
Package ‘comparator’
March 16, 2022

Type Package
Title Comparison Functions for Clustering and Record Linkage
Version 0.1.2
Date 2022-03-15
Maintainer Neil Marchant <ngmarchant@gmail.com>
Description Implements functions for comparing strings, sequences and

numeric vectors for clustering and record linkage applications.
Supported comparison functions include: generalized edit distances
for comparing sequences/strings, Monge-Elkan similarity for fuzzy
comparison of token sets, and L-p distances for comparing numeric
vectors. Where possible, comparison functions are implemented in
C/C++ to ensure good performance.

License GPL (>= 2)
Imports Rcpp (>= 1.0.5), proxy (>= 0.4), methods, clue (>= 0.3)
LinkingTo Rcpp
RoxygenNote 7.1.2
Encoding UTF-8

URL https://github.com/ngmarchant/comparator

BugReports https://github.com/ngmarchant/comparator/issues

Collate 'Comparator.R' 'CppSeqComparator.R' 'PairwiseMatrix.R'
'SequenceComparator.R' 'StringComparator.R' 'BinaryComp.R'
'NumericComparator.R' 'Chebyshev.R' 'Constant.R'
'Levenshtein.R' 'DamerauLevenshtein.R' 'Minkowski.R'
'Euclidean.R' 'FuzzyTokenSet.R' 'Hamming.R' 'InVocabulary.R'
'Jaro.R' 'JaroWinkler.R' 'LCS.R' 'Lookup.R' 'Manhattan.R'
'TokenComparator.R' 'MongeElkan.R' 'OSA.R' 'RcppExports.R'
'generalized_mean.R' 'strcompr-package.R' 'util.R'

Suggests testthat
NeedsCompilation yes
Author Neil Marchant [aut, cre]
Repository CRAN
Date/Publication 2022-03-16 09:20:02 UTC

1

https://github.com/ngmarchant/comparator
https://github.com/ngmarchant/comparator/issues

2 BinaryComp

R topics documented:

BinaryComp . 2
Chebyshev . 3
Comparator-class . 4
Constant . 4
CppSeqComparator-class . 5
DamerauLevenshtein . 5
elementwise . 7
Euclidean . 9
FuzzyTokenSet . 10
gmean . 12
Hamming . 13
hmean . 14
InVocabulary . 15
Jaro . 17
JaroWinkler . 18
LCS . 20
Levenshtein . 22
Lookup . 24
Manhattan . 25
Minkowski . 26
MongeElkan . 27
NumericComparator-class . 29
OSA . 29
pairwise . 32
PairwiseMatrix-class . 35
SequenceComparator-class . 36
StringComparator-class . 36
TokenComparator-class . 37

Index 38

BinaryComp Binary String/Sequence Comparator

Description

Compares a pair of strings or sequences based on whether they are identical or not.

Usage

BinaryComp(score = 1, similarity = FALSE, ignore_case = FALSE)

Chebyshev 3

Arguments

score a numeric of length 1. Positive distance to return if the pair of strings/sequences
are not identical. Defaults to 1.0.

similarity a logical. If TRUE, similarities are returned instead of distances. Specifically
score is returned if the strings agree, and 0.0 is returned otherwise.

ignore_case a logical. If TRUE, case is ignored when comparing strings.

Details

If similarity = FALSE (default) the scores can be interpreted as distances. When x = y the com-
parator returns a distance of 0.0, and when x 6= y the comparator returns score.

If similarity = TRUE the scores can be interpreted as similarities. When x = y the comparator
returns score, and when x 6= y the comparator returns 0.0.

Value

A BinaryComp instance is returned, which is an S4 class inheriting from StringComparator.

Chebyshev Chebyshev Numeric Comparator

Description

The Chebyshev distance (a.k.a. L-Inf distance or) between two vectors x and y is the greatest of
the absolute differences between each coordinate:

Chebyshev(x, y) = max
i
|xi − yi|.

Usage

Chebyshev()

Value

A Chebyshev instance is returned, which is an S4 class inheriting from NumericComparator.

Note

The Chebyshev distance is a limiting case of the Minkowski distance where p→∞.

See Also

Other numeric comparators include Manhattan, Euclidean and Minkowski.

4 Constant

Examples

Distance between two vectors
x <- c(0, 1, 0, 1, 0)
y <- seq_len(5)
Chebyshev()(x, y)

Distance between rows (elementwise) of two matrices
comparator <- Chebyshev()
x <- matrix(rnorm(25), nrow = 5)
y <- matrix(rnorm(5), nrow = 1)
elementwise(comparator, x, y)

Distance between rows (pairwise) of two matrices
pairwise(comparator, x, y)

Comparator-class Virtual Comparator Class

Description

This class represents a function for comparing pairs of objects. It is the base class from which other
types of comparators (e.g. NumericComparator and StringComparator) are derived.

Slots

.Data a function which takes a pair of arguments x and y, and returns the elementwise scores.

symmetric a logical of length 1. If TRUE, the comparator is symmetric in its arguments—i.e.
comparator(x,y) is identical to comparator(y,x).

distance a logical of length 1. If TRUE, the comparator produces distances and satisfies comparator(x,x)
= 0. The comparator may not satisfy all of the properties of a distance metric.

similarity a logical of length 1. If TRUE, the comparator produces similarity scores.

tri_inequal a logical of length 1. If TRUE, the comparator satisfies the triangle inequality. This is
only possible (but not guaranteed) if distance = TRUE and symmetric = TRUE.

Constant Constant String/Sequence Comparator

Description

A trivial comparator that returns a constant for any pair of strings or sequences.

Usage

Constant(constant = 0)

CppSeqComparator-class 5

Arguments

constant a non-negative numeric vector of length 1. Defaults to zero.

Value

A Constant instance is returned, which is an S4 class inheriting from StringComparator.

CppSeqComparator-class

Virtual Class for a Sequence Comparator with a C++ Implementation

Description

This class is a trait possessed by SequenceComparators that have a C++ implementation. Sequence-
Comparators without this trait are implemented in R, and may be slower to execute.

DamerauLevenshtein Damerau-Levenshtein String/Sequence Comparator

Description

The Damerau-Levenshtein distance between two strings/sequences x and y is the minimum cost
of operations (insertions, deletions, substitutions or transpositions) required to transform x into y.
It differs from the Levenshtein distance by including transpositions (swaps) among the allowable
operations.

Usage

DamerauLevenshtein(
deletion = 1,
insertion = 1,
substitution = 1,
transposition = 1,
normalize = FALSE,
similarity = FALSE,
ignore_case = FALSE,
use_bytes = FALSE

)

6 DamerauLevenshtein

Arguments

deletion positive cost associated with deletion of a character or sequence element. De-
faults to unit cost.

insertion positive cost associated insertion of a character or sequence element. Defaults
to unit cost.

substitution positive cost associated with substitution of a character or sequence element.
Defaults to unit cost.

transposition positive cost associated with transposing (swapping) a pair of characters or se-
quence elements. Defaults to unit cost.

normalize a logical. If TRUE, distances are normalized to the unit interval. Defaults to
FALSE.

similarity a logical. If TRUE, similarity scores are returned instead of distances. Defaults
to FALSE.

ignore_case a logical. If TRUE, case is ignored when comparing strings.

use_bytes a logical. If TRUE, strings are compared byte-by-byte rather than character-by-
character.

Details

For simplicity we assume x and y are strings in this section, however the comparator is also imple-
mented for more general sequences.

A Damerau-Levenshtein similarity is returned if similarity = TRUE, which is defined as

sim(x, y) =
wd|x|+ wi|y| − dist(x, y)

2
,

where |x|, |y| are the number of characters in x and y respectively, dist is the Damerau-Levenshtein
distance, wd is the cost of a deletion and wi is the cost of an insertion.

Normalization of the Damerau-Levenshtein distance/similarity to the unit interval is also supported
by setting normalize = TRUE. The normalization approach follows Yujian and Bo (2007), and en-
sures that the distance remains a metric when the costs of insertion wi and deletion wd are equal.
The normalized distance distn is defined as

distn(x, y) =
2dist(x, y)

wd|x|+ wi|y|+ dist(x, y)
,

and the normalized similarity simn is defined as

simn(x, y) = 1− distn(x, y) =
sim(x, y)

wd|x|+ wi|y| − sim(x, y)
.

Value

A DamerauLevenshtein instance is returned, which is an S4 class inheriting from Levenshtein.

Note

If the costs of deletion and insertion are equal, this comparator is symmetric in x and y. In addition,
the normalized and unnormalized distances satisfy the properties of a metric.

elementwise 7

References

Boytsov, L. (2011), "Indexing methods for approximate dictionary searching: Comparative analy-
sis", ACM J. Exp. Algorithmics 16, Article 1.1.

Navarro, G. (2001), "A guided tour to approximate string matching", ACM Computing Surveys
(CSUR), 33(1), 31-88.

Yujian, L. & Bo, L. (2007), "A Normalized Levenshtein Distance Metric", IEEE Transactions on
Pattern Analysis and Machine Intelligence 29, 1091-1095.

See Also

Other edit-based comparators include Hamming, LCS, Levenshtein and OSA.

Examples

The Damerau-Levenshtein distance reduces to ordinary Levenshtein distance
when the cost of transpositions is high
x <- "plauge"; y <- "plague"
DamerauLevenshtein(transposition = 100)(x, y) == Levenshtein()(x, y)

Compare car names using normalized Damerau-Levenshtein similarity
data(mtcars)
cars <- rownames(mtcars)
pairwise(DamerauLevenshtein(similarity = TRUE, normalize=TRUE), cars)

Compare sequences using Damerau-Levenshtein distance
x <- c("G", "T", "G", "C", "T", "G", "G", "C", "C", "C", "A", "T")
y <- c("G", "T", "G", "C", "G", "T", "G", "C", "C", "C", "A", "T")
DamerauLevenshtein()(list(x), list(y))

elementwise Elementwise Similarity/Distance Vector

Description

Computes elementwise similarities/distances between two collections of objects (strings, vectors,
etc.) using the provided comparator.

Usage

elementwise(comparator, x, y, ...)

S4 method for signature 'CppSeqComparator,list,list'
elementwise(comparator, x, y, ...)

S4 method for signature 'StringComparator,vector,vector'
elementwise(comparator, x, y, ...)

8 elementwise

S4 method for signature 'NumericComparator,matrix,vector'
elementwise(comparator, x, y, ...)

S4 method for signature 'NumericComparator,vector,matrix'
elementwise(comparator, x, y, ...)

S4 method for signature 'NumericComparator,vector,vector'
elementwise(comparator, x, y, ...)

S4 method for signature 'Chebyshev,matrix,matrix'
elementwise(comparator, x, y, ...)

S4 method for signature 'FuzzyTokenSet,list,list'
elementwise(comparator, x, y, ...)

S4 method for signature 'InVocabulary,vector,vector'
elementwise(comparator, x, y, ...)

S4 method for signature 'Lookup,vector,vector'
elementwise(comparator, x, y, ...)

S4 method for signature 'MongeElkan,list,list'
elementwise(comparator, x, y, ...)

Arguments

comparator a comparator used to compare the objects, which is a sub-class of Comparator.

x, y a collection of objects to compare, typically stored as entries in an atomic vector,
rows in a matrix, or entries in a list. The required format depends on the type of
comparator. If x and y do not contain the same number of objects, the smaller
collection is recycled according to standard R behavior.

... other parameters passed on to other methods.

Value

Every object in x is compared to every object in y elementwise (with recycling) using the given
comparator, to produce a numeric vector of scores of length maxsize(x), size(y).

Methods (by class)

• comparator = CppSeqComparator,x = list,y = list: Specialization for CppSeqComparator
where x and y are lists of sequences (vectors) to compare.

• comparator = StringComparator,x = vector,y = vector: Specialization for StringComparator
where x and y are vectors of strings to compare.

• comparator = NumericComparator,x = matrix,y = vector: Specialization for NumericComparator
where x is a matrix of rows (interpreted as vectors) to compare with a vector y.

Euclidean 9

• comparator = NumericComparator,x = vector,y = matrix: Specialization for NumericComparator
where x is a vector to compare with a matrix y of rows (interpreted as vectors).

• comparator = NumericComparator,x = vector,y = vector: Specialization for NumericComparator
where x and y are vectors to compare.

• comparator = Chebyshev,x = matrix,y = matrix: Specialization for Chebyshev where x
and y matrices of rows (interpreted as vectors) to compare. If x any y do not have the same
number of rows, rows are recycled in the smaller matrix.

• comparator = FuzzyTokenSet,x = list,y = list: Specialization for FuzzyTokenSet where
x and y are lists of token vectors to compare.

• comparator = InVocabulary,x = vector,y = vector: Specialization for InVocabulary where
x and y are vectors of strings to compare.

• comparator = Lookup,x = vector,y = vector: Specialization for a Lookup where x and y
are vectors of strings to compare

• comparator = MongeElkan,x = list,y = list: Specialization for MongeElkan where x and
y lists of token vectors to compare.

Note

This function is not strictly necessary, as the comparator itself is a function that returns element-
wise vectors of scores. In other words, comparator(x,y,...) is equivalent to elementwise(comparator,x,y,...).

Examples

Compute the absolute difference between two sets of scalar observations
data("iris")
x <- as.matrix(iris$Sepal.Width)
y <- as.matrix(iris$Sepal.Length)
elementwise(Euclidean(), x, y)

Compute the edit distance between columns of two linked data.frames
col.1 <- c("Hasna Yuhanna", "Korina Zenovia", "Phyllis Haywood", "Nicky Ellen")
col.2 <- c("Hasna Yuhanna", "Corinna Zenovia", "Phyllis Dorothy Haywood", "Nicole Ellen")
elementwise(Levenshtein(), col.1, col.2)
Levenshtein()(col.1, col.2) # equivalent to above

Recycling is used if the two collections don't contain the same number of objects
elementwise(Levenshtein(), "Cora Zenovia", col.1)

Euclidean Euclidean Numeric Comparator

10 FuzzyTokenSet

Description

The Euclidean distance (a.k.a. L-2 distance) between two vectors x and y is the square root of the
sum of the squared differences of the Cartesian coordinates:

Euclidean(x, y) =

√√√√ n∑
i=1

(xi − yi)2.

Usage

Euclidean()

Value

A Euclidean instance is returned, which is an S4 class inheriting from Minkowski.

Note

The Euclidean distance is a special case of the Minkowski distance with p = 2.

See Also

Other numeric comparators include Manhattan, Minkowski and Chebyshev.

Examples

Distance between two vectors
x <- c(0, 1, 0, 1, 0)
y <- seq_len(5)
Euclidean()(x, y)

Distance between rows (elementwise) of two matrices
comparator <- Euclidean()
x <- matrix(rnorm(25), nrow = 5)
y <- matrix(rnorm(5), nrow = 1)
elementwise(comparator, x, y)

Distance between rows (pairwise) of two matrices
pairwise(comparator, x, y)

FuzzyTokenSet Fuzzy Token Set Comparator

Description

Compares a pair of token sets x and y by computing the optimal cost of transforming x into y using
single-token operations (insertions, deletions and substitutions). The cost of single-token operations
is determined at the character-level using an internal string comparator.

FuzzyTokenSet 11

Usage

FuzzyTokenSet(
inner_comparator = Levenshtein(normalize = TRUE),
agg_function = base::mean,
deletion = 1,
insertion = 1,
substitution = 1

)

Arguments

inner_comparator

inner string distance comparator of class StringComparator. Defaults to nor-
malized Levenshtein distance.

agg_function function used to aggregate the costs of the optimal operations. Defaults to
base::mean.

deletion non-negative weight associated with deletion of a token. Defaults to 1.

insertion non-negative weight associated insertion of a token. Defaults to 1.

substitution non-negative weight associated with substitution of a token. Defaults to 1.

Details

A token set is an unordered enumeration of tokens, which may include duplicates. Given two token
sets x and y, this comparator computes the optimal cost of transforming x into y using the following
single-token operations:

• deleting a token a from x at cost wd × inner(a, ””)

• inserting a token b in y at cost wi × inner(””, b)

• substituting a token a in x for a token b in y at cost ws × inner(a, b)

where inner is an internal string comparator and wd, wi, ws are non-negative weights, referred to
as deletion, insertion and substitution in the parameter list. By default, the mean cost of
the optimal set of operations is returned. Other methods of aggregating the costs are supported by
specifying a non-default agg_function.

If the internal string comparator is a distance function, then the optimal set of operations minimize
the cost. Otherwise, the optimal set of operations maximize the cost. The optimization problem is
solved exactly using a linear sum assignment solver.

Note

This comparator is qualitatively similar to the MongeElkan comparator, however it is arguably more
principled, since it is formulated as a cost optimization problem. It also offers more control over
the costs of missing tokens (by varying the deletion and insertion weights). This is useful for
comparing full names, when dropping a name (e.g. middle name) shouldn’t be severely penalized.

12 gmean

Examples

Compare names with heterogenous representations
x <- "The University of California - San Diego"
y <- "Univ. Calif. San Diego"
Tokenize strings on white space
x <- strsplit(x, '\\s+')
y <- strsplit(y, '\\s+')
FuzzyTokenSet()(x, y)
Reduce the cost associated with missing words
FuzzyTokenSet(deletion = 0.5, insertion = 0.5)(x, y)

Compare full name with abbreviated name, reducing the penalty
for dropping parts of the name
fullname <- "JOSE ELIAS TEJADA BASQUES"
name <- "JOSE BASQUES"
Tokenize strings on white space
fullname <- strsplit(fullname, '\\s+')
name <- strsplit(name, '\\s+')
comparator <- FuzzyTokenSet(deletion = 0.5)
comparator(fullname, name) < comparator(name, fullname) # TRUE

gmean Geometric Mean

Description

Geometric Mean

Usage

gmean(x, ...)

Default S3 method:
gmean(x, na.rm = FALSE, ...)

Arguments

x An R object. Currently there are methods for numeric/logical vectors and date,
date-time and time interval objects. Complex vectors are allowed for trim = 0,
only.

... further arguments passed to or from other methods.

na.rm a logical value indicating whether NA values should be stripped before the com-
putation proceeds.

Hamming 13

Value

The geometric mean of the values in x is computed, as a numeric or complex vector of length one. If
x is not logical (coerced to numeric), numeric (including integer) or complex, NA_real_ is returned,
with a warning.

See Also

mean for the arithmetic mean and hmean for the harmonic mean.

Examples

x <- c(1:10, 50)
xm <- gmean(x)

Hamming Hamming String/Sequence Comparator

Description

The Hamming distance between two strings/sequences of equal length is the number of positions
where the corresponding characters/sequence elements differ. It can be viewed as a type of edit
distance where the only permitted operation is substitution of characters/sequence elements.

Usage

Hamming(
normalize = FALSE,
similarity = FALSE,
ignore_case = FALSE,
use_bytes = FALSE

)

Arguments

normalize a logical. If TRUE, distances/similarities are normalized to the unit interval.
Defaults to FALSE.

similarity a logical. If TRUE, similarity scores are returned instead of distances. Defaults
to FALSE.

ignore_case a logical. If TRUE, case is ignored when comparing strings.

use_bytes a logical. If TRUE, strings are compared byte-by-byte rather than character-by-
character.

14 hmean

Details

When the input strings/sequences x and y are of different lengths (|x| 6= |y|), the Hamming distance
is defined to be∞.

A Hamming similarity is returned if similarity = TRUE. When |x| = |y| the similarity is defined
as follows:

sim(x, y) = |x| − dist(x, y),

where sim is the Hamming similarity and dist is the Hamming distance. When |x| 6= |y| the
similarity is defined to be 0.

Normalization of the Hamming distance/similarity to the unit interval is also supported by setting
normalize = TRUE. The raw distance/similarity is divided by the length of the string/sequence |x| =
|y|. If |x| 6= |y| the normalized distance is defined to be 1, while the normalized similarity is defined
to be 0.

Value

A Hamming instance is returned, which is an S4 class inheriting from StringComparator.

Note

While the unnormalized Hamming distance is a metric, the normalized variant is not as it does not
satisfy the triangle inequality.

See Also

Other edit-based comparators include LCS, Levenshtein, OSA and DamerauLevenshtein.

Examples

Compare US ZIP codes
x <- "90001"
y <- "90209"
m1 <- Hamming() # unnormalized distance
m2 <- Hamming(similarity = TRUE, normalize = TRUE) # normalized similarity
m1(x, y)
m2(x, y)

hmean Harmonic Mean

Description

Harmonic Mean

InVocabulary 15

Usage

hmean(x, ...)

Default S3 method:
hmean(x, trim = 0, na.rm = FALSE, ...)

Arguments

x An R object. Currently there are methods for numeric/logical vectors and date,
date-time and time interval objects. Complex vectors are allowed for trim = 0,
only.

... further arguments passed to or from other methods.

trim the fraction (0 to 0.5) of observations to be trimmed from each end of x before
the mean is computed. Values of trim outside that range are taken as the nearest
endpoint.

na.rm a logical value indicating whether NA values should be stripped before the com-
putation proceeds.

Value

If trim is zero (the default), the harmonic mean of the values in x is computed, as a numeric or
complex vector of length one. If x is not logical (coerced to numeric), numeric (including integer)
or complex, NA_real_ is returned, with a warning.

If trim is non-zero, a symmetrically trimmed mean is computed with a fraction of trim observations
deleted from each end before the mean is computed.

See Also

mean for the arithmetic mean and gmean for the geometric mean.

Examples

x <- c(1:10, 50)
xm <- hmean(x)

InVocabulary In-Vocabulary Comparator

Description

Compares a pair of strings x and y using a reference vocabulary. Different scores are returned
depending on whether both/one/neither of x and y are in the reference vocabulary.

16 InVocabulary

Usage

InVocabulary(
vocab,
both_in_distinct = 0.7,
both_in_same = 1,
one_in = 1,
none_in = 1,
ignore_case = FALSE

)

Arguments

vocab a vector containing in-vocabulary (known) strings. Any strings not in this vector
are out-of-vocabulary (unknown).

both_in_distinct

score to return if the pair of values being compared are both in vocab and dis-
tinct. Defaults to 0.7, which would is appropriate for multiplying by similarity
scores. If multiplying by distance scores, a value greater than 1 is likely to be
more appropriate.

both_in_same score to return if the pair of values being compared are both in vocab and iden-
tical. Defaults to 1.0, which would leave another score unchanged when multi-
plied by this one.

one_in score to return if only one of the pair of values being compared is in vocab.
Defaults to 1.0, which would leave another score unchanged when multiplied
by this one.

none_in score to return if none of the pair of values being compared is in vocab. Defaults
to 1.0, which would leave another score unchanged when multiplied by this one.

ignore_case a logical. If TRUE, case is ignored when comparing the strings.

Details

This comparator is not intended to produce useful scores on its own. Rather, it is intended to produce
multiplicative factors which can be applied to other similarity/distance scores. It is particularly
useful for comparing names when a reference list (vocabulary) of known names is available. For
example, it can be configured to down-weight the similarity scores of distinct (known) names like
"Roberto" and "Umberto" which are semantically very different, but deceptively similar in terms
of edit distance. The normalized Levenshtein similarity for these two names is 75%, but their
similarity can be reduced to 53% if multiplied by the score from this comparator using the default
settings.

Value

An InVocabulary instance is returned, which is an S4 class inheriting from StringComparator.

Examples

Compare names with possible typos using a reference of known names
known_names <- c("Roberto", "Umberto", "Alberto", "Emberto", "Norberto", "Humberto")

Jaro 17

m1 <- InVocabulary(known_names)
m2 <- Levenshtein(similarity = TRUE, normalize = TRUE)
x <- "Emberto"
y <- c("Enberto", "Umberto")
"Emberto" and "Umberto" are likely to refer to distinct people (since
they are known distinct names) so their Levenshtein similarity is
downweighted to 0.61. "Emberto" and "Enberto" may refer to the same
person (likely typo), so their Levenshtein similarity of 0.87 is not
downweighted.
similarities <- m1(x, y) * m2(x, y)

Jaro Jaro String/Sequence Comparator

Description

Compares a pair of strings/sequences x and y based on the number of greedily-aligned charac-
ters/sequence elements and the number of transpositions. It was developed for comparing names at
the U.S. Census Bureau.

Usage

Jaro(similarity = TRUE, ignore_case = FALSE, use_bytes = FALSE)

Arguments

similarity a logical. If TRUE, similarity scores are returned (default), otherwise distances
are returned (see definition under Details).

ignore_case a logical. If TRUE, case is ignored when comparing strings.

use_bytes a logical. If TRUE, strings are compared byte-by-byte rather than character-by-
character.

Details

For simplicity we assume x and y are strings in this section, however the comparator is also imple-
mented for more general sequences.

When similarity = TRUE (default), the Jaro similarity is computed as

sim(x, y) =
1

3

(
m

|x|
+
m

|y|
+
m− b t2c

m

)
where m is the number of "matching" characters (defined below), t is the number of "transposi-
tions", and |x|, |y| are the lengths of the strings x and y. The similarity takes on values in the range
[0, 1], where 1 corresponds to a perfect match.

The number of "matching" characters m is computed using a greedy alignment algorithm. The
algorithm iterates over the characters in x, attempting to align the i-th character xi with the first

18 JaroWinkler

matching character in y. When looking for matching characters in y, the algorithm only considers
previously un-matched characters within a window [max(0, i − w),min(|y|, i + w)] where w =⌊
max(|x|,|y|)

2

⌋
− 1. The alignment process yields a subsequence of matching characters from x and

y. The number of "transpositions" t is defined to be the number of positions in the subsequence of
x which are misaligned with the corresponding position in y.

When similarity = FALSE, the Jaro distance is computed as

dist(x, y) = 1− sim(x, y).

Value

A Jaro instance is returned, which is an S4 class inheriting from StringComparator.

Note

The Jaro distance is not a metric, as it does not satisfy the identity axiom dist(x, y) = 0⇔ x = y.

References

Jaro, M. A. (1989), "Advances in Record-Linkage Methodology as Applied to Matching the 1985
Census of Tampa, Florida", Journal of the American Statistical Association 84(406), 414-420.

See Also

The JaroWinkler comparator modifies the Jaro comparator by boosting the similarity score for
strings/sequences that have matching prefixes.

Examples

Compare names
Jaro()("Martha", "Mathra")
Jaro()("Eileen", "Phyllis")

JaroWinkler Jaro-Winkler String/Sequence Comparator

Description

The Jaro-Winkler comparator is a variant of the Jaro comparator which boosts the similarity score
for strings/sequences with matching prefixes. It was developed for comparing names at the U.S.
Census Bureau.

JaroWinkler 19

Usage

JaroWinkler(
p = 0.1,
threshold = 0.7,
max_prefix = 4L,
similarity = TRUE,
ignore_case = FALSE,
use_bytes = FALSE

)

Arguments

p a non-negative numeric scalar no larger than 1/max_prefix. Similarity scores
eligible for boosting are scaled by this factor.

threshold a numeric scalar on the unit interval. Jaro similarities greater than this value
are boosted based on matching characters in the prefixes of both strings. Jaro
similarities below this value are returned unadjusted. Defaults to 0.7.

max_prefix a non-negative integer scalar, specifying the size of the prefix to consider for
boosting. Defaults to 4 (characters).

similarity a logical. If TRUE, similarity scores are returned (default), otherwise distances
are returned (see definition under Details).

ignore_case a logical. If TRUE, case is ignored when comparing strings.

use_bytes a logical. If TRUE, strings are compared byte-by-byte rather than character-by-
character.

Details

For simplicity we assume x and y are strings in this section, however the comparator is also imple-
mented for more general sequences.

The Jaro-Winkler similarity (computed when similarity = TRUE) is defined in terms of the Jaro
similarity. If the Jaro similarity simJ(x, y) between strings x and y exceeds a user-specified thresh-
old 0 ≤ τ ≤ 1, the similarity score is boosted in proportion to the number of matching characters
in the prefixes of x and y. More precisely, the Jaro-Winkler similarity is defined as:

simJW (x, y) = simJ(x, y) + min(c(x, y), l)p(1− simJ(x, y)),

where c(x, y) is the length of the common prefix, l ≥ 0 is a user-specified upper bound on the prefix
size, and 0 ≤ p ≤ 1/l is a scaling factor.

The Jaro-Winkler distance is computed when similarity = FALSE and is defined as

distJW (x, y) = 1− simJW (x, y).

Value

A JaroWinkler instance is returned, which is an S4 class inheriting from StringComparator.

20 LCS

Note

Like the Jaro distance, the Jaro-Winkler distance is not a metric as it does not satisfy the identity
axiom.

References

Jaro, M. A. (1989), "Advances in Record-Linkage Methodology as Applied to Matching the 1985
Census of Tampa, Florida", Journal of the American Statistical Association 84(406), 414-420.

Winkler, W. E. (2006), "Overview of Record Linkage and Current Research Directions", Tech.
report. Statistics #2006-2. Statistical Research Division, U.S. Census Bureau.

Winkler, W., McLaughlin G., Jaro M. and Lynch M. (1994), strcmp95.c, Version 2. United States
Census Bureau.

See Also

This comparator reduces to the Jaro comparator when max_prefix = 0L or threshold = 0.0.

Examples

Compare names
JaroWinkler()("Martha", "Mathra")
JaroWinkler()("Eileen", "Phyllis")

Reduce the threshold for boosting
x <- "Matthew"
y <- "Martin"
JaroWinkler()(x, y) < JaroWinkler(threshold = 0.5)(x, y)

LCS Longest Common Subsequence (LCS) Comparator

Description

The Longest Common Subsequence (LCS) distance between two strings/sequences x and y is the
minimum cost of operations (insertions and deletions) required to transform x into y. The LCS
similarity is more commonly used, which can be interpreted as the length of the longest subsequence
common to x and y.

Usage

LCS(
deletion = 1,
insertion = 1,
normalize = FALSE,
similarity = FALSE,
ignore_case = FALSE,
use_bytes = FALSE

)

https://web.archive.org/web/20100227020019/http://www.census.gov/geo/msb/stand/strcmp.c

LCS 21

Arguments

deletion positive cost associated with deletion of a character or sequence element. De-
faults to unit cost.

insertion positive cost associated insertion of a character or sequence element. Defaults
to unit cost.

normalize a logical. If TRUE, distances are normalized to the unit interval. Defaults to
FALSE.

similarity a logical. If TRUE, similarity scores are returned instead of distances. Defaults
to FALSE.

ignore_case a logical. If TRUE, case is ignored when comparing strings.

use_bytes a logical. If TRUE, strings are compared byte-by-byte rather than character-by-
character.

Details

For simplicity we assume x and y are strings in this section, however the comparator is also imple-
mented for more general sequences.

An LCS similarity is returned if similarity = TRUE, which is defined as

sim(x, y) =
wd|x|+ wi|y| − dist(x, y)

2
,

where |x|, |y| are the number of characters in x and y respectively, dist is the LCS distance, wd is
the cost of a deletion and wi is the cost of an insertion.

Normalization of the LCS distance/similarity to the unit interval is also supported by setting normalize
= TRUE. The normalization approach follows Yujian and Bo (2007), and ensures that the distance
remains a metric when the costs of insertion wi and deletion wd are equal. The normalized distance
distn is defined as

distn(x, y) =
2dist(x, y)

wd|x|+ wi|y|+ dist(x, y)
,

and the normalized similarity simn is defined as

simn(x, y) = 1− distn(x, y) =
sim(x, y)

wd|x|+ wi|y| − sim(x, y)
.

Value

A LCS instance is returned, which is an S4 class inheriting from StringComparator.

Note

If the costs of deletion and insertion are equal, this comparator is symmetric in x and y. In addition,
the normalized and unnormalized distances satisfy the properties of a metric.

22 Levenshtein

References

Bergroth, L., Hakonen, H., & Raita, T. (2000), "A survey of longest common subsequence al-
gorithms", Proceedings Seventh International Symposium on String Processing and Information
Retrieval (SPIRE’00), 39-48.

Yujian, L. & Bo, L. (2007), "A Normalized Levenshtein Distance Metric", IEEE Transactions on
Pattern Analysis and Machine Intelligence 29, 1091–1095.

See Also

Other edit-based comparators include Hamming, Levenshtein, OSA and DamerauLevenshtein.

Examples

There are no common substrings of size 3 for the following example,
however there are two common substrings of size 2: "AC" and "BC".
Hence the LCS similarity is 2.
x <- "ABCDA"; y <- "BAC"
LCS(similarity = TRUE)(x, y)

Levenshtein distance reduces to LCS distance when the cost of
substitution is high
x <- "ABC"; y <- "AAA"
LCS()(x, y) == Levenshtein(substitution = 100)(x, y)

Levenshtein Levenshtein String/Sequence Comparator

Description

The Levenshtein (edit) distance between two strings/sequences x and y is the minimum cost of
operations (insertions, deletions or substitutions) required to transform x into y.

Usage

Levenshtein(
deletion = 1,
insertion = 1,
substitution = 1,
normalize = FALSE,
similarity = FALSE,
ignore_case = FALSE,
use_bytes = FALSE

)

Levenshtein 23

Arguments

deletion positive cost associated with deletion of a character or sequence element. De-
faults to unit cost.

insertion positive cost associated insertion of a character or sequence element. Defaults
to unit cost.

substitution positive cost associated with substitution of a character or sequence element.
Defaults to unit cost.

normalize a logical. If TRUE, distances are normalized to the unit interval. Defaults to
FALSE.

similarity a logical. If TRUE, similarity scores are returned instead of distances. Defaults
to FALSE.

ignore_case a logical. If TRUE, case is ignored when comparing strings.

use_bytes a logical. If TRUE, strings are compared byte-by-byte rather than character-by-
character.

Details

For simplicity we assume x and y are strings in this section, however the comparator is also imple-
mented for more general sequences.

A Levenshtein similarity is returned if similarity = TRUE, which is defined as

sim(x, y) =
wd|x|+ wi|y| − dist(x, y)

2
,

where |x|, |y| are the number of characters in x and y respectively, dist is the Levenshtein distance,
wd is the cost of a deletion and wi is the cost of an insertion.

Normalization of the Levenshtein distance/similarity to the unit interval is also supported by setting
normalize = TRUE. The normalization approach follows Yujian and Bo (2007), and ensures that the
distance remains a metric when the costs of insertion wi and deletion wd are equal. The normalized
distance distn is defined as

distn(x, y) =
2dist(x, y)

wd|x|+ wi|y|+ dist(x, y)
,

and the normalized similarity simn is defined as

simn(x, y) = 1− distn(x, y) =
sim(x, y)

wd|x|+ wi|y| − sim(x, y)
.

Value

A Levenshtein instance is returned, which is an S4 class inheriting from StringComparator.

Note

If the costs of deletion and insertion are equal, this comparator is symmetric in x and y. In addition,
the normalized and unnormalized distances satisfy the properties of a metric.

24 Lookup

References

Navarro, G. (2001), "A guided tour to approximate string matching", ACM Computing Surveys
(CSUR), 33(1), 31-88.

Yujian, L. & Bo, L. (2007), "A Normalized Levenshtein Distance Metric", IEEE Transactions on
Pattern Analysis and Machine Intelligence 29, 1091–1095.

See Also

Other edit-based comparators include Hamming, LCS, OSA and DamerauLevenshtein.

Examples

Compare names with potential typos
x <- c("Brian Cheng", "Bryan Cheng", "Kondo Onyejekwe", "Condo Onyejekve")
pairwise(Levenshtein(), x, return_matrix = TRUE)

When the substitution cost is high, Levenshtein distance reduces to LCS distance
Levenshtein(substitution = 100)("Iran", "Iraq") == LCS()("Iran", "Iraq")

Lookup Lookup String Comparator

Description

Compares a pair of strings x and y by retrieving their distance/similarity score from a provided
lookup table.

Usage

Lookup(
lookup_table,
values_colnames,
score_colname,
default_match = 0,
default_nonmatch = NA_real_,
symmetric = TRUE,
ignore_case = FALSE

)

Arguments

lookup_table data frame containing distances/similarities for pairs of values
values_colnames

character vector containing the colnames corresponding to pairs of values (e.g.
strings) in lookup_table

score_colname name of column that contains distances/similarities in lookup_table

Manhattan 25

default_match distance/similarity to use if the pair of values match exactly and do not appear
in lookup_table. Defaults to 0.0.

default_nonmatch

distance/similarity to use if the pair of values are not an exact match and do not
appear in lookup table. Defaults to NA.

symmetric whether the underlying distance/similarity scores are symmetric. If TRUE lookup_table
need only contain entries for one of the two pairs—i.e. an entry for value pair
(y, x) is not required if an entry for (x, y) is already present.

ignore_case a logical. If TRUE, case is ignored when comparing the strings.

Details

The lookup table should contain three columns corresponding to x, and y (values_colnames be-
low) and the distance/similarity (score_colname below). If a pair of values x and y is not in the
lookup table, a default distance/similarity is returned depending on whether x = y (default_match
below) or x 6= y (default_nonmatch below).

Value

A Lookup instance is returned, which is an S4 class inheriting from StringComparator.

Examples

Measure the distance between cities
lookup_table <- data.frame(x = c("Melbourne", "Melbourne", "Sydney"),

y = c("Sydney", "Brisbane", "Brisbane"),
dist = c(713.4, 1374.8, 732.5))

comparator <- Lookup(lookup_table, c("x", "y"), "dist")
comparator("Sydney", "Melbourne")
comparator("Melbourne", "Perth")

Manhattan Manhattan Numeric Comparator

Description

The Manhattan distance (a.k.a. L-1 distance) between two vectors x and y is the sum of the absolute
differences of their Cartesian coordinates:

Manhattan(x, y) =

n∑
i=1

|xi − yi|.

Usage

Manhattan()

26 Minkowski

Value

A Manhattan instance is returned, which is an S4 class inheriting from Minkowski.

Note

The Manhattan distance is a special case of the Minkowski distance with p = 1.

See Also

Other numeric comparators include Euclidean, Minkowski and Chebyshev.

Examples

Distance between two vectors
x <- c(0, 1, 0, 1, 0)
y <- seq_len(5)
Manhattan()(x, y)

Distance between rows (elementwise) of two matrices
comparator <- Manhattan()
x <- matrix(rnorm(25), nrow = 5)
y <- matrix(rnorm(5), nrow = 1)
elementwise(comparator, x, y)

Distance between rows (pairwise) of two matrices
pairwise(comparator, x, y)

Minkowski Minkowski Numeric Comparator

Description

The Minkowski distance (a.k.a. L-p distance) between two vectors x and y is the p-th root of the
sum of the absolute differences of their Cartesian coordinates raised to the p-th power:

Minkowski(x, y) =

(
n∑

i=1

|xi − yi|p
)1/p

.

Usage

Minkowski(p = 2)

Arguments

p a positive numeric specifying the order of the distance. Defaults to 2 (Euclidean
distance). If p < 1 the Minkowski distance does not satisfy the triangle inequality
and is therefore not a proper distance metric.

MongeElkan 27

Value

A Minkowski instance is returned, which is an S4 class inheriting from NumericComparator.

See Also

Other numeric comparators include Manhattan, Euclidean and Chebyshev.

Examples

Distance between two vectors
x <- c(0, 1, 0, 1, 0)
y <- seq_len(5)
Minkowski()(x, y)

Distance between rows (elementwise) of two matrices
comparator <- Minkowski()
x <- matrix(rnorm(25), nrow = 5)
y <- matrix(rnorm(5), nrow = 1)
elementwise(comparator, x, y)

Distance between rows (pairwise) of two matrices
pairwise(comparator, x, y)

MongeElkan Monge-Elkan Token Comparator

Description

Compares a pair of token sets x and y by computing similarity scores between all pairs of tokens
using an internal string comparator, then taking the mean of the maximum scores for each token in
x.

Usage

MongeElkan(
inner_comparator = Levenshtein(similarity = TRUE, normalize = TRUE),
agg_function = base::mean,
symmetrize = FALSE

)

Arguments

inner_comparator

internal string comparator of class StringComparator. Defaults to Levenshtein
similarity.

agg_function aggregation function to use when aggregating internal similarities/distances be-
tween tokens. Defaults to mean, however hmean may be a better choice when
the comparator returns normalized similarity scores.

28 MongeElkan

symmetrize logical indicating whether to use a symmetrized version of the Monge-Elkan
comparator. Defaults to FALSE.

Details

A token set is an unordered enumeration of tokens, which may include duplicates. Given two token
sets x and y, the Monge-Elkan comparator is defined as:

ME(x, y) =
1

|x|

|x|∑
i=1

max
j

sim(xi, yj)

where xi is the i-th token in x, |x| is the number of tokens in x and sim is an internal string similarity
comparator.

A generalization of the original Monge-Elkan comparator is implemented here, which allows for
distance comparators in place of similarity comparators, and/or more general aggregation functions
in place of the arithmetic mean. The generalized Monge-Elkan comparator is defined as:

ME(x, y) = agg(optj inner(xi, yj))

where inner is an internal distance or similarity comparator, opt is max if inner is a similarity
comparator or min if it is a distance comparator, and agg is an aggregation function which takes a
vector of scores for each token in x and returns a scalar.

By default, the Monge-Elkan comparator is asymmetric in its arguments x and y. If symmetrize =
TRUE, a symmetric version of the comparator is obtained as follows

MEsym(x, y) = opt {ME(x, y),ME(y, x)}

where opt is defined above.

Value

A MongeElkan instance is returned, which is an S4 class inheriting from StringComparator.

References

Monge, A. E., & Elkan, C. (1996), "The Field Matching Problem: Algorithms and Applications",
In Proceedings of the Second International Conference on Knowledge Discovery and Data Mining
(KDD’96), pp. 267-270.

Jimenez, S., Becerra, C., Gelbukh, A., & Gonzalez, F. (2009), "Generalized Monge-Elkan Method
for Approximate Text String Comparison", In Computational Linguistics and Intelligent Text Pro-
cessing, pp. 559-570.

Examples

Compare names with heterogenous representations
x <- "The University of California - San Diego"
y <- "Univ. Calif. San Diego"
Tokenize strings on white space
x <- strsplit(x, '\\s+')
y <- strsplit(y, '\\s+')

NumericComparator-class 29

MongeElkan()(x, y)

The symmetrized variant is arguably more appropriate for this example
MongeElkan(symmetrize = TRUE)(x, y)

Using a different internal comparator changes the result
MongeElkan(inner_comparator = BinaryComp(), symmetrize=TRUE)(x, y)

NumericComparator-class

Virtual Numeric Comparator Class

Description

Represents a comparator for comparing pairs of numeric vectors.

Slots

.Data a function that calls the elementwise method for this class, with arguments x, y and

symmetric a logical of length 1. If TRUE, the comparator is symmetric in its arguments—i.e.
comparator(x,y) is identical to comparator(y,x).

distance a logical of length 1. If TRUE, the comparator produces distances and satisfies comparator(x,x)
= 0. The comparator may not satisfy all of the properties of a distance metric.

similarity a logical of length 1. If TRUE, the comparator produces similarity scores.

tri_inequal a logical of length 1. If TRUE, the comparator satisfies the triangle inequality. This is
only possible (but not guaranteed) if distance = TRUE and symmetric = TRUE.

OSA Optimal String Alignment (OSA) String/Sequence Comparator

Description

The Optimal String Alignment (OSA) distance between two strings/sequences x and y is the mini-
mum cost of operations (insertions, deletions, substitutions or transpositions) required to transform
x into y, subject to the constraint that no substring/subsequence is edited more than once.

30 OSA

Usage

OSA(
deletion = 1,
insertion = 1,
substitution = 1,
transposition = 1,
normalize = FALSE,
similarity = FALSE,
ignore_case = FALSE,
use_bytes = FALSE

)

Arguments

deletion positive cost associated with deletion of a character or sequence element. De-
faults to unit cost.

insertion positive cost associated insertion of a character or sequence element. Defaults
to unit cost.

substitution positive cost associated with substitution of a character or sequence element.
Defaults to unit cost.

transposition positive cost associated with transposing (swapping) a pair of characters or se-
quence elements. Defaults to unit cost.

normalize a logical. If TRUE, distances are normalized to the unit interval. Defaults to
FALSE.

similarity a logical. If TRUE, similarity scores are returned instead of distances. Defaults
to FALSE.

ignore_case a logical. If TRUE, case is ignored when comparing strings.

use_bytes a logical. If TRUE, strings are compared byte-by-byte rather than character-by-
character.

Details

For simplicity we assume x and y are strings in this section, however the comparator is also imple-
mented for more general sequences.

An OSA similarity is returned if similarity = TRUE, which is defined as

sim(x, y) =
wd|x|+ wi|y| − dist(x, y)

2
,

where |x|, |y| are the number of characters in x and y respectively, dist is the OSA distance, wd is
the cost of a deletion and wi is the cost of an insertion.

Normalization of the OSA distance/similarity to the unit interval is also supported by setting normalize
= TRUE. The normalization approach follows Yujian and Bo (2007), and ensures that the distance
remains a metric when the costs of insertion wi and deletion wd are equal. The normalized distance
distn is defined as

distn(x, y) =
2dist(x, y)

wd|x|+ wi|y|+ dist(x, y)
,

OSA 31

and the normalized similarity simn is defined as

simn(x, y) = 1− distn(x, y) =
sim(x, y)

wd|x|+ wi|y| − sim(x, y)
.

Value

An OSA instance is returned, which is an S4 class inheriting from StringComparator.

Note

If the costs of deletion and insertion are equal, this comparator is symmetric in x and y. The
OSA distance is not a proper metric as it does not satisfy the triangle inequality. The Damerau-
Levenshtein distance is closely related—it allows the same edit operations as OSA, but removes the
requirement that no substring can be edited more than once.

References

Boytsov, L. (2011), "Indexing methods for approximate dictionary searching: Comparative analy-
sis", ACM J. Exp. Algorithmics 16, Article 1.1.

Navarro, G. (2001), "A guided tour to approximate string matching", ACM Computing Surveys
(CSUR), 33(1), 31-88.

Yujian, L. & Bo, L. (2007), "A Normalized Levenshtein Distance Metric", IEEE Transactions on
Pattern Analysis and Machine Intelligence 29: 1091–1095.

See Also

Other edit-based comparators include Hamming, LCS, Levenshtein and DamerauLevenshtein.

Examples

Compare strings with a transposition error
x <- "plauge"; y <- "plague"
OSA()(x, y) != Levenshtein()(x, y)

Unlike Damerau-Levenshtein, OSA does not allow a substring to be
edited more than once
x <- "ABC"; y <- "CA"
OSA()(x, y) != DamerauLevenshtein()(x, y)

Compare car names using normalized OSA similarity
data(mtcars)
cars <- rownames(mtcars)
pairwise(OSA(similarity = TRUE, normalize=TRUE), cars)

32 pairwise

pairwise Pairwise Similarity/Distance Matrix

Description

Computes pairwise similarities/distances between two collections of objects (strings, vectors, etc.)
using the provided comparator.

Usage

pairwise(comparator, x, y, return_matrix = FALSE, ...)

S4 method for signature 'Comparator,ANY,missing'
pairwise(comparator, x, y, return_matrix = FALSE, ...)

S4 method for signature 'CppSeqComparator,list,list'
pairwise(comparator, x, y, return_matrix = FALSE, ...)

S4 method for signature 'CppSeqComparator,list,`NULL`'
pairwise(comparator, x, y, return_matrix = FALSE, ...)

S4 method for signature 'StringComparator,vector,vector'
pairwise(comparator, x, y, return_matrix = FALSE, ...)

S4 method for signature 'StringComparator,vector,`NULL`'
pairwise(comparator, x, y, return_matrix = FALSE, ...)

S4 method for signature 'NumericComparator,matrix,vector'
pairwise(comparator, x, y, return_matrix = FALSE, ...)

S4 method for signature 'NumericComparator,vector,matrix'
pairwise(comparator, x, y, return_matrix = FALSE, ...)

S4 method for signature 'Chebyshev,matrix,matrix'
pairwise(comparator, x, y, return_matrix = FALSE, ...)

S4 method for signature 'Chebyshev,matrix,`NULL`'
pairwise(comparator, x, y, return_matrix = FALSE, ...)

S4 method for signature 'Minkowski,matrix,matrix'
elementwise(comparator, x, y, ...)

S4 method for signature 'Minkowski,matrix,matrix'
pairwise(comparator, x, y, return_matrix = FALSE, ...)

S4 method for signature 'Minkowski,matrix,`NULL`'
pairwise(comparator, x, y, return_matrix = FALSE, ...)

pairwise 33

S4 method for signature 'FuzzyTokenSet,list,list'
pairwise(comparator, x, y, return_matrix = FALSE, ...)

S4 method for signature 'FuzzyTokenSet,vector,`NULL`'
pairwise(comparator, x, y, return_matrix = FALSE, ...)

S4 method for signature 'InVocabulary,vector,vector'
pairwise(comparator, x, y, return_matrix = FALSE, ...)

S4 method for signature 'InVocabulary,vector,`NULL`'
pairwise(comparator, x, y, return_matrix = FALSE, ...)

S4 method for signature 'Lookup,vector,vector'
pairwise(comparator, x, y, return_matrix = FALSE, ...)

S4 method for signature 'Lookup,vector,`NULL`'
pairwise(comparator, x, y, return_matrix = FALSE, ...)

S4 method for signature 'MongeElkan,list,list'
pairwise(comparator, x, y, return_matrix = FALSE, ...)

S4 method for signature 'MongeElkan,list,`NULL`'
pairwise(comparator, x, y, return_matrix = FALSE, ...)

Arguments

comparator a comparator used to compare the objects, which is a sub-class of Comparator.

x, y a collection of objects to compare, typically stored as entries in an atomic vector,
rows in a matrix, or entries in a list. The required format depends on the type of
comparator. y may be omitted or set to NULL to compare objects in x.

return_matrix a logical of length 1. If FALSE (default), the pairwise similarities/distances will
be returned as a PairwiseMatrix which is more space-efficient for symmetric
comparators. If TRUE, a standard matrix is returned instead.

... other parameters passed on to other methods.

Value

If both x and y are specified, every object in x is compared with every object in y using the com-
parator, and the resulting scores are returned in a size(x) by size(y) matrix.

If only x is specified, then the objects in x are compared with themselves using the comparator, and
the resulting scores are returned in a size(x) by size(y) matrix.

By default, the matrix is represented as an instance of the PairwiseMatrix class, which is more
space-efficient for symmetric comparators when y is not specified. However, if return_matrix =
TRUE, the matrix is returned as an ordinary matrix instead.

34 pairwise

Methods (by class)

• comparator = Comparator,x = ANY,y = missing: Compute a pairwise comparator when y

• comparator = CppSeqComparator,x = list,y = list: Specialization for CppSeqComparator
where x and y are lists of sequences (vectors) to compare.

• comparator = CppSeqComparator,x = list,y = NULL: Specialization for CppSeqComparator
where x is a list of sequences (vectors) to compare.

• comparator = StringComparator,x = vector,y = vector: Specialization for StringComparator
where x and y are vectors of strings to compare.

• comparator = StringComparator,x = vector,y = NULL: Specialization for StringComparator
where x is a vector of strings to compare.

• comparator = NumericComparator,x = matrix,y = vector: Specialization for NumericComparator
where x is a matrix of rows (interpreted as vectors) to compare with a vector y.

• comparator = NumericComparator,x = vector,y = matrix: Specialization for NumericComparator
where x is a vector to compare with a matrix y of rows (interpreted as vectors).

• comparator = Chebyshev,x = matrix,y = matrix: Specialization for Chebyshev where x
and y matrices of rows (interpreted as vectors) to compare.

• comparator = Chebyshev,x = matrix,y = NULL: Specialization for Minkowski where x is a
matrix of rows (interpreted as vectors) to compare among themselves.

• comparator = Minkowski,x = matrix,y = matrix: Specialization for a Minkowski where x
and y matrices of rows (interpreted as vectors) to compare.

• comparator = Minkowski,x = matrix,y = matrix: Specialization for a Minkowski where x
and y matrices of rows (interpreted as vectors) to compare.

• comparator = Minkowski,x = matrix,y = NULL: Specialization for Minkowski where x is a
matrix of rows (interpreted as vectors) to compare among themselves.

• comparator = FuzzyTokenSet,x = list,y = list: Specialization for FuzzyTokenSet where
x and y are lists of token vectors to compare.

• comparator = FuzzyTokenSet,x = vector,y = NULL: Specialization for FuzzyTokenSet where
x is a list of token vectors to compare among themselves.

• comparator = InVocabulary,x = vector,y = vector: Specialization for InVocabulary where
x and y are vectors of strings to compare.

• comparator = InVocabulary,x = vector,y = NULL: Specialization for InVocabulary where
x is a vector of strings to compare among themselves.

• comparator = Lookup,x = vector,y = vector: Specialization for a Lookup where x and y
are vectors of strings to compare

• comparator = Lookup,x = vector,y = NULL: Specialization for Lookup where x is a vector
of strings to compare among themselves

• comparator = MongeElkan,x = list,y = list: Specialization for MongeElkan where x and
y are lists of token vectors to compare.

• comparator = MongeElkan,x = list,y = NULL: Specialization for MongeElkan where x is a
list of token vectors to compare among themselves.

PairwiseMatrix-class 35

Examples

Computing the distances between a query point y (a 3D numeric vector)
and a set of reference points x
x <- rbind(c(1,0,1), c(0,0,0), c(-1,2,-1))
y <- c(10, 5, 10)
pairwise(Manhattan(), x, y)

Computing the pairwise similarities among a set of strings
x <- c("Benjamin", "Ben", "Benny", "Bne", "Benedict", "Benson")
comparator <- DamerauLevenshtein(similarity = TRUE, normalize = TRUE)
pairwise(comparator, x, return_matrix = TRUE) # return an ordinary matrix

PairwiseMatrix-class Pairwise Similarity/Distance Matrix

Description

Represents a pairwise similarity or distance matrix.

Usage

as.PairwiseMatrix(x, ...)

S4 method for signature 'matrix'
as.PairwiseMatrix(x, ...)

S4 method for signature 'PairwiseMatrix'
as.matrix(x, ...)

Arguments

x an R object.

... additional arguments to be passed to methods.

Details

If the elements being compared are from the same set, the matrix may be symmetric if the com-
parator is symmetric. In this case, entries in the upper triangle and/or along the diagonal may not
be stored in memory, since they are redundant.

Functions

• as.PairwiseMatrix: Convert an R object x to a PairwiseMatrix.

• as.PairwiseMatrix,matrix-method: Convert an ordinary matrix x to a PairwiseMatrix.

• as.matrix,PairwiseMatrix-method: Convert a PairwiseMatrix x to an ordinary matrix.

36 StringComparator-class

Slots

.Data entries of the matrix in column-major order. Entries in the upper triangle and/or on the
diagonal may be omitted.

Dim integer vector of length 2. The dimensions of the matrix.

Diag logical indicating whether the diagonal entries are stored in .Data.

SequenceComparator-class

Virtual Sequence Comparator Class

Description

Represents a comparator for pairs of sequences.

Slots

.Data a function that calls the elementwise method for this class, with arguments x, y and

symmetric a logical of length 1. If TRUE, the comparator is symmetric in its arguments—i.e.
comparator(x,y) is identical to comparator(y,x).

distance a logical of length 1. If TRUE, the comparator produces distances and satisfies comparator(x,x)
= 0. The comparator may not satisfy all of the properties of a distance metric.

similarity a logical of length 1. If TRUE, the comparator produces similarity scores.

tri_inequal a logical of length 1. If TRUE, the comparator satisfies the triangle inequality. This is
only possible (but not guaranteed) if distance = TRUE and symmetric = TRUE.

StringComparator-class

Virtual String Comparator Class

Description

Represents a comparator for pairs of strings.

Slots

.Data a function that calls the elementwise method for this class, with arguments x, y and

symmetric a logical of length 1. If TRUE, the comparator is symmetric in its arguments—i.e.
comparator(x,y) is identical to comparator(y,x).

distance a logical of length 1. If TRUE, the comparator produces distances and satisfies comparator(x,x)
= 0. The comparator may not satisfy all of the properties of a distance metric.

similarity a logical of length 1. If TRUE, the comparator produces similarity scores.

TokenComparator-class 37

tri_inequal a logical of length 1. If TRUE, the comparator satisfies the triangle inequality. This is
only possible (but not guaranteed) if distance = TRUE and symmetric = TRUE.

ignore_case a logical of length 1. If TRUE, case is ignored when comparing strings. Defaults to
FALSE.

use_bytes a logical of length 1. If TRUE, strings are compared byte-by-byte rather than character-
by-character.

TokenComparator-class Virtual Token Comparator Class

Description

Represents a comparator for pairs of token sequences.

Slots

.Data a function that calls the elementwise method for this class, with arguments x, y and

symmetric a logical of length 1. If TRUE, the comparator is symmetric in its arguments—i.e.
comparator(x,y) is identical to comparator(y,x).

distance a logical of length 1. If TRUE, the comparator produces distances and satisfies comparator(x,x)
= 0. The comparator may not satisfy all of the properties of a distance metric.

similarity a logical of length 1. If TRUE, the comparator produces similarity scores.

tri_inequal a logical of length 1. If TRUE, the comparator satisfies the triangle inequality. This is
only possible (but not guaranteed) if distance = TRUE and symmetric = TRUE.

ordered a logical of length 1. If TRUE, the comparator treats token sequences as ordered, other-
wise they are treated as unordered.

Index

as.matrix,PairwiseMatrix-method
(PairwiseMatrix-class), 35

as.PairwiseMatrix
(PairwiseMatrix-class), 35

as.PairwiseMatrix,matrix-method
(PairwiseMatrix-class), 35

base::mean, 11
BinaryComp, 2

Chebyshev, 3, 9, 10, 26, 27, 34
Comparator, 8, 33
Comparator-class, 4
Constant, 4
CppSeqComparator, 8, 34
CppSeqComparator-class, 5

DamerauLevenshtein, 5, 14, 22, 24, 31

elementwise, 7
elementwise,Chebyshev,matrix,matrix-method

(elementwise), 7
elementwise,CppSeqComparator,list,list-method

(elementwise), 7
elementwise,FuzzyTokenSet,list,list-method

(elementwise), 7
elementwise,InVocabulary,vector,vector-method

(elementwise), 7
elementwise,Lookup,vector,vector-method

(elementwise), 7
elementwise,Minkowski,matrix,matrix-method

(pairwise), 32
elementwise,MongeElkan,list,list-method

(elementwise), 7
elementwise,NumericComparator,matrix,vector-method

(elementwise), 7
elementwise,NumericComparator,vector,matrix-method

(elementwise), 7
elementwise,NumericComparator,vector,vector-method

(elementwise), 7

elementwise,StringComparator,vector,vector-method
(elementwise), 7

Euclidean, 3, 9, 26, 27

FuzzyTokenSet, 9, 10, 34

gmean, 12, 15

Hamming, 7, 13, 22, 24, 31
hmean, 13, 14, 27

InVocabulary, 9, 15, 34

Jaro, 17, 18–20
JaroWinkler, 18, 18

LCS, 7, 14, 20, 24, 31
Levenshtein, 6, 7, 11, 14, 22, 22, 27, 31
Lookup, 9, 24, 34

Manhattan, 3, 10, 25, 27
matrix, 33, 35
mean, 13, 15, 27
Minkowski, 3, 10, 26, 26, 34
MongeElkan, 9, 11, 27, 34

NumericComparator, 3, 4, 8, 9, 27, 34
NumericComparator-class, 29

OSA, 7, 14, 22, 24, 29

pairwise, 32
pairwise,Chebyshev,matrix,matrix-method

(pairwise), 32
pairwise,Chebyshev,matrix,NULL-method

(pairwise), 32
pairwise,Comparator,ANY,missing-method

(pairwise), 32
pairwise,CppSeqComparator,list,list-method

(pairwise), 32
pairwise,CppSeqComparator,list,NULL-method

(pairwise), 32

38

INDEX 39

pairwise,FuzzyTokenSet,list,list-method
(pairwise), 32

pairwise,FuzzyTokenSet,vector,NULL-method
(pairwise), 32

pairwise,InVocabulary,vector,NULL-method
(pairwise), 32

pairwise,InVocabulary,vector,vector-method
(pairwise), 32

pairwise,Lookup,vector,NULL-method
(pairwise), 32

pairwise,Lookup,vector,vector-method
(pairwise), 32

pairwise,Minkowski,matrix,matrix-method
(pairwise), 32

pairwise,Minkowski,matrix,NULL-method
(pairwise), 32

pairwise,MongeElkan,list,list-method
(pairwise), 32

pairwise,MongeElkan,list,NULL-method
(pairwise), 32

pairwise,NumericComparator,matrix,vector-method
(pairwise), 32

pairwise,NumericComparator,vector,matrix-method
(pairwise), 32

pairwise,StringComparator,vector,NULL-method
(pairwise), 32

pairwise,StringComparator,vector,vector-method
(pairwise), 32

PairwiseMatrix, 33
PairwiseMatrix (PairwiseMatrix-class),

35
PairwiseMatrix-class, 35

SequenceComparator-class, 36
StringComparator, 3–5, 8, 11, 14, 16, 18, 19,

21, 23, 25, 27, 28, 31, 34
StringComparator-class, 36

TokenComparator-class, 37

	BinaryComp
	Chebyshev
	Comparator-class
	Constant
	CppSeqComparator-class
	DamerauLevenshtein
	elementwise
	Euclidean
	FuzzyTokenSet
	gmean
	Hamming
	hmean
	InVocabulary
	Jaro
	JaroWinkler
	LCS
	Levenshtein
	Lookup
	Manhattan
	Minkowski
	MongeElkan
	NumericComparator-class
	OSA
	pairwise
	PairwiseMatrix-class
	SequenceComparator-class
	StringComparator-class
	TokenComparator-class
	Index

