
Quick Start Guide

Preliminaries
conText was designed to work closely with quanteda, as such, most functions will expect a quanteda object
such as a tokens or dfm or fcm object. To make the most of conText, we recommend that you familiarize
yourself with some of quanteda’s basic functionalities (see Quanteda Quick Start Guide).

Setup
Installing the package
You can install the package directly from CRAN:
install.packages("conText")

Or, for the latest development version, from GitHub:
devtools::install_github("prodriguezsosa/conText")

Load package

library(conText)

# other libraries used in this guide
library(quanteda)
library(dplyr)
library(text2vec)

Data
To use conText you will need three objects:

1. A (quanteda) corpus with the documents and corresponding document variables (covariates) you want
to evaluate.

2. A set of (GloVe) pre-trained embeddings.
3. A transformation matrix specific to the pre-trained embeddings.

In this guide we will use the sample objects included in the package: cr_sample_corpus, cr_glove_subset
and cr_transform. Note, these are only meant to illustrate function implementations, keep in mind their
(small) size when interepreting results. We’ve made available the full versions of these objects here.

Pre-processing
Pre-processing is always context-specific (no pun intended). We generally recommend not “overly”
pre-processing a corpus. Below we outline how a typical pre-processing pipeline might look. Note,
cr_sample_corpus already has some minor pre-processing so some of these steps may be redundant but
are left for completeness. It is generally a good idea to set padding = TRUE in tokens_select() to avoid
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making non-adjacent words adjacent prior to computing the embeddings. This is increasingly important as
more features are removed.
# tokenize corpus removing unnecessary (i.e. semantically uninformative) elements
toks <- tokens(cr_sample_corpus, remove_punct=T, remove_symbols=T, remove_numbers=T, remove_separators=T)

# clean out stopwords and words with 2 or fewer characters
toks_nostop <- tokens_select(toks, pattern = stopwords("en"), selection = "remove", min_nchar=3)

# only use features that appear at least 5 times in the corpus
feats <- dfm(toks_nostop, tolower=T, verbose = FALSE) %>% dfm_trim(min_termfreq = 5) %>% featnames()

# leave the pads so that non-adjacent words will not become adjacent
toks <- tokens_select(toks_nostop, feats, padding = TRUE)

The building blocks of ‘a la carte’ embeddings
Suppose we are interested in the semantics surrounding the word “immigration” in the U.S. Congress during
the Obama years (sessions 111th - 114th).

1. Build a (tokenized) corpus of contexts
We begin by identifying all instances of the target term –“immigration”– in our corpus and, for each instance,
store it’s context– the N words (N = 6 in this example) preceding and following the instance, and tokenize.
Given our tokenized corpus, toks, we can do this in one step using conText::tokens_context() –a wrapper
function for quanteda::kwic(). Notice, both the input, x, and the output are a quanteda tokens objects. Each
document in immig_toks –tokens of a context around an instance of immigration– inherits the document
variables (docvars) of the document from whence it came, along with a column registering the corresponding
pattern. This information can be retrieved using docvars().
# build a tokenized corpus of contexts sorrounding the target term "immigration"
immig_toks <- tokens_context(x = toks, pattern = "immigr*", window = 6L)

## 125 instances of "immigrant" found.
## 288 instances of "immigrants" found.
## 924 instances of "immigration" found.
head(docvars(immig_toks), 3)

## pattern party gender nominate_dim1
## 1 immigrants D F -0.759
## 2 immigration D F -0.402
## 3 immigrant D F -0.402

2. Build a document-feature-matrix
Given a tokenized corpus of contexts, we next build it’s corresponding document-feature-matrix, namely a
matrix where each row represents a given document’s vector of feature counts. We do this using quanteda’s
dfm() function.
# build document-feature matrix
immig_dfm <- dfm(immig_toks)
immig_dfm[1:3,1:3]

## Document-feature matrix of: 3 documents, 3 features (66.67% sparse) and 4 docvars.
## features
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## docs institutions moral stood
## text1 1 1 1
## text2 0 0 0
## text3 0 0 0

3. Build a document-embedding-matrix
Given a ‘dfm’, immig_dfm, a set of pre-trained embeddings, cr_glove_subset and a corresponding transfor-
mation matrix, cr_transform, we can proceed to embed each document –i.e. context– ‘a la carte’. We embed
a document by multiplying each of it’s feature counts with their corresponding pre-trained feature-embeddings,
column-averaging the resulting vectors, and multiplying by the transformation matrix. This “transforms”
a sparse V-dimensional vector (a vector of feature counts, with V = number of features in the corpus)
into a dense D-dimensional vector (a D-dimensional embedding, with D = dimensions of the pre-trained
embeddings). We do this using conText::dem()–‘dem’ standing for document-embedding-matrix. Each row
in this matrix represents an ‘a la carte’ (ALC) embedding of a single instance of “immigration”.

Keep in mind, only those features that appear in the set of pre-trained embeddings will be used in computing
a document’s embedding. Documents with no features overlapping with the pre-trained provided are dropped.
dem() –outputs a ‘dem-class’ object which is similar in many ways to ‘dfm-class’ object. Importantly, a
‘dem-class’ object inherits all the documenta variables, ‘docvars’, from the ‘dfm’ used to compute it (except
those of documents that could not be embedded). Additionally, a ‘dem-class’ object will store other useful
attributes, including the names of the documents that were embedded and the vector of features used.
# build a document-embedding-matrix
immig_dem <- dem(x = immig_dfm, pre_trained = cr_glove_subset, transform = TRUE, transform_matrix = cr_transform, verbose = TRUE)

# each document inherits its corresponding docvars
#head(immig_dem@docvars)

# you can check which documents were not embedded due to lack of overlapping features (in this example all documents are embedded)
# note: 'quanteda' functions like `docvars()` and `docnames()` don't work on `dem` objects, so you will have to call the attributes directly.
#setdiff(docnames(immig_dfm), immig_dem@Dimnames$docs)

# vector of features used to create the embeddings
#head(immig_dem@features)

4. Average over document embeddings
We now have an ALC embedding for each instance of “immigration” in our sample corpus. To get a single
corpus-wide ALC embedding for “immigration”, we can simply take the column-average of the single-instance
ALC embeddings.

## [1] 1 300

However, we are usually interested in exploring semantic differences across groups. To do so, we can
average using a grouping variable defined by one or a combination of the ‘docvars’. We do this using
conText::dem_group() (very similar in flavor to quanteda’s dfm_group()). In our example below, this
results in an ALC embedding of “immigration” for each party, hence the dimensions 2 by 300.
# to get group-specific embeddings, average within party
immig_wv_party <- dem_group(immig_dem, groups = immig_dem@docvars$party)
dim(immig_wv_party)

## [1] 2 300
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5. Comparing group embeddings
Given an ALC embedding for each party, we can proceed to do some exploratory analysis.

Nearest neighbors

First, we can evaluate differences in nearest neighbors –features with the highest cosine-similarity with each
group embedding– using conText::nns(). We use the candidates argument to limit the set of features we
want nns to consider as candidate nearest neighbors. In this example we limit candidates to those features
that appear in our corpus (otherwise, any word in the set of pre-trained embeddings can be a candidate).
# find nearest neighbors by party
# setting as_list = FALSE combines each group's results into a single tibble (useful for joint plotting)
immig_nns <- nns(immig_wv_party, pre_trained = cr_glove_subset, N = 5, candidates = immig_wv_party@features, as_list = TRUE)

# check out results for Republican party
immig_nns[["R"]]

## # A tibble: 5 x 4
## target feature rank value
## <chr> <chr> <int> <dbl>
## 1 R immigration 1 0.843
## 2 R illegal 2 0.768
## 3 R immigrants 3 0.732
## 4 R illegally 4 0.664
## 5 R amnesty 5 0.658

Cosine similarity

We can also look at the relationship between each group’s ALC embedding of “immigration” and a specific
set of features. For example, how does each party’s understanding of immigration compare on the “reform”
vs. “enforcement” dimension? To answer this, we use conText::cos_sim(). Results (on this limited sample
of the data) suggest Democrats are more prone to speak of “reform” in the context of “immigration” whereas
Republicans are more likely to speak of “enforcement”.
# compute the cosine similarity between each party's embedding and a specific set of features
cos_sim(immig_wv_party, pre_trained = cr_glove_subset, features = c('reform', 'enforcement'), as_list = FALSE)

## target feature value
## 1 D reform 0.5949757
## 2 R reform 0.4270958
## 3 D enforcement 0.6059709
## 4 R enforcement 0.5968879

Nearest neighbors cosine similarity ratio

A third exploratory function included in ‘conText’ is nns_ratio(). Given ALC embeddings for two groups,
nns_ratio() computes the ratio of cosine similarities between group embeddings and features –that is, for
any given feature it first computes the similarity between that feature and each group embedding, and then
takes the ratio of these two similarities. This ratio captures how “discriminant” a feature is of a given group.
Values larger (smaller) than 1 mean the feature is more (less) discriminant of the group in the numerator
(denominator). Use the numerator argument to define which group represents the numerator in this ratio. If
N is defined, this ratio is computed for union of the top N nearest neighbors.
# compute the cosine similarity between each party's embedding and a specific set of features
nns_ratio(x = immig_wv_party, N = 10, numerator = "R", candidates = immig_wv_party@features, pre_trained = cr_glove_subset, verbose = FALSE)

## feature value
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## 1 enforce 1.2076754
## 2 illegal 1.1834716
## 3 amnesty 1.1716428
## 4 illegally 1.1232888
## 5 laws 1.0893494
## 6 legal 1.0261909
## 7 immigrants 1.0070933
## 8 border 1.0043546
## 9 enforcement 0.9850108
## 10 immigration 0.9809758
## 11 immigrant 0.9118817
## 12 undocumented 0.9008638
## 13 broken 0.7631982
## 14 comprehensive 0.7248641
## 15 reform 0.7178373

Nearest contexts

We are used to hearing about “nearet neighbors” when it comes to interpreting word embeddings. However, it
is often the case that nearest neighbors –i.e. single words– without any context are hard to interpret. For this
reason we introduce “nearest contexts” – contexts around a target term that are semantically close –i.e. high
cosine similarity– to the ALC embedding of that term. To explore nearest contexts we use the ncs() function.
ncs() computes the cosine similarities between the ALC (group) embeddings and the single-instance ALC
embeddings of the underlying contexts.
# compute the cosine similarity between each party's embedding and a set of tokenized contexts
immig_ncs <- ncs(x = immig_wv_party, contexts_dem = immig_dem, contexts = immig_toks, N = 5, as_list = TRUE)

# nearest contexts to Republican embedding of target term
immig_ncs[["R"]]

## # A tibble: 5 x 4
## target context rank value
## <chr> <chr> <int> <dbl>
## 1 R america suggest immigration can good thing illegal immigra~ 1 0.817
## 2 R immigration can good thing immigration illegal legal immig~ 2 0.787
## 3 R immigration law prior illegal immigration reform responsib~ 3 0.785
## 4 R good thing immigration illegal immigration legal mean mean~ 4 0.773
## 5 R going cost hardworking taxpayers america suggest can good ~ 5 0.758

Stemming
All functions to explore nearest neighbors –nns, cos_sim, nns_ratio– have to option to add stemming. This
can be useful to group nearest neighbors with the same stem e.g. “reform”, “reforms”, “reformed”. Under
the hood, candidate nearest neighbors are stemmed using the Snowball library and cosine similarities with
the target embeddings are averaged across nearest neighbors with the same stem. To avoid noisy words
influencing this average e.g. “reformedthesystem”, we recommend you remove misspelled words from the
candidate set candidates (you can automate this using the hunspell library). See example below.
# consider removing noisy candidate nearest neighbors
library(hunspell) # spellcheck library

##
## Attaching package: 'hunspell'

## The following object is masked from 'package:quanteda':
##
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## dictionary
# extract candidate features from the dem object
immig_feats <- immig_wv_party@features

# check spelling. toupper avoids names being considered misspelled
spellcheck <- hunspell_check(toupper(immig_feats), dict = hunspell::dictionary("en_US")) #
immig_feats <- immig_feats[spellcheck]

# find nearest neighbors by party using stemming
immig_nns_stem <- nns(immig_wv_party, pre_trained = cr_glove_subset, N = 5, candidates = immig_feats, stem = TRUE, as_list = TRUE)

# check out results for Republican party
immig_nns_stem[["R"]]

## # A tibble: 5 x 4
## target feature rank value
## <chr> <chr> <int> <dbl>
## 1 R illeg 1 0.716
## 2 R immigr 2 0.704
## 3 R amnesti 3 0.658
## 4 R enforc 4 0.593
## 5 R law 5 0.578

Multiple Keywords
In the above example we had one target word, “immigration”. However, we can also explore the semantics of
multiple targets simultaneously, including phrases! We simply provide a vector of patterns in the pattern
argument of tokens_context().
# build a corpus of contexts sorrounding the target term "immigration"
mkws_toks <- tokens_context(x = toks, pattern = c("immigration", "welfare", "immigration reform", "economy"), window = 6L, verbose = FALSE)

# create document-feature matrix
mkws_dfm <- dfm(mkws_toks)

# create document-embedding matrix using a la carte
mkws_dem <- dem(x = mkws_dfm, pre_trained = cr_glove_subset, transform = TRUE, transform_matrix = cr_transform, verbose = FALSE)

# get embeddings for each pattern
mkws_wvs <- dem_group(mkws_dem, groups = mkws_dem@docvars$pattern)

# find nearest neighbors for each keyword
mkws_nns <- nns(mkws_wvs, pre_trained = cr_glove_subset, N = 5, candidates = mkws_wvs@features, as_list = TRUE)

# to check results for a given pattern
mkws_nns[["immigration reform"]]

## # A tibble: 5 x 4
## target feature rank value
## <chr> <chr> <int> <dbl>
## 1 immigration reform comprehensive 1 0.817
## 2 immigration reform immigration 2 0.739
## 3 immigration reform reform 3 0.635
## 4 immigration reform pass 4 0.609
## 5 immigration reform bipartisan 5 0.581
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This can also be useful if we wanted to explore group differences in the semantics of a given topic where
we define a topic by a vector of topical target words. Note, these topical embeddings are computed off of
the collection of contexts around the set of pattern words provided. So, in the example below, the contexts
around each of “immigration”, “immigrant” and “immigration reform” are treated as a single collection of
contexts for the purposes of computing each party’s topical embedding.
# build a corpus of contexts sorrounding the immigration related words
topical_toks <- tokens_context(x = toks, pattern = c("immigration", "immigrant", "immigration reform"), window = 6L, verbose = FALSE)

# create document-feature matrix
topical_dfm <- dfm(topical_toks)

# create document-embedding matrix using a la carte
topical_dem <- dem(x = topical_dfm, pre_trained = cr_glove_subset, transform = TRUE, transform_matrix = cr_transform, verbose = FALSE)

# get "topical" embeddings for each party
topical_wvs <- dem_group(topical_dem, groups = topical_dem@docvars$party)

# find nearest neighbors for each keyword
nns(topical_wvs, pre_trained = cr_glove_subset, N = 5, candidates = topical_wvs@features, stem = TRUE, as_list = FALSE)

## # A tibble: 10 x 4
## target feature rank value
## <fct> <chr> <int> <dbl>
## 1 D comprehens 1 0.699
## 2 R illeg 1 0.677
## 3 R immigr 2 0.673
## 4 D broken 2 0.668
## 5 D immigr 3 0.663
## 6 D reform 4 0.661
## 7 R amnesti 3 0.659
## 8 R enforc 4 0.626
## 9 R law 5 0.609
## 10 D act 5 0.549

Wrapper functions
The above functions give users a lot of flexibility, however, it can be cumbersome to write each step every time
one wants to do some exploratory analysis on a corpus. In this section we’ll look into a collection of wrapper
functions that allow users to go straight from a tokenized corpus to results. Each of the four exploratory
analysis functions –nns(), cos_sim(), nns_ratio() and ncs()– described above has its corresponding
wrapper function.

An key advantage of the wrapper functions is that they make it easy to obtain standard errors around the
sample statistics of interest via bootstrapping. Bootstrapping works by sampling with replacement documents
from our tokenized corpus of contexts (within group if the argument groups is specified) and going through
the above steps for each of our exploratory analysis functions (i.e. computing an ‘a la carte’ embedding on each
bootstrapped sample, then computing the cosine similarities etc.). Let’s start with conText::get_nns(), a
wrapper function for nns().

Nearest neighbors

We use the same tokenized corpus of “immigration” contexts –immig_toks– as above, and again limit
candidate nearest neighbors to the set of features in our corpus. To group by party we set groups =
docvars(immig_corpus, 'party') –the groups argument can include more than two groups. If no grouping
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variable is provided, the full set of (tokenized) contexts are aggregated into one single embedding. To estimate
standard errors for the cosine similarities between each party’s embedding and their corresponding nearest
neighbors we set bootstrap = TRUE and define the desired number of bootstraps with num_bootstrap.
Notice the output now has an additional column std.error. This is simply the standard deviation of the
sampling distribution of cosine similarities obtained via bootstrapping. Note, values may differ slightly to the
step-by-step process outlined above as they represent averages over bootstrapped samples.
# we limit candidates to features in our corpus
feats <- featnames(dfm(immig_toks))

# compare nearest neighbors between groups
set.seed(2021L)
immig_party_nns <- get_nns(x = immig_toks, N = 10,

groups = docvars(immig_toks, 'party'),
candidates = feats,
pre_trained = cr_glove_subset,
transform = TRUE,
transform_matrix = cr_transform,
bootstrap = TRUE,
num_bootstraps = 10,
as_list = TRUE)

# nearest neighbors of "immigration" for Republican party
immig_party_nns[["R"]]

## # A tibble: 10 x 5
## target feature rank value std.error
## <chr> <chr> <int> <dbl> <dbl>
## 1 R immigration 1 0.842 0.00565
## 2 R illegal 2 0.758 0.0108
## 3 R immigrants 3 0.739 0.00899
## 4 R illegally 4 0.661 0.0106
## 5 R amnesty 5 0.655 0.0128
## 6 R laws 6 0.589 0.0132
## 7 R enforcement 7 0.588 0.0116
## 8 R enforce 8 0.577 0.0124
## 9 R legal 9 0.567 0.0125
## 10 R undocumented 10 0.565 0.00984

Cosine similarity

conText::get_cos_sim() is a wrapper function for cos_sim(), used to evaluate how similar each group’s
(or single if groups is not defined) embedding is to a set of features of interest –as with get_nns(), the
groups argument can take on more than two groups. Again we set bootstrap = TRUE to obtain standard
errors for the cosine similarities.
# compute the cosine similarity between each group's embedding and a specific set of features
set.seed(2021L)
get_cos_sim(x = immig_toks,

groups = docvars(immig_toks, 'party'),
features = c("reform", "enforce"),
pre_trained = cr_glove_subset,
transform = TRUE,
transform_matrix = cr_transform,
bootstrap = TRUE,
num_bootstraps = 10,
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as_list = FALSE)

## # A tibble: 4 x 4
## target feature value std.error
## <fct> <fct> <dbl> <dbl>
## 1 D reform 0.592 0.0191
## 2 D enforce 0.484 0.00976
## 3 R reform 0.427 0.0159
## 4 R enforce 0.577 0.0124

Nearest neighbors cosine similarity ratio

conText::get_nns_ratio() is a wrapper function for nns_ratio(), used to gauge how discriminant nearest
neighbors are of each group. Unlike get_nns() and get_cos_sim(), a groups argument must be provided
and it must be binary. As with nns_ratio(), we use the numerator argument to control which group to use
as the numerator in the underlying ratio. We again limit the candidate nearest neighbors to the set of local
features and set bootstrap = TRUE to get standard errors, in this case of the cosine similarity ratios.

Finally, get_nns_ratio() allows us to make inferences using a permutation test, specifically around the
absolute deviation of the observed cosine similarity ratio from 1 (this captures how discriminant a given
nearest neighbor is). Specifically, for each permutation, the grouping variable is randomly shuffled and the
absolute deviation of the cosine similarity ratios from 1 is computed. The empirical p.value is then the
proportion of these “permuted” deviations that are larger than the observed deviation.

The output of get_nns_ratio() contains three additional columns (relative to nns_ratio()) if bootstrap =
TRUE and permute = TRUE. These are the standard errors around the cosine similarity ratios, the corresponding
(empirical) p.value and a group variable identifying which group the nearest neighbor belonged to – shared
means it appeared in both groups’ top N nearest neighbors.
# we limit candidates to features in our corpus
feats <- featnames(dfm(immig_toks))

# compute ratio
set.seed(2021L)
immig_nns_ratio <- get_nns_ratio(x = immig_toks,

N = 10,
groups = docvars(immig_toks, 'party'),
numerator = "R",
candidates = feats,
pre_trained = cr_glove_subset,
transform = TRUE,
transform_matrix = cr_transform,
bootstrap = TRUE,
num_bootstraps = 10,
permute = TRUE,
num_permutations = 10,
verbose = FALSE)

## starting bootstraps
## done with bootstraps
## starting permutations
## done with permutations
head(immig_nns_ratio)

## # A tibble: 6 x 5
## feature value std.error p.value group
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## <chr> <dbl> <dbl> <dbl> <chr>
## 1 enforce 1.19 0.0306 0 R
## 2 illegal 1.17 0.0233 0 shared
## 3 amnesty 1.17 0.0211 0 R
## 4 illegally 1.13 0.0246 0 shared
## 5 laws 1.08 0.0424 0 R
## 6 legal 1.03 0.0382 0.1 R

conText also includes a plotting function, plot_nns_ratio, specific to get_nns_ratio(), providing a nice
visualization of its output. alpha defines the desired significance threshold to denote “significant” results on
the plot (indicated by a ∗ next to the feature). Also, you can choose between two different visualizations of
the same results using the horizontal argument.
plot_nns_ratio(x = immig_nns_ratio, alpha = 0.01, horizontal = TRUE)

Nearest contexts

conText::get_ncs() is a wrapper function for ncs(), used to compute cosine similarities between ALC
(group) embeddings and the ALC embeddings of individual contexts with the option to bootstrap standard
errors.
# compare nearest neighbors between groups
set.seed(2021L)
immig_party_ncs <- get_ncs(x = immig_toks,

N = 10,
groups = docvars(immig_toks, 'party'),
pre_trained = cr_glove_subset,
transform = TRUE,
transform_matrix = cr_transform,
bootstrap = TRUE,
num_bootstraps = 10,
as_list = TRUE)

# nearest neighbors of "immigration" for Republican party
immig_party_ncs[["R"]]

## # A tibble: 10 x 5
## target context rank value std.error
## <chr> <chr> <int> <dbl> <dbl>
## 1 R america suggest immigration can good thing ille~ 1 0.815 0.00830
## 2 R immigration can good thing immigration illegal ~ 2 0.789 0.00880
## 3 R immigration law prior illegal immigration refor~ 3 0.783 0.00917
## 4 R good thing immigration illegal immigration lega~ 4 0.771 0.00717
## 5 R going cost hardworking taxpayers america sugges~ 5 0.756 0.00921
## 6 R actually increase illegal immigration reducing ~ 6 0.734 0.00561
## 7 R immigration enforcement along southwest border ~ 7 0.728 0.00697
## 8 R late right thing hold president responsible pol~ 8 0.721 0.00785
## 9 R backlog met likely lead reduction legal increas~ 9 0.719 0.0111
## 10 R responsible immigration policies ignoring immig~ 10 0.717 0.00942

Embedding regression
The above framework allows us to explore semantic differences over one grouping variable at a time. However,
we often want to look at covariate effects while controlling for other covariates or indeed go beyond discrete
covariates. In Rodriguez, Spirling and Stewart (2021) we show how a la carte embeddings can be used
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within a regression-framework that allows us to do just that. The corresponding package function is
conText::conText().

conText() tries to follow a similar syntax as R’s lm() and glm() functions. data must be a quanteda tokens
object with covariates stored as document variables (docvars). We next specify a formula consisting of
the target word of interest, e.g. “immigration” and the set of covariates. To use all covariates in data,
we can speficy immigration ~ .. formula can also take vectors of target words e.g. c("immigration",
"immigrants") ~ party + gender and phrases e.g. "immigration reform" ~ party + gender – place
phrases in quotation marks.
# two factor covariates
set.seed(2021L)
model1 <- conText(formula = immigration ~ party + gender,

data = toks,
pre_trained = cr_glove_subset,
transform = TRUE, transform_matrix = cr_transform,
bootstrap = TRUE, num_bootstraps = 10,
permute = TRUE, num_permutations = 100,
window = 6, case_insensitive = TRUE,
verbose = FALSE)

## coefficient normed.estimate std.error p.value
## 1 party_R 0.5988860 0.05041898 0
## 2 gender_M 0.5355259 0.03126510 0
# notice, non-binary covariates are automatically "dummified"
rownames(model1)

## [1] "party_R" "gender_M" "(Intercept)"

conText() outputs a conText-class object which is simply a dgCMatrix class matrix corresponding to
the beta coefficients (ALC embeddings) with additional attributes including: a table (automatically printed)
with the normed coefficients (excluding the intercept), their std. errors and p-values, @normed_coefficients,
and the set of features used when creating the embeddings @features.

We can combine the coefficients to compute the ALC embeddings for the various combinations of the covariates
(see Rodriguez, Spirling and Stewart (2021) for details).
# D-dimensional beta coefficients
# the intercept in this case is the ALC embedding for female Democrats
# beta coefficients can be combined to get each group's ALC embedding
DF_wv <- model1['(Intercept)',] # (D)emocrat - (F)emale
DM_wv <- model1['(Intercept)',] + model1['gender_M',] # (D)emocrat - (M)ale
RF_wv <- model1['(Intercept)',] + model1['party_R',] # (R)epublican - (F)emale
RM_wv <- model1['(Intercept)',] + model1['party_R',] + model1['gender_M',] # (R)epublican - (M)ale

# nearest neighbors
nns(rbind(DF_wv,DM_wv), N = 10, pre_trained = cr_glove_subset, candidates = model1@features)

## $DM_wv
## # A tibble: 10 x 4
## target feature rank value
## <chr> <chr> <int> <dbl>
## 1 DM_wv immigration 1 0.844
## 2 DM_wv broken 2 0.693
## 3 DM_wv reform 3 0.660
## 4 DM_wv comprehensive 4 0.646
## 5 DM_wv immigrants 5 0.596
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## 6 DM_wv illegal 6 0.589
## 7 DM_wv enforcement 7 0.567
## 8 DM_wv border 8 0.555
## 9 DM_wv system 9 0.545
## 10 DM_wv fix 10 0.538
##
## $DF_wv
## # A tibble: 10 x 4
## target feature rank value
## <chr> <chr> <int> <dbl>
## 1 DF_wv immigration 1 0.835
## 2 DF_wv comprehensive 2 0.641
## 3 DF_wv enforcement 3 0.640
## 4 DF_wv immigrants 4 0.629
## 5 DF_wv broken 5 0.613
## 6 DF_wv reform 6 0.608
## 7 DF_wv law 7 0.595
## 8 DF_wv illegal 8 0.589
## 9 DF_wv laws 9 0.567
## 10 DF_wv border 10 0.565

To access the normed coefficients for plotting:
model1@normed_cofficients

## coefficient normed.estimate std.error p.value
## 1 party_R 0.5988860 0.05041898 0
## 2 gender_M 0.5355259 0.03126510 0

conText can also take continuous covariates. In the example below we estimate a model using the first
dimension of the NOMINATE score–understood to capture the Liberal-Conservative spectrum on economic
matters. To explore similarity with specific features we use the fitted model to compute the fitted values
–ALC embeddings– at various percentiles of the NOMINATE score. Consistent with our results above, the
higher the NOMINATE score (more Conservative) the greater the similarity between the ALC embedding
for immigration and the feature enforcement whereas the lower the NOMINATE score (more Liberal) the
greater its similarity with the feature reform.
# continuous covariate
set.seed(2021L)
model2 <- conText(formula = immigration ~ nominate_dim1,

data = toks,
pre_trained = cr_glove_subset,
transform = TRUE, transform_matrix = cr_transform,
bootstrap = TRUE, num_bootstraps = 10,
permute = TRUE, num_permutations = 100,
window = 6, case_insensitive = TRUE,
verbose = FALSE)

## coefficient normed.estimate std.error p.value
## 1 nominate_dim1 0.6720702 0.06397647 0
# look at percentiles of nominate
percentiles <- quantile(docvars(cr_sample_corpus)$nominate_dim1, probs = seq(0.05,0.95,0.05))
percentile_wvs <- lapply(percentiles, function(i) model2["(Intercept)",] + i*model2["nominate_dim1",]) %>% do.call(rbind,.)
percentile_sim <- cos_sim(x = percentile_wvs, pre_trained = cr_glove_subset, features = c("reform", "enforce"), as_list = TRUE)

# check output
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rbind(head(percentile_sim[["reform"]], 5),tail(percentile_sim[["reform"]], 5))

## target feature value
## 1 5% reform 0.6645026
## 2 10% reform 0.6598026
## 3 15% reform 0.6557875
## 4 20% reform 0.6532968
## 5 25% reform 0.6501394
## 15 75% reform 0.5045321
## 16 80% reform 0.4909143
## 17 85% reform 0.4841337
## 18 90% reform 0.4787336
## 19 95% reform 0.4735839
rbind(head(percentile_sim[["enforce"]], 5),tail(percentile_sim[["enforce"]], 5))

## target feature value
## 20 5% enforce 0.4558998
## 21 10% enforce 0.4695425
## 22 15% enforce 0.4797996
## 23 20% enforce 0.4856559
## 24 25% enforce 0.4926141
## 34 75% enforce 0.6294170
## 35 80% enforce 0.6346377
## 36 85% enforce 0.6369822
## 37 90% enforce 0.6387348
## 38 95% enforce 0.6403148

Local GloVe and transformation matrix
If (a) you have a large enough corpus to train a full GloVe embeddings model and (b) your corpus is distinctive
in some way –e.g. a collection of articles from scientific journals–, then you may want to consider estimating
your own set of embeddings and transformation matrix –otherwise you should be good to go using GloVe
pre-trained embeddings. The first step is to estimate GloVe embeddings on the full corpus which you will
then use as your pre-trained embeddings.

Estimate GloVe embeddings
This example is taken (with minor changes) from this quanteda vignette on computing GloVe embeddings
using quanteda and text2vec.
library(text2vec)

#---------------------------------
# estimate glove model
#---------------------------------

# construct the feature co-occurrence matrix for our toks object (see above)
toks_fcm <- fcm(toks, context = "window", window = 6, count = "frequency", tri = FALSE) # important to set tri = FALSE

# estimate glove model using text2vec
glove <- GlobalVectors$new(rank = 300,

x_max = 10,
learning_rate = 0.05)
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wv_main <- glove$fit_transform(toks_fcm, n_iter = 10,
convergence_tol = 1e-3,
n_threads = 2) # set to 'parallel::detectCores()' to use all available cores

## INFO [16:03:11.244] epoch 1, loss 0.2267
## INFO [16:03:13.503] epoch 2, loss 0.0768
## INFO [16:03:15.172] epoch 3, loss 0.0498
## INFO [16:03:16.992] epoch 4, loss 0.0375
## INFO [16:03:18.943] epoch 5, loss 0.0303
## INFO [16:03:20.734] epoch 6, loss 0.0256
## INFO [16:03:22.576] epoch 7, loss 0.0223
## INFO [16:03:24.410] epoch 8, loss 0.0198
## INFO [16:03:26.225] epoch 9, loss 0.0178
## INFO [16:03:28.024] epoch 10, loss 0.0162
wv_context <- glove$components
local_glove <- wv_main + t(wv_context) # word vectors

# qualitative check
find_nns(local_glove['immigration',], pre_trained = local_glove, N = 5, candidates = feats)

## [1] "immigration" "bill" "people" "law" "congress"

Estimating the transformation matrix
Given a corpus and it’s corresponding GloVe embeddings, we can compute a corresponding transformation
matrix using conText::compute_transform().
# compute transform
# weighting = 'log' works well for smaller corpora
# for large corpora use a numeric value e.g. weighting = 500
# see: https://arxiv.org/pdf/1805.05388.pdf
local_transform <- compute_transform(x = toks_fcm, pre_trained = local_glove, weighting = 'log')

You should always run some sanity checks to make sure the computed transformation matrix produces sensical
results (keep in mind the corpus in this example consists of only 200 documents). A more robust approach
(not illustrated below) to verify your transformation matrix is to randomly select a set of features to exclude
from the its estimation but which have a corresponding pre-trained embedding. Use the transformation
matrix and pre-trained embeddings to compute ALC embeddings for these excluded features and check their
similarity with their corresponding pre-trained embeddings (it should be reasonably high, > 0.6).
#---------------------------------
# check
#---------------------------------

# create document-embedding matrix using our locally trained GloVe embeddings and transformation matrix
immig_dem_local <- dem(x = immig_dfm, pre_trained = local_glove, transform = TRUE, transform_matrix = local_transform, verbose = TRUE)

# take the column average to get a single "corpus-wide" embedding
immig_wv_local <- colMeans(immig_dem_local)

# find nearest neighbors for overall immigraiton embedding
find_nns(immig_wv_local, pre_trained = local_glove, N = 10, candidates = immig_dem_local@features)

## [1] "immigration" "bill" "people" "law" "reform"
## [6] "illegal" "can" "system" "president" "country"
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# we can also compare to corresponding pre-trained embedding
sim2(x = matrix(immig_wv_local, nrow = 1), y = matrix(local_glove['immigration',], nrow = 1), method = 'cosine', norm = 'l2')

## [,1]
## [1,] 0.7849437

Other
Feature embedding matrix
We may be interested in simultaneously embedding many features. This can be useful to (1) compare two
corpora along many features simultaneously and/or (2) estimate context-specific feature embeddings that can
subsequently be fed into a downstream classification task. We’ll focus on (1) here. Using the same tokenized
cr_sample_corpus we start by building a feature-co-occurrence matrix for each group (party).
# create feature co-occurrence matrix for each party (set tri = FALSE to work with fem)
fcm_D <- fcm(toks[docvars(toks, 'party') == "D",], context = "window", window = 6, count = "frequency", tri = FALSE)
fcm_R <- fcm(toks[docvars(toks, 'party') == "R",], context = "window", window = 6, count = "frequency", tri = FALSE)

Given an fcm for each group, we can proceed to compute a corresponding “feature-embedding-matrix” for
each group.
# compute feature-embedding matrix
fem_D <- fem(fcm_D, pre_trained = cr_glove_subset, transform = TRUE, transform_matrix = cr_transform, verbose = FALSE)
fem_R <- fem(fcm_R, pre_trained = cr_glove_subset, transform = TRUE, transform_matrix = cr_transform, verbose = FALSE)

# cr_fem will contain an embedding for each feature
fem_D[1:5,1:3]

## 5 x 3 sparse Matrix of class "dgCMatrix"
##
## president 0.3744276 0.2664312 0.5106154
## rise 0.6826160 0.1579899 0.1132372
## today 0.5012829 0.1986229 0.1827530
## honor 0.6683875 0.3323882 0.2093607
## one 0.5223592 0.4007449 0.2207826

Finally, we can use the conText::feature_sim function to compute “horizontal” cosine similarities between
both fems for the set of overlapping features. The output of feature_sim is ranked from least similar to
most similar features.
# compute "horizontal" cosine similarity
feat_comp <- feature_sim(x = fem_R, y = fem_D)

# least similar features
head(feat_comp)

## feature value
## 1 link -0.2160803
## 2 guantanamo -0.1859814
## 3 frustration -0.1853331
## 4 opposite -0.1807265
## 5 draw -0.1754296
## 6 refuses -0.1743808
# most similar features
tail(feat_comp)
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## feature value
## 3501 customs 0.9514645
## 3502 border 0.9520096
## 3503 department 0.9529625
## 3504 homeland 0.9562521
## 3505 enforcement 0.9570831
## 3506 security 0.9584692

Embedding full (short) documents
In all the examples above we’ve focused on contexts defined as “windows” around a target word. In Rodriguez
et al. (2021) we show that the same procedure works well on contexts defined as the full document, as long as
the full document is relatively short –exactly what threshold to use to define “short” is still an open question.
Responses to open-ended survey questions is a good example (discussed in the paper). Below we provide an
illustrative example using a subset of the cr_sample_corpus. In particular, note the use of the . ~ operator
to indicate that the full document should be used as the DV.
# identify documents with fewer than 100 words
short_toks <- toks[sapply(toks, length) <= 100,]

# run regression on full documents
model3 <- conText(formula = . ~ party,

data = short_toks,
pre_trained = cr_glove_subset,
transform = TRUE, transform_matrix = cr_transform,
bootstrap = TRUE, num_bootstraps = 10,
permute = TRUE, num_permutations = 100,
window = 6, case_insensitive = TRUE,
verbose = FALSE)

## coefficient normed.estimate std.error p.value
## 1 party_R 0.7175612 0.06838156 0.03
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