Package ‘concurve’

October 12, 2020

Type Package

Title Computes & Plots Compatibility (Confidence), Surprisal, &
Likelihood Distributions

Version 2.7.7
Date 2020-10-12
Maintainer Zad Rafi <zad@lesslikely.com>

Description
Computes compatibility (confidence) distributions along with their corresponding P-values,
S-values, and likelihoods. The intervals can be plotted to form the distributions themselves.
Functions can be compared to one another to see how much they overlap. Results can be
exported to Microsoft Word, Powerpoint, and TeX documents. The package currently supports
resampling methods, computing differences, generalized linear models, mixed-effects models,
survival analysis, and meta-analysis. These methods are discussed
by Schweder T, Hjort NL. (2016, ISBN:9781316445051) and
Rafi Z, Greenland S. (2020) <doi:10.1186/s12874-020-01105-9>.

License GPL-3 | file LICENSE

URL https://data.lesslikely.com/concurve/,
https://github.com/zadrafi/concurve

BugReports https://github.com/zadrafi/concurve/issues
Depends R (>=4.0.0)

Imports methods, bcaboot, boot, dplyr, flextable, ggplot2, knitr,
metafor, officer, parallel, pbmcapply, ProfileLikelihood,
scales, colorspace, survival, survminer, tibble, tidyr

Suggests MASS, Ime4, covr, roxygen2, spelling, testthat, rmarkdown,
Lock5Data, carData, bench, rms, brms, rstan, rstanarm,
bayesplot, vdiffr, ggtext, daewr, svglite, data.table, nlme,
simstudy, patchwork, cowplot, reprex

ByteCompile true
Encoding UTF-8
Language en-US

https://data.lesslikely.com/concurve/
https://github.com/zadrafi/concurve
https://github.com/zadrafi/concurve/issues

concurve-package

LazyData true

RoxygenNote 7.1.1

X-schema.org-keywords confidence, compatibility, consonance, curve,

information statistics, surprisals, interval, function,
distribution, fiducial

NeedsCompilation no
Author Zad Rafi [aut, cre] (<https://orcid.org/0000-0003-1545-8199>),

Andrew D. Vigotsky [aut] (<https://orcid.org/0000-0003-3166-0688>),
Aaron Caldwell [ctb] (<https://orcid.org/0000-0002-4541-6283>)

Repository CRAN
Date/Publication 2020-10-12 17:10:06 UTC

R topics documented:

concurve-package 2
CUIVE_DOOL o o o e e e e s 4
CUIVE_COMPATE . . . v v v e e v ettt e e e e e e e e e e e e e e 5
CUIVE_COIT . . v v v v o e e e e e e e e e e e e e e e e e s s e e 7
CUTVE_ZETL © . v v v v e 8
curve_liK . . .o e e 9
curve _Imer L e s 10
CUIVE_MEAN . . .+t v o v e e e e e e e e e e e e e e e e 11
CUIVE_IMELA . . v v v v o o et e e e e e e e e e e e 13
CUIVE_TEV + v v v v v e e e e e e e e e e e e e e e e e 15
CUIVE_SUIV . o v v v v v e 16
curve _table L L L e 17
GECUIVE .« v v v vt it e e e e e e e e e e e e e e e 18
plot_compare 20
RobustMax e e e e 23
RobustMin e e e e e 23

Index 24

concurve-package A description of the concurve R package
Description

Allows one to compute compatibility (confidence) intervals for various statistical tests along with
their corresponding P-values, S-values, and likelihoods. The intervals can be plotted to create con-
sonance, surprisal, and likelihood functions allowing one to see what effect sizes are compatible
with the test model at various compatibility levels rather than being limited to one interval estimate
such as 95%.

Package: concurve

concurve-package 3

nn

Logo:
Type: Package
Version: 2.7.7

Date: 2020-10-07
License: GLP-3

Details

Accepts most modeling functions that produce confidence intervals to construct distributions.

See the following articles::

¢ Comparison to Bayesian Posterior Distributions
* The Bootstrap and Consonance Functions

* Background Literature

¢ Customizing Plots

¢ Examples in R

* Logistic Regression in R

¢ Profile Likelihoods

¢ Meta-Analysis Examples

* Survival Modeling

* S-values

* Generating Tables

¢ Troubleshooting

* Consonance Functions for Linear Mixed-Effects Models
¢ Wish List

Author(s)
Zad Rafi, Andrew D. Vigotsky

References

Rafi, Z., and Greenland, S. (2020), “Semantic and Cognitive Tools to Aid Statistical Science: Re-
place Confidence and Significance by Compatibility and Surprise” BMC Medical Research Method-
ology https://doi.org/10.1186/s12874-020-01105-9

Fraser DAS. The P-value function and statistical inference. The American Statistician. 2019;73(sup1):135-
147. doi:10.1080/00031305.2018.1556735 https://doi.org/10.1080/00031305.2018.1556735

Fraser DAS. P-Values: The Insight to Modern Statistical Inference. Annual Review of Statistics and
Its Application. 2017;4(1):1-14. https://doi.org/10.1146/annurev-statistics-060116-054139

https://data.lesslikely.com/concurve/articles/bayes.html
https://data.lesslikely.com/concurve/articles/bootstrap.html
https://data.lesslikely.com/concurve/articles/literature.html
https://data.lesslikely.com/concurve/articles/customizing.html
https://data.lesslikely.com/concurve/articles/examples.html
https://data.lesslikely.com/concurve/articles/logistic.html
https://data.lesslikely.com/concurve/articles/likelihood.html
https://data.lesslikely.com/concurve/articles/meta-analysis.html
https://data.lesslikely.com/concurve/articles/survival.html
https://data.lesslikely.com/concurve/articles/svalues.html
https://data.lesslikely.com/concurve/articles/tables.html
https://data.lesslikely.com/concurve/articles/troubleshooting.html
https://data.lesslikely.com/concurve/articles/variancecomponents.html
https://data.lesslikely.com/concurve/articles/wishlist.html
https://twitter.com/dailyzad
https://www.researchgate.net/profile/Andrew_Vigotsky
https://doi.org/10.1186/s12874-020-01105-9
https://doi.org/10.1080/00031305.2018.1556735
https://doi.org/10.1146/annurev-statistics-060116-054139

4 curve_boot

Poole C. Beyond the confidence interval. American Journal of Public Health. 1987;77(2):195-199.
doi:10.2105/AJPH.77.2.195 https://doi.org/10.1002/jrsm.1410

Poole C. Confidence intervals exclude nothing. American Journal of Public Health. 1987;77(4):492-
493. doi:10.2105/ajph.77.4.492 https://doi.org/10.2105/ajph.77.4.492

Schweder T, Hjort NL. Confidence and Likelihood*. Scandinavian Journal of Statistics. 2002;29(2):309-
332. doi:10.1111/1467-9469.00285 https://doi.org/10.1111/1467-9469.00285

Schweder T, Hjort NL. Confidence, Likelihood, Probability: Statistical Inference with Confidence
Distributions. Cambridge University Press; 2016. https://books.google.com/books/about/
Confidence_Likelihood_Probability.html?id=t7KzCwAAQBAJ

Singh K, Xie M, Strawderman WE. Confidence distribution (CD) — distribution estimator of a pa-
rameter. arXiv. August 2007. https://arxiv.org/abs/0708.0976

Sullivan KM, Foster DA. Use of the confidence interval function. Epidemiology. 1990;1(1):39-42.
doi:10.1097/00001648-199001000-00009 https://doi.org/10.1097/00001648-199001000-00009

Whitehead J. The case for frequentism in clinical trials. Statistics in Medicine. 1993;12(15-
16):1405-1413. doi:10.1002/sim.4780121506 https://doi.org/10.1002/sim.4780121506

Xie M-g, Singh K. Confidence Distribution, the Frequentist Distribution Estimator of a Parameter:
A Review. International Statistical Review. 2013;81(1):3-39. doi:10.1111/insr.12000 https://
doi.org/10.1111/insr. 12000

Rothman KJ, Greenland S, Lash TL. Precision and statistics in epidemiologic studies. In: Rothman
KJ, Greenland S, Lash TL, eds. Modern Epidemiology. 3rd ed. Lippincott Williams & Wilkins;
2008:148-167.

Riicker G, Schwarzer G. Beyond the forest plot: The drapery plot. Research Synthesis Methods.
April 2020. doi:10.1002/jrsm.1410 https://doi.org/10.1002/jrsm.1410

Cox DR. Discussion. International Statistical Review. 2013;81(1):40-41. doi:10/gg9s2f https:
//onlinelibrary.wiley.com/doi/abs/10.1111/insr.12007

See Also

curve_gen, ggcurve, curve_table

curve_boot Generate Consonance Functions via Bootstrapping

Description

Use the Bca bootstrap method and the t-boostrap method from the bcaboot and boot packages to
generate consonance distrbutions.

Usage

curve_boot(data = data, func = func, method = "bca”, to, tt, bb,
replicates = 2000, steps = 1000, cores = getOption("mc.cores”, 1L),
table = TRUE)

https://doi.org/10.1002/jrsm.1410
https://doi.org/10.2105/ajph.77.4.492
https://doi.org/10.1111/1467-9469.00285
https://books.google.com/books/about/Confidence_Likelihood_Probability.html?id=t7KzCwAAQBAJ
https://books.google.com/books/about/Confidence_Likelihood_Probability.html?id=t7KzCwAAQBAJ
https://arxiv.org/abs/0708.0976
https://doi.org/10.1097/00001648-199001000-00009
https://doi.org/10.1002/sim.4780121506
https://doi.org/10.1111/insr.12000
https://doi.org/10.1111/insr.12000
https://doi.org/10.1002/jrsm.1410
https://onlinelibrary.wiley.com/doi/abs/10.1111/insr.12007
https://onlinelibrary.wiley.com/doi/abs/10.1111/insr.12007

curve_compare

Arguments

data

func

method

to

tt

bb

replicates

steps

cores

table

Value

Dataset that is being used to create a consonance function.

Custom function that is used to create parameters of interest that will be boot-
strapped.

The boostrap method that will be used to generate the functions. Methods in-
clude "bca" which is the default, "bcapar”, which is parametric bootstrapping
using the bca method and "t", for the t-bootstrap/percentile method.

Only used for the "bcapar” method. Observed estimate of theta, usually by
maximum likelihood.

Only used for the "bcapar" method. A vector of parametric bootstrap replica-
tions of theta of length B, usually large, say B = 2000

Only used for the "bcapar” method. A B by p matrix of natural sufficient vectors,
where p is the dimension of the exponential family.

Indicates how many bootstrap replicates are to be performed. The default is
currently 20000 but more may be desirable, especially to make the functions
more smooth.

Indicates how many consonance intervals are to be calculated at various levels.
For example, setting this to 100 will produce 100 consonance intervals from 0
to 100. Setting this to 10000 will produce more consonance levels. By default,
it is set to 1000. Increasing the number substantially is not recommended as it
will take longer to produce all the intervals and store them into a dataframe.

Select the number of cores to use in order to compute the intervals The default
is 1 core.

Indicates whether or not a table output with some relevant statistics should be
generated. The default is TRUE and generates a table which is included in the
list object.

A list with 7 items where the dataframe of standard values is in the first list and the table for it in
the second if table = TRUE. The Bca intervals and table are found in the third and fourth list. The
values for the density function are in the fifth object, while the Bca stats are in the sixth and seventh

objects.

curve_compare

Compare Two Functions and Produces An AUC Score

Description

Compares the p-value/s-value, and likelihood functions and computes an AUC number.

Usage

curve_compare(datal, data2, type = "c", plot = TRUE, ...)

Arguments

datal

data2

type

plot

Value

curve_compare

The first dataframe produced by one of the interval functions in which the inter-
vals are stored.

The second dataframe produced by one of the interval functions in which the
intervals are stored.

Choose whether to plot a "consonance" function, a "surprisal" function or "like-
lihood". The default option is set to "c". The type must be set in quotes, for ex-
ample curve_compare (type = "s") or curve_compare(type = "c"). Other options
include "pd" for the consonance distribution function, and "cd" for the conso-
nance density function, "11" for relative likelihood, "12" for log-likelihood, "13"
for likelihood and "d" for deviance function.

by default it is set to TRUE and will use the plot_compare() function to plot the
two functions.

Can be used to pass further arguments to plot_compare().

Computes an AUC score and returns a plot that graphs two functions.

See Also

plot_compare()

ggecurve()

curve_table()

Examples

Not run:

library(concurve)

GroupA <- rnorm(50)

GroupB <- rnorm(50)

RandomData <- data.frame(GroupA, GroupB)

intervalsdf <- curve_mean(GroupA, GroupB, data = RandomData)
GroupA2 <- rnorm(50)

GroupB2 <- rnorm(50)

RandomData2 <- data.frame(GroupA2, GroupB2)

model <- Im(GroupA2 ~ GroupB2, data = RandomData2)
randomframe <- curve_gen(model, "GroupB2")
curve_compare(intervalsdf[[1]], randomframe[[1]1])

End(Not run)

curve_corr 7

curve_corr Consonance Functions for Correlations

Description

Computes consonance intervals to produce P- and S-value functions for correlational analysesusing
the cor.test function in base R and places the interval limits for each interval levelinto a data frame
along with the corresponding p-values and s-values.

Usage

curve_corr(x, y, alternative, method, steps = 10000,
cores = getOption("mc.cores”, 1L), table = TRUE)

Arguments

X A vector that contains the data for one of the variables that will be analyzed for
correlational analysis.

y A vector that contains the data for one of the variables that will be analyzed for
correlational analysis.

alternative Indicates the alternative hypothesis and must be one of "two.sided", "greater" or
"less". You can specify just the initial letter. "greater" corresponds to positive
association, "less" to negative association.

method A character string indicating which correlation coefficient is to be used for the
test. One of "pearson", "kendall", or "spearman", can be abbreviated.

steps Indicates how many consonance intervals are to be calculated at various levels.
For example, setting this to 100 will produce 100 consonance intervals from 0
to 100. Setting this to 10000 will produce more consonance levels. By default,
it is set to 1000. Increasing the number substantially is not recommended as it
will take longer to produce all the intervals and store them into a dataframe.

cores Select the number of cores to use in order to compute the intervals The default
is 1 core.

table Indicates whether or not a table output with some relevant statistics should be
generated. The default is TRUE and generates a table which is included in the
list object.

Value

A list with 3 items where the dataframe of values is in the first object, the values needed to calculate
the density function in the second, and the table for the values in the third if table = TRUE.

8 curve_gen
Examples

Not run:

GroupA <- rnorm(50)

GroupB <- rnorm(50)

joe <- curve_corr(x = GroupA, y = GroupB, alternative = "two.sided”, method = "pearson")

End(Not run)

curve_gen

Consonance Functions For Linear Models, Generalized Linear Mod-
els, and Robust Linear Models

Description

Computes thousands of consonance (confidence) intervals for the chosen parameter in the selected
model (linear models, general linear models, robust linear models, and generalized least squares
and places the interval limits for each interval level into a data frame along with the corresponding
p-values and s-values. Can also adjust for multiple comparisons. It is generally recommended to
wrap this function using suppressMessages() due to the long list of profiling messages.

Usage

curve_gen(model, var, method = "1m", log = FALSE, penalty = NULL,
m = NULL, steps = 1000, cores = getOption("mc.cores”, 1L),

table = TRUE)

Arguments

model

var

method

The statistical model of interest (ANOVA, regression, logistic regression) is to
be indicated here.

The variable of interest from the model (coefficients, intercept) for which the
intervals are to be produced.

Chooses the method to be used to calculate the consonance intervals. There are
currently five methods: "Im", rms::ols objects can be used with the "Im" option,
"rlm", "glm" and "aov", and "gls". The "Im" method uses the profile likelihood
method to compute intervals and can be used for models created by the 'Im’
function. It is typically what most people are familiar with when computing
intervals based on the calculated standard error. The ols function from the rms
package can also be used for this option. The "rlm" method is designed for usage
with the "rlm" function from the MASS package. The "glm" method allows this
function to be used for specific scenarios like logistic regression and the *glm’
function. Similarly, the Glm function from the rms package can also be used
for this option. The gls method allows objects from gls() or from Gls() from the
rms package.

curve_lik 9

log Determines whether the coefficients will be exponentiated or not. By default, it
is off and set to FALSE or F, but changing this to TRUE or T, will exponentiate
the results which may be useful if trying to view the results from a logistic
regression on a scale that is not logarithmic.

penalty An input to specify whether the confidence intervals should be corrected for
multiple comparisons. The default is NULL, so there is no correction. Other
options include "bonferroni" and "sidak".

m Indicates how many comparisons are being done and the number that should be
used to correct for multiple comparisons. The default is NULL.

steps Indicates how many consonance intervals are to be calculated at various levels.
For example, setting this to 100 will produce 100 consonance intervals from 0
to 100. Setting this to 10000 will produce more consonance levels. By default,
it is set to 1000. Increasing the number substantially is not recommended as it
will take longer to produce all the intervals and store them into a data frame.

cores Select the number of cores to use in order to compute the intervals The default
is 1 core.
table Indicates whether or not a table output with some relevant statistics should be

generated. The default is TRUE and generates a table which is included in the
list object.

Value

A list with 3 items where the dataframe of values is in the first object, the values needed to calculate
the density function in the second, and the table for the values in the third if table = TRUE.

Examples

Not run:

Simulate random data

GroupA <- rnorm(50)

GroupB <- rnorm(50)

RandomData <- data.frame(GroupA, GroupB)

rob <- 1Im(GroupA ~ GroupB, data = RandomData)
bob <- curve_gen(rob, "GroupB")

End(Not run)

curve_lik Compute Profile Likelihood Functions

Description

Compute Profile Likelihood Functions

Usage

curve_lik(likobject, data, table = TRUE)

10 curve_lmer

Arguments
likobject An object from the ProfileLikelihood package
data The dataframe that was used to create the likelihood object in the ProfileLikeli-
hood package.
table Indicates whether or not a table output with some relevant statistics should be
generated. The default is TRUE and generates a table which is included in the
list object.
Value

A list with 2 items where the dataframe of values is in the first object, and the table for the values
in the second if table = TRUE.

Examples

library(ProfilelLikelihood)

data(dataglm)

xx <- profilelike.glm(y ~ x1 + x2, dataglm, profile.theta = "group”, binomial("logit"))
lik <- curve_lik(xx, dataglm)

curve_lmer Consonance Functions For Linear & Non-Linear Mixed-Effects Mod-
els.

Description

Computes thousands of consonance (confidence) intervals for the chosen parameter in the selected
Ime4 model and places the interval limits for each interval level into a data frame along with the
corresponding p-values and s-values.. It is generally recommended to wrap this function using
suppressMessages() due to the long list of profiling messages

Usage

curve_lmer(object, parm, method = "profile”, zeta = NULL, nsim = NULL,
FUN = NULL, boot.type = NULL, steps = 1000,
cores = getOption("mc.cores”, 1L), table = FALSE)

Arguments
object The statistical model of interest from Ime4 is to be indicated here.
parm The variable of interest from the model (coefficients, intercept) for which the
intervals are to be produced.
method Chooses the method to be used to calculate the consonance intervals. There

are currently four methods: "default", "wald", "Im", and "boot". The "default"
method uses the profile likelihood method to compute intervals and can be used
for models created by the ’lm’ function. The "wald" method is typicallywhat

curve_mean

zeta

nsim

FUN

boot. type

steps

cores

table

Value

11

most people are familiar with when computing intervals based on the calculated
standard error. The "Im" method allows this function to be used for specific
scenarios like logistic regression and the ’glm’ function. The "boot" method
allows for bootstrapping at certain levels.

(for method = "profile" only:) likelihood cutoff (if not specified, as by default,
computed from level).

number of simulations for parametric bootstrap intervals.

function; if NULL, an internal function that returns the fixed-effect parameters
as well as the random-effect parameters on the standard deviation/correlationscale
will be used.

bootstrap confidence interval type, as described in boot.c i. Methods stud and
bca are unavailable because they require additional components to be calculated.

Indicates how many consonance intervals are to be calculated at various levels.
For example, setting this to 100 will produce 100 consonance intervals from 0
to 100. Setting this to 10000 will produce more consonance levels. By default,
it is set to 1000. Increasing the number substantially is not recommended as it
will take longer to produce all the intervals and store them into a dataframe.

Select the number of cores to use in order to compute the intervals The default
is 1 core.

Indicates whether or not a table output with some relevant statistics should be
generated. The default is TRUE and generates a table which is included in the
list object.

A list with 3 items where the dataframe of values is in the first object, the values needed to calculate
the density function in the second, and the table for the values in the third if table = TRUE.

curve_mean

Consonance Functions For Mean Differences

Description

Computes thousands of consonance (confidence) intervals for the chosen parameter in a statistical
test that compares means and places the interval limits for each interval level into a data frame along
with the corresponding p-values and s-values.

Usage

curve_mean(x, y, data, paired = F, method = "default”, replicates = 1000,

steps =

10000, cores = getOption("mc.cores”, 1L), table = TRUE)

12 curve_mean

Arguments

X Variable that contains the data for the first group being compared.

y Variable that contains the data for the second group being compared.

data Data frame from which the variables are being extracted from.

paired Indicates whether the statistical test is a paired difference test. By default, it is
set to "F",which means the function will be an unpaired statistical test compar-
ing two independent groups.Inserting "paired" will change the test to a paired
difference test.

method By default this is turned off (set to "default"), but allows for bootstrapping if
"boot" is inserted into the function call.

replicates Indicates how many bootstrap replicates are to be performed. The default is
currently 20000 but more may be desirable, especially to make the functions
more smooth.

steps Indicates how many consonance intervals are to be calculated at various levels.
For example, setting this to 100 will produce 100 consonance intervals from 0
to 100. Setting this to 10000 will produce more consonance levels. By default,
it is set to 1000. Increasing the number substantially is not recommended as it
will take longer to produce all the intervals and store them into a dataframe.

cores Select the number of cores to use in order to compute the intervals The default
is 1 core.

table Indicates whether or not a table output with some relevant statistics should be
generated. The default is TRUE and generates a table which is included in the
list object.

Value

A list with 3 items where the dataframe of values is in the first object, the values needed to calculate
the density function in the second, and the table for the values in the third if table = TRUE.

Examples

Not run:

Simulate random data

GroupA <- runif(100, min = @, max = 100)
GroupB <- runif (100, min = @, max = 100)
RandomData <- data.frame(GroupA, GroupB)

bob <- curve_mean(GroupA, GroupB, RandomData)

End(Not run)

curve_mmeta

13

curve_meta

Consonance Functions For Meta-Analytic Data

Description

Computes thousands of consonance (confidence) intervals for the chosen parameter in the meta-
analysis done by the metafor package and places the interval limits for each interval level into a
data frame along with the corresponding p-values and s-values.

Usage

curve_meta(x, measure = "default”, method = "uni”, parm
robust = FALSE, cluster = NULL, adjust = FALSE, steps
getOption("mc.cores”, 1L), table = TRUE)

cores =

Arguments

X

measure

method

parm

robust

cluster

adjust

steps

cores

table

NULL,
1000,

Object where the meta-analysis parameters are stored, typically a list produced
by *metafor’

Indicates whether the object has a log transformation or is normal/default. The
default setting is "default. If the measure is set to "ratio", it will take loga-
rithmically transformed values and convert them back to normal values in the
dataframe. This is typically a setting used for binary outcomes such as risk
ratios, hazard ratios, and odds ratios.

Indicates which meta-analysis metafor function is being used. Currently sup-
ports rma.uni ("uni"), which is the default, rma.mh ("mh"), and rma.peto ("peto")

Typically ignored, but needed sometimes in order to specify which variable to
produce function for.

a logical indicating whether to produce cluster robust interval estimates Default
is FALSE.

a vector specifying a clustering variable to use for constructing the sandwich
estimator of the variance-covariance matrix. Default setting is NULL.

logical indicating whether a small-sample correction should be applied to the
variance-covariance matrix. Default is FALSE.

Indicates how many consonance intervals are to be calculated at various levels.
For example, setting this to 100 will produce 100 consonance intervals from 0
to 100. Setting this to 10000 will produce more consonance levels. By default,
it is set to 1000. Increasing the number substantially is not recommended as it
will take longer to produce all the intervals and store them into a dataframe

Select the number of cores to use in order to compute the intervals The default
is 1 core.

Indicates whether or not a table output with some relevant statistics should be
generated. The default is TRUE and generates a table which is included in the
list object.

14 curve_meta

Value

A list with 3 items where the dataframe of values is in the first object, the values needed to calculate
the density function in the second, and the table for the values in the third if table = TRUE.

Examples

Not run:

Simulate random data for two groups in two studies
GroupAData <- runif(2@, min = @, max = 100)
GroupAMean <- round(mean(GroupAData), digits = 2)
GroupASD <- round(sd(GroupAData), digits = 2)

GroupBData <- runif (20, min = @, max = 100)
GroupBMean <- round(mean(GroupBData), digits = 2)
GroupBSD <- round(sd(GroupBData), digits = 2)

GroupCData <- runif(20, min = @, max = 100)
GroupCMean <- round(mean(GroupCData), digits = 2)
GroupCSD <- round(sd(GroupCData), digits = 2)

GroupDData <- runif (20, min = @, max = 100)
GroupDMean <- round(mean(GroupDData), digits = 2)
GroupDSD <- round(sd(GroupDData), digits = 2)

Combine the data

StudyName <- c("Study1”, "Study2")
MeanTreatment <- c(GroupAMean, GroupCMean)
MeanControl <- c(GroupBMean, GroupDMean)
SDTreatment <- c(GroupASD, GroupCSD)
SDControl <- c(GroupBSD, GroupDSD)
NTreatment <- c(20, 20)

NControl <- c(20, 20)

metadf <- data.frame(
StudyName, MeanTreatment, MeanControl,
SDTreatment, SDControl, NTreatment, NControl
)

Use metafor to calculate the standardized mean difference
library(metafor)
dat <- escalc(
measure = "SMD", mli = MeanTreatment, sdl1i = SDTreatment,
n1i = NTreatment, m2i = MeanControl, sd2i = SDControl,

n2i = NControl, data = metadf
)

Pool the data using a particular method. Here "FE" is the fixed-effects model

res <- rma(yi, vi,

curve_rev 15

data = dat, slab = paste(StudyName, sep = ", "),
method = "FE", digits = 2
)
Calculate the intervals using the metainterval function

metaf <- curve_meta(res)

End(Not run)

curve_rev Reverse Engineer Consonance / Likelihood Functions Using the Point
Estimate and Confidence Limits

Description

Using the confidence limits and point estimates from a dataset, one can use these estimates to
compute thousands of consonance intervals and graph the intervals to form a consonance, surprisal,
and likelihood functions. The intervals are calculated from the approximated normal distribution,
however, users should be cautious as this this function is currently designed for similar situations
(involving ratios and normal approximations), nevertheless the function also works for means but
should be used skeptically, as it can break down in many situations and give implausible numbers.
Computations of likelihood functions for means is currently not supported.

Usage

curve_rev(point, LL = NULL, UL = NULL, se = NULL, conf.level = 0.95,

type = "c”, measure = "ratio”, steps = 10000,
cores = getOption("mc.cores”, 1L), table = TRUE)

Arguments

point The point estimate from an analysis. Ex: 1.20

LL The lower confidence limit from an analysis Ex: 1.0

uL The upper confidence limit from an analysis Ex: 1.4

se The standard error of the point estimate. Ex: 0.05

conf.level Confidence level of the interval estimate.

type Indicates whether the produced result should be a consonance function or a like-
lihood function. The default is "c" for consonance and likelihood can be set via
"1

measure The type of data being used. If they involve mean differences, then the "mean"

option should be used. If the data are ratios, then the "ratio" option should be
used. "ratio" is currently the default option. Currently, this function is designed
to be used with ratios and normal approximations rather than means.

16 curve_surv

steps Indicates how many consonance intervals are to be calculated at various levels.
For example, setting this to 100 will produce 100 consonance intervals from 0
to 100. Setting this to 10000 will produce more consonance levels. By default,
it is set to 1000. Increasing the number substantially is not recommended as it
will take longer to produce all the intervals and store them into a dataframe.

cores Select the number of cores to use in order to compute the intervals The default
is 1 core.
table Indicates whether or not a table output with some relevant statistics should be

generated. The default is TRUE and generates a table which is included in the
list object.

Value

A list with 3 items where the dataframe of values is in the first object, the values needed to calculate
the density function in the second, and the table for the values in the third if table = TRUE.

See Also

ggecurve()

curve_compare()

plot_compare()

Examples

Not run:

From a real published study. Point estimate of the result was hazard ratio of 1.61 and
lower bound of the interval is ©.997 while upper bound of the interval is 2.59.

#

df <- curve_rev(point = 1.61, LL = ©0.997, UL = 2.59, measure = "ratio”)

End(Not run)

curve_surv Consonance Functions For Survival Data

Description

Computes thousands of consonance (confidence) intervals for the chosen parameter in the Cox
model computed by the *survival’ package and places the interval limits for each interval level into
a data frame along with the corresponding p-value and s-value.

Usage

curve_surv(data, x, steps = 10000, cores = getOption("mc.cores"”, 1L),
table = TRUE)

curve_table

Arguments

data

steps

cores

table

Value

17

Object where the Cox model is stored, typically a list produced by the ’survival’
package.

Predictor of interest within the survival model for which the consonance inter-
vals should be computed.

Indicates how many consonance intervals are to be calculated at various levels.
For example, setting this to 100 will produce 100 consonance intervals from 0
to 100. Setting this to 10000 will produce more consonance levels. By default,
it is set to 1000. Increasing the number substantially is not recommended as it
will take longer to produce all the intervals and store them into a dataframe.

Select the number of cores to use in order to compute the intervals The default
is 1 core.

Indicates whether or not a table output with some relevant statistics should be
generated. The default is TRUE and generates a table which is included in the
list object.

A list with 3 items where the dataframe of values is in the first object, the values needed to calculate
the density function in the second, and the table for the values in the third if table = TRUE.

Examples

Not run:

library(carData)
Rossi[1:5, 1:10]
library(survival)

mod.allison <- coxph(Surv(week, arrest) ~ fin + age + race + wexp + mar + paro + prio,

data = Rossi

)

mod.allison

z <- curve_surv(mod.allison, "prio")

End(Not run)

curve_table

Produce Tables For concurve Functions

Description

Produces publication-ready tables with relevant statistics of interest for functions produced from
the concurve package.

Usage

n_n

curve_table(data, levels, type = "c", format = "data.frame")

18 ggcurve

Arguments
data Dataframe from a concurve function to produce a table for
levels Levels of the consonance intervals or likelihood intervals that should be included
in the table.
type Indicates whether the table is for a consonance function or likelihood function.
The default is set to "c" for consonance and can be switched to "1" for likelihood.
format The format of the tables. The options include "data.frame" which is the default,
"docx" (which creates a table for a word document), "pptx" (which creates a
table for powerpoint), "latex", (which creates a table for a TeX document), and
"image", which produces an image of the table.
See Also
ggecurve()

curve_compare()

plot_compare()

Examples

Not run:
library(concurve)

GroupA <- rnorm(500)
GroupB <- rnorm(500)

RandomData <- data.frame(GroupA, GroupB)
intervalsdf <- curve_mean(GroupA, GroupB, data = RandomData, method = "default")
(z <~ curve_table(intervalsdf[[1]], format = "data.frame"))

(z <- curve_table(intervalsdf[[1]], format = "latex"))
(z <- curve_table(intervalsdf[[1]], format = "image"))

End(Not run)

ggcurve Plots Consonance, Surprisal, and Likelihood Functions

Description

Takes the dataframe produced by the interval functions and plots the p-values/s-values, consonance
(confidence) levels, and the interval estimates to produce a p-value/s-value function using ggplot2
graphics.

ggcurve

Usage

19

n_n

ggcurve(data, type = "c", measure = "default”, levels = 0.95,
nullvalue = NULL, position = "pyramid”, title = "Consonance Function”,
subtitle = "The function displays intervals at every level.”,

Xaxis =
yaxisi

yaxis2 =

fill =

Arguments

data

type

measure

levels

nullvalue

position

title

subtitle

xaxis

expression(theta == ~"Range of Values"),
expression(paste(italic(p), "-value")),

"Levels for CI (%)", color = darken("#0QQ9E73", 0.5),
"#239a298")

The dataframe produced by one of the interval functions in which the intervals
are stored.

Choose whether to plot a "consonance" function, a "surprisal” function or "like-
lihood". The default option is set to "c". The type must be set in quotes, for ex-
ample ggcurve (type = "s") or ggcurve(type = "c"). Other options include "pd"
for the consonance distribution function, and "cd" for the consonance density
function, "11" for relative likelihood, "12" for log-likelihood, "13" for likelihood
and "d" for deviance function.

Indicates whether the object has a log transformation or is normal/default. The
default setting is "default". If the measure is set to "ratio", it will take loga-
rithmically transformed values and convert them back to normal values in the
dataframe. This is typically a setting used for binary outcomes and their mea-
sures such as risk ratios, hazard ratios, and odds ratios.

Indicates which interval levels should be plotted on the function. By default it is
set to 0.95 to plot the 95% interval on the consonance function, but more levels
can be plotted by using the c() function for example, levels = c(0.50, 0.75, 0.95).

Indicates whether the null value for the measure should be plotted. By default,
it is set to NULL, meaning it will not be plotted as a vertical line. Changing this
to a numerical vector will specify the region where a line should be plotted or an
area that should be shaded. The input must be a numerical vector, for example
¢(-0.5, 0.5) or a single numerical vector such as O or 1.

Determines the orientation of the P-value (consonance) function. By default, it
is set to "pyramid", meaning the p-value function will stand right side up, like
a pyramid. However, it can also be inverted via the option "inverted". This will
also change the sequence of the y-axes to match the orientation.This can be set
as such, ggcurve(type = "c", data = df, position = "inverted").

A custom title for the graph. By default, it is set to "Consonance Function". In
order to set a title, it must be in quotes. For example, ggcurve(type = "c", data =
X, title = "Custom Title").

A custom subtitle for the graph. By default, it is set to "The function contains
consonance/confidence intervals at every level and the P-values." In order to set
a subtitle, it must be in quotes. For example, ggcurve(type = "c", data = x,
subtitle = "Custom Subtitle").

A custom x-axis title for the graph. By default, it is set to "Range of Values. In

order to set a x-axis title, it must be in quotes. For example, ggcurve(type = "c",
data = x, xaxis = "Hazard Ratio").

20 plot_compare

yaxisi A custom y-axis title for the graph. By default, it is set to "Consonance Level".
In order to set a y-axis title, it must be in quotes. For example, ggcurve(type =
"c", data = x, yxisl= "Confidence Level").

yaxis2 A custom y-axis title for the graph. By default, it is set to "Levels for CI". In

order to set a y-axis title, it must be in quotes. For example, ggcurve(type = "c",
data = x, yxis2= "Confidence Level").

color Item that allows the user to choose the color of the points and the ribbons in the
graph. By default, it is set to color = "#555555". The inputs must be in quotes.
For example, ggcurve(type = "c", data = x, color = "#333333").

fill Item that allows the user to choose the color of the ribbons in the graph. By
default, it is set to fill = "#239a98". The inputs must be in quotes. For example,
ggeurve(type = "c¢", data = x, fill = "#333333").
Value
A plot with intervals at every consonance level graphed with their corresponding p-values and com-

patibility levels.

See Also

plot_compare()

Examples

Not run:
Simulate random data

library(concurve)

GroupA <- rnorm(500)
GroupB <- rnorm(500)

RandomData <- data.frame(GroupA, GroupB)

intervalsdf <- suppressMessages(curve_mean(GroupA, GroupB, data = RandomData, method = "default"))
ggcurve(type = "c", intervalsdf[[1]], nullvalue =c(@))

End(Not run)

plot_compare Graph and Compare Consonance, Surprisal, and Likelihood Func-
tions

Description

Compares the p-value/s-value, and likelihood functions using ggplot2 graphics.

plot_compare 21

Usage
plot_compare(datal, data2, type = "c", measure = "default”,
nullvalue = FALSE, position = "pyramid”, title = "Interval Functions”,
subtitle = "The function displays intervals at every level.”,
xaxis = expression(theta == ~"Range of Values"),
yaxis1l = expression(paste(italic(p), "-value")),
yaxis2 = "Levels for CI (%)", color1l = darken("#D55E00", 0.2),

color2 = darken("#00Q9E73", 0.2), filll = "#99c7c7", fill2 = "#d46c5b")

Arguments

datail The first dataframe produced by one of the interval functions in which the inter-
vals are stored.

data2 The second dataframe produced by one of the interval functions in which the
intervals are stored.

type Choose whether to plot a "consonance" function, a "surprisal” function or "like-
lihood". The default option is set to "c". The type must be set in quotes, for
example plot_compare(type = "s") or plot_compare(type = "c"). Other options
include "pd" for the consonance distribution function, and "cd" for the conso-
nance density function, "I1" for relative likelihood, "12" for log-likelihood, "13"
for likelihood and "d" for deviance function.

measure Indicates whether the object has a log transformation or is normal/default. The
default setting is "default". If the measure is set to "ratio", it will take loga-
rithmically transformed values and convert them back to normal values in the
dataframe. This is typically a setting used for binary outcomes and their mea-
sures such as risk ratios, hazard ratios, and odds ratios.

nullvalue Indicates whether the null value for the measure should be plotted. By default,
it is set to FALSE, meaning it will not be plotted as a vertical line. Changing
this to TRUE, will plot a vertical line at 0 when the measure is set to " de-
fault" and a vertical line at 1 when the measure is set to "ratio". For example,
plot_compare(type = "c", data = df, measure = "ratio", nullvalue = "present").
This feature is not yet available for surprisal functions.

position Determines the orientation of the P-value (consonance) function. By default, it
is set to "pyramid", meaning the p-value function will stand right side up, like
a pyramid. However, it can also be inverted via the option "inverted". This will
also change the sequence of the y-axes to match the orientation.This can be set
as such, plot_compare(type = "c", data = df, position = "inverted").

title A custom title for the graph. By default, it is set to "Consonance Function". In

order to set a title, it must be in quotes. For example, plot_compare(type = "c",
data = x, title = "Custom Title").

subtitle A custom subtitle for the graph. By default, it is set to "The function contains
consonance/confidence intervals at every level and the P-values." In order to set
a subtitle, it must be in quotes. For example, plot_compare(type = "c", data = x,
subtitle = "Custom Subtitle").

xaxis A custom x-axis title for the graph. By default, it is set to "Range of Values. In

order to set a x-axis title, it must be in quotes. For example, plot_compare(type
="¢", data = x, xaxis = "Hazard Ratio").

22

yaxisi

yaxis2

colori

color?

fill1

fill2

Value

plot_compare

A custom y-axis title for the graph. By default, it is set to "Consonance Level".
In order to set a y-axis title, it must be in quotes. For example, ggcurve(type =
"c", data = x, yxisl= "Confidence Level").

A custom y-axis title for the graph. By default, it is set to "Levels for CI". In

order to set a y-axis title, it must be in quotes. For example, ggcurve(type = "c",
data = x, yxis2= "Confidence Level").

Item that allows the user to choose the color of the points and the ribbons in the
graph. By default, it is set to darken("#D55E00", 0.4). The inputs must be in
quotes.

Item that allows the user to choose the color of the points and the ribbons in the
graph. By default, it is set to darken("#009E73", 0.4). The inputs must be in
quotes. For example, plot_compare(type = "c", data = X, color = "#333333").

Item that allows the user to choose the color of the ribbons in the graph for
datal. By default, it is set to filll = "#239a98". The inputs must be in quotes.
For example, plot_compare(type = "c", data = x, filll = "#333333").

Item that allows the user to choose the color of the ribbons in the graph for
datal. By default, it is set to fill2 = "#d46c5b". The inputs must be in quotes.
For example, plot_compare(type = "c", data = x, fill2 = "#333333").

A plot that compares two functions.

See Also

ggecurve()
curve_compare()

Examples

Not run:
library(concurve)

GroupA <- rnorm(50)

GroupB <- rnorm(50)

RandomData <- data.frame(GroupA, GroupB)

intervalsdf <- curve_mean(GroupA, GroupB, data = RandomData)
GroupA2 <- rnorm(50)

GroupB2 <- rnorm(50)

RandomData2 <- data.frame(GroupA2, GroupB2)

model <- 1m(GroupA2 ~ GroupB2, data = RandomData?2)

randomframe <- curve_gen(model, "GroupB2")
plot_compare(intervalsdf[[1]], randomframe[[1]], type = "c")

End(Not run)

RobustMax 23

RobustMax Robust Max, an alternative to max() that doesn’t throw a warning

Description

Robust Max, an alternative to max() that doesn’t throw a warning

Usage
RobustMax (x)

Arguments

X A vector to find the maximum value of

Value

The max value from a vector

RobustMin Robust Min, an alternative to max() that doesn’t throw a warning

Description

Robust Min, an alternative to max() that doesn’t throw a warning

Usage
RobustMin(x)

Arguments

X A vector find the minimum value of

Value

The minimum value from the vector

Index

concurve (concurve-package), 2
concurve-package, 2
curve_boot, 4
curve_compare, 5
curve_compare(), 16, 18, 22
curve_corr, 7
curve_gen, 4, 8
curve_lik, 9
curve_lmer, 10
curve_mean, 11
curve_meta, 13
curve_rev, 15
curve_suryv, 16
curve_table, 4, 17
curve_table(), 6

ggecurve, 4, 18
ggecurve(), 6, 16, 18, 22

plot_compare, 20
plot_compare(), 6, 16, 18, 20

RobustMax, 23
RobustMin, 23

24

	concurve-package
	curve_boot
	curve_compare
	curve_corr
	curve_gen
	curve_lik
	curve_lmer
	curve_mean
	curve_meta
	curve_rev
	curve_surv
	curve_table
	ggcurve
	plot_compare
	RobustMax
	RobustMin
	Index

