Package 'comf'

May 11, 2022

Type Package
Title Models and Equations for Human Comfort Research
Version 0.1.11
Date 2022-05-12
Imports plyr, graphics, reshape
Maintainer Marcel Schweiker <mschweiker@ukaachen.de></mschweiker@ukaachen.de>
Description Calculation of various common and less common comfort indices such as pre- dicted mean vote or the two node model. Converts physical variables such as relative to abso- lute humidity and evaluates the performance of comfort indices.
License GPL-2
LazyLoad yes
LazyData true
Suggests R.rsp
VignetteBuilder R.rsp
RoxygenNote 7.1.1
Encoding UTF-8
NeedsCompilation no
Author Marcel Schweiker [aut, cre] (<https: 0000-0003-3906-4688="" orcid.org="">), Sophia Mueller [aut], Michael Kleber [ctr], Boris Kingma [ctr] (<https: 0000-0001-5961-0215="" orcid.org="">), Masanori Shukuya [ctr] (<https: 0000-0003-2777-4375="" orcid.org="">), Shaomi Rahman [ctr], Shoaib Sarwar [ctr]</https:></https:></https:>

Repository CRAN

Date/Publication 2022-05-11 08:00:02 UTC

R topics documented:

comf-package
calc2Node
calcAD
calcaPMV
calcATHBpmv
calcATHBpmv2015
calcATHBpts
calcATHBset
calcAvgAcc
calcBias
calcCE
calcComfInd 17
calcDisc 19
calcdTNZ 21
calcenCoeff 23
calcePMV 24
calcFT 26
calcHbEvSteady 28
calcHbExUpsteady 30
caleIxe7022
coleMixD 30
CalCPPD
CalCPS
calcSkinWettedness
calcSolarGain
calctAdapt15251
calcTNZPDF
calcTPRTSV
calcTroin
calcTSens
calcTWC
calcUTCI
calcVTG

comf-package

createCond	 	 	 	 ′	75
cutTSV	 	 	 	 ′	76
dfASHRAETableG11 .	 	 	 	 ′	77
dfField	 	 	 	 ′	78
dfISO7730AppE	 	 	 	 ′	79
dfISO7730TableD1	 	 	 	 	80
dfISO7933AppF	 	 	 	 	81
dfUTCIValues	 	 	 	 	82
				5	83

Index

comf-package	Calculation and Evaluation of Common and Less Common Comfort
	Indices

Description

This package contains several functions to calculate and evaluate a series of comfort indices.

Details

Package:	comf
Type:	Package
Version:	0.1.11
Date:	2021-05-12
License:	GPL-2
LazyLoad:	yes

To create input parameters, the function createCond, which creates a list of input parameters may be helpful. The main function of this packages is calcComfInd, which returns the desired comfort parameters. However, each index can be computed using its own function, e.g. to calculate only PMV the function calcPMV can be used.

The comfort indices calculated within this package are as follows. To get further information, go to the help page, which can be accessed using the index below e.g. ?pmv:

Index	Description
pmv	Predicted mean vote (PMV)
ppd	Predicted precentage dissatisfied (PPD)
tnHumphreysNV	Neutral temperature in naturally ventilated buildings according to Humphreys 1978
tnHumphreysAC	Neutral temperature in climate-controlled buildings according to Humphreys 1978
tnAuliciems	Neutral temperature according to Auliciems 1981
tAdapt15251	Adaptive comfort temperature according to EN 15251
dTNZ	Distance to thermoneutral zone
ATHBpmv	Adaptive thermal heat balance vote based on pmv
ATHBset	Adaptive standard effective temperature
ATHBpts	Adaptive thermal heat balance vote based on set

calc2Node

apmv	Adaptive predicted mean vote according to Yao et al.
ptsa	Adaptive predicted thermal sensation vote according to Gao et al.
epmv	PMV adjusted with expectancy factor based on Fanger and toftum
ptse	Predicted thermal sensation vote based on set and adjusted with expectancy factor according to Gao et al.
set	standard effective temperature based on two node model by Gagge et al.
et	Effective temperature based on two node model by Gagge et al.
tsens	Predicted thermal sensation
disc	Predicted discomfort
ps	Predicted percentage satisfied with the level of air movement
pd	Predicted percentage dissatisfied due to draft
pts	Predicted thermal sensation vote based on set
HBxst	Human body exergy consumption rate using steady state method
PHS	Predicted heat strain

The performance criteria included in this package are presented below. Again you can get further information on the corresponding help pages:

Index	Description
meanBias	Mean bias between predicted and observed thermal sensation vote
TPR	True positive rate
avgAcc	Average accuracy of predicted thermal sensation vote

Author(s)

Marcel Schweiker in cooperation with Sophia Mueller and many others. Contact: mschweiker@ukaachen.de

References

See references in function descriptions.

See Also

see also createCond, calcComfInd

calc2Node

Comfort Indices based on the 2-Node-Model

Description

calc2Node calculates Comfort Indices based on the 2-Node-Model by Gagge et al.

Usage

```
calc2Node(ta, tr, vel, rh, clo = 0.5, met = 1, wme = 0, pb = 760, ltime = 60,
ht = 171, wt = 70, tu = 40, obj = "set", csw = 170, cdil = 120, cstr = 0.5,
varOut = "else")
```

calc2Node

Arguments

ta	a numeric value presenting air temperature in [degree C]
tr	a numeric value presenting mean radiant temperature in [degree C]
vel	a numeric value presenting air velocity in [m/s]
rh	a numeric value presenting relative humidity [%]
clo	a numeric value presenting clothing insulation level in [clo]
met	a numeric value presenting metabolic rate in [met]
wme	a numeric value presenting external work in [met]
pb	a numeric value presenting barometric pressure in [torr] or [mmHg]
ltime	a numeric value presenting exposure time in [minutes]
ht	a numeric value presenting body height in [cm]
wt	a numeric value presenting body weight in [kg]
tu	a numeric value presenting turbulence intensity in [%]
obj	a character element, either "set" or "pmvadj"
CSW	a numeric value presenting the driving coefficient for regulatory sweating
cdil	a numeric value presenting the driving coefficient for vasodilation
cstr	a numeric value presenting the driving coefficient for vasoconstriction
varOut	a string value either "else" for normal output of SET or "skinWet" to report value of skin wettedness

Details

All variables must have the same length 1. For the calculation of several values use function calcComfInd. The value of obj defines whether the function will use the version presented in ASHRAE 55-2013 for adjustment of pmv (obj = "pmvadj"), or the original code by Gagge to calculate set (obj = "set"). In the version presented in ASHRAE 55-2013, the lines of code related to self-generated convection is deleted. Therefore, a difference can only be seen at higher values of met.

Value

returns a data.frame with the following items:

et - Effective temperature

tsens - Predicted thermal sensation

disc - Predicted discomfort

ps - Predicted percentage satisfied with the level of air movement

pd - Predicted percentage dissatisfied due to draft

pts - Predicted thermal sensation vote based on set

pmvg - Gagge's version of Fanger's PMV

pmvstar - Same as Fanger's PMV except that dry is calculated using SET* rather than the operative temperature

The other functions return a single index, e.g. code(calcSET) returns the standard effective temperature.

Note

In case one of the variables is not given, a standard value will be taken from a list (see createCond for details.

Author(s)

The code for calc2Node is based on the code in BASIC and C++ presented by Fountain and Huizenga (1995). The translation into R-language and comparison with ASHRAE 55-2013 conducted by Marcel Schweiker.

References

ASHRAE Standard 55-2013. Thermal environmental conditions for human occupancy. American society of heating, Refrigerating and Air-Conditioning Engineering, Atlanta, USA, 2013.

Fountain & Huizenga (1995) A thermal sensation model for use by the engineering profession ASHRAE RP-781 Final report.

Gagge, Fobelets & Berglund (1986) A standard predictive index of human response to the thermal environment, ASHRAE transactions, 92 (2B), 709-731.

See Also

see also calcComfInd

Examples

Calculation of a single set of values. calc2Node(22, 25, .50, 50)

```
calcAD
```

PPD with Ankle Draft

Description

Function to calculate ankle draft using the predicted percentage of dissatisfied.

Usage

calcAD(ta, tr, vel, rh, clo, met, vAnkle)

ta	a numeric value presenting air temperature in [degree C]
tr	a numeric value presenting mean radiant temperature in [degree C]
vel	a numeric value presenting air velocity in [m/s]
rh	a numeric value presenting relative humidity [%]
clo	a numeric value presenting clothing insulation level in [clo]
met	a numeric value presenting metabolic rate in [met]
vAnkle	air speed at the 0.1 m (4 in.) above the floor [m/s]

calcaPMV

Details

Calculates the percentage of thermally dissatisfied people with the ankle draft (0.1 m) above floor level. This equation is only applicable for velocity < 0.2 m/s (40 fps)

Value

Predicted Percentage of Dissatisfied occupants with ankle draft in [%] Acceptability in [boolean]

Author(s)

Code implemented in to R by Shoaib Sarwar. Further contribution by Marcel Schweiker.

References

Original code in Python by Tartarini & Schiavon (2020) <doi:10.1016/j.softx.2020.100578>

Examples

calcAD(25,25,0.2,50,0.5,1.2,0.3) # returns Ankle_draft_ppd:18.6, Acceptability:TRUE

calcaPMV

Adaptive Predicted Mean Votes

Description

Function to calculate adaptive Predicted Mean Vote (aPMV) adjusted through the adaptive coefficient.

Usage

calcaPMV(ta, tr, vel, rh, clo = 0.5, met = 1, wme = 0, apCoeff)

ta	a numeric value presenting air temperature in [degree C]
tr	a numeric value presenting mean radiant temperature in [degree C]
vel	a numeric value presenting air velocity in [m/s]
rh	a numeric value presenting relative humidity [%]
clo	a numeric value presenting clothing insulation level in [clo]
met	a numeric value presenting metabolic rate in [met]
wme	a numeric value presenting external work in [met]
apCoeff	adaptive coefficient lambda

Details

apCoeff can be derived using calcapCoeff.

Value

calcaPMV returns the predicted mean vote adjusted through the adaptive coefficients.

Note

In case one of apCoeff is not given, a standard value will be taken from a list (see createCond for details.

Author(s)

Code implemented in to R by Marcel Schweiker. Further contribution by Sophia Mueller and Shoaib Sarwar.

References

aPMV is based on Yao, Li and Liu (2009) <doi:10.1016/j.buildenv.2009.02.014>

See Also

calcComfInd, calcapCoeff

Examples

```
## Note. Due to random generated asv values. The values for the coefficients will not be meaningful.
## Create sample data
ta <- 20:24  # vector with air temperature values
tr <- ta
                  # vector with radiant temperature values
vel <- rep(.1,5) # vector with air velocities</pre>
rh <- rep(50,5) # vector with relative humidity values
clo <- rep(1.0,5) # vector with clo values</pre>
met <- rep(1.1,5) # vector with metabolic rates</pre>
asv <- rnorm(5) # vector with actual sensation votes</pre>
lsCond <- as.list(data.frame(ta,tr,vel,rh,clo,met,asv))</pre>
## Calculate coefficient apCoeff for data set
apCoeff <- calcapCoeff(lsCond)</pre>
## calculate apmv
apmv <- NULL
for (i in 1:length(ta)){
apmv[i] <- calcaPMV(ta[i], tr[i], vel[i], rh[i], clo[i], met[i], apCoeff = apCoeff)$apmv}</pre>
apmv
```

calcATHBpmv

Description

calcATHBpmv calculates the PMV based on adaptive thermal heat balance framework based on the newest version (2022)

Usage

calcATHBpmv(trm, ta, tr, vel, rh, met)

Arguments

trm	- Running mean outdoor temperature in [degree C]
ta	- a numeric value presenting air temperature in [degree C]
tr	- a numeric value presenting mean radiant temperature in [degree C]
vel	- a numeric value presenting air velocity in [m/s]
rh	- a numeric value presenting relative humidity [%]
met	- a numeric value presenting metabolic rate in [met]

Details

aliases athb ATHB

Value

calcATHBpmv PMV value adapted through the ATHB appoach

Author(s)

Marcel Schweiker

References

Schweiker & Wagner (2015) <doi:10.1016/j.buildenv.2015.08.018> Schweiker (2022) <doi:10.1111/ina.13018>

See Also

```
see also calcComfInd, link{calcATHBpts}, link{calcATHBset},
link{calcATHBpmv2015}
```

Examples

calcATHBpmv(20, 25, 25, .1, 50, 1.1)

calcATHBpmv2015

Description

calcATHBpmv2015 calculates the PMV based on adaptive thermal heat balance framework based on the original method published 2015

Usage

calcATHBpmv2015(trm, psych, ta, tr, vel, rh, met, wme = 0)

Arguments

trm	- Running mean outdoor temperature in [degree C]
psych	- factor related to fixed effect on perceived control
ta	- a numeric value presenting air temperature in [degree C]
tr	- a numeric value presenting mean radiant temperature in [degree C]
vel	- a numeric value presenting air velocity in [m/s]
rh	- a numeric value presenting relative humidity [%]
met	- a numeric value presenting metabolic rate in [met]
wme	- a numeric value presenting external work in [met]

Details

aliases athb2015 ATHB2015 athbOld ATHBOLD

All variables must have the same length 1. For the calculation of several values use function calcComfInd.

Value

calcATHBpmv2015 PMV value adapted through the ATHB appoach

Author(s)

Marcel Schweiker

References

Schweiker & Wagner (2015) <doi:10.1016/j.buildenv.2015.08.018> Schweiker & Wagner (2016) Exploring potentials and limitations of the adaptive thermal heat balance framework Proceedings of 9th Windsor Conference: making comfort relevant Cumberland Lodge, Windsor, UK, 2016

See Also

see also calcComfInd, link{calcATHBpts}, link{calcATHBset}

calcATHBpts

Examples

calcATHBpmv2015(20, 0, 25, 25, .1, 50, 1.1)

calcATHBpts	Predicted Thermal Sensation by Gagge using Adaptive Thermal Heat
	Balance approach

Description

calcATHB calculates predicted thermal sensation based on the adaptive thermal heat balance approach using Gagge's 2 Node Model

Usage

Arguments

trm	- Running mean outdoor temperature in [degree C]
psych	- factor related to fixed effect on perceived control
ta	- a numeric value presenting air temperature in [degree C]
tr	- a numeric value presenting mean radiant temperature in [degree C]
vel	- a numeric value presenting air velocity in [m/s]
rh	- a numeric value presenting relative humidity [%]
met	- a numeric value presenting metabolic rate in [met]
wme	- a numeric value presenting external work in [met]
pb	- a numeric value presenting barometric pressure in [torr] or [mmHg]
ltime	- a numeric value presenting exposure time in [minutes]
ht	- a numeric value presenting body height in [cm]
wt	- a numeric value presenting body weight in [kg]

Details

All variables must have the same length 1. For the calculation of several values use function calcComfInd.

Value

calcATHBpts returns the predicted thermal sensation adapted through the ATHB approach

Author(s)

Marcel Schweiker

References

Schweiker & Wagner (2015) <doi:10.1016/j.buildenv.2015.08.018> Schweiker & Wagner (2016) Exploring potentials and limitations of the adaptive thermal heat balance framework Proceedings of 9th Windsor Conference: making comfort relevant Cumberland Lodge, Windsor, UK, 2016

See Also

see also calcComfInd, link{calcATHBpmv}, link{calcATHBset}

Examples

calcATHBpts(20, 0, 25, 25, .1, 50, 1.1, 0, 760, 60, 171, 70)

calcATHBset

SET based on Adaptive Thermal Heat Balance Framework

Description

Calculation of SET based on Adaptive Thermal Heat Balance framework using Gagge's 2-node model

Usage

Arguments

trm	- Running mean outdoor temperature in [degree C]
psych	- factor related to fixed effect on perceived control
ta	- a numeric value presenting air temperature in [degree C]
tr	- a numeric value presenting mean radiant temperature in [degree C]
vel	- a numeric value presenting air velocity in [m/s]
rh	- a numeric value presenting relative humidity [%]
met	- a numeric value presenting metabolic rate in [met]
wme	- a numeric value presenting external work in [met]
pb	- a numeric value presenting barometric pressure in [torr] or [mmHg]
ltime	- a numeric value presenting exposure time in [minutes]
ht	- a numeric value presenting body height in [cm]
wt	- a numeric value presenting body weight in [kg]

Details

All variables must have the same length 1. For the calculation of several values use function calcComfInd.

calcAvgAcc

Value

ATHBset set value adapted through the ATHB appoach

Author(s)

Marcel Schweiker

References

Schweiker & Wagner (2015) <doi:10.1016/j.buildenv.2015.08.018> Schweiker & Wagner (2016) Exploring potentials and limitations of the adaptive thermal heat balance framework Proceedings of 9th Windsor Conference: making comfort relevant Cumberland Lodge, Windsor, UK, 2016

See Also

```
see also calcComfInd, link{calcATHBpmv}, link{calcATHBpts}
```

Examples

calcATHBset(20, 0, 25, 25, .1, 50, 1.1, 0, 760, 60, 171, 70)

calcAvgAcc	Average Accuracy between Predicted and Actual Thermal Sensation
	Vote

Description

calcAvgAcc calculates the average accuracy between predicted thermal sensation votes and actual obtained sensation votes

Usage

```
calcAvgAcc(ref, pred)
```

```
calcavgacc(ref, pred)
```

AvgAcc(ref, pred)

avgacc(ref, pred)

ref	a numeric item or vector containing categorical actual thermal sensation votes coded from -3 'cold' to +3 'hot'
pred	a numeric item or vector containing categorical predicted thermal sensation votes coded from -3 'cold' to $+3$ 'hot'

Value

calcAvgAcc returns a single value presenting the average accuracy between actual and predicted thermal sensation votes.

Note

The outcome heavily depends on the distribution of actual votes, i.e. in case most of the actual votes are in the same category, e.g. 'neutral', the average accuray is very high due to the fact that for the other categories the number of TRUE negative predicted votes is high as well.

Author(s)

Marcel Schweiker. Further contribution by Shoaib Sarwar.

References

Sokolova and Lapalme (2009) <doi:10.1016/j.ipm.2009.03.002>

See Also

calcTPRTSV, calcMeanBias

Examples

```
## Define data
ref <- rnorm(5) # actual thermal sensation votes
ref <- cutTSV(ref)
pred <- rnorm(5) # predicted thermal sensation votes</pre>
```

```
pred <- cutTSV(pred)</pre>
```

calcAvgAcc(ref, pred)

```
calcBias
```

Bias between Predicted and Actual Thermal Sensation Vote

Description

calcMeanBias calculates the mean bias and its standard deviation and standard error between predicted thermal sensation votes and actual obtained sensation votes

Usage

```
calcBias(ref, pred)
calcbias(ref, pred)
calcMeanBias(ref, pred)
```

calcBias

```
MeanBias(ref, pred)
meanBias(ref, pred)
meanbias(ref, pred)
bias(ref, pred)
calcSdBias(ref, pred)
calcSeBias(ref, pred)
```

Arguments

ref	a numeric item or vector containing categorical actual thermal sensation votes coded from -3 'cold' to +3 'hot'
pred	a numeric item or vector containing categorical predicted thermal sensation votes coded from -3 'cold' to +3 'hot'

Value

calcMeanBias returns a dataframe with the following items:

meanBias	single value presenting the mean bias between actual and predicted thermal sen- sation votes
sdBias	single value presenting the standard deviation of the mean bias
seBias	single value presenting the standard error of the mean bias

Author(s)

Marcel Schweiker. Further contribution by Shoaib Sarwar.

References

Humphreys & Nicol (2002) <doi:10.1016/S0378-7788(02)00018-X>

Schweiker & Wagner (2016) Exploring potentials and limitations of the adaptive thermal heat balance framework Proceedings of 9th Windsor Conference: Making Comfort Relevant Cumberland Lodge, Windsor, UK, 2016.

See Also

calcTPRTSV, calcAvgAcc

Examples

```
## Define data
ref <- rnorm(5) # actual thermal sensation votes</pre>
```

```
pred <- rnorm(5) # predicted thermal sensation votes</pre>
```

```
calcBias(ref, pred)
```

calcCE

Cooling Effect

Description

Function to calculate cooling effect (CE) of elevated air velocities using the standard effective temperature (SET).

Usage

calcCE(ta, tr, vel, rh, clo = 0.5, met = 1, wme = 0)

Arguments

ta	a numeric value presenting air temperature in [degree C]
tr	a numeric value presenting mean radiant temperature in [degree C]
vel	a numeric value presenting air velocity in [m/s]
rh	a numeric value presenting relative humidity [%]
clo	a numeric value presenting clothing insulation level in [clo]
met	a numeric value presenting metabolic rate in [met]
wme	a numeric value presenting external work in [met]

Details

The CE of the elevated air velocity is the difference in SET between conditions with given air velocities and still air. The cooling effect should be calculated only for air velocities higher than 0.2 m/s.

Value

```
ce - Cooling Effect in [degree C]
```

Author(s)

Code implemented in to R by Shoaib Sarwar. Further contribution by Marcel Schweiker.

References

Original code in Python by Tartarini & Schiavon (2020) <doi:10.1016/j.softx.2020.100578>

Examples

calcCE(25,25,0.3,50,0.5,1) # returns Cooling Effect: 1.3

calcComfInd

Description

calcComfInd calculates one or more thermal comfort indices using a list of climatic conditions.

Usage

```
calcComfInd(lsCond, request = "all")
```

```
comfind(lsCond, request = "all")
```

Arguments

lsCond	a list of climatic conditions and additional variables necessary for one or more of the indices (see details below).
request	a vector with one or more comfort indices (see details below).

Details

The list 1sCond could contain one or more of the following variables:

ta	Air temperature in (degree C)
tr	mean radiant temperature in (degree C)
vel	Air velocity in (m/s)
rh	Relative Humidity (%)
clo	clothing (clo)
met	metabolic rate (met)
wme	External work (met)
tu	turbulence intensity (%)
tmmo	mean monthly outdoor temperature in (degree C)
ltime	Exposure time (min)
pb	Barometric pressure (torr)
wt	weight (kg)
ht	height (cm)
trm	Running mean outdoor temperature in (degree C)
age	age (years)
gender	gender (female = 1)
tsk	mean skin temperature in (degree C)
psych	factor related to fixed effect on perceived control
apCoeff	adaptive coefficient for pmv
epCoeff	expectancy factor for pmv
asCoeff	adaptive coefficient for set
esCoeff	expectancy factor for set
asv	actual sensation vote $(0 = neutral)$
tao	outdoor air temperature

calcComfInd

rho	outdoor relative humidity
frad	0.7(for seating), 0.73(for standing) [-]
eps	emissivity [-]
ic	1.084 (average permeability), 0.4 (low permeability)
tcr	initial values for core temp
tsk	initial values for skin temperature
basMet	basal metabolic rate
warmUp	length of warm up period, i.e. number of times, loop is running for HBx calculation
cdil	value for cdil in 2-node model of Gagge (applied in calculation of HbEx)
sigmatr	value for cdil in 2-node model of Gagge (applied in calculation of HbEx) In case a variable is not given, but necess

The vector request can contain the following elements:

Element	Description
"all"	Calculation of all indices described below
"pmv"	Predicted mean vote
"ppd"	Predicted precentage dissatisfied
"tnhumphreys"	Neutral temperature according to Humphreys
"tAdapt15251"	Adaptive comfort temperature according to EN 15251
"dTNZ"	Distance to thermoneutral zone
"ATHBpmv"	Adaptive thermal heat balance vote based on pmv
"ATHBset"	Adaptive standard effective temperature
"ATHBpts"	Adaptive thermal heat balance vote based on set
"apmv"	Adaptive predicted mean vote according to Yao et al.
"ptsa"	Adaptive predicted thermal sensation vote according to Gao et al.
"epmv"	pmv adjusted with expectancy factor based on Fanger and toftum
"ptse"	Predicted thermal sensation vote based on set and adjusted with expectancy factor according to Gao et al.
"set"	standard effective temperature based on two node model by Gagge et al.
"et"	Effective temperature based on two node model by Gagge et al.
"tsens"	Predicted thermal sensation
"disc"	Predicted discomfort
"ps"	Predicted percentage satisfied with the level of air movement
"pd"	Predicted percentage dissatisfied due to draft
"pts"	Predicted thermal sensation vote based on set
"HBxst"	Human body exergy consumPtion rate using steady state method

Value

calcComfInd returns one or more rows with the comfort indices listed as request. For details see details above.

Note

In case one of the variables is not given, a standard value will be taken from a list (see createCond for details.

Author(s)

Sophia Mueller and Marcel Schweiker. Further contribution by Shaomi Rahman.

calcDisc

References

For references see individual functions.

See Also

```
see also calcPMVPPD, calc2Node, calcHbExSteady, calcATHBpmv2015, calcdTNZ, calcPMVadj,
calcPtsa, calctAdapt
```

Examples

```
## Creating list with all values
lsCond <- createCond()
## Requesting all comfort indices
calcComfInd(lsCond, request="all")
## Requesting a single index
calcComfInd(lsCond, request="pmv")
## Requesting multiple indices
calcComfInd(lsCond, request=c("pmv", "ptse"))</pre>
```

```
calcDisc
```

Predicted Discomfort based on the 2-Node-Model

Description

calcDisc calculates Predicted Discomfort based on the 2-Node-Model by Gagge et al.

Usage

calcDisc(ta, tr, vel, rh, clo = 0.5, met = 1, wme = 0, pb = 760, ltime = 60, ht = 171, wt = 70, tu = 40, obj = "set", csw = 170, cdil = 120, cstr = 0.5)

ta	a numeric value presenting air temperature in [degree C]
tr	a numeric value presenting mean radiant temperature in [degree C]
vel	a numeric value presenting air velocity in [m/s]
rh	a numeric value presenting relative humidity [%]
clo	a numeric value presenting clothing insulation level in [clo]
met	a numeric value presenting metabolic rate in [met]
wme	a numeric value presenting external work in [met]
pb	a numeric value presenting barometric pressure in [torr] or [mmHg]
ltime	a numeric value presenting exposure time in [minutes]
ht	a numeric value presenting body height in [cm]
wt	a numeric value presenting body weight in [kg]

tu	a numeric value presenting turbulence intensity in [%]
obj	a character element, either "set" or "pmvadj"
CSW	a numeric value presenting the driving coefficient for regulatory sweating
cdil	a numeric value presenting the driving coefficient for vasodilation
cstr	a numeric value presenting the driving coefficient for vasoconstriction

Details

All variables must have the same length 1. For the calculation of several values use function calcComfInd. The value of obj defines whether the function will use the version presented in ASHRAE 55-2013 for adjustment of pmv (obj = "pmvadj"), or the original code by Gagge to calculate set (obj = "set"). In the version presented in ASHRAE 55-2013, the lines of code related to self-generated convection is deleted. Therefore, a difference can only be seen at higher values of met.

Value

calcDisc returns the Predicted Discomfort

Note

In case one of the variables is not given, a standard value will be taken from a list (see createCond for details).

Author(s)

The code for calc2Node is based on the code in BASIC and C++ presented by Fountain and Huizenga (1995). The translation into R-language and comparison with ASHRAE 55-2013 conducted by Marcel Schweiker.

References

ASHRAE Standard 55-2013. Thermal environmental conditions for human occupancy. American society of heating, Refrigerating and Air-Conditioning Engineering, Atlanta, USA, 2013.

Fountain & Huizenga (1995) A thermal sensation model for use by the engineering profession ASHRAE RP-781 Final report.

Gagge, Fobelets & Berglund (1986) A standard predictive index of human response to the thermal environment, ASHRAE transactions, 92 (2B), 709-731.

See Also

see also calcComfInd

calcdTNZ

Examples

```
## Using several rows of data:
ta <- c(20,22,24)
tr <- ta
vel <- rep(.15,3)
rh <- rep(50,3)
maxLength <- max(sapply(list(ta, tr, vel, rh), length))
Disc <- sapply(seq(maxLength), function(x) { calcDisc(ta[x], tr[x], vel[x], rh[x]) } )</pre>
```

calcdTNZ

dTNZ, the Distance from the Thermoneutral Zone

Description

calcdTNZ calculates the distance from the thermoneutral zone, either skin temperature or room air related.

Usage

```
calcdTNZ(ht, wt, age, gender, clo, vel, tskObs, taObs, met, rh, deltaT =.1,
fBasMet = "rosa", fSA = "duBois", percCov = 0, TcMin = 36, TcMax = 38,
plotZone = FALSE)
```

ht	a numeric value presenting body height in [cm]
wt	a numeric value presenting body weight in [kg]
age	a numeric value presenting the age in [years]
gender	a numeric value presenting sex (female = 1, male = 2)
clo	a numeric value presenting clothing insulation level in [clo]
vel	a numeric value presenting air velocity in [m/s]
tsk0bs	a numeric value presenting actual mean skin temperature in [degree C]
ta0bs	a numeric value presenting air temperaturein [degree C]
met	a numeric value presenting metabolic rate (activity related) in [met]
rh	a numeric value presenting realtive humidity in [%]
deltaT	a numeric value presenting the resolution of the matrix to be used
fBasMet	a string presenting the method of calculating basal metholic rate. Needs to be one of "rosa", "harris", "miflin", or "fixed". Fixed will result in the value of 58.2 W/m2.
fSA	a string presenting the method of calculating the surface area. Needs to be one of "duBois" or "mosteller".
percCov	a numeric value between 0 and 1 presenting the percentage of the body covered by clothes in [%]

TcMin	a numeric value presenting the minimum allowed core temperature in [degree C].
ТсМах	a numeric value presenting the maximum allowed core temperature in [degree C].
plotZone	a boolean variable TRUE or FALSE stating, wether TNZ should be plotted or not.

Details

The percentage of the body covered by clothes can be estimated e.g. based on ISO 9920 Appendix H (Figure H.1). A typical winter case leads to a value of around .86, in the summer case this goes down to values around .68.

Value

calcdTNZ returns a dataframe with the columns dTNZ, dTNZTs, dTNZTa. Thereby dTNZ The absolute distance to the centroid of the thermoneutral zone dTNZTs Relative value of distance assuming skin temperature to be dominant for sensation dTNZTa Relative value of distance assuming ambient temperature to be dominant for sensation

Note

This function was used in earlier versions of TNZ calculation (see references above). The newest version is calcTNZPDF. In case one of the variables is not given, a standard value will be taken from a list (see createCond for details.

Author(s)

Marcel Schweiker and Boris Kingma

References

Kingma, Schweiker, Wagner & van Marken Lichtenbelt Exploring the potential of a biophysical model to understand thermal sensation Proceedings of 9th Windsor Conference: Making Comfort Relevant Cumberland Lodge, Windsor, UK, 2016. Kingma & van Marken Lichtenbelt (2015) <doi:10.1038/nclimate2741> Kingma, Frijns, Schellen & van Marken Lichtenbelt (2014) <doi:10.4161/temp.29702>

See Also

see also calcTNZPDF and calcComfInd

Examples

```
## Calculate all values
calcdTNZ(171, 71, 45, 1, .6, .12, 37.8, 25.3, 1.1, 50)
```

calcepCoeff

Description

The functions calcCOEFF calculate the coefficients necessary for apmv, epmv, apts, and epts based on a given dataset with actual comfort votes. calcapCoeff calculates lambda the adaptive coefficients for apmv, calcepCoeff calculates e the expectancy factor for epmv, calcasCoeff calculates lambda the adaptive coefficients for apts, calcesCoeff calculates e the expectancy factor for epts.

Usage

calcapCoeff(lsCond)
calcepCoeff(lsCond)
calcasCoeff(lsCond)

calcesCoeff(lsCond)

Arguments

a list with vectors for the necessary variables (see details).

Value

calcCOEFF returns the adaptive coefficient lambda or expectancy factor depending on its call.

Note

For calcapCoeff and calcepCoeff, lsCond should contain the following variables: ta, tr, vel, rh, clo, met, wme, asv (see createCond for details). In case one or more of these variables are not included in the list, standard values will be used.

For calcasCoeff and calcesCoeff, lsCond should contain the following variables: ta, tr, vel, rh, clo, met, wme, pb, ltime, ht, wt, asv (see createCond for details). In case one or more of these variables are not included in the list, standard values will be used.

Author(s)

Marcel Schweiker.

References

Coefficients are calculated based on Gao, J.; Wang, Y. and Wargocki, P. Comparative analysis of modified PMV models and set models to predict human thermal sensation in naturally ventilated buildings Building and Environment, 2015, 92, 200-208.

The aPMV concept was introduced by Yao, Li & Liu (2009) <doi:10.1016/j.buildenv.2009.02.014>

The epmv concept was introddeed by Fanger & Toftum (2002) <doi:10.1016/S0378-7788(02)00003-8>

See Also

see also calcaPMV, calcePMV, calcPtsa, calcPtse

Examples

```
## Note. Due to random generated asv values. The values for the coefficients will not be meaningful.
## Create sample data
ta <- 20:24
                 # vector with air temperature values
tr <- ta
                 # vector with radiant temperature values
vel <- rep(.1,5) # vector with air velocities</pre>
rh <- rep(50,5) # vector with relative humidity values
clo <- rep(1.0,5) # vector with clo values
met <- rep(1.1,5) # vector with metabolic rates
asv <- rnorm(5) # vector with actual sensation votes</pre>
lsCond <- as.list(data.frame(ta,tr,vel,rh,clo,met,asv))</pre>
## Calculate coefficients
calcapCoeff(lsCond)
calcepCoeff(lsCond)
calcasCoeff(lsCond)
calcesCoeff(lsCond)
## use coefficients to calculate apmv
lsCond$apCoeff[1] <- calcapCoeff(lsCond)$apCoeff</pre>
calcComfInd(lsCond, request="apmv")
```

calcePMV

Adjusted Predicted Mean Votes with Expectancy Factor

Description

Function to calculate Predicted Mean Votes (PMV) adjusted by the expectancy factor.

Usage

calcePMV(ta, tr, vel, rh, clo = 0.5, met = 1, wme = 0, epCoeff)
ePMV(ta, tr, vel, rh, clo = 0.5, met = 1, wme = 0, epCoeff)
epmv(ta, tr, vel, rh, clo = 0.5, met = 1, wme = 0, epCoeff)

calcePMV

Arguments

ta	a numeric value presenting air temperature in [degree C]
tr	a numeric value presenting mean radiant temperature in [degree C]
vel	a numeric value presenting air velocity in [m/s]
rh	a numeric value presenting relative humidity [%]
clo	a numeric value presenting clothing insulation level in [clo]
met	a numeric value presenting metabolic rate in [met]
wme	a numeric value presenting external work in [met]
epCoeff	expectancy factor e

Details

epCoeff can be derived using calcepCoeff.

calcePMV requires the actual sensation vote related to the physical data as it is required to alter the metabolic rate.

Value

calcePMV returns the predicted mean vote adjusted by the expectancy factor.

Note

In case one of epCoeff is not given, a standard value will be taken from a list (see createCond for details.

Author(s)

Code implemented in to R by Marcel Schweiker. Further contribution by Sophia Mueller and Shoaib Sarwar.

References

epmv is based on Fanger & Toftum (2002) <doi:10.1016/S0378-7788(02)00003-8>

See Also

calcComfInd, calcepCoeff

Examples

```
asv <- rnorm(5)  # vector with actual sensation votes
lsCond <- as.list(data.frame(ta,tr,vel,rh,clo,met,asv))
## Calculate coefficient epCoeff for data set
epCoeff <- calcepCoeff(lsCond)
## calculate epmv
epmv <- NULL
for (i in 1:length(ta)){
  epmv[i] <- calcePMV(ta[i], tr[i], vel[i], rh[i], clo[i], met[i], epCoeff = epCoeff)$epmv}
epmv
```

calcET

Effective Temperature based on the 2-Node-Model

Description

calcET calculates Effective temperature based on the 2-Node-Model by Gagge et al.

Usage

calcET(ta, tr, vel, rh, clo = 0.5, met = 1, wme = 0, pb = 760, ltime = 60, ht = 171,wt = 70, tu = 40, obj = "set", csw = 170, cdil = 120, cstr = 0.5)

Arguments

ta	a numeric value presenting air temperature in [degree C]
tr	a numeric value presenting mean radiant temperature in [degree C]
vel	a numeric value presenting air velocity in [m/s]
rh	a numeric value presenting relative humidity [%]
clo	a numeric value presenting clothing insulation level in [clo]
met	a numeric value presenting metabolic rate in [met]
wme	a numeric value presenting external work in [met]
pb	a numeric value presenting barometric pressure in [torr] or [mmHg]
ltime	a numeric value presenting exposure time in [minutes]
ht	a numeric value presenting body height in [cm]
wt	a numeric value presenting body weight in [kg]
tu	a numeric value presenting turbulence intensity in [%]
obj	a character element, either "set" or "pmvadj"
CSW	a numeric value presenting the driving coefficient for regulatory sweating
cdil	a numeric value presenting the driving coefficient for vasodilation
cstr	a numeric value presenting the driving coefficient for vasoconstriction

calcET

Details

All variables must have the same length 1. For the calculation of several values use function calcComfInd. The value of obj defines whether the function will use the version presented in ASHRAE 55-2013 for adjustment of pmv (obj = "pmvadj"), or the original code by Gagge to calculate set (obj = "set"). In the version presented in ASHRAE 55-2013, the lines of code related to self-generated convection is deleted. Therefore, a difference can only be seen at higher values of met.

Value

calcET returns the Effective temperature

Note

In case one of the variables is not given, a standard value will be taken from a list (see createCond for details).

Author(s)

The code for calc2Node is based on the code in BASIC and C++ presented by Fountain and Huizenga (1995). The translation into R-language and comparison with ASHRAE 55-2013 conducted by Marcel Schweiker.

References

ASHRAE Standard 55-2013. Thermal environmental conditions for human occupancy. American society of heating, Refrigerating and Air-Conditioning Engineering, Atlanta, USA, 2013.

Fountain & Huizenga (1995) A thermal sensation model for use by the engineering profession ASHRAE RP-781 Final report.

Gagge, Fobelets & Berglund (1986) A standard predictive index of human response to the thermal environment, ASHRAE transactions, 92 (2B), 709-731.

See Also

see also calcComfInd

Examples

```
## Using several rows of data:
ta <- c(20,22,24)
tr <- ta
vel <- rep(.15,3)
rh <- rep(50,3)
maxLength <- max(sapply(list(ta, tr, vel, rh), length))</pre>
```

calcHbExSteady

Description

calcHbExSteady calculates the human body exergy consumption rate in W/m^2 using steady state method based on a set of environmental variables.

Usage

```
calcHbExSteady(ta, tr, rh, vel, clo, met, tao, rho, frad = 0.7, eps = 0.95,
ic = 1.085, ht = 171, wt = 70, tcr = 37, tsk = 36, basMet = 58.2, warmUp = 60,
cdil = 100, sigmatr = 0.25)
```

ta	a numeric value presenting air temperature in [degree C]
tr	a numeric value presenting mean radiant temperature in [degree C]
rh	a numeric value presenting relative humidity [%]
vel	a numeric value presenting air velocity in [m/s]
clo	a numeric value presenting clothing insulation level in [clo]
met	a numeric value presenting metabolic rate in [met]
tao	a numeric value presenting outdoor air temperature in [degree C]
rho	a numeric value presenting outdoor relative humidity [%]
frad	a numeric value presenting the fraction of body exposed to radiation 0.7(for seating), 0.73 (for standing) [-]
eps	a numeric value presenting emissivity [-]
ic	a numeric value presenting permeability of clothing: 1.084 (average permeabil- ity), 0.4 (low permeability)
ht	a numeric value presenting body height in [cm]
wt	a numeric value presenting body weight in [kg]
tcr	a numeric value presenting initial value for core temperature in [degree C]
tsk	a numeric value presenting initial value for skin temperature in [degree C]
basMet	a numeric value presenting basal metabolic rate in [met]
warmUp	a numeric value presenting length of warm up period, i.e. number of times, loop is running for HBx calculation
cdil	a numeric value presenting value for cdil in 2-node model of Gagge
sigmatr	a numeric value presenting value for cdil in 2-node model of Gagge

calcHbExSteady

Value

Returns a data.frame with the following columns

Exergy input

xInmets Exergy input through metabolism [W/m2] xInmetwcs Label warm/ cold for exergy input through metabolism [W/m2] xInAIRwcs Exergy input through inhaled humid air [W/m2] xInAIRwcwcs Label warm/ cold for exergy input through inhaled humid air [W/m2] xInAIRwds Exergy input through inhaled dry air [W/m2] xInAIRwdwds Label wet/ dry for exergy input through inhaled dry air [W/m2] xInLUNGwcs Exergy input through water lung [W/m2] xInLUNGwcwcs Label warm/ cold for exergy input through water lung [W/m2] xInLUNGwds Exergy input through water lung [W/m2] xInLUNGwdwds Label wet/ dry for exergy input through water lung [W/m2] xInsheLLwcs Exergy input through water from sweat [W/m2] xInsheLLwcwcs Label warm/ cold for exergy input through water from sweat [W/m2] xInsheLLwds Exergy input through water from sweat [W/m2] xInsheLLwdwds Label wet/ dry for exergy input through water from sweat [W/m2] xInraDs Exergy input through radiation [W/m2] xInraDwcs Label warm/ cold for exergy input through radiation [W/m2] xIntotaLs total exergy input [W/m2]

Exergy output

xoutstorecores Exergy stored in core [W/m2] xoutstoreshels Exergy stored in shell [W/m2] xoutaIRwcs Exergy output through exhaled humid air [W/m2] xoutaIRwcwcs Label warm/ cold for exergy output through exhaled humid air [W/m2] xoutaIRwdws Exergy output through exhaled dry air [W/m2] xoutaIRwdwds Label wet/ dry for exergy output through exhaled dry air [W/m2] xoutswEATwcs Exergy output through water vapour from sweat [W/m2] xoutswEATwcs Label warm/ cold for exergy output through water vapour from sweat [W/m2] xoutswEATwcs Label warm/ cold for exergy output through water vapour from sweat [W/m2] xoutswEATwds Exergy output through water vapour from sweat [W/m2] xoutswEATwds Label wet/ dry for exergy output through water vapour from sweat [W/m2] xoutraDs Exergy output through radiation [W/m2] xoutraDwcs Label warm/ cold for exergy output through radiation [W/m2] xoutCONVs Exergy output through convection [W/m2] xoutCONVwcs Label warm/ cold for exergy output through convection [W/m2] xouttotaLs total exergy output [W/m2]

Exergy balance xconss total exergy consumption [W/m2] xConsumption total exergy consumption [W/m2]

Additional values

tsks Calculated skin temperature [degree C] tcrs Calculated core temperature [degree C]

ws Calculated skin wettedness [degree C]

According to Gagge's paper (1973), the value of 'cdil' may vary between 75 and 225 and 'sigma-tr' between 0.25 and 0.75. There is a note in the appendix of his paper saying two things: 1) whatever the values taken for cdil and sigma-tr, there must be no significant change in resulting thermal equilibrium. But, the values taken for cdil and sigmaTr do affect time to equilibrium. According to the analysis of Schweiker et al. (2016), the values of 100 and .25 lead to the best fit of calculated and observed skin temperature.

Author(s)

This function is based on a VBA code developed by Masanori Shukuya. transformation of VBAcode and Excel procedures into R syntax by Marcel Schweiker.

References

Schweiker, Kolarik, Dovjak & Shukuya (2016) <doi:10.1016/j.enbuild.2016.01.002>

Shukuya (2015) Calculation of human body-core and skin-layer temperatures under unsteadystate conditions-for unsteady-state human-body exergy analysis-, internal report of exergy-research group, Tech. rep.

See Also

see also calcComfInd, calcHbExUnsteady

Examples

```
## Calculation of human body exergy consumption rate
calcHbExSteady(22, 24, 50, .1, .8, 1.2, 5, 80)
## Calculation of multiple values
dfData <- data.frame(ta=c(20:25), tr=c(20:25))
dfResult <- calcHbExSteady(22, 24, 50, .1, .8, 1.2, 5, 80)
for(i in 1:nrow(dfData)){
dfResult[i,] <- calcHbExSteady(dfData$ta[i], dfData$tr[i], 50, .1, .5, 1.1, 5, 80)
}
```

calcHbExUnsteady Human Body Exergy Consumption Rate using Unsteady State Method

Description

calcHbExUnsteady Function calculates the human body exergy consumPtion rate using unsteady state method based on a series of environmental variables.

Usage

```
calcHbExUnsteady(ta, tr, rh, vel, clo, met, tao, rho, frad = 0.7,
eps = 0.95, ic = 1.085, ht = 171, wt = 70, tcr = 37, tsk = 36, basMet = 58.2,
warmUp = 60, cdil = 100, sigmatr = 0.25, dateTime)
```

30

Note

Arguments

ta	a numeric value presenting air temperature in [degree C]
tr	a numeric value presenting mean radiant temperature in [degree C]
rh	a numeric value presenting relative humidity [%]
vel	a numeric value presenting air velocity in [m/s]
clo	a numeric value presenting clothing insulation level in [clo]
met	a numeric value presenting metabolic rate in [met]
tao	a numeric vector presenting outdoor air temperature in [degree C]
rho	numeric vector presenting outdoor relative humidity [%]
frad	a numeric vector presenting the fraction of body exposed to radiation 0.7 (for seating), 0.73 (for standing) [-]
eps	a numeric vector presenting emissivity [-]
ic	a numeric vector presenting permeability of clothing: 1.084 (average permeability), 0.4 (low permeability)
ht	a numeric vector presenting body height in [cm]
wt	a numeric vector presenting body weight in [kg]
tcr	a numeric vector presenting initial value for core temperature in [degree C]
tsk	a numeric vector presenting initial value for skin temperature in [degree C]
basMet	a numeric vector presenting basal metabolic rate in [met]
warmUp	a numeric vector presenting length of warm up period, i.e. number of times, loop is running for HBx calculation.
cdil	a numeric vector presenting value for cdil in 2-node model of Gagge
sigmatr	a numeric vector presenting value for cdil in 2-node model of Gagge.
dateTime	a POsIxct vector of the times of measurement.

Details

This function requires vectors of data including the corresponding time stamp. In case the time between two measurements is more than a minute, intermediate values are interpolated.

Value

Returns a data.frame with the following columns. Exergy input

xInmetwcu Label warm/ cold for exergy input through metabolism	
xInAIRwcu Exergy input through inhaled humid air	
xInAIRwcwcu Label warm/ cold for exergy input through inhaled humid	air
xInAIRwdu Exergy input through inhaled dry air	
xInAIRwdwdu Label wet/ dry for exergy input through inhaled dry air	
xInLUNGwcu Exergy input through water lung	

xInLUNGwcwcu	Label warm/ cold for exergy input through water lung
xInLUNGwdu	Exergy input through water lung
xInLUNGwdwdu	Label wet/ dry for exergy input through water lung
xInsheLLwcu	Exergy input through water from sweat
xInsheLLwcwcu	Label warm/ cold for exergy input through water from sweat
xInsheLLwdu	Exergy input through water from sweat
xInsheLLwdwdu	Label wet/ dry for exergy input through water from sweat
xInraDu	Exergy input through radiation
xInraDwcu	Label warm/ cold for exergy input through radiation
xIntotaLu	total exergy input
Exergy output	
xoutstorecoreu	
	Exergy stored in core
xoutstoreshelu	Every stored in shell
voutaTRwou	Every output through exhaled humid air
xoutaIRwcwcu	Label warm/ cold for every output through exhaled humid air
xoutaIRwdu	Exercise output through exhaled dry air
xoutaIRwdwdu	Label wet/ dry for exercise output through exhaled dry air
xoutswFATwcu	Exercise output through water vanour from sweat
xoutswEATwcwcu	Excigy output through which support from sweat
	Label warm/ cold for exergy output through water vapour from sweat
xoutswEATwdu	Exergy output through water vapour from sweat
xoutswEATwdwdu	
	Label wet/ dry for exergy output through water vapour from sweat
xoutraDu	Exergy output through radiation
xoutraDwcu	Label warm/ cold for exergy output through radiation
xoutCONVu	Exergy output through convection
xoutCONVwcu	Label warm/ cold for exergy output through convection
xouttotaLu	total exergy output
Exergy balance	
xconsu	total exergy consumPtion
Additional values	
tsku	Calculated skin temperature
tcru	Calculated core temperature
wu	Calculated skin wettedness

calcIREQ

Note

According to Gagge's paper (1973), the value of 'cdil' may vary between 75 and 225 and 'sigma-tr' between 0.25 and 0.75. There is a note in the appendix of his paper saying two things: 1) whatever the values taken for cdil and sigma-tr, there must be no significant change in resulting thermal equilibrium. But, the values taken for cdil and sigmaTr do affect time to equilibrium. According to the analysis of schweiker et al. (2015), the values of 100 and .25 lead to the best fit of calculated and observed skin temperature.

Author(s)

This function is based on a VBA code developed by masanori Shukuya. transformation of VBAcode and Excel procedures into R syntax by Marcel Schweiker.

References

Schweiker, Kolarik, Dovjak & Shukuya (2016) <doi:10.1016/j.enbuild.2016.01.002>

Shukuya (2015) Calculation of human body-core and skin-layer temperatures under unsteadystate conditions-for unsteady-state human-body exergy analysis-, internal report of exergy-research group, Tech. rep.

See Also

see also calcComfInd

Examples

```
## Define environmental parameters
ta <- seq(20,25,.1)
tr <- ta
rh <- rep(50, length(ta))
vel <- rep(.1, length(ta))
clo <- rep(.8, length(ta))
met <- rep(1.2, length(ta))
tao <- rep(5, length(ta))
rho <- rep(80, length(ta))
dateTime <- as.POSIXct(seq(0,by=60,length.out=length(ta)), origin="1970-01-01")
## Calculation of human body exergy consumPtion rate
calcHbExUnsteady(ta, tr, rh, vel, clo, met, tao, rho, dateTime = dateTime)$xconsu
```

calcIREQ

IREQ and Dlim

Description

Calculate minimal and neutral values of REQUIRED CLOTHING INSULATION (IREQ) and DU-RATION LIMITED EXPOSURE (Dlim).

Usage

calcIREQ(M,W,ta,tr,p,w,v,rh,clo)

Arguments

Μ	a numeric value presenting metabolic energy production (58 to 400 W/m2) in $\ensuremath{\left[\text{W/m2}\right]}$
W	a numeric value presenting Rate of mechanical work, (normally 0) in [W/m2]
ta	a numeric value presenting ambiant air temperature in [degree C]
tr	a numeric value presenting mean radiant temperature in [degree C]
р	a numeric value presenting air permeability (low < 5, medium 50, high > 100 l/m2s) in [l/m2s]
W	a numeric value presenting walking speed (or calculated work created air movements) in $[m/s]$
v	a numeric value presenting relative air velocity(0.4 to 18 m/s) in [m/s]
rh	a numeric value presenting relative humidity [%]
clo	a numeric value presenting clothing insulation level in [clo]

Details

The function gives IREQ Insulation of clothing required to maintain thermal equilibrium of the body at specified levels of physiological stress.

Value

calcIREQ returns

IREQminimal	Lower bound of insulation required in [clo]
IREQneutral	Upper bound of insulation required in [clo]
ICLminimal	Lower bound of REQUIRED basic clothing insulation (ISO 9920) in [clo]
ICLneutral	Upper bound of REQUIRED basic clothing insulation (ISO 9920) in [clo]
DLEminimal	Lower bound of duration limited exposure in [hours]
DLEneutral	upper bound of duration limited exposure in [hours]

Note

The authors disclaim all obligations and liabilities for damages arising from the use or attempted use of the information, including, but not limited to, direct, indirect, special and consequential damages, and attorneys' and experts' fees and court costs. Any use of the information will be at the risk of the user.

Author(s)

Developed by Ingvar Holmer and Hakan O. Nilsson, 1990 in java and transferred to R by Shoaib Sarwar. Further contribution by Marcel Schweiker.

calcIso7933

References

ISO 11079, 2007-12-15, ERGONOMICS OF THE THERMAL ENVIRONMENT - DETERMINA-TION AND INTERPRETATION OF COLD STRESS WHEN USING REQUIRED CLOTHING INSULATION (IREQ) AND LOCAL COOLING EFFECTS

Examples

calcIREQ(116,0,-15,-15,8,0.3,0.4,85,2.5)

calcIso7933

Heat Strain Indices based on ISO 7933

Description

calcIS07933 calculates Tre, SWtotg, Dlimtre, Dlimloss50 and Dlimloss95 based on ISO 7933. It additionally provides intermediate results from the calculation: Cres, Eres, Ep, SWp, Texp, Tskeq, Tsk, wp

Usage

calcIso7933(accl, posture, Ta, Pa, Tr, Va, Met, Icl, THETA, Walksp, Duration, weight, height, DRINK, Adu, spHeat, SWp, Tre, Tcr, Tsk, Tcreq, Work, imst, Ap, Fr, defspeed, defdir, HR, pb)

accl	a numeric value presenting state of acclimation [100 if acclimatised subject, 0 otherwise]
posture	a numeric value presenting posture of person [sitting=1, standing=2, crouching=3]
Та	a numeric value presenting air temperature in [degrees celsius]
Ра	a numeric value presenting partial water vapour pressure [kPa]
Tr	a numeric value presenting mean radiant temperature in [degrees celsius]
Va	a numeric value presenting air velocity in [m/s]
Met	a numeric value presenting metabolic rate in [W/(m*m)]
Icl	a numeric value presenting static thermal insulation of clothing [clo]
THETA	a numeric value presenting angle between walking direction and wind direction in [degrees]
Walksp	a numeric value presenting walking speed in [m/s]
Duration	a numeric value presenting the duration of the work sequence in [min]
weight	a numeric value presenting the body mass in [kg]
height	a numeric value presenting the body height in [m]

a numeric value presenting if workers can drink as they want [1 if they can drink without restriction, 0 if restricted]
a numeric value presenting body surface area according to Du Bois [m*m]
a numeric value presenting specific body heat [(W/(m*m))/K]
a numeric value presenting predicted sweat rate [W/(m*m)]
a numeric value presenting rectal temperature [degrees celsius]
a numeric value presenting temperature of body core [degrees celsius]
a numeric value presenting skin temperature at start [degrees celsius]
a numeric value presenting temperature of body core dependent on energy metabolism [degrees celsius]
a numeric value presenting effective mechanical power [W/(m*m)]
a numeric value presenting static moisture permeability index [-]
a numeric value presenting fraction of the body surface covered by the reflective clothing [-]
a numeric value presenting emissivity of the reflective clothing [-]
a numeric value presenting if walking speed entered [1 if walking speed entered, 0 otherwise]
a numeric value presenting if walking direction entered [1 if walking direction entered, 0 otherwise]
a numeric value presenting humidity ratio [g/kg]
a numeric value presenting normal barometric pressure in [Pa]

Details

All variables must have the same length 1.

Value

calcIS07933 returns a data.frame with the following items:

Tre final rectal temperature [degrees Celsius]

SWtotg total water loss [g]

Dlimtre time when limit for rectal temperature is reached [min]

Dlimloss50 time when limit for water loss Dmax50 (7.5 percent of body mass of an average person) is reached [min]

Dlimloss95 time when limit for water loss Dmax95 (5 percent of body mass of 95 percent of the working people) is reached [min]

Cres convective heat flow at respiration [W/(m*m)]
calcIso7933

Eres evaporative heat flow at respiration [W/(m*m)]

Ep predicted evaporative heat flow [W/(m*m)]

SWp predicted sweating rate $[W/(m^*m)]$

Texp temperature of the exhaled air [degrees Celsius]

Tskeq skin Temperature in equilibrium [degrees Celsius]

Tsk skin Temperature at the minute [degrees Celsius]

wp predicted skin wettedness [-]

Note

In case one of the variables is not given, a standard value according to ISO 7933 will be taken.

Author(s)

The code for calcISO7933 is based on the code in BASIC presented in Addendum E of EN ISO 7933. The translation into R-language conducted by Michael Kleber.

References

ISO 7933 (2004) Ergonomics of the thermal environment - Analytical determination and interpretation of heat stress using calculation of the predicted heat strain Malchaire, Piette, Kampmann, Mehnert, Gebhardt, Havenith, Den Hartog, Holmer, Parsons, Alfano, Griefahn (2000) <doi:10.1016/S0003-4878(00)00030-2> Malchaire, Kampmann, Havenith, Mehnert, Gebhardt (2000) <doi:10.1007/s004200050420>

Examples

```
## Calculation of a single set of values.
calcIso7933(accl = 100, posture = 2, Ta = 35, Pa = 4, Tr = 35, Va = 0.3, Met = 150,
Icl = 0.5, THETA = 0, Walksp = 0, Duration = 480)
calcIso7933(100,2,35,4,35,0.3,150,0.5,0,0,480)
## Using several rows of data:
accl <- 100
posture <- 2
Ta <- c(40, 35)
Pa <- c(2.5,4)
Tr <- c(40,35)
Va <- 0.3
Met <- 150
Icl <- 0.5
THETA <- 0
Walksp <- 0
Duration <- 480
maxLength <- max(sapply(list(accl, posture, Ta, Pa, Tr, Va, Met, Icl, THETA,</pre>
Walksp, Duration), length))
```

```
PHI <- sapply(seq(maxLength), function(x) {calcIso7933(accl, posture, Ta[x],
Pa[x], Tr[x], Va, Met, Icl, THETA, Walksp, Duration) } )
```

calcMixR

Various Humidity Related Values

Description

This set of functions calculates different humidity related values based on the given entities.

Usage

calcDewp(ta, rh)
calcEnth(ta, rh, pb)
calcHumx(ta, rh)
calcMixR(ta, rh, pb)
calcRH(ta, mr, pb)
calcSVP(ta)
calcVP(ta, mr, pb)
calcVapourpressure(ta, rh)

Arguments

ta	a numeric value or vector presenting air temperature in [degree C].
rh	a numeric value or vector presenting relative humidity in [%], except for calcVapourpressure, where it must be in decimal (e.g. 0.5).
pb	a numeric value or vector presenting barometric pressure in [torr].
mr	a numeric value or vector presenting the mixIng ratio in [g/kg.

Details

The length of the arguments must be either the same or they must have the length one and one common second length.

calcMixR

Value

calcDewp returns the dew point temperature in [degree C] calcEnth returns a single value or a vector of values of enthalpy in [J] calcHumx returns a single value or a vector of values of the humidex of air [] calcMixR returns a single value or a vector of mixIng ratio in [g/kg] calcRH returns a single value or a vector of relative humidities in [%] calcSVP returns a single value or a vector of saturation vapor pressure in [kpa] calcVP returns a single value or a vector of vapor pressure in [kpa]

Author(s)

Michael Kleber (code and documentation), Marcel Schweiker (documentation).

References

Ranaa, Kusya, Jurdaka, Wallb & Hua (2013) <doi:10.1016/j.enbuild.2013.04.019>

Masterton & Richardson (1979) Humidex a method of quantifying humandiscomfort due to excessive heat and humidity, clI 1-79. Downsview, Ont: Environment Canada. Atmosheric Environment Service.

Examples

```
## Calc single value of absolute humidity
ta <- 25
rh <- 50
calcMixR(ta, rh, 760)
## Calc set of values of absolute humidity
ta <- 25:30
rh <- 50
calcMixR(ta, rh, 760)
## Calculating dew point temperature with single values for ta and rh
calcDewp(25, 50)
## Calculating dew point temperature with a vector of values for ta and a single value for rh
calcDewp(25:29, 50)
## Calc single value of enthalpy
ta <- 25
rh <- 50
calcEnth(ta, rh, 760)
## Calc set of values of enthalpy
ta <- 25:30
rh <- 50
calcEnth(ta, rh, 760)
```

calcMRT

Description

calcMRT calculates the mean radiant temperature considering mixed convection

Usage

calcMRT(tg, ta, vel, x = 0.15)

Arguments

tg	- a numeric value presenting globe temperature in [degree C]
ta	- a numeric value presenting air temperature in [degree C]
vel	- a numeric value presenting air velocity in [m/s]
x	- a numeric value presenting globe diamter in [m]

Details

aliases MRT

This model has only been validated from x = 0.040m (ping pong ball) to

x = 0.150m (standard globe thermometer) globes

Value

calcMRT MRT with standard and mixed correction

Author(s)

code implementedc into R by Shaomi Rahman and Marcel Schweiker.

References

Teitelbaum et al. (2022) <10.1038/s41598-022-10172-5>

Examples

```
#Globe temperature [C]
tg <- 30
#Air temperature [C]
ta <- 24
#Air speed [m/s]
vel <- 0.0
calcMRT(tg, ta, vel)</pre>
```

calcPD

Predicted Percentage Dissatisfied due to Draft based on the 2-Node-Model

Description

calcPD calculates Predicted Percentage Dissatisfied due to Draft based on the 2-Node-Model by Gagge et al.

Usage

calcPD(ta,	tr,	vel,	rh,	clo	= 0.	5, me	et =	1,	wme	= 6	ð, pb	=	760,	ltime	=	60,
ht = 171,	wt =	70,	tu =	40,	obj :	= "se	et",	CSW	v = 1	170,	, cdi]	L =	: 120,	cstr	=	0.5)

Arguments

ta	a numeric value presenting air temperature in [degree C]
tr	a numeric value presenting mean radiant temperature in [degree C]
vel	a numeric value presenting air velocity in [m/s]
rh	a numeric value presenting relative humidity [%]
clo	a numeric value presenting clothing insulation level in [clo]
met	a numeric value presenting metabolic rate in [met]
wme	a numeric value presenting external work in [met]
pb	a numeric value presenting barometric pressure in [torr] or [mmHg]
ltime	a numeric value presenting exposure time in [minutes]
ht	a numeric value presenting body height in [cm]
wt	a numeric value presenting body weight in [kg]
tu	a numeric value presenting turbulence intensity in [%]
obj	a character element, either "set" or "pmvadj"
CSW	a numeric value presenting the driving coefficient for regulatory sweating
cdil	a numeric value presenting the driving coefficient for vasodilation
cstr	a numeric value presenting the driving coefficient for vasoconstriction

Details

All variables must have the same length 1. For the calculation of several values use function calcComfInd. The value of obj defines whether the function will use the version presented in ASHRAE 55-2013 for adjustment of pmv (obj = "pmvadj"), or the original code by Gagge to calculate set (obj = "set"). In the version presented in ASHRAE 55-2013, the lines of code related to self-generated convection is deleted. Therefore, a difference can only be seen at higher values of met.

Value

calcPD returns the Predicted Percentage Dissatisfied due to Draft

Note

In case one of the variables is not given, a standard value will be taken from a list (see createCond for details).

Author(s)

The code for calc2Node is based on the code in BASIC and C++ presented by Fountain and Huizenga (1995). The translation into R-language and comparison with ASHRAE 55-2013 conducted by Marcel Schweiker.

References

ASHRAE Standard 55-2013. Thermal environmental conditions for human occupancy. American society of heating, Refrigerating and Air-Conditioning Engineering, Atlanta, USA, 2013.

Fountain & Huizenga (1995) A thermal sensation model for use by the engineering profession ASHRAE RP-781 Final report.

Gagge, Fobelets & Berglund (1986) A standard predictive index of human response to the thermal environment, ASHRAE transactions, 92 (2B), 709-731.

See Also

see also calcComfInd

Examples

```
## Using several rows of data:
ta <- c(20,22,24)
tr <- ta
vel <- rep(.15,3)
rh <- rep(50,3)</pre>
```

```
maxLength <- max(sapply(list(ta, tr, vel, rh), length))
pd <- sapply(seq(maxLength), function(x) { calcPD(ta[x], tr[x], vel[x], rh[x]) } )</pre>
```

calcPMV

Predicted Mean Votes (PMV)

Description

Function to calculate Predicted Mean Vote (PMV).

Usage

```
calcPMV(ta, tr, vel, rh, clo=.5, met=1, wme=0, basMet=58.15)
```

calcPMV

Arguments

ta	a numeric value presenting air temperature in [degree C]
tr	a numeric value presenting mean radiant temperature in [degree C]
vel	a numeric value presenting air velocity in [m/s]
rh	a numeric value presenting relative humidity [%]
clo	a numeric value presenting clothing insulation level in [clo]
met	a numeric value presenting metabolic rate in [met]
wme	a numeric value presenting external work in [met]
basMet	a numeric value presenting basal metabolic rate [w/m2]

Details

The PMV is an index that predicts the mean value of the thermal sensation of a large group of people on a sensation scale expressed from (-3) to (+3) corresponding to the categories cold, cool, slightly cool, neutral, slightly warm, warm and hot. PMV model is limited to air speeds below 0.20 m/s.

Note that the adjustments in the value for basMet need to be made with great cautiousness as the PMV calculation is an empirical model and might not be valid for other values of basMet than the one commonly used.

Value

PMV - Predicted Mean Vote

Author(s)

Code implemented in to R by Marcel Schweiker. Further contribution by Sophia Mueller and Shoaib Sarwar.

References

Fanger (1970) Thermal Comfort Analysis and Applications in Environmental Engineering McGraw-Hill, New York.

ISO 7730 (2005) Ergonomics of the thermal environment analytical determination and interpretation of thermal comfort using calculation of the pmv and ppd indices and local thermal comfort criteria.

Examples

calcPMV(25,25,0.3,50,0.5,1)

calcPMVadj

Description

Function to calculate Predicted Mean Votes (PMV) adjusted for cooling effect of elevated air speed.

Usage

calcPMVadj(ta, tr, vel, rh, clo, met, wme = 0)

Arguments

ta	a numeric value presenting air temperature in [degree C]
tr	a numeric value presenting mean radiant temperature in [degree C]
vel	a numeric value presenting air velocity in [m/s]
rh	a numeric value presenting relative humidity [%]
clo	a numeric value presenting clothing insulation level in [clo]
met	a numeric value presenting metabolic rate in [met]
wme	a numeric value presenting external work in [met]

Details

Calculated through function Two node model(calc2Node

Value

calcpmvadj returns the predicted mean vote adjusted for the cooling effect of elevated air speed.

Author(s)

Code implemented in to R by Marcel Schweiker. Further contribution by Sophia Mueller and Shoaib Sarwar.

References

pmvadj is based on ASHRAE standard 55-2013. Thermal environmental conditions for human occupancy. American society of heating, Refrigerating and Air-Conditioning Engineering, Atlanta, USA, 2013.

Examples

calcPMVadj(25,25,0.3,50,0.5,1)

calcPMVGagge

Description

calcPMVGagge calculates Gagge's Version of Fanger's PMV based on the 2-Node-Model by Gagge et al.

Usage

```
calcPMVGagge(ta, tr, vel, rh, clo = 0.5, met = 1, wme = 0, pb = 760,
ltime = 60, ht = 171, wt = 70, tu = 40, obj = "set", csw = 170, cdil = 120,
cstr = 0.5)
```

Arguments

ta	a numeric value presenting air temperature in [degree C]
tr	a numeric value presenting mean radiant temperature in [degree C]
vel	a numeric value presenting air velocity in [m/s]
rh	a numeric value presenting relative humidity [%]
clo	a numeric value presenting clothing insulation level in [clo]
met	a numeric value presenting metabolic rate in [met]
wme	a numeric value presenting external work in [met]
pb	a numeric value presenting barometric pressure in [torr] or [mmHg]
ltime	a numeric value presenting exposure time in [minutes]
ht	a numeric value presenting body height in [cm]
wt	a numeric value presenting body weight in [kg]
tu	a numeric value presenting turbulence intensity in [%]
obj	a character element, either "set" or "pmvadj"
CSW	a numeric value presenting the driving coefficient for regulatory sweating
cdil	a numeric value presenting the driving coefficient for vasodilation
cstr	a numeric value presenting the driving coefficient for vasoconstriction

Details

All variables must have the same length 1. For the calculation of several values use function calcComfInd. The value of obj defines whether the function will use the version presented in ASHRAE 55-2013 for adjustment of pmv (obj = "pmvadj"), or the original code by Gagge to calculate set (obj = "set"). In the version presented in ASHRAE 55-2013, the lines of code related to self-generated convection is deleted. Therefore, a difference can only be seen at higher values of met.

Value

calcPMVGagge returns Gagge's Version of Fanger's PMV

Note

In case one of the variables is not given, a standard value will be taken from a list (see createCond for details).

Author(s)

The code for calc2Node is based on the code in BASIC and C++ presented by Fountain and Huizenga (1995). The translation into R-language and comparison with ASHRAE 55-2013 conducted by Marcel Schweiker.

References

ASHRAE Standard 55-2013. Thermal environmental conditions for human occupancy. American society of heating, Refrigerating and Air-Conditioning Engineering, Atlanta, USA, 2013.

Fountain & Huizenga (1995) A thermal sensation model for use by the engineering profession ASHRAE RP-781 Final report.

Gagge, Fobelets & Berglund (1986) A standard predictive index of human response to the thermal environment, ASHRAE transactions, 92 (2B), 709-731.

See Also

see also calcComfInd

Examples

```
## Using several rows of data:
ta <- c(20,22,24)
tr <- ta
vel <- rep(.15,3)
rh <- rep(50,3)</pre>
```

```
maxLength <- max(sapply(list(ta, tr, vel, rh), length))
pmvg <- sapply(seq(maxLength), function(x) { calcPMVGagge(ta[x], tr[x], vel[x], rh[x]) } )</pre>
```

calcPMVPPD

```
PMV and PPD
```

Description

Function to calculate Predicted Mean Vote (PMV) and Predicted Percentage of Dissatisfied (PPD).

Usage

calcPMVPPD(ta, tr, vel, rh, clo=.5, met=1, wme=0, basMet=58.15, getLoad = FALSE)

46

calcPMVPPD

Arguments

a numeric value presenting air temperature in [degree C]
a numeric value presenting mean radiant temperature in [degree C]
a numeric value presenting air velocity in [m/s]
a numeric value presenting relative humidity [%]
a numeric value presenting clothing insulation level in [clo]
a numeric value presenting metabolic rate in [met]
a numeric value presenting external work in [met]
a numeric value presenting basal metabolic rate [w/m2]
a boolean value. Set to true to get thermal load as output instead of PMV/PPD

Details

The PMV is an index that predicts the mean value of the thermal sensation of a large group of people on a sensation scale expressed from (-3) to (+3) corresponding to the categories cold, cool, slightly cool, neutral, slightly warm, warm and hot. The PPD is an index that establishes a quantitative prediction of the percentage of thermally dissatisfied people determined from PMV.

Note that the adjustments in the value for basMet need to be made with great cautiousness as the PMV calculation is an empirical model and might not be valid for other values of basMet than the one commonly used.

Value

PMV - Predicted Mean Vote

PPD - Predicted Percentage of Dissatisfied occupants in [%]

Lraw - thermal load (only when getLoad was set to TRUE)

Author(s)

Code implemented in to R by Marcel Schweiker. Further contribution by Sophia Mueller and Shoaib Sarwar.

References

Fanger (1970) Thermal Comfort Analysis and Applications in Environmental Engineering McGraw-Hill, New York.

ISO 7730 Ergonomics of the thermal environment analytical determination and interpretation of thermal comfort using calculation of the pmv and ppd indices and local thermal comfort criteria 2005.

See Also

see also calcComfInd

Examples

calcPMVPPD(25,25,0.3,50,0.5,1)

```
calcPMVStar
```

Description

calcPMVStar calculates Fanger's PMV based on the 2-Node-Model by Gagge et al. except that DRY is calculated using SET* rather than the operative temperature

Usage

```
calcPMVStar(ta, tr, vel, rh, clo = 0.5, met = 1, wme = 0, pb = 760,
ltime = 60, ht = 171, wt = 70, tu = 40, obj = "set", csw = 170, cdil = 120,
cstr = 0.5)
```

Arguments

ta	a numeric value presenting air temperature in [degree C]
tr	a numeric value presenting mean radiant temperature in [degree C]
vel	a numeric value presenting air velocity in [m/s]
rh	a numeric value presenting relative humidity [%]
clo	a numeric value presenting clothing insulation level in [clo]
met	a numeric value presenting metabolic rate in [met]
wme	a numeric value presenting external work in [met]
pb	a numeric value presenting barometric pressure in [torr] or [mmHg]
ltime	a numeric value presenting exposure time in [minutes]
ht	a numeric value presenting body height in [cm]
wt	a numeric value presenting body weight in [kg]
tu	a numeric value presenting turbulence intensity in [%]
obj	a character element, either "set" or "pmvadj"
CSW	a numeric value presenting the driving coefficient for regulatory sweating
cdil	a numeric value presenting the driving coefficient for vasodilation
cstr	a numeric value presenting the driving coefficient for vasoconstriction

Details

All variables must have the same length 1. For the calculation of several values use function calcComfInd. The value of obj defines whether the function will use the version presented in ASHRAE 55-2013 for adjustment of pmv (obj = "pmvadj"), or the original code by Gagge to calculate set (obj = "set"). In the version presented in ASHRAE 55-2013, the lines of code related to self-generated convection is deleted. Therefore, a difference can only be seen at higher values of met.

calcPPD

Value

calcPMVStar returns Fanger's PMV except that DRY is calculated using SET* rather than the operative temperature

Note

In case one of the variables is not given, a standard value will be taken from a list (see createCond for details).

Author(s)

The code for calc2Node is based on the code in BASIC and C++ presented by Fountain and Huizenga (1995). The translation into R-language and comparison with ASHRAE 55-2013 conducted by Marcel Schweiker.

References

ASHRAE Standard 55-2013. Thermal environmental conditions for human occupancy. American society of heating, Refrigerating and Air-Conditioning Engineering, Atlanta, USA, 2013.

Fountain & Huizenga (1995) A thermal sensation model for use by the engineering profession ASHRAE RP-781 Final report.

Gagge, Fobelets & Berglund (1986) A standard predictive index of human response to the thermal environment, ASHRAE transactions, 92 (2B), 709-731.

See Also

see also calcComfInd

Examples

```
## Using several rows of data:
ta <- c(20,22,24)
tr <- ta
vel <- rep(.15,3)
rh <- rep(50,3)
maxLength <- max(sapply(list(ta, tr, vel, rh), length))</pre>
```

```
pmvstar <- sapply(seq(maxLength), function(x) { calcPMVStar(ta[x], tr[x], vel[x], rh[x]) } )</pre>
```

calcPPD

Predicted Percentage of Dissatisfied (PPD)

Description

Function to calculate Predicted Percentage of Dissatisfied (PPD).

Usage

calcPPD(ta, tr, vel, rh, clo=.5, met=1, wme=0, basMet=58.15)

Arguments

ta	a numeric value presenting air temperature in [degree C]
tr	a numeric value presenting mean radiant temperature in [degree C]
vel	a numeric value presenting air velocity in [m/s]
rh	a numeric value presenting relative humidity [%]
clo	a numeric value presenting clothing insulation level in [clo]
met	a numeric value presenting metabolic rate in [met]
wme	a numeric value presenting external work in [met]
basMet	a numeric value presenting basal metabolic rate [w/m2]

Details

The PPD is an index that establishes a quantitative prediction of the percentage of thermally dissatisfied people determined from PMV.

Note that the adjustments in the value for basMet need to be made with great cautiousness as the PMV calculation is an empirical model and might not be valid for other values of basMet than the one commonly used.

Value

PPD - Predicted Percentage of Dissatisfied occupants in [%]

Author(s)

Code implemented in to R by Marcel Schweiker. Further contribution by Sophia Mueller and Shoaib Sarwar.

References

Fanger (1970) Thermal Comfort Analysis and Applications in Environmental Engineering McGraw-Hill, New York.

ISO 7730 Ergonomics of the thermal environment analytical determination and interpretation of thermal comfort using calculation of the pmv and ppd indices and local thermal comfort criteria 2005.

Examples

calcPPD(25,25,0.3,50,0.5,1)

calcPS

Description

calcPS calculates Predicted Percentage Satisfied with the Level of Air Movement based on the 2-Node-Model by Gagge et al.

Usage

calcPS(ta,	tr,	vel,	rh,	clo	= 0.5	, met =	1,	wme	= 0,	pb =	= 760,	ltime	=	60,
ht = 171, v	vt =	70,	tu =	40,	obj =	"set",	CSW	1 = 1	70,	cdil	= 120	, cstr	=	0.5)

Arguments

ta	a numeric value presenting air temperature in [degree C]
tr	a numeric value presenting mean radiant temperature in [degree C]
vel	a numeric value presenting air velocity in [m/s]
rh	a numeric value presenting relative humidity [%]
clo	a numeric value presenting clothing insulation level in [clo]
met	a numeric value presenting metabolic rate in [met]
wme	a numeric value presenting external work in [met]
pb	a numeric value presenting barometric pressure in [torr] or [mmHg]
ltime	a numeric value presenting exposure time in [minutes]
ht	a numeric value presenting body height in [cm]
wt	a numeric value presenting body weight in [kg]
tu	a numeric value presenting turbulence intensity in [%]
obj	a character element, either "set" or "pmvadj"
CSW	a numeric value presenting the driving coefficient for regulatory sweating
cdil	a numeric value presenting the driving coefficient for vasodilation
cstr	a numeric value presenting the driving coefficient for vasoconstriction

Details

All variables must have the same length 1. For the calculation of several values use function calcComfInd. The value of obj defines whether the function will use the version presented in ASHRAE 55-2013 for adjustment of pmv (obj = "pmvadj"), or the original code by Gagge to calculate set (obj = "set"). In the version presented in ASHRAE 55-2013, the lines of code related to self-generated convection is deleted. Therefore, a difference can only be seen at higher values of met.

Value

calcPS returns the Predicted Percentage Satisfied with the Level of Air Movement

Note

In case one of the variables is not given, a standard value will be taken from a list (see createCond for details).

Author(s)

The code for calc2Node is based on the code in BASIC and C++ presented by Fountain and Huizenga (1995). The translation into R-language and comparison with ASHRAE 55-2013 conducted by Marcel Schweiker.

References

ASHRAE Standard 55-2013. Thermal environmental conditions for human occupancy. American society of heating, Refrigerating and Air-Conditioning Engineering, Atlanta, USA, 2013.

Fountain & Huizenga (1995) A thermal sensation model for use by the engineering profession ASHRAE RP-781 Final report.

Gagge, Fobelets & Berglund (1986) A standard predictive index of human response to the thermal environment, ASHRAE transactions, 92 (2B), 709-731.

See Also

see also calcComfInd

Examples

```
## Using several rows of data:
ta <- c(20,22,24)
tr <- ta
vel <- rep(.15,3)
rh <- rep(50,3)
maxLength <- max(sapply(list(ta, tr, vel, rh), length))
ps <- sapply(seq(maxLength), function(x) { calcPS(ta[x], tr[x], vel[x], rh[x]) } )</pre>
```

calcPTS

Predicted Thermal Sensation Vote based on SET

Description

calcPTS calculates Predicted Thermal Sensation Vote based on SET by the 2-Node-Model by Gagge et al.

calcPTS

Usage

calcPTS(ta,	tr, ve	l, rh, c	lo = 0.5,	met = 1,	wme = 0	, $pb = 760$,	ltime = 60,
ht = 171, w	t = 70,	tu = 40	, obj = "	'set", csw	= 170, 0	cdil = 120,	cstr = 0.5)

Arguments

ta	a numeric value presenting air temperature in [degree C]
tr	a numeric value presenting mean radiant temperature in [degree C]
vel	a numeric value presenting air velocity in [m/s]
rh	a numeric value presenting relative humidity [%]
clo	a numeric value presenting clothing insulation level in [clo]
met	a numeric value presenting metabolic rate in [met]
wme	a numeric value presenting external work in [met]
pb	a numeric value presenting barometric pressure in [torr] or [mmHg]
ltime	a numeric value presenting exposure time in [minutes]
ht	a numeric value presenting body height in [cm]
wt	a numeric value presenting body weight in [kg]
tu	a numeric value presenting turbulence intensity in [%]
obj	a character element, either "set" or "pmvadj"
CSW	a numeric value presenting the driving coefficient for regulatory sweating
cdil	a numeric value presenting the driving coefficient for vasodilation
cstr	a numeric value presenting the driving coefficient for vasoconstriction

Details

All variables must have the same length 1. For the calculation of several values use function calcComfInd. The value of obj defines whether the function will use the version presented in ASHRAE 55-2013 for adjustment of pmv (obj = "pmvadj"), or the original code by Gagge to calculate set (obj = "set"). In the version presented in ASHRAE 55-2013, the lines of code related to self-generated convection is deleted. Therefore, a difference can only be seen at higher values of met.

Value

calcPTS returns the Predicted Thermal Sensation Vote based on SET

Note

In case one of the variables is not given, a standard value will be taken from a list (see createCond for details).

Author(s)

The code for calc2Node is based on the code in BASIC and C++ presented by Fountain and Huizenga (1995). The translation into R-language and comparison with ASHRAE 55-2013 conducted by Marcel Schweiker.

References

ASHRAE Standard 55-2013. Thermal environmental conditions for human occupancy. American society of heating, Refrigerating and Air-Conditioning Engineering, Atlanta, USA, 2013.

Fountain, M. & Huizenga, C. A thermal sensation model for use by the engineering profession ASHRAE RP-781 Final report, 1995

Gagge, A. P., Fobelets, A. P. and Berglund, L. G. A standard predictive index of human response to the thermal environment, ASHRAE transactions, 1986, 92 (2B), 709-731.

See Also

see also calcComfInd

Examples

```
## Using several rows of data:
ta <- c(20,22,24)
tr <- ta
vel <- rep(.15,3)
rh <- rep(50,3)
maxLength <- max(sapply(list(ta, tr, vel, rh), length))
pts <- sapply(seq(maxLength), function(x) { calcPTS(ta[x], tr[x], vel[x], rh[x]) } )</pre>
```

calcPtsa	Predicted	Thermal	Sensation	based	on	2-Node	Model	adjusted	for
	Adaptatio	п							

Description

calcPtsa calculates Predicted Thermal Sensation based on the 2-Node-Model by Gagge et al. and adjusts its output according to adaptive coefficient

Usage

Arguments

ta	a numeric value presenting air temperature in [degree C]
tr	a numeric value presenting mean radiant temperature in [degree C]
vel	a numeric value presenting air velocity in [m/s]
rh	a numeric value presenting relative humidity [%]
clo	a numeric value presenting clothing insulation level in [clo]
met	a numeric value presenting metabolic rate in [met]

54

wme	a numeric value presenting external work in [met]
pb	a numeric value presenting barometric pressure in [torr] or [mmHg]
ltime	a numeric value presenting exposure time in [minutes]
ht	a numeric value presenting body height in [cm]
wt	a numeric value presenting body weight in [kg]
tu	a numeric value presenting turbulence intensity in [%]
asCoeff	a numeric values presenting adaptive coefficient [-]

Details

All variables must have the same length 1. For the calculation of several values use function calcComfInd. The value of obj defines whether the function will use the version presented in ASHRAE 55-2013 for adjustment of pmv (obj = "pmvadj"), or the original code by Gagge to calculate set (obj = "set"). In the version presented in ASHRAE 55-2013, the lines of code related to self-generated convection is deleted. Therefore, a difference can only be seen at higher values of met.

Value

calcPtsa returns a dataframe containing the Predicted Thermal Sensation value

Note

In case one of the variables is not given, a standard value will be taken from a list (see createCond for details).

Author(s)

The code for calc2Node is based on the code in BASIC and C++ presented by Fountain and Huizenga (1995). The translation into R-language and comparison with ASHRAE 55-2013 conducted by Marcel Schweiker.

References

ASHRAE Standard 55-2013. Thermal environmental conditions for human occupancy. American society of heating, Refrigerating and Air-Conditioning Engineering, Atlanta, USA, 2013. Fountain & Huizenga (1995) A thermal sensation model for use by the engineering profession ASHRAE RP-781 Final report.

Gagge, Fobelets & Berglund (1986) A standard predictive index of human response to the thermal environment, ASHRAE transactions, 92 (2B), 709-731. Coefficients are calculated based on Gao, Wang & Wargocki (2015) <doi:10.1016/j.buildenv.2015.04.030> The aPMV concept was introduced by Yao, Li & Liu (2009) <doi:10.1016/j.buildenv.2009.02.014> The ePMV concept was introduced by Fanger & Toftum (2002) <doi:10.1016/S0378-7788(02)00003-8>

See Also

see also calcComfInd and calc2Node

Examples

```
## Using several rows of data:
ta <- c(20,22,24)
tr <- ta
vel <- rep(.15,3)
rh <- rep(50,3)
asCoeff <- 0.5
maxLength <- max(sapply(list(ta, tr, vel, rh,asCoeff), length))
ptsa <- sapply(seq(maxLength), function(x) { calcPtsa(ta[x], tr[x], vel[x],
rh[x], asCoeff=asCoeff) } )
```

calcPtse	Predicted Thermal Sensation based on 2-Node Model adjusted for Ex-
	pectancy

Description

calcPtse calculates Predicted Thermal Sensation based on the 2-Node-Model by Gagge et al. and adjusts its output according to expectancy factor

Usage

Arguments

ta	a numeric value presenting air temperature in [degree C]
tr	a numeric value presenting mean radiant temperature in [degree C]
vel	a numeric value presenting air velocity in [m/s]
rh	a numeric value presenting relative humidity [%]
clo	a numeric value presenting clothing insulation level in [clo]
met	a numeric value presenting metabolic rate in [met]
wme	a numeric value presenting external work in [met]
pb	a numeric value presenting barometric pressure in [torr] or [mmHg]
ltime	a numeric value presenting exposure time in [minutes]
ht	a numeric value presenting body height in [cm]
wt	a numeric value presenting body weight in [kg]
tu	a numeric value presenting turbulence intensity in [%]
esCoeff	a numeric values presenting expectancy factor [-]

56

calcPtse

Details

All variables must have the same length 1. For the calculation of several values use function calcComfInd. The value of obj defines whether the function will use the version presented in ASHRAE 55-2013 for adjustment of pmv (obj = "pmvadj"), or the original code by Gagge to calculate set (obj = "set"). In the version presented in ASHRAE 55-2013, the lines of code related to self-generated convection is deleted. Therefore, a difference can only be seen at higher values of met.

Value

calcPtse returns a dataframe containing the Predicted Thermal Sensation value

Note

In case one of the variables is not given, a standard value will be taken from a list (see createCond for details).

Author(s)

The code for calc2Node is based on the code in BASIC and C++ presented by Fountain and Huizenga (1995). The translation into R-language and comparison with ASHRAE 55-2013 conducted by Marcel Schweiker.

References

ASHRAE Standard 55-2013. Thermal environmental conditions for human occupancy. American society of heating, Refrigerating and Air-Conditioning Engineering, Atlanta, USA, 2013. Fountain & Huizenga (1995) A thermal sensation model for use by the engineering profession ASHRAE RP-781 Final report.

Gagge, Fobelets & Berglund (1986) A standard predictive index of human response to the thermal environment, ASHRAE transactions, 92 (2B), 709-731. Coefficients are calculated based on Gao, Wang & Wargocki (2015) <doi:10.1016/j.buildenv.2015.04.030> The aPMV concept was introduced by Yao, Li & Liu (2009) <doi:10.1016/j.buildenv.2009.02.014> The ePMV concept was introduced by Fanger & Toftum (2002) <doi:10.1016/S0378-7788(02)00003-8>

See Also

see also calcComfInd and calc2Node

Examples

```
## Using several rows of data:
ta <- c(20,22,24)
tr <- ta
vel <- rep(.15,3)
rh <- rep(50,3)
esCoeff <- 0.5
maxLength <- max(sapply(list(ta, tr, vel, rh), length))</pre>
```

```
rh[x], esCoeff=esCoeff) } )
```

calcRT

Required recovery time

Description

Function to calculate Required recovery time, RT in hours.

Usage

calcRT(M,W,ta,tr,p,w,v,rh,clo)

Arguments

М	a numeric value presenting metabolic energy production (58 to 400 W/m2) in $\ensuremath{\left[\text{W/m2}\right]}$
W	a numeric value presenting Rate of mechanical work, (normally 0) in [W/m2]
ta	a numeric value presenting ambiant air temperature in [degree C]
tr	a numeric value presenting mean radiant temperature in [degree C]
р	a numeric value presenting air permeability (low < 5, medium 50, high > 100 l/m2s) in [l/m2s]
W	a numeric value presenting walking speed (or calculated work created air movements) in [m/s]
v	a numeric value presenting relative air velocity(0.4 to 18 m/s) in [m/s]
rh	a numeric value presenting relative humidity [%]
clo	a numeric value presenting clothing insulation level in [clo]

Value

returns required recovery time in [hours]

Note

The authors disclaim all obligations and liabilities for damages arising from the use or attempted use of the information, including, but not limited to, direct, indirect, special and consequential damages, and attorneys' and experts' fees and court costs. Any use of the information will be at the risk of the user.

Author(s)

Developed by Ingvar Holmer and Hakan O. Nilsson, 1990 in java and transferred to R by Shoaib Sarwar. Further contribution by Marcel Schweiker.

calcSET

References

ISO 11079, 2007-12-15, ERGONOMICS OF THE THERMAL ENVIRONMENT - DETERMINA-TION AND INTERPRETATION OF COLD STRESS WHEN USING REQUIRED CLOTHING INSULATION (IREQ) AND LOCAL COOLING EFFECTS

Examples

calcRT(90,0,25,25,8,0.2,0.4,50,1.5)

calcSET

Standard Effective Temperature (SET)

Description

calcSET calculates Standard Effective Temperature based on the 2-Node-Model by Gagge et al.

Usage

calcSET(ta, tr, vel, rh, clo = 0.5, met = 1, wme = 0, pb = 760, ltime = 60, ht = 171, wt = 70, tu = 40, obj = "set", csw = 170, cdil = 120, cstr = 0.5)

Arguments

ta	a numeric value presenting air temperature in [degree C]
tr	a numeric value presenting mean radiant temperature in [degree C]
vel	a numeric value presenting air velocity in [m/s]
rh	a numeric value presenting relative humidity [%]
clo	a numeric value presenting clothing insulation level in [clo]
met	a numeric value presenting metabolic rate in [met]
wme	a numeric value presenting external work in [met]
pb	a numeric value presenting barometric pressure in [torr] or [mmHg]
ltime	a numeric value presenting exposure time in [minutes]
ht	a numeric value presenting body height in [cm]
wt	a numeric value presenting body weight in [kg]
tu	a numeric value presenting turbulence intensity in [%]
obj	a character element, either "set" or "pmvadj"
CSW	a numeric value presenting the driving coefficient for regulatory sweating
cdil	a numeric value presenting the driving coefficient for vasodilation
cstr	a numeric value presenting the driving coefficient for vasoconstriction

Details

All variables must have the same length 1. For the calculation of several values use function calcComfInd. The value of obj defines whether the function will use the version presented in ASHRAE 55-2013 for adjustment of pmv (obj = "pmvadj"), or the original code by Gagge to calculate set (obj = "set"). In the version presented in ASHRAE 55-2013, the lines of code related to self-generated convection is deleted. Therefore, a difference can only be seen at higher values of met.

Value

calcSET returns the Standard Effective Temperature (SET)

Note

In case one of the variables is not given, a standard value will be taken from a list (see createCond for details).

Author(s)

The code for calc2Node is based on the code in BASIC and C++ presented by Fountain and Huizenga (1995). The translation into R-language and comparison with ASHRAE 55-2013 conducted by Marcel Schweiker.

References

ASHRAE Standard 55-2013. Thermal environmental conditions for human occupancy. American society of heating, Refrigerating and Air-Conditioning Engineering, Atlanta, USA, 2013.

Fountain & Huizenga (1995) A thermal sensation model for use by the engineering profession ASHRAE RP-781 Final report.

Gagge, Fobelets & Berglund (1986) A standard predictive index of human response to the thermal environment, ASHRAE transactions, 92 (2B), 709-731.

See Also

see also calcComfInd

Examples

```
## Using several rows of data:
ta <- c(20,22,24)
tr <- ta
vel <- rep(.15,3)
rh <- rep(50,3)
maxLength <- max(sapply(list(ta, tr, vel, rh), length))</pre>
```

60

calcSkinWettedness Skin Wettedness based on the 2-Node-Model

Description

calcSkinWettedness calculates Skin Wettedness based on the 2-Node-Model by Gagge et al.

Usage

```
calcSkinWettedness(ta, tr, vel, rh, clo = 0.5, met = 1, wme = 0, pb = 760,
ltime = 60, ht = 171, wt = 70, tu = 40, obj = "set", csw = 170, cdil = 120,
cstr = 0.5, varOut="skinWet")
```

Arguments

ta	a numeric value presenting air temperature in [degree C]
tr	a numeric value presenting mean radiant temperature in [degree C]
vel	a numeric value presenting air velocity in [m/s]
rh	a numeric value presenting relative humidity [%]
clo	a numeric value presenting clothing insulation level in [clo]
met	a numeric value presenting metabolic rate in [met]
wme	a numeric value presenting external work in [met]
pb	a numeric value presenting barometric pressure in [torr] or [mmHg]
ltime	a numeric value presenting exposure time in [minutes]
ht	a numeric value presenting body height in [cm]
wt	a numeric value presenting body weight in [kg]
tu	a numeric value presenting turbulence intensity in [%]
obj	a character element, either "set" or "pmvadj"
CSW	a numeric value presenting the driving coefficient for regulatory sweating
cdil	a numeric value presenting the driving coefficient for vasodilation
cstr	a numeric value presenting the driving coefficient for vasoconstriction
var0ut	a string value "skinWet" to report value of skin wettedness

Details

All variables must have the same length 1. For the calculation of several values use function calcComfInd. The value of obj defines whether the function will use the version presented in ASHRAE 55-2013 for adjustment of pmv (obj = "pmvadj"), or the original code by Gagge to calculate set (obj = "set"). In the version presented in ASHRAE 55-2013, the lines of code related to self-generated convection is deleted. Therefore, a difference can only be seen at higher values of met.

calcSkinWettedness returns the Skin Wettedness

Note

In case one of the variables is not given, a standard value will be taken from a list (see createCond for details).

Author(s)

The code for calc2Node is based on the code in BASIC and C++ presented by Fountain and Huizenga (1995). The translation into R-language and comparison with ASHRAE 55-2013 conducted by Marcel Schweiker.

References

ASHRAE Standard 55-2013. Thermal environmental conditions for human occupancy. American society of heating, Refrigerating and Air-Conditioning Engineering, Atlanta, USA, 2013.

Fountain & Huizenga (1995) A thermal sensation model for use by the engineering profession ASHRAE RP-781 Final report.

Gagge, Fobelets & Berglund (1986) A standard predictive index of human response to the thermal environment, ASHRAE transactions, 92 (2B), 709-731.

See Also

see also calcComfInd

Examples

```
## Using several rows of data:
ta <- c(20,22,24)
tr <- ta
vel <- rep(.15,3)
rh <- rep(50,3)</pre>
```

maxLength <- max(sapply(list(ta, tr, vel, rh), length))
skinWet <- sapply(seq(maxLength), function(x) { calcSkinWettedness(ta[x], tr[x], vel[x], rh[x]) })</pre>

calcSolarGain Solar Gain

Description

Function to calculate effective radiant field and delta mean radiant temperature.

Usage

```
calcSolarGain(solAlt, solAzi, solRadDir, solTrans,
fSvv, fBes, asw=0.7, posture="seated", floorRef=0.6)
```

calcSolarGain

Arguments

solAlt	a numeric value presenting solar altitude, degrees from horizontal in [degree C]
solAzi	a numeric value presenting solar azimuth, degrees clockwise from North in [degree C] $% \left[{{\left[{{C_{ijk}} \right]} \right]_{ijk}} \right]_{ijk}} = 0$
solRadDir	a numeric value presenting direct-beam solar radiation [W/m2]
solTrans	a numeric value presenting total solar transmittance. Ranges from 0 to 1.
fSvv	a numeric value presenting fraction of sky vault exposed to body. Ranges from 0 to 1.
fBes	a numeric value presenting fraction of the possible body surface exposed to sun. Ranges from 0 to 1.
asw	a numeric value presenting the average short-wave absorptivity of the occupant.
posture	a list of available options 'standing', 'supine' or 'seated'.
floorRef	a numeric value presenting floor reflectance. Usually assumed to be constant and equal to 0.6.

Value

An array of two values First values represents erf - Net energy flux to or from the human body using the Effective Radiant Field [W/m2] Second value represents delMrt - Delta mean radiant temperature, the increase in radiant temperature required without solar radiation [Degree C]

Author(s)

Code implemented in to R by Shaomi Rahman. Further contribution by Marcel Schweiker.

References

Original code in Python by Tartarini & Schiavon (2020) <doi:10.1016/j.softx.2020.100578>

See Also

see also calcComfInd

Examples

calcSolarGain(0, 120, 800, 0.5, 0.5, 0.5, asw=0.7, posture="seated") # Returns [42.9, 10.3]

calctAdapt15251

Description

calctadapt are three functions to calculate adaptive comfort or neutral temperatures based on a given outdoor temperature value.

Usage

calctAdapt15251(trm = 20)
calctAdaptASHRAE(tmmo)
calctnAuliciems(ta, tmmo)
calctnHumphreysNV(tmmo)
calctnHumphreysAC(tmmo)

Arguments

trm	numerical value presenting the running mean outdoor temperature in [degree C].
ta	numerical value presenting the indoor air temperature in [degree C].
tmmo	numerical value presenting the mean monthly outdoor temperature in [degree C].

Value

returns the adaptive comfort or neutral temperature with respect to the given outdoor temperature value

Note

The difference between calctnHumphreysNV and calctnHumphreysAC is that the former was found for natural ventilated buildings (NV), while the latter was found for climate-controlled buildings (AC).

Author(s)

Code implemented in to R by Marcel Schweiker. Further contribution by Sophia Mueller and Shoaib Sarwar.

calcTNZPDF

References

calctAdapt15251 is based on DIN EN 15251 Indoor environmental input parameters for design and assessment of energy performance of buildings addressing indoor air quality, thermal environment, lighting and acoustics; German version EN 15251:2012 2012.

calcAdaptASHRAE is based on Brager & de Dear (2001) Climate, comfort, & natural ventilation: a new adaptive comfort standard for ASHRAE standard 55.

calctnAuliciems is based on Auliciems (1981) Psycho-physiological criteria for global thermal zones of building design.

calctnHumphreysNV and calctnHumphreysAC are based on Humphreys (1978) Outdoor temperatures and comfort indoors. Batiment International, Building Research and Practice, Taylor and Francis.

See Also

see also calcComfInd

Examples

```
## define variable
trm <- 21.2
## calculate adaptive comfort temperature
calctAdapt15251(trm)</pre>
```

calcTNZPDF

Values related to TNZ approach

Description

calcTNZPDF calculates the distance from the thermoneutral zone, either skin temperature or room air related. Also calculates the probability function (PDF) of the thermoneutral zone.

Usage

```
calcTNZPDF(ht, wt, age, gender, clo, vel, tskObs, taObs, met, rh,
fBasMet = "rosa", fSA = "duBois", percCov = 0, TcMin = 36, TcMax = 38,
plotZone = FALSE, gridTaMin = 20, gridTaMax = 30, gridTskMin = 30, gridTskMax = 42,
gridTa = 1000, gridTsk = 1000, sa = 1.86, IbMax = 0.124, IbMin = 0.03, alphaIn = 0.08,
metMin = 55.3, metMax = 57.3, metDiff = .1, forPDF = FALSE, metAdapt = "none",
trm = 15, TcPreAdapt = 37.2)
```

Arguments

ht	a numeric value presenting body height in [cm].
wt	a numeric value presenting body weight in [kg].
age	a numeric value presenting the age in [years].

gender	a numeric value presenting sex (female = 1 , male = 2)
clo	a numeric value presenting clothing insulation level in [clo].
vel	a numeric value presenting air velocity in [m/s].
tsk0bs	a numeric value presenting actual mean skin temperature in [degree C].
taObs	a numeric value presenting actual air temperature in [degree C].
met	a numeric value presenting metabolic rate (activity related) in [met].
rh	a numeric value presenting realtive humidity in [%].
fBasMet	a string presenting the method of calculating basal metholic rate. Needs to be one of "rosa", "harris", "miflin", "fixed", or "direct". Fixed will result in the value of 58.2 W/m2. Direct requires definition of metMin and metMax.
fSA	a string presenting the method of calculating the surface area. Needs to be one of "duBois", "mosteller", or "direct".
percCov	a numeric value between 0 and 1 presenting the percentage of the body covered by clothes in [%].
TcMin	a numeric value presenting the minimum allowed core temperature in [degree C].
ТсМах	a numeric value presenting the maximum allowed core temperature in [degree C].
plotZone	a boolean variable TRUE or FALSE stating, wether TNZ should be plotted or not.
gridTaMin	a numeric value defining the minimum grid value for Ta, ambient temperature, in [degree C].
gridTaMax	a numeric value defining the maximum grid value for Ta, ambient temperature, in [degree C].
gridTskMin	a numeric value defining the minimum grid value for Tsk, skin temperature, in [degree C].
gridTskMax	a numeric value defining the maximum grid value for Tsk, skin temperature, in [degree C].
gridTa	a numeric value defining the grid size in Ta dimension.
gridTsk	a numeric value defining the grid size in Tsk dimension.
sa	a numeric value for surface area (only used with method fSA: direct) in [m2].
IbMax	a numeric value for maximum body tissue insulation in [m2K/W].
IbMin	a numeric value for minimum body tissue insulation in [m2K/W].
alphaIn	a numeric value for alpha (if 0, alpha will be calculated according to Fanger.
metMin	a numeric value for minimum metabolic rate (only used with method fBas-Met:direct) in [W/m2].
metMax	a numeric value for maximum metabolic rate (only used with method fBas-Met:direct) in [W/m2].
metDiff	a numeric value for difference between minimum and maximum metabolic rate (not used with method fBasMet:direct) in [W/m2].

forPDF	a boolean value. If TRUE, matrix for drawing of PDF will be output, if FALSE, values for dTNZ and others will be output.
metAdapt	a string presenting the method of calculating the surface area. Needs to be one of 'Hori', 'Q10', 'ATHB', or 'none'. NOTE: all methods applied here still in development and need further validation.
trm	numerical value presenting the running mean outdoor temperature in [degree C]. Only used with metAdapt: Hori and ATHB.
TcPreAdapt	numerical value presenting the initial core temperature before adaptation in [de- gree C]. Only used with metAdapt: Q10.

Details

The percentage of the body covered by clothes can be estimated e.g. based on ISO 9920 Appendix H (Figure H.1). A typical winter case leads to a value of around .86, in the summer case this goes down to values around .68.

Value

calcTNZPDF returns either a dataframe suitbale to draw the pdf of TNZ (by setting forPDF to TURE) or a dataframe with the columns dTNZ, dTNZTs, dTNZTa and others. Thereby

dTNZ	The absolute distance to the centroid of the thermoneutral zone
dTNZTs	Relative value of distance assuming skin temperature to be dominant for sensa- tion
dTNZTa	Relative value of distance assuming ambient temperature to be dominant for sensation

Note

This function was used for the review paper by Schweiker et al. (2018) (see reference above). Some of the equations implemented are still to be validated further - therefore, use this function and its parameters with great care.

This function is not (yet) implemented in calcComfInd, calcdTNZ is applied there.

Author(s)

Marcel Schweiker and Boris Kingma

References

Schweiker, Huebner, Kingma, Kramer & Pallubinsky (2018) <doi:10.1080/23328940.2018.1534490> Kingma, Schweiker, Wagner & van Marken Lichtenbelt Exploring the potential of a biophysical model to understand thermal sensation Proceedings of 9th Windsor Conference: Making Comfort Relevant Cumberland Lodge, Windsor, UK, 2016. Kingma & van Marken Lichtenbelt (2015) <doi:10.1038/nclimate2741> Kingma, Frijns, Schellen & van Marken Lichtenbelt (2014) <doi:10.4161/temp.29702>

See Also

calcdTNZ

Examples

```
## Calculate and draw pdf of TNZ for a young non-obese male
longTcYoungMale <- calcTNZPDF(ht = 178, wt = 70, age = 30, gender = 2, clo = 0.5,
    vel = 0.2, tskObs = 36.2, taObs = 26, met = 1,
    rh = 50, fBasMet = "rosa", fSA = "duBois", percCov = 0.6,
    TcMin = 36, TcMax = 38, plotZone = FALSE, gridTaMin = 20, gridTaMax = 30,
    gridTskMin = 20, gridTskMax = 42, gridTa = 1000, gridTsk = 1000,
    sa = 2.0335, IbMax = 0.124, IbMin = 0.03, alphaIn = 0, metMin = 55.3,
    metMax = 57.3, metDiff = 0.1, forPDF = TRUE)
plot(density(longTcYoungMale$X2), main="", xlim=c(14,36), ylim=c(0,.50),
    xlab="Operative temperature [degree C]")
```

calcTPRTSV	True Positive Rate between Predicted and Actual Thermal Sensation
	Vote

Description

calcTPRTSV calculates the true positive rate between predicted thermal sensation votes and actual obtained sensation votes

Usage

calcTPRTSV(ref, pred)

Arguments

ref	a numeric item or vector containing categorical actual thermal sensation votes coded from -3 'cold' to +3 'hot'
pred	a numeric item or vector containing categorical predicted thermal sensation votes coded from -3 'cold' to +3 'hot'

Value

calcTPRTSV returns a single value presenting the true positive rate between actual and predicted thermal sensation votes.

Author(s)

Marcel Schweiker

References

Schweiker & Wagner (2015) <doi:10.1016/j.buildenv.2015.08.018>

See Also

see also calcMeanBias, calcAvgAcc

calcTroin

Examples

```
## Define data
ref <- rnorm(5) # actual thermal sensation votes
ref <- cutTSV(ref)
pred <- rnorm(5) # predicted thermal sensation votes
pred <- cutTSV(pred)
calcTPRTSV(ref, pred)</pre>
```

calcTroin

Radiative and Operative Temperature

Description

The functions calcTroin calculates radiative and operative temperature based on air temperature, globe temperature, air velocity and metabolic rate. Globe temperature needs to be measured using a standard globe with a diameter of 0.15m and an emissivity of .95 (black coloured).

Usage

```
calcTroin(vel, tg, ta, met)
calctroin(vel, tg, ta, met)
Troin(vel, tg, ta, met)
troin(vel, tg, ta, met)
```

Arguments

vel	a numeric value presenting air velocity in [m/s]
tg	a numeric value or vector presenting the globe temperature in [degree C]
ta	a numeric value presenting air temperature in [degree C]
met	a numeric value presenting metabolic rate in [met]

Details

Calculation of the radiative temperature is based on ISO 7726:2001, equation (9). Calculation of operative temperature is based on ISO 7726:2001, Appendix G.3. The adjustment of air velocity to present relative air velocity based on metabolic rate is based on ISO 7730:2005 Appendix C.2.

Value

calcTroin returns a data.frame with radiative and operative temperature.

Author(s)

Marcel Schweiker. Further contribution by Shoaib Sarwar.

References

ISO 7726 Ergonomics of the Thermal Environment, Instruments for measuring Physical Quantities Geneva: International standard Organization, 1998.

ISO 7730 Ergonomics of the thermal environment - analytical determination and interpretation of thermal comfort using calculation of the pmv and ppd indices and local thermal comfort criteria 2005.

Examples

```
## Note: Due to random generated asv values. The values for the coefficients will not be meaningful.
## Create sample data
ta <- 20:24  # vector with air temperature values
vel <- rep(1.1,5)  # vector with air velocities
met <- rep(1.1,5)  # vector with metabolic rates
tg <- 25:29  # vector with globe temperature values
calcTroin(vel, tg, ta, met)</pre>
```

calcTSens

Predicted Thermal Sensation based on the 2-Node-Model

Description

calcTSens calculates Predicted Thermal Sensation based on the 2-Node-Model by Gagge et al.

Usage

calcTSens(ta, tr, vel, rh, clo = 0.5, met = 1, wme = 0, pb = 760, ltime = 60, ht = 171, wt = 70, tu = 40, obj = "set", csw = 170, cdil = 120, cstr = 0.5)

Arguments

ta	a numeric value presenting air temperature in [degree C]
tr	a numeric value presenting mean radiant temperature in [degree C]
vel	a numeric value presenting air velocity in [m/s]
rh	a numeric value presenting relative humidity [%]
clo	a numeric value presenting clothing insulation level in [clo]
met	a numeric value presenting metabolic rate in [met]
wme	a numeric value presenting external work in [met]
pb	a numeric value presenting barometric pressure in [torr] or [mmHg]
ltime	a numeric value presenting exposure time in [minutes]
ht	a numeric value presenting body height in [cm]
wt	a numeric value presenting body weight in [kg]
tu	a numeric value presenting turbulence intensity in [%]

obj	a character element, either "set" or "pmvadj"
CSW	a numeric value presenting the driving coefficient for regulatory sweating
cdil	a numeric value presenting the driving coefficient for vasodilation
cstr	a numeric value presenting the driving coefficient for vasoconstriction

Details

All variables must have the same length 1. For the calculation of several values use function calcComfInd. The value of obj defines whether the function will use the version presented in ASHRAE 55-2013 for adjustment of pmv (obj = "pmvadj"), or the original code by Gagge to calculate set (obj = "set"). In the version presented in ASHRAE 55-2013, the lines of code related to self-generated convection is deleted. Therefore, a difference can only be seen at higher values of met.

Value

calcTSens returns the Predicted Thermal Sensation

Note

In case one of the variables is not given, a standard value will be taken from a list (see createCond for details).

Author(s)

The code for calc2Node is based on the code in BASIC and C++ presented by Fountain and Huizenga (1995). The translation into R-language and comparison with ASHRAE 55-2013 conducted by Marcel Schweiker.

References

ASHRAE Standard 55-2013. Thermal environmental conditions for human occupancy. American society of heating, Refrigerating and Air-Conditioning Engineering, Atlanta, USA, 2013.

Fountain & Huizenga (1995) A thermal sensation model for use by the engineering profession ASHRAE RP-781 Final report.

Gagge, Fobelets & Berglund (1986) A standard predictive index of human response to the thermal environment, ASHRAE transactions, 92 (2B), 709-731.

See Also

see also calcComfInd

Examples

```
## Using several rows of data:
ta <- c(20,22,24)
tr <- ta
vel <- rep(.15,3)
rh <- rep(50,3)</pre>
```

```
maxLength <- max(sapply(list(ta, tr, vel, rh), length))
TSens <- sapply(seq(maxLength), function(x) { calcTSens(ta[x], tr[x], vel[x], rh[x]) } )</pre>
```

calcTWC

Windchill temperature (TWC)

Description

Function to calculate windchill temperature, TWC, in Degrees.

Usage

calcTWC(v,ta)

windchill(v,ta)

Arguments

v	a numeric value presenting meteorological wind speed (at 10 m) in [km/h]
ta	a numeric value presenting ambient air temperature in [degree C]

Details

The function returns the temperature that considers the cooling effect on a localized skin segment.

Value

returns (twc) Wind chill temperature in [Degree C]

Note

The authors disclaim all obligations and liabilities for damages arising from the use or attempted use of the information, including, but not limited to, direct, indirect, special and consequential damages, and attorneys' and experts' fees and court costs. Any use of the information will be at the risk of the user.

Author(s)

Developed by Ingvar Holmer and Hakan O. Nilsson, 1990 in java and transferred to R by Shoaib Sarwar. Further contribution by Marcel Schweiker.

References

ISO 11079, 2007-12-15, ERGONOMICS OF THE THERMAL ENVIRONMENT - DETERMINA-TION AND INTERPRETATION OF COLD STRESS WHEN USING REQUIRED CLOTHING INSULATION (IREQ) AND LOCAL COOLING EFFECTS

72
calcUTCI

Examples

```
calcTWC(6.8,-25)
windchill(6.8,-25)
```

```
calcUTCI
```

Universal Thermal Comfort Index (UTCI)

Description

Functions to calculate UTCI.

Usage

calcUTCI(ta, tr, vel, rh)

Arguments

ta	a numeric value presenting air temperature in [degree C]
tr	a numeric value presenting mean radiant temperature in [degree C]
vel	a numeric value presenting air velocity in [m/s]
rh	a numeric value presenting relative humidity [%]

Details

air temperature and mean radiant temperature should be in Degree C unit. Air velocity has to be in m/s unit and relative humidity has to be put in percentage value.

Value

the utciValue value rounded to one decimal

Author(s)

Code implemented in to R by Shaomi Rahman. Further contribution by Marcel Schweiker.

References

UTCI project page on http://www.utci.org/ Original code in Python by Tartarini & Schiavon (2020) <doi:10.1016/j.softx.2020.100578>

See Also

see also calcComfInd

Examples

calcUTCI(25, 25, 1.0, 50) # Returns 24.6

calcVTG

Description

Function to calculate vertical air temperature gradient using the predicted percentage of dissatisfied.

Usage

calcVTG(ta, tr, vel, rh, clo, met, v_tmp_grad)

Arguments

ta	a numeric value presenting air temperature in [degree C]
tr	a numeric value presenting mean radiant temperature in [degree C]
vel	a numeric value presenting air velocity in [m/s]
rh	a numeric value presenting relative humidity [%]
clo	a numeric value presenting clothing insulation level in [clo]
met	a numeric value presenting metabolic rate in [met]
v_tmp_grad	vertical temperature gradient between the feet and the head [degree C/m]

Details

Calculates the percentage of thermally dissatisfied persons with a vertical temperature gradient between feet and head. Applicable only for velocity(vel) < 0.2 m/s

Value

Predicted Percentage of Dissatisfied with vertical temperature gradient in [%] Acceptability in [boolean]

Author(s)

Code implemented in to R by Shoaib Sarwar. Further contribution by Marcel Schweiker.

References

Original code in Python by Tartarini & Schiavon (2020) <doi:10.1016/j.softx.2020.100578>

Examples

```
calcVTG(25,25,0.1,50,0.5,1.2,7)
# returns Vertical Air Temperature Gradient:12.4, Acceptability:FALSE
```

createCond

Description

createCond creates a list with standard variables to be used as an input parameter for calculating comfort indices using the function calcComfInd.

Usage

createCond(a = TRUE)

createcond(a = TRUE)

Arguments

а

logical. If a = TRUE, function returns a list of standard conditions. If a = FALSE, function returns a list of empty variables which may be edited manually. See details for further information.

Details

lsstrd and lsEmpty contain the following elements

Variable name	values in 1sstrd	values in 1sEmpty	description
ta	25	NA	Air temperature in (degree C)
tr	25	NA	mean radiant temperature in (degree C)
vel	.1	NA	Air velocity (m/s)
rh	50	NA	Relative Humidity (%)
clo	.5	NA	clothing (do)
met	1	NA	metabolic rate (met)
wme	0	NA	External work (met)
tu	40	NA	turbulence intensity (%)
tmmo	15	NA	mean monthly outdoor temperature in (degree C)
ltime	60	NA	Exposure time (min)
pb	760	NA	Barometric pressure (torr)
wt	70	NA	weight (Kg)
ht	171	NA	height (cm)
trm	15	NA	Running mean outdoor temperature in (degree C)
age	21	NA	age (years)
gender	1	NA	gender (female = 1)
tsk	35	NA	mean skin temperature in (degree C)
psych	-1.4	NA	factor related to fixed effect on perceived control
apCoeff	.293	NA	adaptive coefficient for pmv
epCoeff	.9	NA	expectancy factor for pmv
asCoeff	.2	NA	adaptive coefficient for set
esCoeff	1.3	NA	expectancy factor for set

asv	1.5	NA	actual sensation vote $(0 = neutral)$
tao	5	NA	outdoor air temperature
rho	70	NA	outdoor relative humidity
frad	.7	NA	0.7(for seating), 0.73(for standing) [-]
eps	.95	NA	emissivity [-]
ic	1.085	NA	1.084 (average permeability), 0.4 (low permeability)
tcr	37	NA	initial values for core temp
tsk	36	NA	initial values for skin temperature
basMet	58.2	NA	basal metabolic rate
warmUp	60	NA	length of warm up period, i.e. number of times, loop is running for I
cdil	100	NA	value for cdil in 2-node model of Gagge (applied in calculation of H
sigmatr	.25	NA	value for cdil in 2-node model of Gagge (applied in calculation of H

Value

lsstrd	List, which is created for a = TRUE; contains standard conditions.
lsEmpty	List, which is created for a = FALSE; contains empty variables to be modified manually.

indices listed as request. For details see details above.

Author(s)

Sophia Mueller and Marcel Schweiker.

References

For references see individual functions.

See Also

see also calcComfInd

Examples

```
## Creating list with standard variables
createCond()
## Creating list with empty values
createCond(a = FALSE)
```

cutTSV

Categorizing Thermal Sensation Votes

Description

cutTSV converts continuous thermal sensation votes to categorical ones.

Usage

cutTSV(pred)

Arguments

pred

a numeric item or vector containing continuous thermal sensation votes coded from -3 'cold' to +3 'hot'

Details

Categorization is realized with intervals closed on the right, e.g. setting all values lower and equal then -2.5 to a value of -3, higher than -2.5 and lower or equal -1.5 to -2, and so on.

Value

cutTSV returns an item or a vector with categorical thermal sensation votes.

Author(s)

Marcel Schweiker

Examples

```
## define example data
pred <- rnorm(5)
## bin values
cutTSV(pred)</pre>
```

dfASHRAETableG11 Calibration data for SET

Description

Data from ASHRAE 55-2013 to calibrate values given by SET model

Usage

```
data(dfASHRAETableG11)
```

Format

A data frame with 22 rows and 11 variables:

ta a numeric vector of air temperature [degree C]

taF a numeric vector of air temperature [degree F]

tr a numeric vector of radiant temperature [degree C]

trF a numeric vector of radiant temperature [degree F]

- vel a numeric vector of indoor air velocity [m/s]
- velFPM a numeric vector of indoor air velocity [fpm]
- rh a numeric vector of relative humidity [%]
- met a numeric vector of metabolic rate [MET]
- clo a numeric vector of clothing insulation level [CLO]
- set a numeric vector of standard effective temperature (SET) [degree C]
- setF a numeric vector of standard effective temperature (SET) [degree F]

References

ASHRAE Standard 55-2013. Thermal environmental conditions for human occupancy. American society of heating, Refrigerating and Air-Conditioning Engineering, Atlanta, USA, 2013.

Examples

data(dfASHRAETableG11)
head(dfASHRAETableG11)

dfField

Field data example

Description

Randomly sampled data from a field study campaign with data from 156 samples. For further description, see the reference given.

Usage

data(dfField)

Format

A data frame with 156 rows and 9 variables:

ta air temperature [degree C]

tr radiant temperature [degree C] - same as ta

rh relative humidity [%]

trm running mean outdoor temperature [degree C]

clo clothing insulation level [CLO]

tao outdoor air temperature [degree C]

vel indoor air velocity [m/s]

met metabolic rate [MET]

asv actual thermal sensation vote on ASHRAE scale []

dfISO7730AppE

References

Schweiker, M. and Wagner, A. Exploring potentials and limitations of the adaptive thermal heat balance framework. Proceedings of 9th Windsor Conference: Making Comfort Relevant Cumberland Lodge, Windsor, UK, 2016. (nceub)

Examples

data(dfField)
head(dfField)

dfISO7730AppE

Calibration data for PMV

Description

Data from ISO 7730 Appendix E to calibrate values given by PMV model

Usage

data(dfIS07730AppE)

Format

A data frame with 13 rows and 8 variables:

- top a numeric vector of operative temperature [degree C]
- vel a numeric vector of indoor air velocity [m/s]

rh a numeric vector of relative humidity [%]

met a numeric vector of metabolic rate [MET]

clo a numeric vector of clothing insulation level [CLO]

pmv a numeric vector of Predicted mean vote (PMV)

References

ISO 7730 Ergonomics of the thermal environment analytical determination and interpretation of thermal comfort using calculation of the pmv and ppd indices and local thermal comfort criteria 2005.

Examples

data(dfIS07730AppE)
head(dfIS07730AppE)

dfIS07730TableD1 Calibration data for PMV and PPD

Description

Data from ISO 7730 to calibrate values given by PMV / PPD model

Usage

data(dfIS07730TableD1)

Format

A data frame with 13 rows and 8 variables:

- ta a numeric vector of air temperature [degree C]
- tr a numeric vector of radiant temperature [degree C]
- vel a numeric vector of indoor air velocity [m/s]
- rh a numeric vector of relative humidity [%]
- met a numeric vector of metabolic rate [MET]
- clo a numeric vector of clothing insulation level [CLO]
- pmv a numeric vector of Predicted mean vote (PMV)
- ppd a numeric vector of Predicted percentage dissatisfied (PPD)

References

ISO 7730 Ergonomics of the thermal environment analytical determination and interpretation of thermal comfort using calculation of the pmv and ppd indices and local thermal comfort criteria 2005.

Examples

```
data(dfIS07730TableD1)
head(dfIS07730TableD1)
```

dfIS07933AppF

Description

Data from ISO 7933 Appendix F to calibrate values given by the proposed model

Usage

data(dfIS07933AppF)

Format

A data frame with 10 rows and 16 variables:

acc1 a numeric vector of state of acclimatised subject, 100 if acclimatised, 0 otherwise [-]

posture a numeric vector of posture of subject, posture = 1 sitting, =2 standing, =3 crouching [-]

Ta a numeric vector of air temperature [degree C]

Pa a numeric vector of partial water vapour pressure [kPa]

Tr a numeric vector of mean radiant temperature [degree C]

Va a numeric vector of air velocity (m/s)

Met a numeric vector of metabolic rate (W/(m*m))

Icl a numeric vector of static thermal insulation (clo)

THETA a numeric vector of angle between walking direction and wind direction (degrees)

Walksp a numeric vector of walking speed (m/s)

Duration a numeric vector of the duration of the work sequence (min)

Tre a numeric vector of final rectal temperature (degree C)

SWtotg a numeric vector of total water loss (g)

Dlimtre a numeric vector of maximum allowed exposition time for heat storage (min)

- Dlimloss50 a numeric vector of maximum water loss for protection of an average person (g)
- Dlimloss95 a numeric vector of maximum water loss for protection of 95% of the working people (g)

References

ISO 7933 Ergonomics of the thermal environment - Analytical determination and interpretation of heat stress using calculation of the predicted heat strain 2004

Examples

data(dfIS07933AppF)
head(dfIS07933AppF)

dfUTCIValues

Description

Dataset with Different Combinations of Inputs to Calculate UTCI

Usage

data(dfUTCIValues)

Format

A data frame with 81 rows and 5 variables:

ta a numeric value presenting air temperature in [degree C]

tr a numeric value presenting mean radiant temperature in [degree C]

vel a numeric value presenting air velocity in [m/s]

rh a numeric value presenting relative humidity [%]

utci a numeric value presenting the UTCI value

See Also

see also calcUTCI

Examples

data(dfUTCIValues)
head(dfUTCIValues)

Index

* datasets dfASHRAETableG11,77 dfField, 78 dfIS07730AppE, 79 dfISO7730TableD1,80 dfIS07933AppF, 81 dfUTCIValues, 82 * manip calcTPRTSV, 68 cutTSV, 76 * package comf-package, 3 2Node (calc2Node), 4 2node (calc2Node), 4 ad (calcAD), 6 ankledraft (calcAD), 6 aPMV (calcaPMV), 7 apmv (calcaPMV), 7 AvgAcc (calcAvgAcc), 13 avgacc (calcAvgAcc), 13 bias (calcBias), 14 calc2Node, 4, 19, 55, 57 calcAD, 6 calcapCoeff, 8 calcapCoeff(calcepCoeff), 23 calcaPMV, 7, 24 calcasCoeff (calcepCoeff), 23 calcATHBpmv, 9 calcATHBpmv2015, 10, 19 calcATHBpts, 11 calcATHBset, 12 calcAvgAcc, 13, 15, 68 calcavgacc (calcAvgAcc), 13 calcBias, 14 calcbias (calcBias), 14 calcCE, 16 calcCOEFF (calcepCoeff), 23

calcComfInd, 4, 6, 8-10, 12, 13, 17, 20, 22, 25, 27, 30, 33, 42, 46, 47, 49, 52, 54, 55, 57, 60, 62, 63, 65, 71, 73, 76 calcDewp(calcMixR), 38 calcDisc, 19 calcdisc (calcDisc), 19 calcdTNZ, 19, 21, 67 calcEnth (calcMixR), 38 calcepCoeff, 23, 25 calcePMV, 24, 24 calcesCoeff (calcepCoeff), 23 calcET, 26 calcet (calcET), 26 calcHbExSteady, 19, 28 calcHbExUnsteady, 30, 30 calcHumidity (calcMixR), 38 calcHumx (calcMixR), 38 calcIREQ, 33 calcireq (calcIREQ), 33 calcIso7933, 35 calcMeanBias, 14, 68 calcMeanBias (calcBias), 14 calcMixR, 38 calcMRT, 40 calcPD, 41 calcpd (calcPD), 41 calcPMV, 42 calcPMVadj, 19, 44 calcPMVGagge, 45 calcPMVPPD, 19, 46 calcPMVStar, 48 calcPPD. 49 calcPS, 51 calcps (calcPS), 51 calcPTS, 52 calcpts (calcPTS), 52 calcPtsa, 19, 24, 54 calcptsa (calcPtsa), 54

calcPtse, 24, 56

```
calcptse (calcPtse), 56
calcRH (calcMixR), 38
calcRT, 58
calcrt (calcRT), 58
calcSdBias (calcBias), 14
calcSeBias (calcBias), 14
calcSET, 59
calcSkinWettedness, 61
calcSolarGain. 62
calcsolargain (calcSolarGain), 62
calcSVP (calcMixR), 38
calctAdapt, 19
calctAdapt (calctAdapt15251), 64
calctadapt (calctAdapt15251), 64
calctAdapt15251, 64
calctAdaptASHRAE (calctAdapt15251), 64
calctnAuliciems (calctAdapt15251), 64
calctnHumphreysAC (calctAdapt15251), 64
calctnHumphreysNV (calctAdapt15251), 64
calcTNZPDF, 22, 65
calcTPRTSV, 14, 15, 68
calcTroin, 69
calctroin (calcTroin), 69
calcTSens, 70
calcTWC, 72
calctwc (calcTWC), 72
calcUTCI, 73, 82
calcutci (calcUTCI), 73
calcVapourpressure (calcMixR), 38
calcVP (calcMixR), 38
calcVTG, 74
ce (calcCE), 16
clacTNZ (calcTNZPDF), 65
comf (comf-package), 3
comf-package, 3
comfind (calcComfInd), 17
coolingeffect (calcCE), 16
createCond, 4, 6, 8, 18, 20, 22, 23, 25, 27, 42,
        46, 49, 52, 53, 55, 57, 60, 62, 71, 75
createcond (createCond), 75
cutTSV, 76
dfASHRAETableG11, 77
dfField, 78
dfIS07730AppE, 79
dfIS07730TableD1,80
dfIS07933AppF, 81
dfUTCIValues, 82
Disc (calcDisc), 19
```

```
disc (calcDisc), 19
ePMV (calcePMV), 24
epmv (calcePMV), 24
ET (calcET), 26
et (calcET), 26
exunsteady (calcHbExUnsteady), 30
Gagge (calcPMVGagge), 45
HbEx (calcHbExSteady), 28
HbExSteady (calcHbExSteady), 28
Hbexsteady (calcHbExSteady), 28
hbexunsteady (calcHbExUnsteady), 30
IREQ (calcIREQ), 33
ireq(calcIREQ), 33
MeanBias (calcBias), 14
meanBias (calcBias), 14
meanbias (calcBias), 14
PD (calcPD), 41
pd (calcPD), 41
pmv (calcPMV), 42
PMVadj (calcPMVadj), 44
pmvadj (calcPMVadj), 44
PMVGagge (calcPMVGagge), 45
pmvppd (calcPMVPPD), 46
PMVStar (calcPMVStar), 48
ppd (calcPPD), 49
PS (calcPS), 51
ps (calcPS), 51
PTS (calcPTS), 52
pts (calcPTS), 52
Ptsa (calcPtsa), 54
ptsa (calcPtsa), 54
Ptse (calcPtse), 56
ptse (calcPtse), 56
RT (calcRT), 58
rt (calcRT), 58
SET (calcSET), 59
skin (calcSkinWettedness), 61
skinWettedness (calcSkinWettedness), 61
SolarGain (calcSolarGain), 62
solargain (calcSolarGain), 62
star (calcPMVStar), 48
tadapt (calctAdapt15251), 64
```

84

INDEX

```
tAdapt15251 (calctAdapt15251), 64
tAdaptASHRAE (calctAdapt15251), 64
tnAuliciems (calctAdapt15251), 64
tnHumphreysAC (calctAdapt15251), 64
tnHumphreysNV (calctAdapt15251), 64
TNZPDF (calcTNZPDF), 65
tnzpdf (calcTNZPDF), 65
TPDF (calcTNZPDF), 65
tpdf (calcTNZPDF), 65
TPR (calcTPRTSV), 68
tpr (calcTPRTSV), 68
Troin (calcTroin), 69
troin (calcTroin), 69
TSens (calcTSens), 70
TWC (calcTWC), 72
twc (calcTWC), 72
UTCI (calcUTCI), 73
utci (calcUTCI), 73
```

vairtepgrad (calcVTG), 74
vairtmpgrad (calcVTG), 74
vtg (calcVTG), 74

wettedness (calcSkinWettedness), 61
windchill (calcTWC), 72