gamma-correction.

Details

This function converts device-dependent color descriptions of the form "#RRGGBB" into sRGB color
descriptions (linearized if gamma is TRUE). The alpha channel will be ignored if given ("#RRGGBBAA").

Value

An sRGB object describing the colors.

Author(s)

Ross Ihaka

See Also

hex, RGB, sRGB, HSV, XYZ, polarLAB, LUV, polarLUV.

Examples

hex2RGB(c("#FF0000","#00FF00", "#0000FF50"))

HLS Create HLS Colors

Description

This function creates colors of class HLS; a subclass of the virtual color-class class.

Usage

HLS(H, L, S, names)

Arguments

H, L, S These arguments give the hue, lightness, and saturation of the colors. The values
can be provided in separate H, L and S vectors or in a three-column matrix passed
as H.

names A vector of names for the colors (by default the row names of H are used).

30 HSV

Details

This function creates colors in an HLS color space. The hues should lie between between 0 and
360, and the lightness and saturations should lie between 0 and 1.

HLS is a relative color space; it is a transformation of an RGB color space. Conversion of HLS
colors to any other color space must first involve a conversion to a specific RGB color space, for
example the standard sRGB color space (IEC standard 61966).

Value

An object of class HLS which inherits from class color.

Author(s)

Ross Ihaka

See Also

sRGB, RGB, XYZ, LAB, polarLAB, LUV, polarLUV.

Examples

A rainbow of full-intensity hues
HLS(seq(0, 360, length.out = 13)[-13], 0.5, 1)

HSV Create HSV Colors

Description

This function creates colors of class HSV; a subclass of the virtual color-class class.

Usage

HSV(H, S, V, names)

Arguments

H, S, V These arguments give the hue, saturation and value of the colors. The values can
be provided in separate H, S and V vectors or in a three-column matrix passed as
H.

names A vector of names for the colors (by default the row names of H are used).

Details

This function creates colors in an HSV color space. The hues should lie between between 0 and
360, and the saturations and values should lie between 0 and 1.

HSV is a relative color space; it is a transformation of an RGB color space. Conversion of HSV
colors to any other color space must first involve a conversion to a specific RGB color space, for
example the standard sRGB color space (IEC standard 61966).

LAB 31

Value

An object of class HSV which inherits from class color.

Author(s)

Ross Ihaka

See Also

sRGB, RGB, XYZ, LAB, polarLAB, LUV, polarLUV.

Examples

A rainbow of full-intensity hues
HSV(seq(0, 360, length.out = 13)[-13], 1, 1)

LAB Create LAB Colors

Description

This function creates colors of class “LAB”; a subclass of the virtual color-class class.

Usage

LAB(L, A, B, names)

Arguments

L, A, B these arguments give the L, A and B coordinates of the colors. The values can
be provided in separate L, A and B vectors or in a three-column matrix passed as
L.

names a vector of names for the colors (by default the row names of L are used).

Details

The L, A and B values give the coordinates of the colors in the CIE L∗a∗b∗ space. This is a transfor-
mation of the 1931 CIE XYZ space which attempts to produce perceptually based axes. Luminance
takes values between 0 and 100, and the other coordinates typically take values between -100 and
100, although these values can also be exceeded by highly saturated colors. The a and b coordinates
measure positions on green/red and blue/yellow axes.

Value

An object of class LAB which inherits from class color.

Author(s)

Ross Ihaka

32 lighten

See Also

RGB, HSV, XYZ, LAB, polarLAB, LUV, polarLUV.

Examples

Show the LAB space
set.seed(1)
x <- sRGB(runif(1000), runif(1000), runif(1000))
y <- as(x, "LAB")
head(x)
head(y)
plot(y)

lighten Algorithmically Lighten or Darken Colors

Description

The functions lighten and darken take a vector of R colors and adjust the colors such that they
appear lightened or darkened, respectively.

Usage

lighten(
col,
amount = 0.1,
method = c("relative", "absolute"),
space = c("HCL", "HLS", "combined"),
fixup = TRUE

)

darken(col, amount = 0.1, space = "combined", ...)

Arguments

col vector of any of the three kind of R colors, i.e., either a color name (an element
of colors), a hexadecimal string of the form "#rrggbb" or "#rrggbbaa" (see
rgb), or an integer i meaning palette()[i].

amount numeric specifying the amount of lightening. This is applied either multiplica-
tively or additively to the luminance value, depending on the setting of method
(either relative or absolute). Negative numbers cause darkening.

method character string specifying the adjustment method. Can be either "relative"
or "absolute".

space character string specifying the color space in which adjustment happens. Can
be either "HLS" or "HCL".

lighten 33

fixup logical If set to TRUE, colors that fall outside of the RGB color gamut are slightly
modified by translating individual primary values so they lie between 0 and 255.
If set to FALSE, out-of-gamut colors are replaced by NA.

... Other parameters handed to the function lighten().

Details

The color adjustment can be calculated in three different color spaces.

1. If space = "HCL", the colors are transformed to HCL, (polarLUV), the luminance component
L is adjusted, and then the colors are transformed back to a hexadecimal RGB string.

2. If space = "HLS", the colors are transformed to HLS, the lightness component L is adjusted,
and then the color is transformed back to a hexadecimal RGB string.

3. If space = "combined", the colors are first adjusted in both the HCL and HLS spaces. Then,
the adjusted HLS colors are converted into HCL, and then the chroma components of the
adjusted HLS colors are copied to the adjusted HCL colors. Thus, in effect, the combined
model adjusts luminance in HCL space but chroma in HLS space.

We have found that typically space = "HCL" performs best for lightening colors and space = "combined"
performs best for darkening colors, and these are the default settings for lighten and darken, re-
spectively.

Regardless of the chosen color space, the adjustment of the L component can occur by two methods,
relative (the default) and absolute. Under the absolute method, the adjustment is L +/-100 * amount
when lightening/darkening colors. Under the relative method, the adjustment is 100 -(100 -L) *
(1 -amount) when lightening colors and L * (1 -amount) when darkening colors.

Programmatically lightening and darkening colors can yield unexpected results (see examples). In
HCL space, colors can become either too gray or overly colorful. By contrast, in HLS space it
can happen that the overall amount of lightening or darkening appears to be non-uniform among a
group of colors that are lightened or darkened jointly, and again, colors can become either too gray
or overly colorful. We recommend to try different color spaces if the default space for the chosen
function (lighten or darken) does not look right in a specific application.

Value

A character vector with (s)RGB codings of the colors in the palette.

References

Zeileis A, Fisher JC, Hornik K, Ihaka R, McWhite CD, Murrell P, Stauffer R, Wilke CO (2020).
“colorspace: A Toolbox for Manipulating and Assessing Colors and Palettes.” Journal of Statistical
Software, 96(1), 1–49. doi: 10.18637/jss.v096.i01

See Also

polarLUV, hex, desaturate

https://doi.org/10.18637/jss.v096.i01

34 lighten

Examples

lighten dark colors, example 1
cl <- qualitative_hcl(5)
swatchplot(list(

HCL = rbind("0%" = cl,
"15%" = lighten(cl, 0.15),
"30%" = lighten(cl, 0.3)),

HLS = rbind("0%" = cl,
"15%" = lighten(cl, 0.15, space = "HLS"),
"30%" = lighten(cl, 0.3, space = "HLS")),

combined = rbind("0%" = cl,
"15%" = lighten(cl, 0.15, space = "combined"),
"30%" = lighten(cl, 0.3, space = "combined"))),

nrow = 4, line = 2.5
)

lighten dark colors, example 2
cl <- c("#61A9D9", "#ADD668", "#E6D152", "#CE6BAF", "#797CBA")
swatchplot(list(

HCL = rbind("0%" = cl,
"15%" = lighten(cl, 0.15),
"30%" = lighten(cl, 0.3)),

HLS = rbind("0%" = cl,
"15%" = lighten(cl, 0.15, space = "HLS"),
"30%" = lighten(cl, 0.3, space = "HLS")),

combined = rbind("0%" = cl,
"15%" = lighten(cl, 0.15, space = "combined"),
"30%" = lighten(cl, 0.3, space = "combined"))),

nrow = 4, line = 2.5
)

darken light colors, example 1
cl <- qualitative_hcl(5, "Pastel 1")
swatchplot(list(

combined = rbind("0%" = cl,
"15%" = darken(cl, 0.15),
"30%" = darken(cl, 0.3)),

HCL = rbind("0%" = cl,
"15%" = darken(cl, 0.15, space = "HCL"),
"30%" = darken(cl, 0.3, space = "HCL")),

HLS = rbind("0%" = cl,
"15%" = darken(cl, 0.15, space = "HLS"),
"30%" = darken(cl, 0.3, space = "HLS"))),

nrow = 4, line = 2.5
)

darken light colors, example 2
cl <- c("#CDE4F3","#E7F3D3","#F7F0C7","#EFCFE5","#D0D1E7")
swatchplot(list(

combined = rbind("0%" = cl,
"15%" = darken(cl, 0.15),
"30%" = darken(cl, 0.3)),

LUV 35

HCL = rbind("0%" = cl,
"15%" = darken(cl, 0.15, space = "HCL"),
"30%" = darken(cl, 0.3, space = "HCL")),

HLS = rbind("0%" = cl,
"15%" = darken(cl, 0.15, space = "HLS"),
"30%" = darken(cl, 0.3, space = "HLS"))),

nrow = 4, line = 2.5
)

LUV Create LUV Colors

Description

This function creates colors of class “LUV”; a subclass of the virtual color-class class.

Usage

LUV(L, U, V, names)

Arguments

L, U, V these arguments give the L, U and V coordinates of the colors. The values can
be provided in separate L, U and V vectors or in a three-column matrix passed as
L.

names a vector of names for the colors (by default the row names of L are used).

Details

The L, U and V values give the coordinates of the colors in the CIE (1976) L∗u∗v∗ space. This is
a transformation of the 1931 CIE XYZ space which attempts to produce perceptually based axes.
Luminance takes values between 0 and 100, and the other coordinates typically take values between
-100 and 100, although these values can also be exceeded by highly saturated colors. The u and v
coordinates measure positions on green/red and blue/yellow axes.

Value

An object of class LUV which inherits from class color.

Author(s)

Ross Ihaka

See Also

RGB, HSV, XYZ, LAB, polarLAB, polarLUV.

36 max_chroma

Examples

Show the LUV space
set.seed(1)
x <- sRGB(runif(1000), runif(1000), runif(1000))
y <- as(x, "LUV")
head(x)
head(y)
plot(y)

max_chroma Compute Maximum Chroma for Given Hue and Luminance in HCL

Description

Compute approximately the maximum chroma possible for a given hue and luminance combination
in the HCL color space.

Usage

max_chroma(h, l, floor = FALSE)

max_chroma_table

Arguments

h hue value in the HCL color description, has to be in [0, 360].

l luminance value in the HCL color description, has to be in [0, 100].

floor logical. Should the chroma value be rounded down to the next lower integer?

Details

As the possible combinations of chroma and luminance depend on hue, it is not obvious which max-
imum chroma can be used for a given combination of hue and luminance prior to calling polarLUV.
To avoid having to fixup the color upon conversion to RGB hex codes, the max_chroma function
computes (approximately) the maximum chroma possible. The computations are based on inter-
polations of pre-computed maxima in max_chroma_table, containing the maximum chroma for
a given hue-luminance combination (both in integers). Hence, the result may sometimes still be
very slightly larger than the actual maximum which can be avoided by taking the floor of the
approximate value.

Value

A numeric vector with the maximum chroma coordinates.

See Also

polarLUV, hex

mixcolor 37

Examples

max_chroma(h = 0:36 * 10, l = 50)
max_chroma(h = 120, l = 0:10 * 10)

mixcolor Compute the Convex Combination of Two Colors

Description

This function can be used to compute the result of color mixing, assuming additive mixing (e.g., as
appropriate for RGB or XYZ).

Usage

mixcolor(alpha, color1, color2, where = class(color1))

Arguments

alpha The mixed color is obtained by combining an amount 1 -alpha of color1 with
an amount alpha of color2.

color1 The first color.

color2 The second color.

where The color space where the mixing is to take place.

Value

The mixed color. This is in the color space specified by where.

Author(s)

Ross Ihaka

See Also

RGB, HSV, XYZ, LAB, polarLAB, LUV, polarLUV.

Examples

mixcolor(0.5, sRGB(1, 0, 0), sRGB(0, 1, 0))

38 polarLAB

polarLAB Create polarLAB Colors

Description

This function creates colors of class “polarLAB”; a subclass of the virtual color-class class.

Usage

polarLAB(L, C, H, names)

Arguments

L, C, H these arguments give the L, C and H coordinates of the colors. The values can
be provided in separate L, C and H vectors or in a three-column matrix passed as
L.

names A vector of names for the colors (by default the row names of L are used).

Details

The polarLAB space is a transformation of the CIE L∗a∗b∗ space so that the a and b values are con-
verted to polar coordinates. The radial component C measures chroma and the angular coordinate
H is measures hue.

Value

An object of class polarLAB which inherits from class color.

Author(s)

Ross Ihaka

See Also

RGB, HSV, XYZ, LAB, polarLAB, LUV, polarLUV.

Examples

Show the polarLAB space
set.seed(1)
x <- sRGB(runif(1000), runif(1000), runif(1000))
y <- as(x, "polarLAB")
head(x)
head(y)
plot(y)

polarLUV 39

polarLUV Create polarLUV (HCL) Colors

Description

This function creates colors of class “polarLUV”; a subclass of the virtual color-class class.

Usage

polarLUV(L, C, H, names)

Arguments

L, C, H these arguments give the L, C and H coordinates of the colors. The values can
be provided in separate L, C and H vectors or in a three-column matrix passed as
L.

names A vector of names for the colors (by default the row names of L are used).

Details

The polarLUV space is a transformation of the CIE L∗u∗v∗ space so that the u and v values are con-
verted to polar coordinates. The radial component C measures chroma and the angular coordinate
H is measures hue. It is also known as the HCL (hue-chroma-luminance) space.

Value

An object of class polarLUV which inherits from class color.

Author(s)

Ross Ihaka

See Also

RGB, HSV, XYZ, LAB, polarLAB, LUV, polarLUV.

Examples

Show the polarLUV space
set.seed(1)
x <- sRGB(runif(1000), runif(1000), runif(1000))
y <- as(x, "polarLUV")
head(x)
head(y)
plot(y)

40 rainbow_hcl

rainbow_hcl HCL (and HSV) Color Palettes Corresponding to Base R Palettes

Description

Color palettes based on the HCL (and HSV) color space to replace base R palettes.

Usage

rainbow_hcl(
n,
c = 50,
l = 70,
start = 0,
end = 360 * (n - 1)/n,
gamma = NULL,
fixup = TRUE,
alpha = 1,
...

)

heat_hcl(
n,
h = c(0, 90),
c. = c(100, 30),
l = c(50, 90),
power = c(1/5, 1),
gamma = NULL,
fixup = TRUE,
alpha = 1,
...

)

terrain_hcl(
n,
h = c(130, 0),
c. = c(80, 0),
l = c(60, 95),
power = c(1/10, 1),
gamma = NULL,
fixup = TRUE,
alpha = 1,
...

)

diverging_hsv(
n,

rainbow_hcl 41

h = c(240, 0),
s = 1,
v = 1,
power = 1,
gamma = NULL,
fixup = TRUE,
alpha = 1,
...

)

Arguments

n the number of colors (≥ 1) to be in the palette.

c, c. chroma value in the HCL color description.

l luminance value in the HCL color description.

start the hue at which the rainbow begins.

end the hue at which the rainbow ends.

gamma Deprecated.

fixup logical. Should the color be corrected to a valid RGB value before correction?

alpha numeric vector of values in the range [0,1] for alpha transparency channel (0
means transparent and 1 means opaque).

... Other arguments passed to hex.

h hue value in the HCL or HSV color description, has to be in [0, 360] for HCL
and in [0, 1] for HSV colors.

power control parameter determining how chroma and luminance should be increased
(1 = linear, 2 = quadratic, etc.).

s saturation value in the HSV color description.

v value value in the HSV color description.

Details

Based on the general qualitative, sequential, and diverging hcl_palettes within the colorspace
package, convenience functions are provided as alternatives to standard base R palettes (which are
highly saturated and too flashy).

rainbow_hcl computes a rainbow of colors via qualitative_hcl defined by different hues given
a single value of each chroma and luminance. It corresponds to rainbow which computes a rainbow
in HSV space.

heat_hcl is an implementation of heat.colors in HCL space based on a call to sequential_hcl.
Similarly, terrain_hcl palette also calls sequential_hcl with different parameters, providing
colors similar in spirit to terrain.colors in HCL space.

diverging_hsv (and equivalently its alias diverge_hsv) provides an HSV-based version of diverging_hcl.
Its purpose is mainly didactic to show that HSV-based diverging palettes are less appealing, more
difficult to read and more flashy than HCL-based diverging palettes. diverging_hsv is similar to
cm.colors.

42 rainbow_hcl

Value

A character vector with (s)RGB codings of the colors in the palette.

References

Zeileis A, Hornik K, Murrell P (2009). Escaping RGBland: Selecting Colors for Statistical Graph-
ics. Computational Statistics & Data Analysis, 53, 3259–3270. doi: 10.1016/j.csda.2008.11.033
Preprint available from https://www.zeileis.org/papers/Zeileis+Hornik+Murrell-2009.
pdf.

Stauffer R, Mayr GJ, Dabernig M, Zeileis A (2015). Somewhere over the Rainbow: How to Make
Effective Use of Colors in Meteorological Visualizations. Bulletin of the American Meteorological
Society, 96(2), 203–216. doi: 10.1175/BAMSD1300155.1

See Also

polarLUV, HSV, hex

Examples

convenience demo function
wheel <- function(col, radius = 1, ...)

pie(rep(1, length(col)), col = col, radius = radius, ...)

compare base and colorspace palettes
(in color and desaturated)
par(mar = rep(0, 4), mfrow = c(2, 2))
rainbow color wheel
wheel(rainbow_hcl(12))
wheel(rainbow(12))
wheel(desaturate(rainbow_hcl(12)))
wheel(desaturate(rainbow(12)))

diverging red-blue colors
swatchplot(

diverging_hsv(7),
desaturate(diverging_hsv(7)),
diverging_hcl(7, c = 100, l = c(50, 90)),
desaturate(diverging_hcl(7, c = 100, l = c(50, 90))),
nrow = 2

)

diverging cyan-magenta colors
swatchplot(

cm.colors(7),
desaturate(cm.colors(7)),
diverging_hcl(7, "Cyan-Magenta"), ## or, similarly: Tropic
desaturate(diverging_hcl(7, "Cyan-Magenta")),
nrow = 2

)

heat colors

https://doi.org/10.1016/j.csda.2008.11.033
https://www.zeileis.org/papers/Zeileis+Hornik+Murrell-2009.pdf
https://www.zeileis.org/papers/Zeileis+Hornik+Murrell-2009.pdf
https://doi.org/10.1175/BAMS-D-13-00155.1

readhex 43

swatchplot(
heat.colors(12),
desaturate(heat.colors(12)),
heat_hcl(12),
desaturate(heat_hcl(12)),
nrow = 2

)

terrain colors
swatchplot(

terrain.colors(12),
desaturate(terrain.colors(12)),
terrain_hcl(12),
desaturate(terrain_hcl(12)),
nrow = 2

)

readhex Read Hexadecimal Color Descriptions

Description

This function reads a set of hexadecimal color descriptions from a file and creates a color object
containing the corresponding colors.

Usage

readhex(file = "", class = "RGB")

Arguments

file The file containing the color descriptions.

class The kind of color object to be returned.

Details

The file is assumed to contain hexadecimal color descriptions of the form #RRGGBB.

Value

An color object of the specified class containing the color descriptions.

Author(s)

Ross Ihaka

See Also

writehex, readRGB, hex2RGB, RGB, HSV, XYZ, LAB, polarLAB, LUV, polarLUV,

44 readRGB

Examples

Not run:
rgb <- readhex("pastel.txt")
hsv <- readhex("pastel.txt", "HSV")

End(Not run)

readRGB Read RGB Color Descriptions

Description

This function reads a set of RGB color descriptions (of the form written by gcolorsel) from a file
and creates a color object containing the corresponding colors.

Usage

readRGB(file, class = "RGB")

Arguments

file The file containing the color descriptions.

class The kind of color object to be returned.

Details

The file is assumed to contain RGB color descriptions consisting of three integer values in the range
from 0 to 255 followed by a color name.

Value

An color object of the specified class containing the color descriptions.

Author(s)

Ross Ihaka

See Also

writehex, readhex, hex2RGB, RGB, HSV, XYZ, LAB, polarLAB, LUV, polarLUV.

Examples

Not run:
rgb <- readRGB("pastel.rgb")
hsv <- readRGB("pastel.rgb", "HSV")

End(Not run)

RGB 45

RGB Create RGB Colors

Description

This function creates colors of class RGB; a subclass of the virtual color-class class.

Usage

RGB(R, G, B, names)

Arguments

R, G, B these arguments give the red, green and blue intensities of the colors (the values
should lie between 0 and 1). The values can be provided in separate R, G and B
vectors or in a three-column matrix passed as R.

names A vector of names for the colors (by default the row names of R are used).

Details

This function creates colors in the linearized sRGB color space (IEC standard 61966).

Value

An object of class RGB which inherits from class color.

Author(s)

Ross Ihaka

See Also

sRGB, HSV, XYZ, LAB, polarLAB, LUV, polarLUV.

Examples

Create a random set of colors
set.seed(1)
RGB(R = runif(20), G = runif(20), B = runif(20))

46 scale_colour_binned_diverging

scale_colour_binned_diverging

HCL-Based Binned Diverging Color Scales for ggplot2

Description

Binned ggplot2 color scales using the color palettes generated by diverging_hcl.

Usage

scale_colour_binned_diverging(
palette = NULL,
c1 = NULL,
cmax = NULL,
l1 = NULL,
l2 = NULL,
h1 = NULL,
h2 = NULL,
p1 = NULL,
p2 = NULL,
alpha = 1,
rev = FALSE,
mid = 0,
na.value = "grey50",
guide = "coloursteps",
n_interp = 11,
aesthetics = "colour",
...

)

scale_color_binned_diverging(
palette = NULL,
c1 = NULL,
cmax = NULL,
l1 = NULL,
l2 = NULL,
h1 = NULL,
h2 = NULL,
p1 = NULL,
p2 = NULL,
alpha = 1,
rev = FALSE,
mid = 0,
na.value = "grey50",
guide = "coloursteps",
n_interp = 11,
aesthetics = "colour",

scale_colour_binned_diverging 47

...
)

scale_fill_binned_diverging(..., aesthetics = "fill")

Arguments

palette The name of the palette to be used. Run hcl_palettes(type = "diverging")
for available options.

c1 Chroma value at the scale endpoints.

cmax Maximum chroma value.

l1 Luminance value at the scale endpoints.

l2 Luminance value at the scale midpoint.

h1 Hue value at the first endpoint.

h2 Hue value at the second endpoint.

p1 Control parameter determining how chroma should vary (1 = linear, 2 = quadratic,
etc.).

p2 Control parameter determining how luminance should vary (1 = linear, 2 =
quadratic, etc.).

alpha Numeric vector of values in the range [0,1] for alpha transparency channel (0
means transparent and 1 means opaque).

rev If TRUE, reverses the order of the colors in the color scale.

mid Data value that should be mapped to the mid-point of the diverging color scale.

na.value Color to be used for missing data points.

guide Type of legend. Use "coloursteps" for color bar with discrete steps.

n_interp Number of discrete colors that should be used to interpolate the binned color
scale. It is important to use an odd number to capture the color at the midpoint.

aesthetics The ggplot2 aesthetics to which this scale should be applied.

... common continuous scale parameters: ‘name‘, ‘breaks‘, ‘labels‘, and ‘limits‘.
See binned_scale for more details.

Details

If both a valid palette name and palette parameters are provided then the provided palette parameters
overwrite the parameters in the named palette. This enables easy customization of named palettes.

Examples

adapted from stackoverflow: https://stackoverflow.com/a/20127706/4975218

library("ggplot2")

generate dataset and base plot
set.seed(100)
df <- data.frame(country = LETTERS, V = runif(26, -40, 40))

48 scale_colour_binned_divergingx

df$country = factor(LETTERS, LETTERS[order(df$V)]) # reorder factors
gg <- ggplot(df, aes(x = country, y = V, fill = V)) +

geom_bar(stat = "identity") +
labs(y = "Under/over valuation in %", x = "Country") +
coord_flip() + theme_minimal()

plot with default diverging scale
gg + scale_fill_binned_diverging(n.breaks = 6)

plot with alternative scale
gg + scale_fill_binned_diverging(palette = "Purple-Green", n.breaks = 6)

scale_colour_binned_divergingx

HCL-Based Binned Flexible Diverging Scales for ggplot2

Description

Binned ggplot2 color scales using the color palettes generated by divergingx_hcl.

Usage

scale_colour_binned_divergingx(
palette = "Geyser",
c1 = NULL,
c2 = NULL,
c3 = NULL,
l1 = NULL,
l2 = NULL,
l3 = NULL,
h1 = NULL,
h2 = NULL,
h3 = NULL,
p1 = NULL,
p2 = NULL,
p3 = NULL,
p4 = NULL,
cmax1 = NULL,
cmax2 = NULL,
alpha = 1,
rev = FALSE,
mid = 0,
na.value = "grey50",
guide = "coloursteps",
n_interp = 11,
aesthetics = "colour",
...

)

scale_colour_binned_divergingx 49

scale_color_binned_divergingx(
palette = "Geyser",
c1 = NULL,
c2 = NULL,
c3 = NULL,
l1 = NULL,
l2 = NULL,
l3 = NULL,
h1 = NULL,
h2 = NULL,
h3 = NULL,
p1 = NULL,
p2 = NULL,
p3 = NULL,
p4 = NULL,
cmax1 = NULL,
cmax2 = NULL,
alpha = 1,
rev = FALSE,
mid = 0,
na.value = "grey50",
guide = "coloursteps",
n_interp = 11,
aesthetics = "colour",
...

)

scale_fill_binned_divergingx(..., aesthetics = "fill")

Arguments

palette The name of the palette to be used.
h1, h2, h3, c1, c2, c3, l1, l2, l3, p1, p2, p3, p4, cmax1, cmax2

Parameters to customize the scale. See divergingx_hcl for details.
alpha Numeric vector of values in the range [0,1] for alpha transparency channel (0

means transparent and 1 means opaque).
rev If TRUE, reverses the order of the colors in the color scale.
mid Data value that should be mapped to the mid-point of the diverging color scale.
na.value Color to be used for missing data points.
guide Type of legend. Use "coloursteps" for color bar with discrete steps.
n_interp Number of discrete colors that should be used to interpolate the binned color

scale. For diverging scales, it is important to use an odd number to capture the
color at the midpoint.

aesthetics The ggplot2 aesthetics to which this scale should be applied.
... common binned scale parameters: ‘name‘, ‘breaks‘, ‘labels‘, and ‘limits‘. See

binned_scale for more details.

50 scale_colour_binned_qualitative

Details

Available CARTO palettes: ArmyRose, Earth, Fall, Geyser, TealRose, Temps, Tropic.

Available ColorBrewer.org palettes: Spectral, PuOr, RdYlGn, RdYlBu, RdGy, BrBG, PiYG, PRGn,
RdBu.

If both a valid palette name and palette parameters are provided then the provided palette parameters
overwrite the parameters in the named palette. This enables easy customization of named palettes.

Examples

library("ggplot2")

volcano plot (difference from mean height)
nx = 87
ny = 61
df <- data.frame(diff = c(volcano) - mean(volcano), x = rep(1:nx, ny), y = rep(1:ny, each = nx))
ggplot(df, aes(x, y, fill=diff)) +

geom_raster() + scale_fill_binned_divergingx(palette = "Fall", rev = TRUE) +
coord_fixed(expand = FALSE)

adapted from stackoverflow: https://stackoverflow.com/a/20127706/4975218

generate dataset and base plot
set.seed(100)
df <- data.frame(country = LETTERS, V = runif(26, -40, 40))
df$country = factor(LETTERS, LETTERS[order(df$V)]) # reorder factors
gg <- ggplot(df, aes(x = country, y = V, fill = V)) +

geom_bar(stat = "identity") +
labs(y = "Under/over valuation in %", x = "Country") +
coord_flip() + theme_minimal()

plot with diverging scale "Geyser"
gg + scale_fill_binned_divergingx(palette = "Geyser", n.breaks = 6)

scale_colour_binned_qualitative

HCL-Based Binned Qualitative Color Scales for ggplot2

Description

Binned ggplot2 color scales using the color palettes generated by qualitative_hcl. These scales
are provided for completeness. It is not normally a good idea to color a continuous, binned variable
using a qualitative scale.

scale_colour_binned_qualitative 51

Usage

scale_colour_binned_qualitative(
palette = NULL,
c1 = NULL,
l1 = NULL,
h1 = NULL,
h2 = NULL,
alpha = 1,
rev = FALSE,
begin = 0,
end = 1,
na.value = "grey50",
guide = "coloursteps",
aesthetics = "colour",
n_interp = 11,
...

)

scale_color_binned_qualitative(
palette = NULL,
c1 = NULL,
l1 = NULL,
h1 = NULL,
h2 = NULL,
alpha = 1,
rev = FALSE,
begin = 0,
end = 1,
na.value = "grey50",
guide = "coloursteps",
aesthetics = "colour",
n_interp = 11,
...

)

scale_fill_binned_qualitative(..., aesthetics = "fill")

Arguments

palette The name of the palette to be used. Run hcl_palettes(type = "qualitative")
for available options.

c1 Chroma value, used for all colors in the scale.

l1 Luminance value, used for all colors in the scale.

h1 Beginning hue value.

h2 Ending hue value.

alpha Numeric vector of values in the range [0,1] for alpha transparency channel (0
means transparent and 1 means opaque).

52 scale_colour_binned_sequential

rev If TRUE, reverses the order of the colors in the color scale.

begin Number in the range of [0,1] indicating to which point in the color scale the
smallest data value should be mapped.

end Number in the range of [0,1] indicating to which point in the color scale the
largest data value should be mapped.

na.value Color to be used for missing data points.

guide Type of legend. Use "coloursteps" for color bar with discrete steps.

aesthetics The ggplot2 aesthetics to which this scale should be applied.

n_interp Number of discrete colors that should be used to interpolate the binned color
scale. 11 will work fine in most cases.

... common binned scale parameters: ‘name‘, ‘breaks‘, ‘labels‘, and ‘limits‘. See
binned_scale for more details.

Details

If both a valid palette name and palette parameters are provided then the provided palette parameters
overwrite the parameters in the named palette. This enables easy customization of named palettes.

Examples

library("ggplot2")

none of these examples are necessarily good ideas
gg <- ggplot(iris, aes(x = Species, y = Sepal.Width, color = Sepal.Length)) +

geom_jitter(width = 0.3) + theme_minimal()

gg + scale_color_binned_qualitative(palette = "Dynamic")
gg + scale_color_binned_qualitative(palette = "Dark3", l1 = 70)

nx = 87
ny = 61
df <- data.frame(height = c(volcano), x = rep(1:nx, ny), y = rep(1:ny, each = nx))
ggplot(df, aes(x, y, fill=height)) +

geom_raster() + scale_fill_binned_qualitative(palette = "Dark 3") +
coord_fixed(expand = FALSE)

scale_colour_binned_sequential

HCL-Based Binned Sequential Color Scales for ggplot2

Description

Binned ggplot2 color scales using the color palettes generated by sequential_hcl.

scale_colour_binned_sequential 53

Usage

scale_colour_binned_sequential(
palette = NULL,
c1 = NULL,
c2 = NULL,
cmax = NULL,
l1 = NULL,
l2 = NULL,
h1 = NULL,
h2 = NULL,
p1 = NULL,
p2 = NULL,
alpha = 1,
rev = TRUE,
begin = 0,
end = 1,
na.value = "grey50",
guide = "coloursteps",
aesthetics = "colour",
n_interp = 11,
...

)

scale_color_binned_sequential(
palette = NULL,
c1 = NULL,
c2 = NULL,
cmax = NULL,
l1 = NULL,
l2 = NULL,
h1 = NULL,
h2 = NULL,
p1 = NULL,
p2 = NULL,
alpha = 1,
rev = TRUE,
begin = 0,
end = 1,
na.value = "grey50",
guide = "coloursteps",
aesthetics = "colour",
n_interp = 11,
...

)

scale_fill_binned_sequential(..., aesthetics = "fill")

54 scale_colour_binned_sequential

Arguments

palette The name of the palette to be used. Run hcl_palettes(type = "sequential")
for available options.

c1 Beginning chroma value.

c2 Ending chroma value.

cmax Maximum chroma value.

l1 Beginning luminance value.

l2 Ending luminance value.

h1 Beginning hue value.

h2 Ending hue value. If set to NA, generates a single-hue scale.

p1 Control parameter determining how chroma should vary (1 = linear, 2 = quadratic,
etc.).

p2 Control parameter determining how luminance should vary (1 = linear, 2 =
quadratic, etc.).

alpha Numeric vector of values in the range [0,1] for alpha transparency channel (0
means transparent and 1 means opaque).

rev If TRUE (default), reverses the order of the colors in the color scale (compared to
sequential_hcl).

begin Number in the range of [0,1] indicating to which point in the color scale the
smallest data value should be mapped.

end Number in the range of [0,1] indicating to which point in the color scale the
largest data value should be mapped.

na.value Color to be used for missing data points.

guide Type of legend. Use "coloursteps" for color bar with discrete steps.

aesthetics The ggplot2 aesthetics to which this scale should be applied.

n_interp Number of discrete colors that should be used to interpolate the binned color
scale. 11 will work fine in most cases.

... common binned scale parameters: ‘name‘, ‘breaks‘, ‘labels‘, and ‘limits‘. See
binned_scale for more details.

Details

If both a valid palette name and palette parameters are provided then the provided palette parameters
overwrite the parameters in the named palette. This enables easy customization of named palettes.

Compared to sequential_hcl the ordering of the colors in the sequential ggplot2 scale are reversed
by default (i.e., rev = TRUE) to be more consistent with ggplot2’s own scales such as scale_color_fermenter.
For most named palettes this leads to darker and more colorful colors for larger values on the scale.
This is typically the better default on light/white backgrounds.

scale_colour_continuous_diverging 55

Examples

library("ggplot2")

volcano plot
df <- data.frame(height = c(volcano), x = c(row(volcano)), y = c(col(volcano)))
ggplot(df, aes(x, y, fill = height)) +

geom_raster() + scale_fill_binned_sequential(palette = "Terrain", rev = FALSE) +
coord_fixed(expand = FALSE)

scale_colour_continuous_diverging

HCL-Based Continuous Diverging Color Scales for ggplot2

Description

Continuous ggplot2 color scales using the color palettes generated by diverging_hcl.

Usage

scale_colour_continuous_diverging(
palette = NULL,
c1 = NULL,
cmax = NULL,
l1 = NULL,
l2 = NULL,
h1 = NULL,
h2 = NULL,
p1 = NULL,
p2 = NULL,
alpha = 1,
rev = FALSE,
mid = 0,
na.value = "grey50",
guide = "colourbar",
n_interp = 11,
aesthetics = "colour",
...

)

scale_color_continuous_diverging(
palette = NULL,
c1 = NULL,
cmax = NULL,
l1 = NULL,
l2 = NULL,
h1 = NULL,
h2 = NULL,

56 scale_colour_continuous_diverging

p1 = NULL,
p2 = NULL,
alpha = 1,
rev = FALSE,
mid = 0,
na.value = "grey50",
guide = "colourbar",
n_interp = 11,
aesthetics = "colour",
...

)

scale_fill_continuous_diverging(..., aesthetics = "fill")

Arguments

palette The name of the palette to be used. Run hcl_palettes(type = "diverging")
for available options.

c1 Chroma value at the scale endpoints.

cmax Maximum chroma value.

l1 Luminance value at the scale endpoints.

l2 Luminance value at the scale midpoint.

h1 Hue value at the first endpoint.

h2 Hue value at the second endpoint.

p1 Control parameter determining how chroma should vary (1 = linear, 2 = quadratic,
etc.).

p2 Control parameter determining how luminance should vary (1 = linear, 2 =
quadratic, etc.).

alpha Numeric vector of values in the range [0,1] for alpha transparency channel (0
means transparent and 1 means opaque).

rev If TRUE, reverses the order of the colors in the color scale.

mid Data value that should be mapped to the mid-point of the diverging color scale.

na.value Color to be used for missing data points.

guide Type of legend. Use "colourbar" for continuous color bar.

n_interp Number of discrete colors that should be used to interpolate the continuous color
scale. It is important to use an odd number to capture the color at the midpoint.

aesthetics The ggplot2 aesthetics to which this scale should be applied.

... common continuous scale parameters: ‘name‘, ‘breaks‘, ‘labels‘, and ‘limits‘.
See continuous_scale for more details.

Details

If both a valid palette name and palette parameters are provided then the provided palette parameters
overwrite the parameters in the named palette. This enables easy customization of named palettes.

scale_colour_continuous_divergingx 57

Examples

adapted from stackoverflow: https://stackoverflow.com/a/20127706/4975218

library("ggplot2")

generate dataset and base plot
set.seed(100)
df <- data.frame(country = LETTERS, V = runif(26, -40, 40))
df$country = factor(LETTERS, LETTERS[order(df$V)]) # reorder factors
gg <- ggplot(df, aes(x = country, y = V, fill = V)) +

geom_bar(stat = "identity") +
labs(y = "Under/over valuation in %", x = "Country") +
coord_flip() + theme_minimal()

plot with default diverging scale
gg + scale_fill_continuous_diverging()

plot with alternative scale
gg + scale_fill_continuous_diverging(palette = "Purple-Green")

plot with modified alternative scale
gg + scale_fill_continuous_diverging(palette = "Blue-Red 3", l1 = 30, l2 = 100, p1 = .9, p2 = 1.2)

scale_colour_continuous_divergingx

HCL-Based Continuous Flexible Diverging Scales for ggplot2

Description

Continuous ggplot2 color scales using the color palettes generated by divergingx_hcl.

Usage

scale_colour_continuous_divergingx(
palette = "Geyser",
c1 = NULL,
c2 = NULL,
c3 = NULL,
l1 = NULL,
l2 = NULL,
l3 = NULL,
h1 = NULL,
h2 = NULL,
h3 = NULL,
p1 = NULL,
p2 = NULL,
p3 = NULL,
p4 = NULL,

58 scale_colour_continuous_divergingx

cmax1 = NULL,
cmax2 = NULL,
alpha = 1,
rev = FALSE,
mid = 0,
na.value = "grey50",
guide = "colourbar",
n_interp = 11,
aesthetics = "colour",
...

)

scale_color_continuous_divergingx(
palette = "Geyser",
c1 = NULL,
c2 = NULL,
c3 = NULL,
l1 = NULL,
l2 = NULL,
l3 = NULL,
h1 = NULL,
h2 = NULL,
h3 = NULL,
p1 = NULL,
p2 = NULL,
p3 = NULL,
p4 = NULL,
cmax1 = NULL,
cmax2 = NULL,
alpha = 1,
rev = FALSE,
mid = 0,
na.value = "grey50",
guide = "colourbar",
n_interp = 11,
aesthetics = "colour",
...

)

scale_fill_continuous_divergingx(..., aesthetics = "fill")

Arguments

palette The name of the palette to be used.
h1, h2, h3, c1, c2, c3, l1, l2, l3, p1, p2, p3, p4, cmax1, cmax2

Parameters to customize the scale. See divergingx_hcl for details.

alpha Numeric vector of values in the range [0,1] for alpha transparency channel (0
means transparent and 1 means opaque).

scale_colour_continuous_divergingx 59

rev If TRUE, reverses the order of the colors in the color scale.

mid Data value that should be mapped to the mid-point of the diverging color scale.

na.value Color to be used for missing data points.

guide Type of legend. Use "colourbar" for continuous color bar.

n_interp Number of discrete colors that should be used to interpolate the continuous color
scale. For diverging scales, it is important to use an odd number to capture the
color at the midpoint.

aesthetics The ggplot2 aesthetics to which this scale should be applied.

... common continuous scale parameters: ‘name‘, ‘breaks‘, ‘labels‘, and ‘limits‘.
See continuous_scale for more details.

Details

Available CARTO palettes: ArmyRose, Earth, Fall, Geyser, TealRose, Temps, Tropic.

Available ColorBrewer.org palettes: Spectral, PuOr, RdYlGn, RdYlBu, RdGy, BrBG, PiYG, PRGn,
RdBu.

If both a valid palette name and palette parameters are provided then the provided palette parameters
overwrite the parameters in the named palette. This enables easy customization of named palettes.

Examples

library("ggplot2")

volcano plot (difference from mean height)
nx = 87
ny = 61
df <- data.frame(diff = c(volcano) - mean(volcano), x = rep(1:nx, ny), y = rep(1:ny, each = nx))
ggplot(df, aes(x, y, fill=diff)) +

geom_raster() + scale_fill_continuous_divergingx(palette = "Fall", rev = TRUE) +
coord_fixed(expand = FALSE)

adapted from stackoverflow: https://stackoverflow.com/a/20127706/4975218

generate dataset and base plot
set.seed(100)
df <- data.frame(country = LETTERS, V = runif(26, -40, 40))
df$country = factor(LETTERS, LETTERS[order(df$V)]) # reorder factors
gg <- ggplot(df, aes(x = country, y = V, fill = V)) +

geom_bar(stat = "identity") +
labs(y = "Under/over valuation in %", x = "Country") +
coord_flip() + theme_minimal()

plot with diverging scale "Geyser"
gg + scale_fill_continuous_divergingx(palette = "Geyser")

plot with diverging scale "ArmyRose"
gg + scale_fill_continuous_divergingx(palette = "ArmyRose")

60 scale_colour_continuous_qualitative

scale_colour_continuous_qualitative

HCL-Based Continuous Qualitative Color Scales for ggplot2

Description

Continuous ggplot2 color scales using the color palettes generated by qualitative_hcl. These
scales are provided for completeness. It is not normally a good idea to color a continuous variable
using a qualitative scale.

Usage

scale_colour_continuous_qualitative(
palette = NULL,
c1 = NULL,
l1 = NULL,
h1 = NULL,
h2 = NULL,
alpha = 1,
rev = FALSE,
begin = 0,
end = 1,
na.value = "grey50",
guide = "colourbar",
aesthetics = "colour",
n_interp = 11,
...

)

scale_color_continuous_qualitative(
palette = NULL,
c1 = NULL,
l1 = NULL,
h1 = NULL,
h2 = NULL,
alpha = 1,
rev = FALSE,
begin = 0,
end = 1,
na.value = "grey50",
guide = "colourbar",
aesthetics = "colour",
n_interp = 11,
...

)

scale_fill_continuous_qualitative(..., aesthetics = "fill")

scale_colour_continuous_qualitative 61

Arguments

palette The name of the palette to be used. Run hcl_palettes(type = "qualitative")
for available options.

c1 Chroma value, used for all colors in the scale.

l1 Luminance value, used for all colors in the scale.

h1 Beginning hue value.

h2 Ending hue value.

alpha Numeric vector of values in the range [0,1] for alpha transparency channel (0
means transparent and 1 means opaque).

rev If TRUE, reverses the order of the colors in the color scale.

begin Number in the range of [0,1] indicating to which point in the color scale the
smallest data value should be mapped.

end Number in the range of [0,1] indicating to which point in the color scale the
largest data value should be mapped.

na.value Color to be used for missing data points.

guide Type of legend. Use "colourbar" for continuous color bar.

aesthetics The ggplot2 aesthetics to which this scale should be applied.

n_interp Number of discrete colors that should be used to interpolate the continuous color
scale. 11 will work fine in most cases.

... common continuous scale parameters: ‘name‘, ‘breaks‘, ‘labels‘, and ‘limits‘.
See continuous_scale for more details.

Details

If both a valid palette name and palette parameters are provided then the provided palette parameters
overwrite the parameters in the named palette. This enables easy customization of named palettes.

Examples

library("ggplot2")

none of these examples are necessarily good ideas
gg <- ggplot(iris, aes(x = Species, y = Sepal.Width, color = Sepal.Length)) +

geom_jitter(width = 0.3) + theme_minimal()

gg + scale_color_continuous_qualitative(palette = "Warm")
gg + scale_color_continuous_qualitative(palette = "Cold", l1 = 60)
gg + scale_color_continuous_qualitative(palette = "Harmonic", rev = TRUE)

nx = 87
ny = 61
df <- data.frame(height = c(volcano), x = rep(1:nx, ny), y = rep(1:ny, each = nx))
ggplot(df, aes(x, y, fill=height)) +

geom_raster() + scale_fill_continuous_qualitative(palette = "Dark 3") +
coord_fixed(expand = FALSE)

62 scale_colour_continuous_sequential

scale_colour_continuous_sequential

HCL-Based Continuous Sequential Color Scales for ggplot2

Description

Continuous ggplot2 color scales using the color palettes generated by sequential_hcl.

Usage

scale_colour_continuous_sequential(
palette = NULL,
c1 = NULL,
c2 = NULL,
cmax = NULL,
l1 = NULL,
l2 = NULL,
h1 = NULL,
h2 = NULL,
p1 = NULL,
p2 = NULL,
alpha = 1,
rev = TRUE,
begin = 0,
end = 1,
na.value = "grey50",
guide = "colourbar",
aesthetics = "colour",
n_interp = 11,
...

)

scale_color_continuous_sequential(
palette = NULL,
c1 = NULL,
c2 = NULL,
cmax = NULL,
l1 = NULL,
l2 = NULL,
h1 = NULL,
h2 = NULL,
p1 = NULL,
p2 = NULL,
alpha = 1,
rev = TRUE,
begin = 0,
end = 1,

scale_colour_continuous_sequential 63

na.value = "grey50",
guide = "colourbar",
aesthetics = "colour",
n_interp = 11,
...

)

scale_fill_continuous_sequential(..., aesthetics = "fill")

Arguments

palette The name of the palette to be used. Run hcl_palettes(type = "sequential")
for available options.

c1 Beginning chroma value.

c2 Ending chroma value.

cmax Maximum chroma value.

l1 Beginning luminance value.

l2 Ending luminance value.

h1 Beginning hue value.

h2 Ending hue value. If set to NA, generates a single-hue scale.

p1 Control parameter determining how chroma should vary (1 = linear, 2 = quadratic,
etc.).

p2 Control parameter determining how luminance should vary (1 = linear, 2 =
quadratic, etc.).

alpha Numeric vector of values in the range [0,1] for alpha transparency channel (0
means transparent and 1 means opaque).

rev If TRUE (default), reverses the order of the colors in the color scale (compared to
sequential_hcl).

begin Number in the range of [0,1] indicating to which point in the color scale the
smallest data value should be mapped.

end Number in the range of [0,1] indicating to which point in the color scale the
largest data value should be mapped.

na.value Color to be used for missing data points.

guide Type of legend. Use "colourbar" for continuous color bar.

aesthetics The ggplot2 aesthetics to which this scale should be applied.

n_interp Number of discrete colors that should be used to interpolate the continuous color
scale. 11 will work fine in most cases.

... common continuous scale parameters: ‘name‘, ‘breaks‘, ‘labels‘, and ‘limits‘.
See continuous_scale for more details.

64 scale_colour_discrete_diverging

Details

If both a valid palette name and palette parameters are provided then the provided palette parameters
overwrite the parameters in the named palette. This enables easy customization of named palettes.

Compared to sequential_hcl the ordering of the colors in the sequential ggplot2 scale are reversed
by default (i.e., rev = TRUE) to be more consistent with ggplot2’s own scales such as scale_color_brewer.
For most named palettes this leads to darker and more colorful colors for larger values on the scale.
This is typically the better default on light/white backgrounds.

Examples

library("ggplot2")

base plot
gg <- ggplot(iris, aes(x = Species, y = Sepal.Width, color = Sepal.Length)) +

geom_jitter(width = 0.3) + theme_minimal()

default settings
gg + scale_color_continuous_sequential()

switch palette and overwrite some default values
gg + scale_color_continuous_sequential(palette = "Reds", l1 = 20, c2 = 70, p1 = 1)

select a range out of the entire palette
gg + scale_color_continuous_sequential(palette = "Heat", begin = 0.2, end = 0.8)

volcano plot
df <- data.frame(height = c(volcano), x = c(row(volcano)), y = c(col(volcano)))
ggplot(df, aes(x, y, fill = height)) +

geom_raster() + scale_fill_continuous_sequential(palette = "Terrain", rev = FALSE) +
coord_fixed(expand = FALSE)

scale_colour_discrete_diverging

HCL-Based Discrete Diverging Color Scales for ggplot2

Description

Discrete ggplot2 color scales using the color palettes generated by diverging_hcl.

Usage

scale_colour_discrete_diverging(
palette = NULL,
c1 = NULL,
cmax = NULL,
l1 = NULL,
l2 = NULL,
h1 = NULL,

scale_colour_discrete_diverging 65

h2 = NULL,
p1 = NULL,
p2 = NULL,
alpha = 1,
rev = FALSE,
nmax = NULL,
order = NULL,
aesthetics = "colour",
...

)

scale_color_discrete_diverging(
palette = NULL,
c1 = NULL,
cmax = NULL,
l1 = NULL,
l2 = NULL,
h1 = NULL,
h2 = NULL,
p1 = NULL,
p2 = NULL,
alpha = 1,
rev = FALSE,
nmax = NULL,
order = NULL,
aesthetics = "colour",
...

)

scale_fill_discrete_diverging(..., aesthetics = "fill")

Arguments

palette The name of the palette to be used. Run hcl_palettes(type = "diverging")
for available options.

c1 Chroma value at the scale endpoints.
cmax Maximum chroma value.
l1 Luminance value at the scale endpoints.
l2 Luminance value at the scale midpoint.
h1 Hue value at the first endpoint.
h2 Hue value at the second endpoint.
p1 Control parameter determining how chroma should vary (1 = linear, 2 = quadratic,

etc.).
p2 Control parameter determining how luminance should vary (1 = linear, 2 =

quadratic, etc.).
alpha Numeric vector of values in the range [0,1] for alpha transparency channel (0

means transparent and 1 means opaque).

66 scale_colour_discrete_divergingx

rev If TRUE, reverses the order of the colors in the color scale.

nmax Maximum number of different colors the palette should contain. If not provided,
is calculated automatically from the data.

order Numeric vector listing the order in which the colors should be used. Default is
1:nmax.

aesthetics The ggplot2 aesthetics to which this scale should be applied.

... common discrete scale parameters: name, breaks, labels, na.value, limits
and guide. See discrete_scale for more details.

Details

If both a valid palette name and palette parameters are provided then the provided palette parameters
overwrite the parameters in the named palette. This enables easy customization of named palettes.

Examples

library("ggplot2")

default colors with slightly darkened midpoint
ggplot(iris, aes(Sepal.Length, Sepal.Width, color = Species)) +

geom_point() + theme_minimal() +
scale_color_discrete_diverging(l2=75)

color scale "Green-Orange"
ggplot(iris, aes(Sepal.Length, fill = Species)) +

geom_density(alpha = 0.7) + theme_classic() +
scale_fill_discrete_diverging(palette = "Green-Orange", rev = TRUE)

use `nmax` and `order` to skip some colors
ggplot(iris, aes(Sepal.Length, fill = Species)) +

geom_density(alpha = 0.7) + theme_classic() +
scale_fill_discrete_diverging(palette = "Green-Orange", nmax = 5, order = c(1, 4, 5))

scale_colour_discrete_divergingx

HCL-Based Discrete Flexible Diverging Scales for ggplot2

Description

Discrete ggplot2 color scales using the color palettes generated by divergingx_hcl.

Usage

scale_colour_discrete_divergingx(
palette = "Geyser",
c1 = NULL,
c2 = NULL,

scale_colour_discrete_divergingx 67

c3 = NULL,
l1 = NULL,
l2 = NULL,
l3 = NULL,
h1 = NULL,
h2 = NULL,
h3 = NULL,
p1 = NULL,
p2 = NULL,
p3 = NULL,
p4 = NULL,
cmax1 = NULL,
cmax2 = NULL,
alpha = 1,
rev = FALSE,
nmax = NULL,
order = NULL,
aesthetics = "colour",
...

)

scale_color_discrete_divergingx(
palette = "Geyser",
c1 = NULL,
c2 = NULL,
c3 = NULL,
l1 = NULL,
l2 = NULL,
l3 = NULL,
h1 = NULL,
h2 = NULL,
h3 = NULL,
p1 = NULL,
p2 = NULL,
p3 = NULL,
p4 = NULL,
cmax1 = NULL,
cmax2 = NULL,
alpha = 1,
rev = FALSE,
nmax = NULL,
order = NULL,
aesthetics = "colour",
...

)

scale_fill_discrete_divergingx(..., aesthetics = "fill")

68 scale_colour_discrete_divergingx

Arguments

palette The name of the palette to be used.

h1, h2, h3, c1, c2, c3, l1, l2, l3, p1, p2, p3, p4, cmax1, cmax2

Parameters to customize the scale. See divergingx_hcl for details.

alpha Numeric vector of values in the range [0,1] for alpha transparency channel (0
means transparent and 1 means opaque).

rev If TRUE, reverses the order of the colors in the color scale.

nmax Maximum number of different colors the palette should contain. If not provided,
is calculated automatically from the data.

order Numeric vector listing the order in which the colors should be used. Default is
1:nmax.

aesthetics The ggplot2 aesthetics to which this scale should be applied.

... common discrete scale parameters: name, breaks, labels, na.value, limits
and guide. See discrete_scale for more details.

Details

Available CARTO palettes: ArmyRose, Earth, Fall, Geyser, TealRose, Temps, Tropic.

Available ColorBrewer.org palettes: Spectral, PuOr, RdYlGn, RdYlBu, RdGy, BrBG, PiYG, PRGn,
RdBu.

If both a valid palette name and palette parameters are provided then the provided palette parameters
overwrite the parameters in the named palette. This enables easy customization of named palettes.

Examples

library("ggplot2")

default color scale
ggplot(iris, aes(Sepal.Length, Sepal.Width, color = Species)) +

geom_point() + theme_minimal() +
scale_color_discrete_divergingx()

color scale "Tropic"
ggplot(iris, aes(Sepal.Length, fill = Species)) +

geom_density(alpha = 0.7) + theme_classic() +
scale_fill_discrete_divergingx(palette = "Tropic", rev = TRUE)

use `nmax` and `order` to skip some colors
ggplot(iris, aes(Sepal.Length, fill = Species)) +

geom_density(alpha = 0.7) + theme_classic() +
scale_fill_discrete_divergingx(palette = "Tropic", nmax = 5, order = c(1, 4, 5))

scale_colour_discrete_qualitative 69

scale_colour_discrete_qualitative

HCL-Based Discrete Qualitative Color Scales for ggplot2

Description

Discrete ggplot2 color scales using the color palettes generated by qualitative_hcl.

Usage

scale_colour_discrete_qualitative(
palette = NULL,
c1 = NULL,
l1 = NULL,
h1 = NULL,
h2 = NULL,
alpha = 1,
rev = FALSE,
nmax = NULL,
order = NULL,
aesthetics = "colour",
...

)

scale_color_discrete_qualitative(
palette = NULL,
c1 = NULL,
l1 = NULL,
h1 = NULL,
h2 = NULL,
alpha = 1,
rev = FALSE,
nmax = NULL,
order = NULL,
aesthetics = "colour",
...

)

scale_fill_discrete_qualitative(..., aesthetics = "fill")

Arguments

palette The name of the palette to be used. Run hcl_palettes(type = "qualitative")
for available options.

c1 Chroma value, used for all colors in the scale.

l1 Luminance value, used for all colors in the scale.

70 scale_colour_discrete_sequential

h1 Beginning hue value.

h2 Ending hue value.

alpha Numeric vector of values in the range [0,1] for alpha transparency channel (0
means transparent and 1 means opaque).

rev If TRUE, reverses the order of the colors in the color scale.

nmax Maximum number of different colors the palette should contain. If not provided,
is calculated automatically from the data.

order Numeric vector listing the order in which the colors should be used. Default is
1:nmax.

aesthetics The ggplot2 aesthetics to which this scale should be applied.

... common discrete scale parameters: name, breaks, labels, na.value, limits
and guide. See discrete_scale for more details.

Details

If both a valid palette name and palette parameters are provided then the provided palette parameters
overwrite the parameters in the named palette. This enables easy customization of named palettes.

Examples

library("ggplot2")

default colors
ggplot(iris, aes(Sepal.Length, Sepal.Width, color = Species)) +

geom_point() + theme_minimal() +
scale_color_discrete_qualitative()

color scale "Harmonic"
ggplot(iris, aes(Sepal.Length, fill = Species)) +

geom_density(alpha = 0.7) + scale_fill_discrete_qualitative(palette = "Harmonic")

scale_colour_discrete_sequential

HCL-Based Discrete Sequential Color Scales for ggplot2

Description

Discrete ggplot2 color scales using the color palettes generated by sequential_hcl.

Usage

scale_colour_discrete_sequential(
palette = NULL,
c1 = NULL,
c2 = NULL,
cmax = NULL,

scale_colour_discrete_sequential 71

l1 = NULL,
l2 = NULL,
h1 = NULL,
h2 = NULL,
p1 = NULL,
p2 = NULL,
alpha = 1,
rev = TRUE,
nmax = NULL,
order = NULL,
aesthetics = "colour",
...

)

scale_color_discrete_sequential(
palette = NULL,
c1 = NULL,
c2 = NULL,
cmax = NULL,
l1 = NULL,
l2 = NULL,
h1 = NULL,
h2 = NULL,
p1 = NULL,
p2 = NULL,
alpha = 1,
rev = TRUE,
nmax = NULL,
order = NULL,
aesthetics = "colour",
...

)

scale_fill_discrete_sequential(..., aesthetics = "fill")

Arguments

palette The name of the palette to be used. Run hcl_palettes(type = "sequential")
for available options.

c1 Beginning chroma value.

c2 Ending chroma value.

cmax Maximum chroma value.

l1 Beginning luminance value.

l2 Ending luminance value.

h1 Beginning hue value.

h2 Ending hue value. If set to NA, generates a single-hue scale.

72 scale_colour_discrete_sequential

p1 Control parameter determining how chroma should vary (1 = linear, 2 = quadratic,
etc.).

p2 Control parameter determining how luminance should vary (1 = linear, 2 =
quadratic, etc.).

alpha Numeric vector of values in the range [0,1] for alpha transparency channel (0
means transparent and 1 means opaque).

rev If TRUE (default), reverses the order of the colors in the color scale (compared to
sequential_hcl).

nmax Maximum number of different colors the palette should contain. If not provided,
is calculated automatically from the data.

order Numeric vector listing the order in which the colors should be used. Default is
1:nmax.

aesthetics The ggplot2 aesthetics to which this scale should be applied.

... common discrete scale parameters: name, breaks, labels, na.value, limits
and guide. See discrete_scale for more details.

Details

If both a valid palette name and palette parameters are provided then the provided palette parameters
overwrite the parameters in the named palette. This enables easy customization of named palettes.

Compared to sequential_hcl the ordering of the colors in the sequential ggplot2 scale are reversed
by default (i.e., rev = TRUE) to be more consistent with ggplot2’s own scales such as scale_color_brewer.
For most named palettes this leads to darker and more colorful colors for larger values on the scale.
This is typically the better default on light/white backgrounds.

Examples

library("ggplot2")

default colors
ggplot(iris, aes(Sepal.Length, Sepal.Width, color = Species)) +

geom_point() + scale_color_discrete_sequential() + theme_classic()

customization of named palette
ggplot(iris, aes(Sepal.Length, Sepal.Width, color = Species)) +
geom_point() + scale_colour_discrete_sequential(palette = "Reds", nmax = 4, p2 = 1.5) +
theme_classic()

color scale "Terrain"
ggplot(iris, aes(Sepal.Length, fill = Species)) +
geom_density(alpha = 0.7) + scale_fill_discrete_sequential(palette = "Terrain") + theme_minimal()

simulate_cvd 73

simulate_cvd Simulate Color Vision Deficiency

Description

Transformation of R colors by simulating color vision deficiencies, based on a CVD transform
matrix.

Usage

simulate_cvd(col, cvd_transform)

deutan(col, severity = 1)

protan(col, severity = 1)

tritan(col, severity = 1)

interpolate_cvd_transform(cvd, severity = 1)

Arguments

col character. A color or vector of colors, e.g., "#FFA801" or "blue". Input col can
also be a matrix with three rows containing R/G/B (0-255) values, see details.

cvd_transform numeric 3x3 matrix, specifying the color vision deficiency transform matrix.

severity numeric. Severity of the color vision defect, a number between 0 and 1.

cvd list of cvd transformation matrices. See cvd for available options.

Details

Using the physiologically-based model for simulating color vision deficiency (CVD) of Machado
et al. (2009), different kinds of limitations can be emulated: deuteranope (green cone cells defec-
tive), protanope (red cone cells defective), and tritanope (blue cone cells defective). The workhorse
function to do so is simulate_cvd which can take any vector of valid R colors and transform them
according to a certain CVD transformation matrix (see cvd) and transformation equation.

The functions deutan, protan, and tritan are the high-level functions for simulating the corre-
sponding kind of colorblindness with a given severity. Internally, they all call simulate_cvd along
with a (possibly interpolated) version of the matrices from cvd. Matrix interpolation can be carried
out with the function interpolate_cvd_transform (see Examples).

If input col is a matrix with three rows named R, G, and B (top down) they are interpreted as
Red-Green-Blue values within the range [0-255]. Instead of an (s)RGB color vector a matrix of
the same size as the input col with the corresponding simulated Red-Green-Blue values will be
returned. This can be handy to avoid too many conversions.

74 specplot

References

Machado GM, Oliveira MM, Fernandes LAF (2009). A Physiologically-Based Model for Sim-
ulation of Color Vision Deficiency. IEEE Transactions on Visualization and Computer Graph-
ics. 15(6), 1291–1298. doi: 10.1109/TVCG.2009.113 Online version with supplements at http:
//www.inf.ufrgs.br/~oliveira/pubs_files/CVD_Simulation/CVD_Simulation.html.

Zeileis A, Fisher JC, Hornik K, Ihaka R, McWhite CD, Murrell P, Stauffer R, Wilke CO (2020).
“colorspace: A Toolbox for Manipulating and Assessing Colors and Palettes.” Journal of Statistical
Software, 96(1), 1–49. doi: 10.18637/jss.v096.i01

See Also

cvd

Examples

simulate color-vision deficiency by calling `simulate_cvd` with specified matrix
simulate_cvd(c("#005000", "blue", "#00BB00"), tritanomaly_cvd["6"][[1]])

simulate color-vision deficiency by calling the shortcut high-level function
tritan(c("#005000", "blue", "#00BB00"), severity = 0.6)

simulate color-vision deficiency by calling `simulate_cvd` with interpolated cvd matrix
simulate_cvd(c("#005000", "blue", "#00BB00"),

interpolate_cvd_transform(tritanomaly_cvd, severity = 0.6))

apply CVD directly on RGB matrix
RGB <- t(hex2RGB(rainbow(3))@coords*255)
deutan(RGB)

specplot Color Spectrum Plot

Description

Visualization of color palettes (given as hex codes) in HCL and/or RGB coordinates.

Usage

specplot(
x,
y = NULL,
rgb = FALSE,
hcl = TRUE,
fix = TRUE,
cex = 1,
type = "l",
lwd = 2 * cex,

https://doi.org/10.1109/TVCG.2009.113
http://www.inf.ufrgs.br/~oliveira/pubs_files/CVD_Simulation/CVD_Simulation.html
http://www.inf.ufrgs.br/~oliveira/pubs_files/CVD_Simulation/CVD_Simulation.html
https://doi.org/10.18637/jss.v096.i01

specplot 75

lty = 1,
pch = NULL,
mar = NULL,
oma = NULL,
main = NULL,
legend = TRUE,
palette = TRUE,
plot = TRUE,
...

)

Arguments

x character vector containing color hex codes.

y optional second character vector containing further color hex codes, to be used
for comparing two palettes (x vs. y).

rgb logical or color specification. Should the RGB spectrum be visualized? Can
also be a vector of three colors for the legend of R/G/B coordinates.

hcl logical or color specification. Should the HCL spectrum be visualized? Can also
be a vector of three colors for the legend of H/C/L coordinates.

fix logical. Should the hues be fixed to be on a smooth(er) curve? For details see
below.

cex numeric. Character extension for figure axes and labels.
type, lwd, lty, pch

plotting parameters passed to lines for drawing the RGB and HCL coordinates,
respectively. Can be vectors of length 3.

mar, oma numeric or logical. Either numeric vectors of length 4 giving the (outer) margins
or a logical indicating whether mar/oma should be set.

main character. Main title of the plot.

legend logical. Should legends for the coordinates be plotted?

palette logical. Should the given palette x be plotted?

plot logical. Should the RGB and/or HCL coordinates be plotted?

... currently not used.

Details

The function specplot transforms a given color palette in hex codes into their HCL (polarLUV)
and/or RGB (sRGB) coordinates. As the hues for low-chroma colors are not (or poorly) identified,
by default a smoothing is applied to the hues (fix = TRUE). Also, to avoid jumps from 0 to 360 or
vice versa, the hue coordinates are shifted suitably.

By default (plot = TRUE), the resulting HCL and optionally RGB coordinates are visualized by
simple line plots along with the color palette x itself. The x-axis simply gives the ordering of the
colors in the palette The y-axis depicts the following information: (1) Hue is drawn in red and
coordinates are indicated on the axis on the right with range [0, 360] or (if necessary) [-360, 360].
(2) Chroma is drawn in green with coordinates on the left axis. The range [0, 100] is used unless

76 specplot

the palette necessitates higher chroma values. (3) Luminance is drawn in blue with coordinates on
the left axis in the range [0, 100]. Luminance (and hence also chroma) is on the left axis because
it is arguably most important for understanding the type of palette (qualitative vs. sequential vs.
diverging). To facilitate reading the legend the reversed order Luminance / Chroma / Hue is used so
that the legend labels are closer to the axis they pertain to.

For comparing two palettes, specplot(x,y) can be used which adds lines (dashed, by default)
corresponding to the y palette HCL/RGB coordinates in the display.

Value

specplot invisibly returns a list with components

HCL a matrix of HCL coordinates,
RGB a matrix of sRGB coordinates,
hex original color palette x.

Author(s)

Reto Stauffer, Achim Zeileis

References

Zeileis A, Hornik K, Murrell P (2009). Escaping RGBland: Selecting Colors for Statistical Graph-
ics. Computational Statistics & Data Analysis, 53, 3259–3270. doi: 10.1016/j.csda.2008.11.033
Preprint available from https://www.zeileis.org/papers/Zeileis+Hornik+Murrell-2009.
pdf.

Stauffer R, Mayr GJ, Dabernig M, Zeileis A (2015). Somewhere over the Rainbow: How to Make
Effective Use of Colors in Meteorological Visualizations. Bulletin of the American Meteorological
Society, 96(2), 203–216. doi: 10.1175/BAMSD1300155.1

Zeileis A, Fisher JC, Hornik K, Ihaka R, McWhite CD, Murrell P, Stauffer R, Wilke CO (2020).
“colorspace: A Toolbox for Manipulating and Assessing Colors and Palettes.” Journal of Statistical
Software, 96(1), 1–49. doi: 10.18637/jss.v096.i01

See Also

hcl_palettes, hclplot

Examples

spectrum of the (in)famous RGB rainbow palette (in both RGB and HCL)
specplot(rainbow(100), rgb = TRUE)

spectrum of HCL-based palettes: qualitative/sequential/diverging
specplot(qualitative_hcl(100, "Set 2"))
specplot(sequential_hcl(100, "Blues 2"))
specplot(diverging_hcl(100, "Blue-Red"))

return computed RGB and HCL coordinates
res <- specplot(rainbow(10), plot = FALSE)
print(res)

https://doi.org/10.1016/j.csda.2008.11.033
https://www.zeileis.org/papers/Zeileis+Hornik+Murrell-2009.pdf
https://www.zeileis.org/papers/Zeileis+Hornik+Murrell-2009.pdf
https://doi.org/10.1175/BAMS-D-13-00155.1
https://doi.org/10.18637/jss.v096.i01

sRGB 77

sRGB Create sRGB Colors

Description

This function creates colors of class sRGB; a subclass of the virtual color-class class.

Usage

sRGB(R, G, B, names)

Arguments

R, G, B these arguments give the red, green and blue intensities of the colors (the values
should lie between 0 and 1). The values can be provided in separate R, G and B
vectors or in a three-column matrix passed as R.

names A vector of names for the colors (by default the row names of R are used).

Details

This function creates colors in the standard sRGB color space (IEC standard 61966).

Value

An object of class sRGB which inherits from class color.

Author(s)

Ross Ihaka

See Also

RGB, HSV, XYZ, LAB, polarLAB, LUV, polarLUV.

Examples

Create a random set of colors
set.seed(1)
sRGB(R = runif(20), G = runif(20), B = runif(20))

78 swatchplot

swatchplot Palette Swatch Plot

Description

Visualization of color palettes in columns of color swatches.

Usage

swatchplot(
x,
...,
nrow = 20,
border = NULL,
sborder = NULL,
off = NULL,
mar = NULL,
line = NULL,
cex = NULL,
font = 1:2,
cvd = FALSE

)

Arguments

x character vector/matrix (or list of character vectors/matrices) containing color
hex codes.

... further (possibly named) character vectors/matrices with color hex codes.

nrow integer specifying the maximal number of rows of swatches. (The actual number
might be lower in order to balance the rows used in each column.)

border color for border of individual color rectangles. By default "lightgray" for up
to 9 colors, "transparent" otherwise.

sborder color for border of the entire palette swatch. By default "lightgray" if border
is "transparent" and "lightgray" otherwise (if off = 0).

off numeric vector of length 2. Offset in horizontal and vertical direction (specified
as a fraction of the rectangle for one color). By default, the horizontal offset is
0.3 for up to 5 colors and 0 otherwise, and the vertical offset is 0.1.

mar numeric vector of length 4, specifying the margins of column of color swatches.

line numeric. Line in which the palette names (if any) are printed in the margin.

cex, font numeric vectors of length 1 or 2. Specifications for the annotation text for the
individual palettes and lists of palettes, respectively.

cvd logical or character indicating whether color vision deficiencies should be emu-
lated with desaturate, deutan, protan, tritan.

USSouthPolygon 79

Details

The function swatchplot is a convenience function for displaying collections of palettes that can
be specified as lists or matrices of character color specifications. Essentially, the function just calls
rect but the value-added are the heuristics used for choosing default labels, margins, spacings,
borders. These are selected to work well for hcl_palettes and might need further tweaking in
future versions.

Value

swatchplot invisibly returns a matrix with colors and annotations.

References

Zeileis A, Fisher JC, Hornik K, Ihaka R, McWhite CD, Murrell P, Stauffer R, Wilke CO (2020).
“colorspace: A Toolbox for Manipulating and Assessing Colors and Palettes.” Journal of Statistical
Software, 96(1), 1–49. doi: 10.18637/jss.v096.i01

Examples

swatches of several palette vectors
swatchplot(

"Hue" = sequential_hcl(5, h = c(0, 300), c = c(60, 60), l = 65),
"Chroma" = sequential_hcl(5, h = 0, c = c(100, 0), l = 65, rev = TRUE, power = 1),
"Luminance" = sequential_hcl(5, h = 260, c = c(25, 25), l = c(25, 90), rev = TRUE, power = 1),
off = 0

)

swatches of named palette matrices
bprg <- c("Blues", "Purples", "Reds", "Greens")
swatchplot(

"Single-hue" = t(sapply(paste(bprg, 2), sequential_hcl, n = 7)),
"Single-hue (advanced)" = t(sapply(paste(bprg, 3), sequential_hcl, n = 7)),
"Multi-hue (advanced)" = t(sapply(bprg, sequential_hcl, n = 7)),
nrow = 5

)

swatches with color vision deficiency emulation
swatchplot(sequential_hcl(7, "Viridis"), cvd = TRUE)
swatchplot(

"YlGnBu" = sequential_hcl(7, "YlGnBu"),
"Viridis" = sequential_hcl(7, "Viridis"),
cvd = c("deutan", "desaturate")

)

USSouthPolygon Polygon for County Map of US South States: Alabama, Georgia, and
South Carolina

https://doi.org/10.18637/jss.v096.i01

80 whitepoint

Description

County polygons for Alabama, Georgia, and South Carolina plus an artifical variable used for col-
oring.

Usage

data("USSouthPolygon")

Format

A data frame with coordinates of the vertices of the county polygons (x, y) and an artificial variable
z constructed for illustrating colored maps.

Source

Polygon data taken from maps package of Becker, Wilks, Brownrigg, and Minka (2012). Version
2.2-6. https://CRAN.R-project.org/package=maps

Examples

generate color palette
pal <- diverging_hcl(9)
n <- length(pal)

draw shaded polygons
plot(0, 0, type = "n", xlab = "", ylab = "", xaxt = "n", yaxt = "n", bty = "n",

xlim = c(-88.5, -78.6), ylim = c(30.2, 35.2), asp = 1)
polygon(USSouthPolygon, col = pal[cut(na.omit(USSouthPolygon$z), breaks = 0:n/n)])

whitepoint Access or Modify the Whitepoint

Description

This function can be used to control the single global whitepoint that affects all color conversions
within the package (that require a whitepoint, i.e., go through XYZ).

Usage

whitepoint(white, ...)

Arguments

white, ... Either missing (to query the whitepoint) or NULL or a specification of the XYZ
coordinates of the whitepoint (to set the whitepoint, see examples). NULL corre-
sponds to CIE D65 with XYZ coordinates 95.047, 100.000, 108.883.

https://CRAN.R-project.org/package=maps

writehex 81

Value

whitepoint returns an XYZ color object for the whitepoint (invisibly in case a new whitepoint was
set).

See Also

XYZ and color-class.

Examples

query current whitepoint (D65 by default)
whitepoint()

Illuminant E
whitepoint(XYZ(100, 100, 100))

equivalently
whitepoint(100, 100, 100)
whitepoint(c(100, 100, 100))
whitepoint(cbind(100, 100, 100))

whitepoint()

reset
whitepoint(NULL)
whitepoint()

writehex Write Hexadecimal Color Descriptions

Description

Given a color object, this function writes a file containing the hexadecimal representation of the
colors in the object.

Usage

writehex(x, file = "")

Arguments

x a color object.

file the name of the file to be written.

Details

This function converts the given color object to RGB and then writes hexadecimal strings (of the
form #RRGGBB) representing the colors to the specified file.

82 XYZ

Value

The name of the file is returned as the value of the function.

Author(s)

Ross Ihaka

See Also

readhex, readRGB, hex2RGB, RGB, HSV, XYZ, LAB, polarLAB, LUV, polarLUV.

Examples

set.seed(1)
x <- sRGB(runif(10), runif(10), runif(10))
IGNORE_RDIFF_BEGIN
writehex(x, file.path(tempdir(), "random.txt"))
IGNORE_RDIFF_END

XYZ Create XYZ Colors

Description

This function creates colors of class XYZ; a subclass of the virtual color-class class.

Usage

XYZ(X, Y, Z, names)

Arguments

X, Y, Z these arguments give the X, Y and Z coordinates of the colors. The values can
be provided in separate X, Y and Z vectors or in a three-column matrix passed as
X.

names A vector of names for the colors (by default the row names of X are used).

Details

The X, Y and Z values are the levels of the CIE primaries. These are scaled so that the luminance of
the display white-point is 100. The white-point is taken to be D65, which means that its coordinates
are 95.047, 100.000, 108.883.

Value

An object of class XYZ which inherits from class color.

XYZ 83

Author(s)

Ross Ihaka

See Also

RGB, HSV, LAB, polarLAB, LUV, polarLUV.

Examples

Generate white in XYZ space
XYZ(95.047, 100.000, 108.883)

Index

∗ classes
color-class, 7

∗ colorblind
simulate_cvd, 73

∗ colors
simulate_cvd, 73

∗ color
adjust_transparency, 3
contrast_ratio, 8
coords, 10
desaturate, 15
divergingx_hcl, 16
hcl_palettes, 22
hex, 27
hex2RGB, 28
HLS, 29
HSV, 30
LAB, 31
lighten, 32
LUV, 35
max_chroma, 36
mixcolor, 37
polarLAB, 38
polarLUV, 39
rainbow_hcl, 40
readhex, 43
readRGB, 44
RGB, 45
sRGB, 77
whitepoint, 80
writehex, 81
XYZ, 82

∗ cvd
simulate_cvd, 73

∗ datasets
cvd, 11
max_chroma, 36
USSouthPolygon, 79

∗ hplot

demoplot, 13
hclplot, 18
specplot, 74
swatchplot, 78

∗ misc
choose_palette, 5
hcl_color_picker, 21

[,color-method (color-class), 7

adjust_transparency, 3

binned_scale, 47, 49, 52, 54

choose_color (hcl_color_picker), 21
choose_palette, 5, 21, 22
cm.colors, 41
coerce,color,HLS-method (color-class), 7
coerce,color,HSV-method (color-class), 7
coerce,color,LAB-method (color-class), 7
coerce,color,LUV-method (color-class), 7
coerce,color,polarLAB-method

(color-class), 7
coerce,color,polarLUV-method

(color-class), 7
coerce,color,RGB-method (color-class), 7
coerce,color,sRGB-method (color-class),

7
coerce,color,XYZ-method (color-class), 7
col2rgb, 15
color-class, 7, 81
colors, 3, 8, 15, 32
continuous_scale, 56, 59, 61, 63
contrast_ratio, 8
coords, 10
coords,color-method (color-class), 7
cvd, 11, 73, 74
cvd_emulator, 12
cvd_image, 12

darken (lighten), 32

84

INDEX 85

demoplot, 13
desaturate, 4, 6, 9, 12, 15, 33, 78
deutan, 12, 78
deutan (simulate_cvd), 73
deutanomaly_cvd (cvd), 11
discrete_scale, 66, 68, 70, 72
diverge_hcl (hcl_palettes), 22
diverge_hsv (rainbow_hcl), 40
divergex_hcl (divergingx_hcl), 16
diverging_hcl, 6, 18, 41, 46, 55, 64
diverging_hcl (hcl_palettes), 22
diverging_hsv (rainbow_hcl), 40
divergingx_hcl, 16, 25, 26, 48, 49, 57, 58,

66, 68
divergingx_palettes (divergingx_hcl), 16

extract_transparency
(adjust_transparency), 3

gray.colors, 25

HCL (polarLUV), 39
hcl_color_picker, 21
hcl_palettes, 19, 22, 41, 76, 79
hcl_wizard (choose_palette), 5
hclcolorpicker (hcl_color_picker), 21
hclplot, 14, 18, 76
hclwizard (choose_palette), 5
heat.colors, 41
heat_hcl (rainbow_hcl), 40
hex, 15, 17, 24, 27, 29, 33, 36, 41, 42
hex2RGB, 15, 28, 28, 43, 44, 82
hexmode, 4
HLS, 8, 29
HLS-class (color-class), 7
HSV, 8, 24, 28, 29, 30, 32, 35, 37–39, 42–45,

77, 82, 83
HSV-class (color-class), 7

interpolate_cvd_transform
(simulate_cvd), 73

LAB, 8, 10, 28, 30, 31, 31, 32, 35, 37–39,
43–45, 77, 82, 83

LAB-class (color-class), 7
lighten, 4, 15, 32
lines, 75
LUV, 8, 10, 24, 28–32, 35, 37–39, 43–45, 77,

82, 83

LUV-class (color-class), 7

max_chroma, 36
max_chroma_table (max_chroma), 36
mixcolor, 8, 10, 37

plot,color-method (color-class), 7
plot.hcl_palettes (hcl_palettes), 22
polarLAB, 8, 10, 28–32, 35, 37, 38, 38, 39,

43–45, 77, 82, 83
polarLAB-class (color-class), 7
polarLUV, 6, 8, 10, 15, 24, 28–33, 35–39, 39,

42–45, 75, 77, 82, 83
polarLUV-class (color-class), 7
print.hcl_palettes (hcl_palettes), 22
protan, 12, 78
protan (simulate_cvd), 73
protanomaly_cvd (cvd), 11

qualitative_hcl, 6, 41, 50, 60, 69
qualitative_hcl (hcl_palettes), 22

rainbow, 41
rainbow_hcl, 24, 40
readhex, 43, 44, 82
readRGB, 43, 44, 82
rect, 79
RGB, 8, 10, 24, 28–32, 35, 37–39, 43, 44, 45,

77, 82, 83
rgb, 3, 4, 8, 15, 32
RGB-class (color-class), 7

scale_color_binned_diverging
(scale_colour_binned_diverging),
46

scale_color_binned_divergingx
(scale_colour_binned_divergingx),
48

scale_color_binned_qualitative
(scale_colour_binned_qualitative),
50

scale_color_binned_sequential
(scale_colour_binned_sequential),
52

scale_color_brewer, 64, 72
scale_color_continuous_diverging

(scale_colour_continuous_diverging),
55

86 INDEX

scale_color_continuous_divergingx
(scale_colour_continuous_divergingx),
57

scale_color_continuous_qualitative
(scale_colour_continuous_qualitative),
60

scale_color_continuous_sequential
(scale_colour_continuous_sequential),
62

scale_color_discrete_diverging
(scale_colour_discrete_diverging),
64

scale_color_discrete_divergingx
(scale_colour_discrete_divergingx),
66

scale_color_discrete_qualitative
(scale_colour_discrete_qualitative),
69

scale_color_discrete_sequential
(scale_colour_discrete_sequential),
70

scale_color_fermenter, 54
scale_colour_binned_diverging, 46
scale_colour_binned_divergingx, 48
scale_colour_binned_qualitative, 50
scale_colour_binned_sequential, 52
scale_colour_continuous_diverging, 55
scale_colour_continuous_divergingx, 57
scale_colour_continuous_qualitative,

60
scale_colour_continuous_sequential, 62
scale_colour_discrete_diverging, 64
scale_colour_discrete_divergingx, 66
scale_colour_discrete_qualitative, 69
scale_colour_discrete_sequential, 70
scale_fill_binned_diverging

(scale_colour_binned_diverging),
46

scale_fill_binned_divergingx
(scale_colour_binned_divergingx),
48

scale_fill_binned_qualitative
(scale_colour_binned_qualitative),
50

scale_fill_binned_sequential
(scale_colour_binned_sequential),
52

scale_fill_continuous_diverging

(scale_colour_continuous_diverging),
55

scale_fill_continuous_divergingx
(scale_colour_continuous_divergingx),
57

scale_fill_continuous_qualitative
(scale_colour_continuous_qualitative),
60

scale_fill_continuous_sequential
(scale_colour_continuous_sequential),
62

scale_fill_discrete_diverging
(scale_colour_discrete_diverging),
64

scale_fill_discrete_divergingx
(scale_colour_discrete_divergingx),
66

scale_fill_discrete_qualitative
(scale_colour_discrete_qualitative),
69

scale_fill_discrete_sequential
(scale_colour_discrete_sequential),
70

sequential_hcl, 6, 18, 41, 52, 54, 62–64, 70,
72

sequential_hcl (hcl_palettes), 22
show,color-method (color-class), 7
simulate_cvd, 6, 11, 73
specplot, 14, 20, 74
sRGB, 28–31, 45, 75, 77
sRGB-class (color-class), 7
summary.hcl_palettes (hcl_palettes), 22
swatchplot, 26, 78

terrain_hcl (rainbow_hcl), 40
tritan, 12, 78
tritan (simulate_cvd), 73
tritanomaly_cvd (cvd), 11

USSouthPolygon, 79

whitepoint, 80
writehex, 43, 44, 81

XYZ, 8, 10, 28–32, 35, 37–39, 43–45, 77, 81,
82, 82

XYZ-class (color-class), 7

	adjust_transparency
	choose_palette
	color-class
	contrast_ratio
	coords
	cvd
	cvd_emulator
	cvd_image
	demoplot
	desaturate
	divergingx_hcl
	hclplot
	hcl_color_picker
	hcl_palettes
	hex
	hex2RGB
	HLS
	HSV
	LAB
	lighten
	LUV
	max_chroma
	mixcolor
	polarLAB
	polarLUV
	rainbow_hcl
	readhex
	readRGB
	RGB
	scale_colour_binned_diverging
	scale_colour_binned_divergingx
	scale_colour_binned_qualitative
	scale_colour_binned_sequential
	scale_colour_continuous_diverging
	scale_colour_continuous_divergingx
	scale_colour_continuous_qualitative
	scale_colour_continuous_sequential
	scale_colour_discrete_diverging
	scale_colour_discrete_divergingx
	scale_colour_discrete_qualitative
	scale_colour_discrete_sequential
	simulate_cvd
	specplot
	sRGB
	swatchplot
	USSouthPolygon
	whitepoint
	writehex
	XYZ
	Index

