
Package ‘contact’
May 17, 2021

Title Creating Contact and Social Networks

Version 1.2.8

Description Process spatially- and temporally-discrete data into contact and
social networks, and facilitate network analysis by randomizing
individuals' movement paths and/or related categorical variables. To use
this package, users need only have a dataset containing spatial data
(i.e., latitude/longitude, or planar x & y coordinates), individual IDs
relating spatial data to specific individuals, and date/time information
relating spatial locations to temporal locations. The functionality of this
package ranges from data ``cleaning'' via multiple filtration functions, to
spatial and temporal data interpolation, and network creation and analysis.
Functions within this package are not limited to describing interpersonal
contacts. Package functions can also identify and quantify ``contacts''
between individuals and fixed areas (e.g., home ranges, water bodies,
buildings, etc.). As such, this package is an incredibly useful resource
for facilitating epidemiological, ecological, ethological and sociological
research.

Depends R (>= 3.6.0)

Imports ape (>= 5.3), data.table (>= 1.12.2), doParallel (>= 1.0.15),
foreach (>= 1.4.8), igraph (>= 1.2.4.1), lubridate (>= 1.7.4),
parallel (>= 3.6.0), raster (>= 2.9-5), rgdal (>= 1.4-4), rgeos
(>= 0.4-3), sp (>= 1.3-1), stats (>= 3.6.0)

License CC0

Encoding UTF-8

LazyData true

RoxygenNote 7.1.1

BugReports https://github.com/lanzaslab/contact/issues

Suggests knitr, rmarkdown

VignetteBuilder knitr

NeedsCompilation no

Author Trevor Farthing [aut, cre],
Daniel Dawson [aut],
Cristina Lanzas [ctb]

1

https://github.com/lanzaslab/contact/issues

2 R topics documented:

Maintainer Trevor Farthing <tsfarthi@ncsu.edu>

Repository CRAN

Date/Publication 2021-05-17 16:40:11 UTC

R topics documented:

baboons . 3
calves . 4
calves2018 . 5
confine . 6
contact-defunct . 7
contactCompare_binom . 8
contactCompare_chisq . 12
contactCompare_mantel . 17
contactDur.all . 19
contactDur.area . 22
contactTest . 24
dateFake . 25
datetime.append . 26
dist2All_df . 28
dist2Area_df . 31
dt.calc . 33
dup . 35
findDistThresh . 37
makePlanar . 38
mps . 40
ntwrkEdges . 42
potentialDurations . 43
randomizeFeature . 45
randomizePaths . 47
referencePoint2Polygon . 50
repositionReferencePoint . 54
socialEdges . 58
summarizeContacts . 60
tempAggregate . 62
timeBlock.append . 64

Index 67

baboons 3

baboons Real-time location data for 19 baboons

Description

A dataset containing geographic real-time point locations for 19 baboons observed between 03:00:00
and 04:00:00 UTC on August 13th 2012, and are included here primarily to be used for function-
testing purposes.

Usage

data(baboons)

Format

A data frame with 65140 rows and 5 variables:

timestamp The date and time a sensor measurement was taken. Time units are in UTC (Coordi-
nated Universal Time) or GPS time, which is a few leap seconds different from UTC.

location.long The geographic longitude of a location along an animal track as estimated by the
processed sensor data. Positive values are east of the Greenwich Meridian, negative values are
west of it. Presented as decimal degrees based on the WGS84 reference system.

location.lat The geographic lattitude of a location along an animal track as estimated by the pro-
cessed sensor data. Positive values are north of the equator, negative values are west of it.
Presented as decimal degrees based on the WGS84 reference system.

individual.local.identifier A unique individual identifier for the animal, provided by the data
owner.

dateTime The date and time, rounded to the nearest second that a sensor measurement was taken.
Derrived from timestamps. Note that this variable is not present in the source data set.

Details

This data file a subset of a larger one published by the Movebank Data Repository (www.datarepository.movebank.org).
The larger data set on Movebank contains baboon locations between 08/01/2012 and 08/14/2012.
As of the time of publication of this package, a version of the published animal tracking data set can
be viewed on Movebank (www.movebank.org) in the study "Collective movement in wild baboons
(data from Strandburg-Peshkin et al. 2015)". Individual attributes in the data files are defined here
and in the Movebank Attribute Dictionary, available at www.movebank.org/node/2381.

The item descriptions described herein appear in the README text provided for the repository
entry verbatim.

Note that according to data publishers, "this dataset does not include interpolated locations or loca-
tions that failed the speed filter (see Strandburg-Peshkin et al. 2015 for details)."

Source

doi: 10.5441/001/1.kn0816jn

https://doi.org/10.5441/001/1.kn0816jn

4 calves

References

Strandburg-Peshkin A, Farine DR, Couzin ID, Crofoot MC (2015) Shared decision-making drives
collective movement in wild baboons. Science. doi:10.1126/science.aaa5099.

Crofoot MC, Kays RW, Wikelski M (2015) Data from: Shared decision-making drives collective
movement in wild baboons. Movebank Data Repository. doi:10.5441/001/1.kn0816jn.

Examples

data("baboons") #alternatively, you may use the command: contact::baboons
head(baboons)

calves Real-time location data for 10 calves on May 2nd 2016

Description

A dataset containing planar real-time point locations for 10 calves between 00:00:00 and 02:00:00
UTC on May 2nd, 2016. These data are a subset of the data set published in the supplemental
materials of Dawson et al. 2019, and are included here primarily to be used for function-testing
purposes.

Usage

data(calves)

Format

A data frame with 11118 rows and 5 variables:

calftag a unique identifier for each calf

x planar x coordinate

y planar y coordinate

time UTC time at which location fix was obtained

date date on which fix location occurred

Details

Calves were approximately 1.5-year-old beef cattle kept in a 30 X 35 m2 pen at the Kansas State
University Beef Cattle Research Center in Manhattan, KS.

Data collection was supported by U.S. National Institute of Health (NIH) grant R01GM117618 as
part of the joint National Science Foundation-NIH-United States Department of Agriculture Ecol-
ogy and Evolution of Infectious Disease program.

Source

doi: 10.1016/j.epidem.2018.08.003

https://doi.org/10.1016/j.epidem.2018.08.003

calves2018 5

References

Dawson, D.E., Farthing, T.S., Sanderson, M.W., and Lanzas, C. 2019. Transmission on empirical
dynamic contact networks is influenced by data processing decisions. Epidemics 26:32-42.

Examples

data("calves") #alternatively, you may use the command: contact::calves
head(calves)

calves2018 Real-time location data for 20 calves in June 2018

Description

A dataset containing planar real-time point locations for 20 calves between 00:00:00 on June 1st,
2018 and 23:59:59 UTC on June 3, 2018.

Usage

data(calves2018)

Format

A data frame with 193551 rows and 4 variables:

calftag a unique identifier for each calf

x planar x coordinate

y planar y coordinate

dateTime UTC date and time at which location fix was obtained

Details

Calves were approximately 1.5-year-old castrated male cattle (i.e., steer) kept in a 30 X 35 m2 pen
at the Kansas State University Beef Cattle Research Center in Manhattan, KS.

Data collection was supported by U.S. National Institute of Health (NIH) grant R01GM117618 as
part of the joint National Science Foundation-NIH-United States Department of Agriculture Ecol-
ogy and Evolution of Infectious Disease program.

Examples

data("calves2018") #alternatively, you may use the command: contact::calves2018
head(calves2018)

6 confine

confine Identify and Remove Data Points Outside of a Specified Area

Description

Identifies and removes timepoints when tracked individuals were observed outside of a defined
polygon (note: the polygon should be described by the vectors confinementCoord.x (x coordinates)
and confinementCoord.y (y coordinates). These vectors must be the same length and the coordinates
should be listed in the clockwise or counter-clockwise order that they are observed on the confining
polygon.

Usage

confine(
x,
point.x = NULL,
point.y = NULL,
confinementCoord.x,
confinementCoord.y,
filterOutput = TRUE

)

Arguments

x Data frame or non-data-frame list that will be filtered.

point.x Vector of length nrow(data.frame(x)) or singular character data, detailing the
relevant colname in x, that denotes what planar-x or longitude coordinate infor-
mation will be used. If argument == NULL, the function assumes a column with
the colname "x" exists in x. Defaults to NULL.

point.y Vector of length nrow(data.frame(x)) or singular character data, detailing the
relevant colname in x, that denotes what planar-y or lattitude coordinate infor-
mation will be used. If argument == NULL, the function assumes a column with
the colname "y" exists in x. Defaults to NULL.

confinementCoord.x

Vector describing x-coordinates of confining-polygon vertices. Each vertex should
be described in clockwise or counter-clockwise order, and ordering should be
consistent with confinementCoord.y.

confinementCoord.y

Vector describing y-coordinates of confining-polygon vertices. Each vertex should
be described in clockwise or counter-clockwise order, and ordering should be
consistent with confinementCoord.x.

filterOutput Logical. If TRUE, output will be a data frame or list of data frames (depend-
ing on whether or not x is a data frame or not) containing only points within
confinement polygons. If FALSE, no observations are removed and a "confine-
ment_status" column is appended to x, detailing the relationship of each point
to the confinement polygon. Defaults to TRUE.

contact-defunct 7

Details

If users are not actually interested in filtering datasets, but rather, determining what observations
should be filtered, they may set filterOutput == FALSE. By doing so, this function will append a
"confinement_status" column to the output dataframe, which reports the results of sp::point.in.polygon
function that is used to determine if individuals are confined within a given polygon. In this column,
values are: 0: point is strictly exterior to pol; 1: point is strictly interior to pol; 2: point lies on the
relative interior of an edge of pol; 3: point is a vertex of pol (see ?sp::point.in.polygon).

Value

If filterOutput == TRUE, returns x less observations where points were located outside of the poly-
gon defined by points in confinementCoord.x and confinementCoord.y.

If filterOutput == FALSE, returns x appended with a "confinement_status" column which reports the
results of sp::point.in.polygon function, which is used to determine if observed points are confined
within the polygon defined by points in confinementCoord.x and confinementCoord.y.

Examples

data("calves")

water_trough.x<- c(61.43315, 61.89377, 62.37518, 61.82622) #water polygon x-coordinates
water_trough.y<- c(62.44815, 62.73341, 61.93864, 61.67411) #water polygon y-coordinates

headWater1<- confine(calves, point.x = calves$x, point.y = calves$y,
confinementCoord.x = water_trough.x, confinementCoord.y = water_trough.y,

filterOutput = TRUE) #creates a data set comprised ONLY of points within the water polygon.

headWater2<- confine(calves, point.x = calves$x, point.y = calves$y,
confinementCoord.x = water_trough.x, confinementCoord.y = water_trough.y,
filterOutput = FALSE) #appends the "confinement_status" column to x.

contact-defunct Defunct functions in contact

Description

These functions have been removed from our package.

Details

• contactTest: contactTest is defunct and was removed in version 1.2.0. Please consider us-
ing another contact-comparison function instead (e.g., contactCompare_chisq, contactCom-
pare_mantel, etc.)"

8 contactCompare_binom

contactCompare_binom Exact Binomial Test for Comparing Observed Contacts to a Random
Distribution

Description

This function is used to determine if tracked individuals in an empirical dataset had more or fewer
contacts with other tracked individuals/specified locations than would be expected at random. The
function works by comparing an empirical contact distribution (generated using x.summary and
x.potential) to a NULL distribution (generated using y.summary and y.potential) using an exact
binomial goodness-of-fit test. Note here, the NULL hypothesis is that empirical data are consistent
with the NULL distribution, and the alternative hypothesis is that the data are NOT consistent.
This function SHOULD NOT be used to compare two empirical networks, as the function assumes
x.summary and y.summary represent observed and expected values, respectively. Please note that
this is a function of convience that is essentially a wrapper for the binom.test function, that allows
users to easily compare contact networks created using our pipeline of contact:: functions.

This function was inspired by the methods described by Spiegel et al. 2016. They determined
individuals to be expressing social behavior when nodes had greater degree values than would be
expected at random, with randomized contact networks derived from movement paths randomized
according to their novel methodology (that can be implemented using our randomizePaths function).
Here, users can also identify when more or fewer contacts (demonstrated by the sign of values in
the "difference" column in the output) with specific individuals than would be expected at random,
given a pre-determined p-value threshold. Such relationships suggest social affinities or aversions,
respectively, may exist between specific individuals.

Note:The default tested column (i.e., categorical data column from which data is drawn to be com-
pared to randomized sets herein) is "id." This means that contacts involving each individual (de-
fined by a unique "id") will be compared to randomized sets. Users may not use any data column
for analysis other than "id." If users want to use another categorical data column in analyses rather
than "id," we recommend re-processing data (starting from the dist.all/distToArea functions), while
specifying this new data as an "id." For example, users may annotate an illness status column to the
empirical input, wherein they describe if the tracked individual displayed gastrointestinal ("gastr"),
respiratory ("respr"), both ("both"), illness symptoms, or were consistently healthy ("hel") over the
course of the tracking period. Users could set this information as the "id," and carry it forward as
such through the data-processing pipeline. Ultimately, they could determine if each of these disease
states affected contact rates, relative to what would be expected at random.

Take care to ensure that the same shuffle.type is denoted as was originally used to randomize indi-
viduals’ locations (assuming the randomizePaths function was used to do so). This is important for
two reasons: 1.) If there was no y.potential input, the function assumes that x.potential is relevant
to the random set as well. This is a completely fair assumption when importBlocks == FALSE or
when the shuffleUnit == 0. In cases when the shuffle.type is 1 or 2, however, this assumption can
lead to erroneous results and/or errors in the function. 2.) In the randomizePaths function, setting
shuffle.type == 2 produces only 1 shuffle.unit’s worth of data (e.g., 1 day), rather than a dataset
with the same length of x. As such, there may be a different number of blocks in y compared to
x. Here we assume that the mean randomized durations per block in y.summary and y.potential,
are representative of mean randomized durations per block across each shuffle unit (e.g., day 1 is
representative of day 3, etc.).

contactCompare_binom 9

Usage

contactCompare_binom(
x.summary,
y.summary,
x.potential,
y.potential = NULL,
importBlocks = FALSE,
shuffle.type = 1,
pairContacts = TRUE,
totalContacts = TRUE,
popLevelOutput = FALSE,
parallel = FALSE,
nCores = (parallel::detectCores()/2),
...

)

Arguments

x.summary List or single-data frame output from the summarizeContacts function refering
to the empirical data. Note that if x.summary is a list of data frames, only the
first data frame will be used in the function.

y.summary List or single-data frame output from the summarizeContacts function refering
to the randomized data (i.e., NULL model contact-network edge weights). Note
that if y.summary is a list of data frames, only the first data frame will be used
in the function.

x.potential List or single-data frame output from the potentialDurations function refering
to the empirical data. Note that if x.potential is a list of data frames, potential
contact durations used in the function will be determined by averaging those
reported in each list entry.

y.potential List or single-data frame output from the potentialDurations function refering to
the randomized data. Note that if y.potential is a list of data frames, potential
contact durations used in the function will be determined by averaging those
reported in each list entry. If NULL, reverts to x.potential. Defaults to NULL.

importBlocks Logical. If true, each block in x.summary will be analyzed separately. Defaults
to FALSE. Note that the "block" column must exist in .summary AND .potential
objects, and values must be identical (i.e., if block 100 exists in x inputs, it must
also exist in y inputs), otherwise an error will be returned.

shuffle.type Integer. Describes which shuffle.type (from the randomizePaths function) was
used to randomize the y.summary data set(s). Takes the values "0," "1," or "2."
This is important because there are different assumptions associated with each
shuffle.type.

pairContacts Logical. If TRUE individual id columns from x.summary and y.summary inputs
will be included in analyses. Defaults to TRUE.

totalContacts Logical. If TRUE totalDegree and totalContactDurations columns from x.summary
and y.summary inputs will be included in analyses. Defaults to TRUE.

10 contactCompare_binom

popLevelOutput Logical. If TRUE a secondary output describing population-level comparisons
will be appended to the standard, individual-level function output.

parallel Logical. If TRUE, sub-functions within the summarizeContacts wrapper will be
parallelized. Note that the only sub-function parallelized here is called ONLY
when importBlocks == TRUE.

nCores Integer. Describes the number of cores to be dedicated to parallel processes. De-
faults to half of the maximum number of cores available (i.e., (parallel::detectCores()/2)).

... Other arguments to be passed to the binom.test function.

Value

Output format is dependent on popLevelOutput value.

If popLevelOut == FALSE output will be a single two data frame containing individual-level pair-
wise analyses of node degree, total edge weight (i.e., the sum of all observed contacts involving
each individual), and specific dyad weights (e.g., contacts between individuals 1 and 2). The data
frame contains the following columns:

id the id of the specific individual.

metric designation of what is being compared (e.g., totalDegree, totalContactDurations,
individual 2, etc.). Content will change depending on which data frame is being
observed.

method Statistical test used to determine significance.

probEstimate Probability of "successful" contact events.

p.val p.values associated with each comparison.
contactDurations.x

Describes the number of observed events in x.summary.
contactDurations.y

Describes the number of observed events in y.summary.
noContactDurations.x

Describes the number of empirical events that were not observed given the total
number of potential events in x.potential.

noContactDurations.y

Describes the number of random events that were not observed given the total
number of potential events in y.potential.

difference The absolute value given by subtracting contactDurations.y from contactDura-
tions.x.

warning Denotes if any specific warning occurred during analysis.

block.x Denotes the specific time block from x.(Only if importBlocks == TRUE)

block.start.x Denotes the specific timepoint at the beginning of each time block. (Only if
importBlocks == TRUE)

block.end.x Denotes the specific timepoint at the end of each time block. (Only if importBlocks
== TRUE)

block.y Denotes the specific time block from y.(Only if importBlocks == TRUE)

contactCompare_binom 11

block.start.y Denotes the specific timepoint at the beginning of each time block. (Only if
importBlocks == TRUE)

block.end.y Denotes the specific timepoint at the end of each time block. (Only if importBlocks
== TRUE)

If popLevelOutput == TRUE, output will be a list of two data frames: The one described above,
and second describing the population-level comparisons. Columns in each data frame are identical.

References

Conover, W.J. 1971. Practical nonparametric statistics. New York: John Wiley & Sons. 97–104.

Farine, D.R., 2017. A guide to null models for animal social network analysis. Methods in Ecology
and Evolution 8:1309-1320. https://doi.org/10.1111/2041-210X.12772.

Hollander, M. & Wolfe, D.A. 1973. Nonparametric statistical methods. New York: John Wiley &
Sons. 15–22.

Spiegel, O., Leu, S.T., Sih, A., and C.M. Bull. 2016. Socially interacting or indifferent neighbors?
Randomization of movement paths to tease apart social preference and spatial constraints. Methods
in Ecology and Evolution 7:971-979. https://doi.org/10.1111/2041-210X.12553.

Examples

data(calves) #load data

calves.dateTime<-datetime.append(calves, date = calves$date,
time = calves$time) #add dateTime column

calves.agg<-tempAggregate(calves.dateTime, id = calves.dateTime$calftag,
dateTime = calves.dateTime$dateTime, point.x = calves.dateTime$x,

point.y = calves.dateTime$y, secondAgg = 300, extrapolate.left = FALSE,
extrapolate.right = FALSE, resolutionLevel = "reduced", parallel = FALSE,

na.rm = TRUE, smooth.type = 1) #aggregate to 5-min timepoints

calves.dist<-dist2All_df(x = calves.agg, parallel = FALSE,
dataType = "Point", lonlat = FALSE) #calculate inter-calf distances

calves.contact.block<-contactDur.all(x = calves.dist, dist.threshold=1,
sec.threshold=10, blocking = TRUE, blockUnit = "hours", blockLength = 1,

equidistant.time = FALSE, parallel = FALSE, reportParameters = TRUE)

emp.summary <- summarizeContacts(calves.contact.block,
importBlocks = TRUE) #empirical contact summ.

emp.potential <- potentialDurations(calves.dist, blocking = TRUE,
blockUnit = "hours", blockLength = 1,
distFunction = "dist2All_df")

calves.agg.rand<-randomizePaths(x = calves.agg, id = "id",
dateTime = "dateTime", point.x = "x", point.y = "y", poly.xy = NULL,

12 contactCompare_chisq

parallel = FALSE, dataType = "Point", numVertices = 1, blocking = TRUE,
blockUnit = "mins", blockLength = 20, shuffle.type = 0, shuffleUnit = NA,

indivPaths = TRUE, numRandomizations = 2) #randomize calves.agg

calves.dist.rand<-dist2All_df(x = calves.agg.rand, point.x = "x.rand",
point.y = "y.rand", parallel = FALSE, dataType = "Point", lonlat = FALSE)

calves.contact.rand<-contactDur.all(x = calves.dist.rand,
dist.threshold=1, sec.threshold=10, blocking = TRUE, blockUnit = "hours",

blockLength = 1, equidistant.time = FALSE, parallel = FALSE,
reportParameters = TRUE) #NULL model contacts (list of 2)

rand.summary <- summarizeContacts(calves.contact.rand, avg = TRUE,
importBlocks = TRUE) #NULL contact summary

rand.potential <- potentialDurations(calves.dist.rand, blocking = TRUE,
blockUnit = "hours", blockLength = 1,
distFunction = "dist2All_df")

contactCompare_binom(x.summary = emp.summary, y.summary = rand.summary,
x.potential = emp.potential, y.potential = rand.potential,
importBlocks = FALSE, shuffle.type = 0,
popLevelOut = TRUE, parallel = FALSE) #no blocking

contactCompare_binom(x.summary = emp.summary, y.summary = rand.summary,
x.potential = emp.potential, y.potential = rand.potential,
importBlocks = TRUE, shuffle.type = 0,
popLevelOut = TRUE, parallel = FALSE) #blocking

contactCompare_chisq Compare Observed Contacts to a Random Distribution Using Chi-
Square GoF

Description

This function is used to determine if tracked individuals in an empirical dataset had more or fewer
contacts with other tracked individuals/specified locations than would be expected at random. The
function works by comparing an empirical contact distribution (generated using x.summary and
x.potential) to a NULL distribution (generated using y.summary and y.potential) using a X-square
goodness-of-fit test. Note that here, the NULL hypothesis is that empirical data are consistent with
the NULL distribution, and the alternative hypothesis is that the data are NOT consistent. This
function SHOULD NOT be used to compare two empirical networks using Chi-squared tests, as
the function assumes x.summary and y.summary represent observed and expected values, respec-
tively. Please note that this is a function of convience that is essentially a wrapper for the chisq.test
function, that allows users to easily compare contact networks created using our pipeline of contact::
functions.

This function was inspired by the methods described by Spiegel et al. 2016. They determined
individuals to be expressing social behavior when nodes had greater degree values than would be

contactCompare_chisq 13

expected at random, with randomized contact networks derived from movement paths randomized
according to their novel methodology (that can be implemented using our randomizePaths function).
Here, users can also identify when more or fewer contacts (demonstrated by the sign of values in
the "difference" column in the output) with specific individuals than would be expected at random,
given a pre-determined p-value threshold. Such relationships suggest social affinities or aversions,
respectively, may exist between specific individuals.

Note:The default tested column (i.e., categorical data column from which data is drawn to be com-
pared to randomized sets herein) is "id." This means that contacts involving each individual (de-
fined by a unique "id") will be compared to randomized sets. Users may not use any data column
for analysis other than "id." If users want to use another categorical data column in analyses rather
than "id," we recommend re-processing data (starting from the dist.all/distToArea functions), while
specifying this new data as an "id." For example, users may annotate an illness status column to the
empirical input, wherein they describe if the tracked individual displayed gastrointestinal ("gastr"),
respiratory ("respr"), both ("both"), illness symptoms, or were consistently healthy ("hel") over the
course of the tracking period. Users could set this information as the "id," and carry it forward as
such through the data-processing pipeline. Ultimately, they could determine if each of these disease
states affected contact rates, relative to what would be expected at random.

Take care to ensure that the same shuffle.type is denoted as was originally used to randomize indi-
viduals’ locations (assuming the randomizePaths function was used to do so). This is important for
two reasons: 1.) If there was no y.potential input, the function assumes that x.potential is relevant
to the random set as well. This is a completely fair assumption when importBlocks == FALSE or
when the shuffleUnit == 0. In cases when the shuffle.type is 1 or 2, however, this assumption can
lead to erroneous results and/or errors in the function. 2.) In the randomizePaths function, setting
shuffle.type == 2 produces only 1 shuffle.unit’s worth of data (e.g., 1 day), rather than a dataset
with the same length of x. As such, there may be a different number of blocks in y compared to
x. Here we assume that the mean randomized durations per block in y.summary and y.potential,
are representative of mean randomized durations per block across each shuffle unit (e.g., day 1 is
representative of day 3, etc.).#’

Finally, if X-square expected values will be very small, approximations of p may not be correct (and
in fact, all estimates will be poor). It may be best to weight these tests differently. In the event that
this is the case, contactCompare_binom may be used to obtain more-accurate estimates.

Usage

contactCompare_chisq(
x.summary,
y.summary,
x.potential,
y.potential = NULL,
importBlocks = FALSE,
shuffle.type = 1,
pairContacts = TRUE,
totalContacts = TRUE,
popLevelOutput = FALSE,
parallel = FALSE,
nCores = (parallel::detectCores()/2),
...

)

14 contactCompare_chisq

Arguments

x.summary List or single-data frame output from the summarizeContacts function refering
to the empirical data. Note that if x.summary is a list of data frames, only the
first data frame will be used in the function.

y.summary List or single-data frame output from the summarizeContacts function refering
to the randomized data (i.e., NULL model contact-network edge weights). Note
that if y.summary is a list of data frames, only the first data frame will be used
in the function.

x.potential List or single-data frame output from the potentialDurations function refering
to the empirical data. Note that if x.potential is a list of data frames, potential
contact durations used in the function will be determined by averaging those
reported in each list entry.

y.potential List or single-data frame output from the potentialDurations function refering to
the randomized data. Note that if y.potential is a list of data frames, potential
contact durations used in the function will be determined by averaging those
reported in each list entry. If NULL, reverts to x.potential. Defaults to NULL.

importBlocks Logical. If true, each block in x.summary will be analyzed separately. Defaults
to FALSE. Note that the "block" column must exist in .summary AND .potential
objects, and values must be identical (i.e., if block 100 exists in x inputs, it must
also exist in y inputs), otherwise an error will be returned.

shuffle.type Integer. Describes which shuffle.type (from the randomizePaths function) was
used to randomize the y.summary data set(s). Takes the values "0," "1," or "2."
This is important because there are different assumptions associated with each
shuffle.type.

pairContacts Logical. If TRUE individual id columns from x.summary and y.summary inputs
will be included in analyses. Defaults to TRUE.

totalContacts Logical. If TRUE totalDegree and totalContactDurations columns from x.summary
and y.summary inputs will be included in analyses. Defaults to TRUE.

popLevelOutput Logical. If TRUE a secondary output describing population-level comparisons
will be appended to the standard, individual-level function output.

parallel Logical. If TRUE, sub-functions within the summarizeContacts wrapper will be
parallelized. Note that the only sub-function parallelized here is called ONLY
when importBlocks == TRUE.

nCores Integer. Describes the number of cores to be dedicated to parallel processes. De-
faults to half of the maximum number of cores available (i.e., (parallel::detectCores()/2)).

... Other arguments to be passed to the chisq.test function.

Value

Output format is dependent on popLevelOutput value.

If popLevelOut == FALSE output will be a single two data frame containing individual-level pair-
wise analyses of node degree, total edge weight (i.e., the sum of all observed contacts involving
each individual), and specific dyad weights (e.g., contacts between individuals 1 and 2). The data
frame contains the following columns:

contactCompare_chisq 15

id the id of the specific individual.

metric designation of what is being compared (e.g., totalDegree, totalContactDurations,
individual 2, etc.). Content will change depending on which data frame is being
observed.

method Statistical test used to determine significance.

X.squared Test statistic associated with the comparison.

p.val p.values associated with each comparison.

df Degrees of freedom associated with the statistical test.
contactDurations.x

Describes the number of observed events in x.summary.
contactDurations.y

Describes the number of observed events in y.summary.
noContactDurations.x

Describes the number of empirical events that were not observed given the total
number of potential events in x.potential.

noContactDurations.y

Describes the number of random events that were not observed given the total
number of potential events in y.potential.

difference The absolute value given by subtracting contactDurations.y from contactDura-
tions.x.

warning Denotes if any specific warning occurred during analysis.

block.x Denotes the specific time block from x.(Only if importBlocks == TRUE)

block.start.x Denotes the specific timepoint at the beginning of each time block. (Only if
importBlocks == TRUE)

block.end.x Denotes the specific timepoint at the end of each time block. (Only if importBlocks
== TRUE)

block.y Denotes the specific time block from y.(Only if importBlocks == TRUE)

block.start.y Denotes the specific timepoint at the beginning of each time block. (Only if
importBlocks == TRUE)

block.end.y Denotes the specific timepoint at the end of each time block. (Only if importBlocks
== TRUE)

If popLevelOutput == TRUE, output will be a list of two data frames: The one described above,
and second describing the population-level comparisons. Columns in each data frame are identical.

References

Agresti, A. 2007. An introduction to categorical data analysis, 2nd ed. New York: John Wiley &
Sons. 38.

Farine, D.R., 2017. A guide to null models for animal social network analysis. Methods in Ecology
and Evolution 8:1309-1320. https://doi.org/10.1111/2041-210X.12772.

Spiegel, O., Leu, S.T., Sih, A., and C.M. Bull. 2016. Socially interacting or indifferent neighbors?
Randomization of movement paths to tease apart social preference and spatial constraints. Methods
in Ecology and Evolution 7:971-979. https://doi.org/10.1111/2041-210X.12553.

16 contactCompare_chisq

Examples

data(calves) #load data

calves.dateTime<-datetime.append(calves, date = calves$date,
time = calves$time) #add dateTime column

calves.agg<-tempAggregate(calves.dateTime, id = calves.dateTime$calftag,
dateTime = calves.dateTime$dateTime, point.x = calves.dateTime$x,

point.y = calves.dateTime$y, secondAgg = 300, extrapolate.left = FALSE,
extrapolate.right = FALSE, resolutionLevel = "reduced", parallel = FALSE,

na.rm = TRUE, smooth.type = 1) #aggregate to 5-min timepoints

calves.dist<-dist2All_df(x = calves.agg, parallel = FALSE,
dataType = "Point", lonlat = FALSE) #calculate inter-calf distances

calves.contact.block<-contactDur.all(x = calves.dist, dist.threshold=1,
sec.threshold=10, blocking = TRUE, blockUnit = "hours", blockLength = 1,

equidistant.time = FALSE, parallel = FALSE, reportParameters = TRUE)

emp.summary <- summarizeContacts(calves.contact.block,
importBlocks = TRUE) #empirical contact summ.

emp.potential <- potentialDurations(calves.dist, blocking = TRUE,
blockUnit = "hours", blockLength = 1,
distFunction = "dist2All_df")

calves.agg.rand<-randomizePaths(x = calves.agg, id = "id",
dateTime = "dateTime", point.x = "x", point.y = "y", poly.xy = NULL,

parallel = FALSE, dataType = "Point", numVertices = 1, blocking = TRUE,
blockUnit = "mins", blockLength = 20, shuffle.type = 0, shuffleUnit = NA,

indivPaths = TRUE, numRandomizations = 2) #randomize calves.agg

calves.dist.rand<-dist2All_df(x = calves.agg.rand, point.x = "x.rand",
point.y = "y.rand", parallel = FALSE, dataType = "Point", lonlat = FALSE)

calves.contact.rand<-contactDur.all(x = calves.dist.rand,
dist.threshold=1, sec.threshold=10, blocking = TRUE, blockUnit = "hours",

blockLength = 1, equidistant.time = FALSE, parallel = FALSE,
reportParameters = TRUE) #NULL model contacts (list of 2)

rand.summary <- summarizeContacts(calves.contact.rand, avg = TRUE,
importBlocks = TRUE) #NULL contact summary

rand.potential <- potentialDurations(calves.dist.rand, blocking = TRUE,
blockUnit = "hours", blockLength = 1,
distFunction = "dist2All_df")

contactCompare_chisq(x.summary = emp.summary, y.summary = rand.summary,
x.potential = emp.potential, y.potential = rand.potential,
importBlocks = FALSE, shuffle.type = 0,
popLevelOut = TRUE, parallel = FALSE) #no blocking

contactCompare_mantel 17

contactCompare_chisq(x.summary = emp.summary, y.summary = rand.summary,
x.potential = emp.potential, y.potential = rand.potential,
importBlocks = TRUE, shuffle.type = 0,
popLevelOut = TRUE, parallel = FALSE) #blocking

contactCompare_mantel Statistically Compare Two Contact Matrices

Description

Tests for similarity of the x.summary input to y.summary. Please note that this is a function of
convience that is essentially a wrapper for the ape::mantel.test function, that allows users to easily
compare contact networks created using our pipeline of contact:: functions. Please understand that
ape::mantel.test does not allow for missing values in matrices, so all NAs will be treated as zeroes.

Usage

contactCompare_mantel(
x.summary,
y.summary,
numPermutations = 1000,
alternative.hyp = "two.sided",
importBlocks = FALSE

)

Arguments

x.summary List or single-data frame output from the summarizeContacts function refering
to the empirical data. Note that if x.summary is a list of data frames, only the
first data frame will be used in the function.

y.summary List or single-data frame output from the summarizeContacts function refering
to the randomized data (i.e., NULL model contact-network edge weights). Note
that if y.summary is a list of data frames, only the first data frame will be used
in the function.

numPermutations

Integer. Number of times to permute the data. Defaults to 1000.
alternative.hyp

Character string. Describes the nature of the alternative hypothesis being tested
when test == "mantel." Takes the values "two.sided," "less," or "greater." De-
faults to "two.sided."

importBlocks Logical. If true, each block in x.summary will be analyzed separately. Defaults
to FALSE. Note that the "block" column must exist in .summary objects AND
values must be identical (i.e., if block 100 exists in x.summary, it must also exist
in y.summary), otherwise an error will be returned.

18 contactCompare_mantel

Value

Output format is a single data frame with the following columns.

method Statistical test used to determine significance.

z.val z statistic.

p.value p.values associated with each comparison.

x.mean mean contacts in x.summary overall or by block (if applicable). Note that these
means are calculated BEFORE any NAs are converted to zeroes (see note above)

y.mean mean contacts in y.summary overall or by block (if applicable). Note that these
means are calculated BEFORE any NAs are converted to zeroes (see note above)

alternative.hyp

The nature of the alternative hypothesis being tested.

nperm Number of permutations used to generate p value.

warning Denotes if any specific warning occurred during analysis.

References

Mantel, N. 1967. The detection of disease clustering and a generalized regression approach. Cancer
Research, 27:209–220.

Examples

data(calves) #load data

calves.dateTime<-datetime.append(calves, date = calves$date,
time = calves$time) #add dateTime column

calves.agg<-tempAggregate(calves.dateTime, id = calves.dateTime$calftag,
dateTime = calves.dateTime$dateTime, point.x = calves.dateTime$x,

point.y = calves.dateTime$y, secondAgg = 300, extrapolate.left = FALSE,
extrapolate.right = FALSE, resolutionLevel = "reduced", parallel = FALSE,

na.rm = TRUE, smooth.type = 1) #aggregate to 5-min timepoints

calves.dist<-dist2All_df(x = calves.agg, parallel = FALSE,
dataType = "Point", lonlat = FALSE) #calculate inter-calf distances

calves.contact.block<-contactDur.all(x = calves.dist, dist.threshold=1,
sec.threshold=10, blocking = TRUE, blockUnit = "hours", blockLength = 1,

equidistant.time = FALSE, parallel = FALSE, reportParameters = TRUE)

emp.summary <- summarizeContacts(calves.contact.block,
importBlocks = TRUE) #empirical contact summ.

calves.agg.rand<-randomizePaths(x = calves.agg, id = "id",
dateTime = "dateTime", point.x = "x", point.y = "y", poly.xy = NULL,

parallel = FALSE, dataType = "Point", numVertices = 1, blocking = TRUE,

contactDur.all 19

blockUnit = "mins", blockLength = 20, shuffle.type = 0, shuffleUnit = NA,
indivPaths = TRUE, numRandomizations = 2) #randomize calves.agg

calves.dist.rand<-dist2All_df(x = calves.agg.rand, point.x = "x.rand",
point.y = "y.rand", parallel = FALSE, dataType = "Point", lonlat = FALSE)

calves.contact.rand<-contactDur.all(x = calves.dist.rand,
dist.threshold=1, sec.threshold=10, blocking = TRUE, blockUnit = "hours",

blockLength = 1, equidistant.time = FALSE, parallel = FALSE,
reportParameters = TRUE) #NULL model contacts (list of 2)

rand.summary <- summarizeContacts(calves.contact.rand, avg = TRUE,
importBlocks = TRUE) #NULL contact summary

contactCompare_mantel(x.summary = emp.summary, y.summary = rand.summary,
importBlocks = FALSE, numPermutations = 100,
alternative.hyp = "two.sided") #no blocking

contactCompare_mantel(x.summary = emp.summary, y.summary = rand.summary,
importBlocks = TRUE, numPermutations = 100,
alternative.hyp = "two.sided") #blocking

contactDur.all Identify Inter-animal Contacts

Description

This function uses the output from dist2All to determine when and for how long tracked individuals
are in "contact" with one another. Individuals are said to be in a "contact" event if they are observed
within a given distance (<= dist.threshold) at a given timestep. Contacts are broken when individuals
are observed outside the specified distance threshold from one another for > sec.threshold seconds.
Sec.threshold dictates the maximum amount of time between concurrent observations during which
potential "contact" events remain unbroken. For example, if sec.threshold == 10, only "contacts"
occurring within 10secs of one another will be regarded as a single "contact" event of duration
sum(h). If in this case, a time difference between contacts was 11 seconds, the function will report
two separate contact events.

The output of this function is a data frame containing a time-ordered contact edge set detailing
inter-animal contacts.

Usage

contactDur.all(
x,
dist.threshold = 1,
sec.threshold = 10,
blocking = FALSE,

20 contactDur.all

blockLength = 1,
blockUnit = "hours",
blockingStartTime = NULL,
equidistant.time = FALSE,
parallel = FALSE,
nCores = (parallel::detectCores()/2),
reportParameters = TRUE

)

Arguments

x Output from the dist2All function. Can be either a data frame or non-data-frame
list.

dist.threshold Numeric. Radial distance (in meters) within which "contact" can be said to
occur. Defaults to 1. Note: If you are defining conttacts as occurring when
polygons intersect, set dist.threshold to 0.

sec.threshold Numeric. Dictates the maximum amount of time between concurrent observa-
tions during which potential "contact" events remain unbroken. Defaults to 10.

blocking Logical. If TRUE, contacts will be evaluated for temporal blocks spanning
blockLength blockUnit (e.g., 6 hours) within the data set. Defaults to FALSE.

blockLength Integer. Describes the number blockUnits within each temporal block. Defaults
to 1.

blockUnit Character string taking the values, "secs," "mins," "hours," "days," or "weeks."
Describes the temporal unit associated with each block. Defaults to "hours."

blockingStartTime

Character string or date object describing the date OR dateTime starting point
of the first time block. For example, if blockingStartTime = "2016-05-01"
OR "2016-05-01 00:00:00", the first timeblock would begin at "2016-05-01
00:00:00." If NULL, the blockingStartTime defaults to the minimum dateTime
point in x. Note: any blockingStartTime MUST precede or be equivalent to the
minimum timepoint in x. Additional note: If blockingStartTime is a character
string, it must be in the format ymd OR ymd hms.

equidistant.time

Logical. If TRUE, location fixes in individuals’ movement paths are temporally
equidistant (e.g., all fix intervals are 30 seconds). Defaults to FALSE. Note: This
is a time-saving argument. A sub-function here calculates the time difference
(dt) between each location fix. If all fix intervals in an individuals’ path are
identical, it saves a lot of time.

parallel Logical. If TRUE, sub-functions within the contactDur.all wrapper will be par-
allelized. Defaults to FALSE.

nCores Integer. Describes the number of cores to be dedicated to parallel processes. De-
faults to half of the maximum number of cores available (i.e., (parallel::detectCores()/2)).

reportParameters

Logical. If TRUE, function argument values will be appended to output data
frame(s). Defaults to TRUE.

contactDur.all 21

Value

Returns a data frame (or list of data frames if x is a list of data frames) with the following columns:

dyadMember1 The unique ID of an individual observed in contact with a specified second in-
dividual.

dyadMember2 The unique ID of an individual observed in contact with dyadMember1.

dyadID The unique dyad ID used to identify the pair of individuals dyadMember1 and
dyadMember2.

contactDuration

The number of sequential timepoints in x that dyadMember1 and dyadMember2
were observed to be in contact with one another.

contactStartTime

The timepoint in x at which contact between dyadMember1 and dyadMember2
begins.

contactEndTime The timepoint in x at which contact between dyadMember1 and dyadMember2
ends.

If blocking == TRUE, the following columns are appended to the output data frame described
above:

block Integer ID describing unique blocks of time during which contacts occur.

block.start The timepoint in x at which the block begins.

block.end The timepoint in x at which the block ends.

numBlocks Integer describing the total number of time blocks observed within x at which
the block

Finally, if reportParameters == TRUE function arguments distThreshold, secThreshold, equidistant.time,
and blockLength (if applicable) will be appended to the output data frame.

Examples

data(calves)

calves.dateTime<-datetime.append(calves, date = calves$date, time =
calves$time) #create a dataframe with dateTime identifiers for location foxes

calves.agg<-tempAggregate(calves.dateTime, id = calves.dateTime$calftag,
dateTime = calves.dateTime$dateTime, point.x = calves.dateTime$x,
point.y = calves.dateTime$y, secondAgg = 300, extrapolate.left = FALSE,
extrapolate.right = FALSE, resolutionLevel = "reduced", parallel = FALSE,
na.rm = TRUE, smooth.type = 1) #smooth locations to 5-min fix intervals.

calves.dist<-dist2All_df(x = calves.agg, parallel = FALSE, dataType = "Point",
lonlat = FALSE) #calculate distance between all individuals at each timepoint

calves.contact.block<-contactDur.all(x = calves.dist, dist.threshold=1,
sec.threshold=10, blocking = TRUE, blockUnit = "hours", blockLength = 1,

22 contactDur.area

equidistant.time = FALSE, parallel = FALSE, reportParameters = TRUE)

calves.contact.NOblock<-contactDur.all(x = calves.dist, dist.threshold=1,
sec.threshold=10, blocking = FALSE, blockUnit = "hours", blockLength = 1,
equidistant.time = FALSE, parallel = FALSE, reportParameters = TRUE)

contactDur.area Identify Environmental Contacts

Description

This function uses the output from dist2Area to determine when tracked individuals are in "contact"
with fixed locations. Individuals are said to be in a "contact" event (h) if they are observed within
a given distance (<= dist.threshold) at a given timestep(i). Sec.threshold dictates the maximum
amount of time a single, potential "contact" event should exist. For example, if sec.threshold=10,
only "contacts" occurring within 10secs of one another will be regarded as a single "contact" event
of duration sum(h). If in this case, a time difference between contacts was 11 seconds, the function
will report two separate contact events.

The output of this function is a data frame containing a time-ordered contact edge set detailing
animal-environment contacts.

Usage

contactDur.area(
x,
dist.threshold = 1,
sec.threshold = 10,
blocking = FALSE,
blockLength = 1,
blockUnit = "hours",
blockingStartTime = NULL,
equidistant.time = FALSE,
parallel = FALSE,
nCores = (parallel::detectCores()/2),
reportParameters = TRUE

)

Arguments

x Output from the dist2Area function (either df or sf variant). Can be either a data
frame or non-data-frame list.

dist.threshold Numeric. Radial distance (in meters) within which "contact" can be said to
occur. Defaults to 1. Note: If you are defining conttacts as occurring when
polygons intersect, set dist.threshold to 0.

sec.threshold Numeric. Dictates the maximum amount of time between concurrent observa-
tions during which potential "contact" events remain unbroken. Defaults to 10.

contactDur.area 23

blocking Logical. If TRUE, contacts will be evaluated for temporal blocks spanning
blockLength blockUnit (e.g., 6 hours) within the data set. Defaults to FALSE.

blockLength Integer. Describes the number blockUnits within each temporal block. Defaults
to 1.

blockUnit Character string taking the values, "secs," "mins," "hours," "days," or "weeks."
Describes the temporal unit associated with each block. Defaults to "hours."

blockingStartTime

Character string or date object describing the date OR dateTime starting point
of the first time block. For example, if blockingStartTime = "2016-05-01"
OR "2016-05-01 00:00:00", the first timeblock would begin at "2016-05-01
00:00:00." If NULL, the blockingStartTime defaults to the minimum dateTime
point in x. Note: any blockingStartTime MUST precede or be equivalent to the
minimum timepoint in x. Additional note: If blockingStartTime is a character
string, it must be in the format ymd OR ymd hms.

equidistant.time

Logical. If TRUE, location fixes in individuals’ movement paths are temporally
equidistant (e.g., all fix intervals are 30 seconds). Defaults to FALSE. Note: This
is a time-saving argument. A sub-function here calculates the time difference
(dt) between each location fix. If all fix intervals are identical, it saves a lot of
time.

parallel Logical. If TRUE, sub-functions within the contactDur.all wrapper will be par-
allelized. Defaults to FALSE.

nCores Integer. Describes the number of cores to be dedicated to parallel processes. De-
faults to half of the maximum number of cores available (i.e., (parallel::detectCores()/2)).

reportParameters

Logical. If TRUE, function argument values will be appended to output data
frame(s). Defaults to TRUE.

Value

Returns a data frame (or list of data frames if x is a list of data frames) with the following columns:

indiv.id The unique ID of an individual observed in contact with a specified fixed point/polygon.

area.id The unique ID of a fixed point/polygon observed in contact with indiv.id.

contact.id The unique ID used to identify contacts between the indiv.id and contact.id
pair.

contactDuration

The number of sequential timepoints in x that indiv.id and area.id were ob-
served to be in contact.

contactStartTime

The timepoint in x at which contact between indiv.id and area.id begins.

contactEndTime The timepoint in x at which contact between indiv.id and area.id ends.

If blocking == TRUE, the following columns are appended to the output data frame described
above:

block Integer ID describing unique blocks of time during which contacts occur.

24 contactTest

block.start The timepoint in x at which the block begins.

block.end The timepoint in x at which the block ends.

numBlocks Integer describing the total number of time blocks observed within x at which
the block

Finally, if reportParameters == TRUE function arguments distThreshold, secThreshold, equidistant.time,
and blockLength (if applicable) will be appended to the output data frame.

Examples

data(calves)

calves.dateTime<-datetime.append(calves, date = calves$date,
time = calves$time) #create a dataframe with dateTime identifiers for location fixes.

calves.agg<-tempAggregate(calves.dateTime, id = calves.dateTime$calftag,
dateTime = calves.dateTime$dateTime, point.x = calves.dateTime$x,
point.y = calves.dateTime$y, secondAgg = 300, extrapolate.left = FALSE,
extrapolate.right = FALSE, resolutionLevel = "reduced", parallel = FALSE,
na.rm = TRUE, smooth.type = 1) #smooth to 5-min fix intervals.

water<- data.frame(x = c(61.43315, 61.89377, 62.37518, 61.82622),
y = c(62.44815, 62.73341, 61.93864, 61.67411))

water_poly<-data.frame(matrix(ncol = 8, nrow = 1)) #(ncol = number of vertices)*2 #arrange data
colnum = 0
for(h in 1:nrow(water)){
water_poly[1,colnum + h] <- water$x[h] #pull the x location for each vertex
water_poly[1, (colnum + 1 + h)] <- water$y[h] #pull the y location for each vertex
colnum <- colnum + 1

}

water_dist<-dist2Area_df(x = calves.agg, y = water_poly,
x.id = calves.agg$id, y.id = "water", dateTime = "dateTime", point.x = calves.agg$x,
point.y = calves.agg$y, poly.xy = NULL, parallel = FALSE, dataType = "Point",
lonlat = FALSE, numVertices = NULL) #find distances to the water trough

water_contacts <- contactDur.area(water_dist, dist.threshold=1,
sec.threshold=10, blocking = FALSE, blockUnit = "mins", blockLength = 10,
equidistant.time = FALSE, parallel = FALSE, reportParameters = TRUE)

contactTest Determine if Observed Contacts are More or Less Frequent than in a
Random Distribution (Defunct)

dateFake 25

Description

This DEFUNCT function was used to determine if tracked individuals in an empirical dataset had
more or fewer contacts with other tracked individuals/specified locations than would be expected at
random. The function works by comparing an empirically-based contactDur.all or contactDur.area
function output (emp.input) to the contactDur.all or contactDur.area output generated from random-
ized data (rand.input).

Usage

contactTest(...)

Arguments

... Any input will return the error message: "’contactTest’ is now defunct. Please
consider using another contact-comparison function instead (e.g., contactCompare_chisq,
contactCompare_mantel, etc.)."

Value

Always returns the error message: "’contactTest’ is now defunct. Please consider using another
contact-comparison function instead (e.g., contactCompare_chisq, contactCompare_mantel, etc.)."

dateFake Create Fake Date Information

Description

This function assigns fake date information, beginning 01/01/startYear, to each empirical times-
tamp. Users can control what format the output vector is in by changing the dateFormat argument
(format: "mdy" = month-day-year, "ymd" = year-month-day, "dmy" = day-month-year, or "ydm" =
year-day-month).

This is a sub-function that can be found within datetime.append.

Usage

dateFake(timestamp, dateFormat = "mdy", startYear = 2000)

Arguments

timestamp Vector of time information with format "hour:minute:second."

dateFormat Character string. Defines how date information will be presented in output.
Takes values "mdy" (i.e., month/day/year), "ymd" (i.e., year/month/day), "dmy"
(i.e., day/month/year), or "ydm" (i.e., year/day/month). Defaults to "mdy."

startYear Numerical. Denotes what year fake date information will begin if dateFake ==
TRUE. Defaults to 2000.

26 datetime.append

Details

Note that the timestamp argument should be a vector of all relevant timepoints. Additionally, time-
points should be in hms ("hour, minute, second") format.

Value

Output is a vector of date values (e.g., "01-1-2000") with length length(timestamp).

Examples

data("calves")
dateFake(calves$time, dateFormat = "mdy", startYear = 2000)

datetime.append Append Date-Time Information to a Dataset

Description

This function appends date-time information to a dataset in POSIXct date_time format. It also uses
functions from the lubridate package and minor calculations to parse out month, day, hour, minute,
second, daySecond (the sequentially ordered second of a day), and totalSecond (sequentially or-
dered second over the course of the study period) of observations in a given dataset with date
(format: "mdy" = month/day/year, "ymd" = year/month/day, "dmy" = day/month/year, or "ydm"
= year/day/month (note: no preceding zeroes should be included before numbers <10)) and time
(format: hour:minute:second (note:preceding zeroes must be included before numbers < 10, ex.
00:00:01)) information, appends this metadata to the dataset, and can assign each day a unique ID.

Usage

datetime.append(
x,
date = NULL,
time = NULL,
dateTime = NULL,
dateFormat = "mdy",
dateFake = FALSE,
startYear = 2000,
tz.in = "UTC",
tz.out = NULL,
month = FALSE,
day = FALSE,
year = FALSE,
hour = FALSE,
minute = FALSE,
second = FALSE,
daySecond = FALSE,

datetime.append 27

totalSecond = FALSE
)

Arguments

x Data frame or list of data frames to which new information will be appended.

date Vector of length nrow(data.frame(x)) or singular character data, detailing the
relevant colname in x, that denotes what date information will be used. If ar-
gument == NULL, datetime.append assumes a column with the colname "date"
exists in x, or that the dateTime argument != NULL. Defaults to NULL.

time Vector of length nrow(data.frame(x)) or singular character data, detailing the
relevant colname in x, that denotes what time information will be used. If ar-
gument == NULL, datetime.append assumes a column with the colname "time"
exists in x, or that the dateTime argument != NULL. Defaults to NULL.

dateTime Vector of length nrow(data.frame(x)) or singular character data, detailing the
relevant colname in x, that denotes what dateTime information will be used. If
argument == NULL, date and time arguments must be appropriately defined,
OR "date and "time" columns must exist in x. Defaults to NULL.

dateFormat Character string. Defines how date information is presented. Takes values
"mdy" (i.e., month/day/year), "ymd" (i.e., year/month/day), "dmy" (i.e., day/month/year),
or "ydm" (i.e., year/day/month). Defaults to "mdy."

dateFake Logical. If TRUE, the function will assign fake date information, beginning
01/01/startYear, to each of the timestamps. Defaults to FALSE.

startYear Numerical. Denotes what year fake date information will begin if dateFake ==
TRUE. Defaults to 2000.

tz.in Character. Identifies the timezone associated with the time/dateTime argument
input. Defaults to "UTC." Timezone names often take the form "Country/City."
See the listing of timezones at: http://en.wikipedia.org/wiki/List_of_tz_database_time_zones.

tz.out Character. Identifies the timezone that the output dateTime information will be
converted to. If NULL, tz.out will be identical to tz.in. Defaults to NULL. Time-
zone names often take the form "Country/City." See the listing of timezones at:
http://en.wikipedia.org/wiki/List_of_tz_database_time_zones.

month Logical. If TRUE, output will contain a "month" column with relevant informa-
tion derived from dateTime information. Defaults to FALSE.

day Logical. If TRUE, output will contain a "day" column with relevant information
derived from dateTime information. Defaults to FALSE.

year Logical. If TRUE, output will contain a "year" column with relevant information
derived from dateTime information. Defaults to FALSE.

hour Logical. If TRUE, output will contain a "hour" column with relevant informa-
tion derived from dateTime information. Defaults to FALSE.

minute Logical. If TRUE, output will contain a "minute" column with relevant infor-
mation derived from dateTime information. Defaults to FALSE.

second Logical. If TRUE, output will contain a "second" column with relevant infor-
mation derived from dateTime information. Defaults to FALSE.

28 dist2All_df

daySecond Logical. If TRUE, output will contain a "daySecond" column with information
detailing what the second of a given day the associated dateTime value corre-
sponds to. Defaults to FALSE.

totalSecond Logical. If TRUE, output will contain a "totalSecond" column with information
detailing what the second of the entire data set the associated dateTime value
corresponds to. Defaults to FALSE.

Value

Output is x with new columns appended according to corresponding argmuents.

Examples

data("calves")
calves.dateTime<-datetime.append(calves, date = calves$date, time = calves$time)
head(calves.dateTime) #see now that a dateTime column exists.

dist2All_df Calculate Distances Between All Individuals

Description

Calculates the distance between all tracked individuals at a given timestep. Users can choose
whether to calculate distances based on a single point, or polygons representative of individu-
als’ locations. If individuals set dataType == "Polygon", the distance matrix reported describes
the shortest distances between polygons’ edges (Note that the rgeos::gDistance function is used to
obtain these distances).

Usage

dist2All_df(
x = NULL,
id = NULL,
dateTime = NULL,
point.x = NULL,
point.y = NULL,
poly.xy = NULL,
elev = NULL,
parallel = FALSE,
nCores = (parallel::detectCores()/2),
dataType = "Point",
lonlat = FALSE,
numVertices = 4

)

dist2All_df 29

Arguments

x Data frame or list of data frames containing real-time-location data.

id Vector of length nrow(data.frame(x)) or singular character data, detailing the
relevant colname in x, that denotes what unique ids for tracked individuals will
be used. If argument == NULL, the function assumes a column with the colname
"id" exists in x. Defaults to NULL.

dateTime Vector of length nrow(data.frame(x)) or singular character data, detailing the
relevant colname in x, that denotes what dateTime information will be used. If
argument == NULL, the function assumes a column with the colname "date-
Time" exists in x. Defaults to NULL.

point.x Vector of length nrow(data.frame(x)) or singular character data, detailing the
relevant colname in x, that denotes what planar-x or longitude coordinate infor-
mation will be used. If argument == NULL, the function assumes a column with
the colname "x" exists in x. Defaults to NULL.

point.y Vector of length nrow(data.frame(x)) or singular character data, detailing the
relevant colname in x, that denotes what planar-y or lattitude coordinate infor-
mation will be used. If argument == NULL, the function assumes a column with
the colname "y" exists in x. Defaults to NULL.

poly.xy Columns within x denoting polygon xy-coordinates. Polygon coordinates must
be arranged in the format of those in referencePointToPolygon output. Defaults
to NULL.

elev Vector of length nrow(data.frame(x)) or singular character data, detailing the
relevant colname in x, that denotes vertical positioning of each individual in 3D
space (e.g., elevation). If argument != NULL, relative vertical positioning will
be incorporated into distance calculations. Defaults to NULL.

parallel Logical. If TRUE, sub-functions within the dist2All wrapper will be paral-
lelized. Defaults to FALSE.

nCores Integer. Describes the number of cores to be dedicated to parallel processes. De-
faults to half of the maximum number of cores available (i.e., (parallel::detectCores()/2)).

dataType Character string refering to the type of real-time-location data presented in x,
taking values of "Point" or "Polygon." If argument == "Point," individuals’ lo-
cations are drawn from point.x and point.y. If argument == "Polygon," individ-
uals’ locations are drawn from poly.xy. Defaults to "Point."

lonlat Logical. If TRUE, point.x and point.y contain geographic coordinates (i.e., lon-
gitude and lattitude). If FALSE, point.x and point.y contain planar coordinates.
Defaults to FALSE.

numVertices Numerical. If dataType == "Polygon," users must specify the number of vertices
contained in each polygon. Defaults to 4. Note: all polygons must contain the
same number of vertices.

Details

If dataType == "Point," users have the option of setting lonlat == TRUE (by default lonlat ==
FALSE). lonlat is a logical argument that tells the function to calculate the distance between points
on the WGS ellipsoid (if lonlat == TRUE), or on a plane (lonlat == FALSE) (see raster::pointDistance).

30 dist2All_df

If lonlat == TRUE, coordinates should be in degrees. Otherwise, coordinates should represent
planar (’Euclidean’) space (e.g. units of meters).This function is not currently able to calculate
distances between polygons on the WGS ellipsoid (i.e., if dataType == "Polygon," lonlat must =
FALSE). We aim to address this issue in future versions.

Note that if inputting a separate matrix/dataframe with polygon xy coordinates (poly.xy), coor-
dinates must be arranged in the format of those in referencePointToPolygon outputs (i.e., col1 =
point1.x, col2 = point1.y, col3 =point2.x, col4 = point2.y, etc., with points listed in a clockwise (or
counter-clockwise) order).

Value

Returns a data frame (or list of data frames if x is a list of data frames) with the following columns:

dateTime The unique date-time information corresponding to when tracked individuals
were observed in x.

totalIndividuals

The total number of individuals observed at least one time within x.

individualsAtTimestep

The number of individuals in x observed at the timepoint described in the dateTime
column.

id The unique ID of a tracked individual for which we will evaluate distances to all
other individuals observed in x.

dist.to.indiv_...

The observed distance between the individual described in the id column to
every other individual observed at specific timepoints.

Examples

data(calves)

calves.dateTime<-datetime.append(calves, date = calves$date,
time = calves$time)

calves.agg<-tempAggregate(calves.dateTime, id = calves.dateTime$calftag,
dateTime = calves.dateTime$dateTime, point.x = calves.dateTime$x,
point.y = calves.dateTime$y, secondAgg = 300, extrapolate.left = FALSE,
extrapolate.right = FALSE, resolutionLevel = "reduced", parallel = FALSE,
na.rm = TRUE, smooth.type = 1) #smooth locations to 5-min fix intervals.

calves.dist2<-dist2All_df(x = calves.agg, parallel = FALSE, dataType = "Point",
lonlat = FALSE) #calculate distance between all individuals at each timepoint.

dist2Area_df 31

dist2Area_df Calculate Distances Between Individuals and Fixed Points/Polygons

Description

Calculate distances (either planar or great circle - see dist2All_df) between each individual, reported
in x, and a fixed point(s)/polygon(s), reported in y, at each timestep.

Usage

dist2Area_df(
x = NULL,
y = NULL,
x.id = NULL,
y.id = NULL,
dateTime = NULL,
point.x = NULL,
point.y = NULL,
poly.xy = NULL,
parallel = FALSE,
nCores = (parallel::detectCores()/2),
dataType = "Point",
lonlat = FALSE,
numVertices = 4

)

Arguments

x Data frame or list of data frames containing real-time-location data for individ-
uals.

y Data frame or list of data frames describing fixed-area polygons/points for which
we will calculate distances relative to tracked individuals at all time steps. Poly-
gons contained within the same data frame must have the same number of ver-
tices.

x.id Vector of length nrow(data.frame(x)) or singular character data, detailing the
relevant colname in x, that denotes what unique ids for tracked individuals will
be used. If argument == NULL, the function assumes a column with the colname
"id" exists in x. Defaults to NULL.

y.id Vector of length sum(nrow(data.frame(y[1:length(y)]))) or singular character
data, detailing the relevant colname in y, that denotes what unique ids for fixed-
area polygons/points will be used. If argument == NULL, the function assumes
a column with the colname "id" may exist in y. If such a column does exist,
fixed-area polygons will be assigned unique ids based on values in this column.
If no such column exists, fixed-area polygons/points will be assigned sequential
numbers as unique identifiers. Defaults to NULL.

32 dist2Area_df

dateTime Vector of length nrow(data.frame(x)) or singular character data, detailing the
relevant colname in x, that denotes what dateTime information will be used. If
argument == NULL, the function assumes a column with the colname "date-
Time" exists in x. Defaults to NULL.

point.x Vector of length nrow(data.frame(x)) or singular character data, detailing the
relevant colname in x, that denotes what planar-x or longitude coordinate infor-
mation will be used. If argument == NULL, the function assumes a column with
the colname "x" exists in x. Defaults to NULL.

point.y Vector of length nrow(data.frame(x)) or singular character data, detailing the
relevant colname in x, that denotes what planar-y or lattitude coordinate infor-
mation will be used. If argument == NULL, the function assumes a column with
the colname "y" exists in x. Defaults to NULL.

poly.xy Columns within x denoting polygon xy-coordinates. Polygon coordinates must
be arranged in the format of those in referencePointToPolygon output. Defaults
to NULL.

parallel Logical. If TRUE, sub-functions within the dist2Area_df wrapper will be paral-
lelized. Note that this can significantly speed up processing of relatively small
data sets, but may cause R to crash due to lack of available memory when at-
tempting to process large datasets. Defaults to FALSE.

nCores Integer. Describes the number of cores to be dedicated to parallel processes. De-
faults to half og the maximum number of cores available (i.e., (parallel::detectCores()/2)).

dataType Character string refering to the type of real-time-location data presented in x,
taking values of "Point" or "Polygon." If argument == "Point," individuals’ lo-
cations are drawn from point.x and point.y. If argument == "Polygon," individ-
uals’ locations are drawn from poly.xy. Defaults to "Point."

lonlat Logical. If TRUE, point.x and point.y contain geographic coordinates (i.e., lon-
gitude and lattitude). If FALSE, point.x and point.y contain planar coordinates.
Defaults to FALSE.

numVertices Numerical. If dataType == "Polygon," users must specify the number of vertices
contained in each polygon described in x. Defaults to 4. Note: all polygons must
contain the same number of vertices.

Details

Polygon coordinates (in both x and y inputs) must be arranged in the format of those in reference-
PointToPolygon outputs (i.e., col1 = point1.x, col2 = point1.y, col3 =point2.x, col4 = point2.y, etc.,
with points listed in a clockwise (or counter-clockwise) order).

This variant of dist2Area requires x and y inputs to be non-shapefile data.

Value

Returns a data frame (or list of data frames if x is a list of data frames) with the following columns:

dateTime The unique date-time information corresponding to when tracked individuals
were observed in x.

totalIndividuals

The total number of individuals observed at least one time within x.

dt.calc 33

individualsAtTimestep

The number of individuals in x observed at the timepoint described in the dateTime
column.

id The unique ID of a tracked individual for which we will evaluate distances to all
other individuals observed in x.

dist.to... The observed distance between the individual described in the id column to
every each polygon/fixed location

Examples

data(calves)

calves.dateTime<-datetime.append(calves, date = calves$date,
time = calves$time) #create a dataframe with dateTime identifiers for location fixes.

calves.agg<-tempAggregate(calves.dateTime, id = calves.dateTime$calftag,
dateTime = calves.dateTime$dateTime, point.x = calves.dateTime$x,
point.y = calves.dateTime$y, secondAgg = 300, extrapolate.left = FALSE,
extrapolate.right = FALSE, resolutionLevel = "reduced", parallel = FALSE,
na.rm = TRUE, smooth.type = 1) #smooth to 5-min fix intervals.

water<- data.frame(x = c(61.43315, 61.89377, 62.37518, 61.82622),
y = c(62.44815, 62.73341, 61.93864, 61.67411)) #delineate water polygon

water_poly<-data.frame(matrix(ncol = 8, nrow = 1)) #make coordinates to dist2Area specifications
colnum = 0
for(h in 1:nrow(water)){
water_poly[1,colnum + h] <- water$x[h] #pull the x location for each vertex
water_poly[1, (colnum + 1 + h)] <- water$y[h] #pull the y location for each vertex
colnum <- colnum + 1

}

water_dist<-dist2Area_df(x = calves.agg, y = water_poly,
x.id = calves.agg$id, y.id = "water", dateTime = "dateTime", point.x = calves.agg$x,
point.y = calves.agg$y, poly.xy = NULL, parallel = FALSE, dataType = "Point",
lonlat = FALSE, numVertices = NULL)

dt.calc Calculate Time Difference Between Relocations

Description

This function calculates the time difference between relocation events, accounting for individuals’
ids. This function has the capability to calculate the differences between sequential timepoints
related to two different features (e.g., contactStartTime and contactEndTime) if both dateTime1 and
dateTime2 are defined, or just sequential timepoints from a single vector (e.g., contactStartTime) if
only dateTime1 is defined.

This is a sub-function contained within contactDur variants and contactTest functions.

34 dt.calc

Usage

dt.calc(
x = NULL,
id = NULL,
dateTime1 = NULL,
dateTime2 = NULL,
timeUnits = "secs",
parallel = FALSE,
nCores = (parallel::detectCores()/2),
timeStepRelation = 1

)

Arguments

x data frame containing time data. If NULL at least dateTime must be defined.
Defaults to NULL.

id Vector of length nrow(data.frame(x)) that denotes what unique ids for tracked
individuals will be used. If argument == NULL, the function assumes a column
with the colname "id" exists in x. Defaults to NULL.

dateTime1 Vector of length nrow(data.frame(x)) or singular character data, detailing the
relevant colname in x, that denotes what dateTime information will be used. If
argument == NULL, the function assumes a column with the colname "date-
Time" exists in x. Defaults to NULL.

dateTime2 Vector of length nrow(data.frame(x)) or singular character data, detailing the
relevant colname in x, that denotes what dateTime information will be used. If
argument == NULL, the function will calculate differences between sequential
timepoints in dateTime1. If != NULL, the function will calculate differences
between dateTime1 and dateTime2 values. Defaults to NULL.

timeUnits Chracter string describing the time unit of calculated differences. It takes the
values "secs," "mins," "hours," "days," or "weeks." Defaults to "secs."

parallel Logical. If TRUE, sub-functions within the dt.calc wrapper will be parallelized.
Defaults to FALSE.

nCores Integer. Describes the number of cores to be dedicated to parallel processes. De-
faults to half of the maximum number of cores available (i.e., (parallel::detectCores()/2)).

timeStepRelation

Numerical. Takes the value "1" or "2." If argument == "1," dt values in output
represent the difference between time t and time t-1. If argument == "2," dt
values in output represent the difference between time t and time t+1. Defaults
to 1.

Value

Output is a data frame with the following columns

id The unique ID of a tracked individual.
dt Time difference between relocation events.
units Temporal unit defined by timeUnits argument.

dup 35

Examples

data(calves) #load calves data set
calves.datetime<-datetime.append(calves)
dt<-dt.calc(x = calves.datetime, id = calves.datetime$calftag,

dateTime1 = calves.datetime$dateTime, dateTime2 = NULL,
timeUnits = "secs", parallel = FALSE, timeStepRelation = 1)

head(dt)

dup Identify and Remove Duplicated Data Points

Description

dup (a.k.a. Multiple instance filter) identifies and removes timepoints when tracked individuals
were observed in >1 place concurrently. If avg == TRUE, duplicates are replaced by a single row
describing an individuals’ average location (e.g., planar xy coordinates) during the duplicated time
point. If avg == FALSE, all duplicated timepoints will be removed, as there is no way for the
function to determine which instance among the duplicates should stay. If users are not actually
interested in filtering datasets, but rather, determining what observations should be filtered, they
may set filterOutput == FALSE. By doing so, this function will append a "duplicated" column to
the dataset, which reports values that describe if any timepoints in a given individual’s path are
duplicated. Values are: 0: timepoint is not duplicated, 1: timepoint is duplicated.

Usage

dup(
x,
id = NULL,
point.x = NULL,
point.y = NULL,
dateTime = NULL,
avg = TRUE,
parallel = FALSE,
nCores = (parallel::detectCores()/2),
filterOutput = TRUE

)

Arguments

x Data frame containing real-time-location data that will be filtered.

id Vector of length nrow(data.frame(x)) or singular character data, detailing the
relevant colname in x, that denotes what unique ids for tracked individuals will
be used. If argument == NULL, the function assumes a column with the colname
"id" exists in x. Defaults to NULL.

36 dup

point.x Vector of length nrow(data.frame(x)) or singular character data, detailing the
relevant colname in x, that denotes what planar-x or longitude coordinate infor-
mation will be used. If argument == NULL, the function assumes a column with
the colname "x" exists in x. Defaults to NULL.

point.y Vector of length nrow(data.frame(x)) or singular character data, detailing the
relevant colname in x, that denotes what planar-y or lattitude coordinate infor-
mation will be used. If argument == NULL, the function assumes a column with
the colname "y" exists in x. Defaults to NULL.

dateTime Vector of length nrow(data.frame(x)) or singular character data, detailing the
relevant colname in x, that denotes what dateTime information will be used. If
argument == NULL, the function assumes a column with the colname "date-
Time" exists in x. Defaults to NULL.

avg Logical. If TRUE, point.x and point.y values for duplicated time steps will be
averaged, producing a singular point for all time steps in individuals’ movement
paths. If FALSE, all duplicated time steps wherein individuals were observed in
different locations concurrently are removed from the data set.

parallel Logical. If TRUE, sub-functions within the dup wrapper will be parallelized.
This is only relevant if avg == TRUE. Defaults to FALSE.

nCores Integer. Describes the number of cores to be dedicated to parallel processes. De-
faults to the maximum number of cores available (i.e., (parallel::detectCores()/2)).

filterOutput Logical. If TRUE, output will be a data frame containing only movement paths
with non-duplicated timesteps. If FALSE, no observations are removed and
a "duplicated" column is appended to x, detailing if time steps are duplicated
(column value == 1), or not (column value == 0). Defaults to TRUE.

Details

If users want to remove specific duplicated observations, we suggest setting filterOutput == FALSE,
reviewing what duplicated timepoints exist in individuals’ paths, and manually removing observa-
tions of interest.

Value

If filterOutput == TRUE, returns x less observations at duplicated timepoints.

If filterOutput == FALSE, returns x appended with a "duplicated" column which reports timepoints
are duplicated (column value == 1), or not (column value == 0).

Examples

data(calves2018) #load the data set

calves_dup<- dup(calves2018, id = calves2018$calftag,
point.x = calves2018$x, point.y = calves2018$y,
dateTime = calves2018$dateTime, avg = FALSE, parallel = FALSE,
filterOutput = TRUE) #there were no duplicates to remove in the first place.

findDistThresh 37

findDistThresh Identify Point-Based Distance Threshold for Contact

Description

Sample from a multivariate normal distribution to create "in-contact" n point pairs based on real-
time-location systems accuracy, and generate a distribution describing observed distances between
point pairs.

Usage

findDistThresh(
n = 1000,
acc.Dist1 = 0.5,
acc.Dist2 = NULL,
pWithin1 = 90,
pWithin2 = NULL,
spTh = 0.666

)

Arguments

n Integer. Number of "in-contact" point-pairs used in the expected-distance distri-
bution(s). Defaults to 1000.

acc.Dist1 Numerical. Accuracy distance for point 1.

acc.Dist2 Numerical. Accuracy distance for point 2. If == NULL, defaults to acc.Dist1
value.

pWithin1 Numerical. Percentage of data points within acc.Dist of true locations for point
1.

pWithin2 Numerical. Percentage of data points within acc.Dist of true locations for point
2. If == NULL, defaults to pWithin1 value.

spTh Numerical. Pre-determined distance representing biological threshold for con-
tact.

Details

This function is for adjusting contact-distance thresholds (spTh) to account for positional accuracy
of real-time-location systems, assuming random (non-biased) error in location-fix positions relative
to true locations. Essentially this function can be used to determine an adjusted spTh value that
likely includes the majority of true contacts defined using the initial spTh.

Value

Output is a list containing 5 named vectors. The first vector describes summary statistics of the
simulated distance distribution. The second and third vectors describes varied confidence intervals
(50-99 for the simulated distribiution. The fourth vector describes adjusted spTh values that will

38 makePlanar

capture approximately 84, 98, and 100 contacts given the pre-determined spTh value (all calcu-
lated using the Empirical rule). Finally, the fifth vector describes the actial observed frequency of
captured true contact given the spTh adjustments listed in the fourth vector.

References

Farthing, T.S., Dawson, D.E., Sanderson, M.W., and Lanzas, C. 2020. Accounting for space
and uncertainty in real-time-location- system-derived contact networks. Ecology and Evolution
10(11):4702-4715.

Examples

findDistThresh(n = 10, acc.Dist1 = 0.5, acc.Dist2 = NULL,
pWithin1 = 90, pWithin2 = NULL, spTh = 0.5)

makePlanar Project Geographic Coordinates onto a Plane

Description

This function converts lon/lat data (decimal degrees) from a geographic coordinate system to planar
coordinates using a custom azimuthal equidistant projection, and appends these new coordinates to
an input data frame (x). By default, the function assumes longitude and latitude coordinates were
produced using the WGS84 datum, but users may change this datum if they wish.

Usage

makePlanar(
x = NULL,
x.lon = NULL,
x.lat = NULL,
origin.lon = NULL,
origin.lat = NULL,
datum = "WGS84"

)

Arguments

x Data frame or matrix containing geographic data. Defaults to NULL.

x.lon Vector of length(nrow(x)) or singular character data, detailng the relevant col-
name in x, that denotes what longitude information will be used. If argument
== NULL, makePlanar assumes a column with the colname "lon" exists in x.
Defaults to NULL.

x.lat Vector of length(nrow(x)) or singular character data, detailing the relevant col-
name in x, that denotes what latitude information will be used. If argument
== NULL, makePlanar assumes a column with the colname "lat" exists in x.
Defaults to NULL.

makePlanar 39

origin.lon Numerical. Describes the longitude will be used as the origin-point longitude
for the azimuthal-equidistant projection. If NULL, defaults to the longitude of
the data set’s centroid. Defaults to NULL.

origin.lat Numerical. Describes the latitude will be used as the origin-point latitude for the
azimuthal-equidistant projection. If NULL, defaults to the latitude of the data
set’s centroid. Defaults to NULL.

datum Character string describing the datum used to generate x.lon and x.lat. Defaults
to "WGS84."

Details

Users may specify longitude and latitude coordinates to become the origin of the projection (i.e., the
(0,0) coordinate). If they do not specify these values, however, the function calculates the centroid
of the data and will use this as the origin point.

Note: this function does not allow any NA coordinate values in longitude/latitude vectors. If
NAs exist you will get the following error: "Error in .local(obj, ...) : NA values in coordi-
nates." If NAs exist in your data, we suggest 1.) removing them, or 2.) smoothing data using
contact::tempAggregate prior to running this function.

Value

Output is x appended with the following columns:

planar.x Planar x-coordinate values derived from longitude observations.
planar.y Planar y-coordinate values derived from latitude observations.
origin.lon Longitude of the origin point, either user specified or the longitude of the data’s

centroid.
origin.lat Latitude of the origin point, either user specified or the latitude of the data’s

centroid.
origin.distance

Linear distance (m) between every point and the origin point.

Examples

data(baboons)

head(baboons) #see that locations are in geographic coordinates

lon.na <- which(is.na(baboons$location.long) == TRUE) #pull row ids of lon NAs
lat.na <- which(is.na(baboons$location.lat) == TRUE) #pull row ids of lat NAs

baboons.naRM <- droplevels(baboons[-unique(c(lon.na, lat.na)),]) #remove NAs

baboons.naRM_planar <- makePlanar(x = baboons.naRM,
x.lon = baboons.naRM$location.long, x.lat = baboons.naRM$location.lat,
origin.lon = NULL, origin.lat = NULL, datum = "WGS84") #note no specified origin coords

head(baboons.naRM_planar) #see that planar coordinates are reported

40 mps

mps Identify and Remove Data Points Based on Observed Movement Speed

Description

mps (a.k.a. Meters-per-Second Filter) identifies and removes timepoints when tracked individuals
were observed moving faster than a set distance threshold (representing either the great-circle dis-
tance between two points a planar distance metric, depending on whether or not lonlat == TRUE
or FALSE, respectively) per second. (i.e., if it is impossible/highly unlikely that individuals moved
faster than a given speed (mps), we can assume that any instances when they were observed doing
so were the result of erroneous reporting, and should be removed). When running the mps filter,
users have the option of setting lonlat == TRUE (by default lonlat == FALSE). lonlat is a logical
argument that tells the function to calculate the distance between points on the WGS ellipsoid (if
lonlat == TRUE), or on a plane (lonlat == FALSE) (see raster::pointDistance). If lonlat == TRUE,
coordinates should be in degrees. Otherwise, coordinates should represent planar (’Euclidean’)
space (e.g. units of meters).

Usage

mps(
x,
id = NULL,
point.x = NULL,
point.y = NULL,
dateTime = NULL,
mpsThreshold = 10,
lonlat = FALSE,
parallel = FALSE,
nCores = (parallel::detectCores()/2),
filterOutput = TRUE

)

Arguments

x List or data frame containing real-time location data that will be filtered.
id Vector of length nrow(data.frame(x)) or singular character data, detailing the

relevant colname in x, that denotes what unique ids for tracked individuals will
be used. If argument == NULL, the function assumes a column with the colname
"id" exists in x. Defaults to NULL.

point.x Vector of length nrow(data.frame(x)) or singular character data, detailing the
relevant colname in x, that denotes what planar-x or longitude coordinate infor-
mation will be used. If argument == NULL, the function assumes a column with
the colname "x" exists in x. Defaults to NULL.

point.y Vector of length nrow(data.frame(x)) or singular character data, detailing the
relevant colname in x, that denotes what planar-y or lattitude coordinate infor-
mation will be used. If argument == NULL, the function assumes a column with
the colname "y" exists in x. Defaults to NULL.

mps 41

dateTime Vector of length nrow(data.frame(x)) or singular character data, detailing the
relevant colname in x, that denotes what dateTime information will be used. If
argument == NULL, the function assumes a column with the colname "date-
Time" exists in x. Defaults to NULL.

mpsThreshold Numerical. Distance (in meters) representing the maximum distance individuals
can realistically travel over a single second.

lonlat Logical. If TRUE, point.x and point.y contain geographic coordinates (i.e., lon-
gitude and lattitude). If FALSE, point.x and point.y contain planar coordinates.
Defaults to FALSE.

parallel Logical. If TRUE, sub-functions within the mps wrapper will be parallelized.
Defaults to FALSE.

nCores Integer. Describes the number of cores to be dedicated to parallel processes. De-
faults to half of the maximum number of cores available (i.e., (parallel::detectCores()/2)).

filterOutput Logical. If TRUE, output will be a data frame or list of data frames (depending
on whether or not x is a data frame or not) containing only points that adhere to
the mpsThreshold rule. If FALSE, no observartions are removed and an "mps"
column is appended to x,which reports the avg distance per second individuals
moved to get from observation i-1 to observation i. Defaults to TRUE.

Details

If users are not actually interested in filtering datasets, but rather determining what observations
should be filtered, they may set filterOutput == FALSE. By doing so, this function will append up
an "mps" column to the dataset, which reports the avg distance per second individuals moved to get
from observation i-1 to observation i.

Value

If filterOutput == TRUE, returns x less observations representing impossible/unlikely movements.

If filterOutput == FALSE, returns x appended with an "mps" column which reports the avg distance
per second individuals moved to get from observation i-1 to observation i.

Examples

data(calves) #load calves data

calves.dateTime<-datetime.append(calves, date = calves$date,
time = calves$time) #create a dataframe with dateTime identifiers for location fixes.

calves_filter1 <- mps(x = calves.dateTime, id = calves.dateTime$calftag,
point.x = calves.dateTime$x, point.y = calves.dateTime$y,
dateTime = calves.dateTime$dateTime, mpsThreshold = 10, lonlat = FALSE, parallel = FALSE,
filterOutput = TRUE)

42 ntwrkEdges

ntwrkEdges Compile List of Network Edges from a Contact Table

Description

This function takes the output from contactDur.all or contactDur.area and generates a data frame
showing the list of edges in the contact network.

Usage

ntwrkEdges(
x,
importBlocks = FALSE,
removeDuplicates = TRUE,
parallel = FALSE,
nCores = (parallel::detectCores()/2)

)

Arguments

x Output from the contactDur.all or contactDur.area functions. Can be either a
data frame or list of data frames.

importBlocks Logical. If true blocks will be carried over from x input, allowing for time-
ordered and time-aggregated network creation. Defaults to FALSE.

removeDuplicates

Logical. If x is from contactDur.all, to-from node pairs in output will be reported
twice (i.e., nodes will be listed as both a to- and a from-node). If removeDupli-
cates == true, duplicated edges are removed. Defaults to TRUE.

parallel Logical. If TRUE, sub-functions within the ntwrkEdges wrapper will be par-
allelized. Note that the only sub-functions parallelized here are called ONLY
when importBlocks == TRUE, or when x is a list of data frames.

nCores Integer. Describes the number of cores to be dedicated to parallel processes. De-
faults to half of the maximum number of cores available (i.e., (parallel::detectCores()/2)).

Value

Output is a data frame with the following columns, and can easily be used as input for igraph
functions.

from The "from" nodes in a contact network. Can also be considered "tail" nodes.

to The "to" nodes in a contact network. Can also be considered "head" nodes.

durations The duration of each contact reported in x.

block (if applicable) time block during which reported contacts occurred.

potentialDurations 43

Examples

data("calves")

calves.dateTime<-datetime.append(calves, date = calves$date,
time = calves$time) #create a dataframe with dateTime identifiers for location fixes.

calves.agg<-tempAggregate(calves.dateTime, id = calves.dateTime$calftag,
dateTime = calves.dateTime$dateTime, point.x = calves.dateTime$x,
point.y = calves.dateTime$y, secondAgg = 300, extrapolate.left = FALSE,
extrapolate.right = FALSE, resolutionLevel = "reduced", parallel = FALSE,
na.rm = TRUE, smooth.type = 1) #smooth to 5-min fix intervals.

calves.dist<-dist2All_df(x = calves.agg, parallel = FALSE,
dataType = "Point", lonlat = FALSE) #calculate inter-animal distances at each timepoint.

calves.contact.NOblock<-contactDur.all(x = calves.dist, dist.threshold=1,
sec.threshold=10, blocking = FALSE, equidistant.time = FALSE,
parallel = FALSE, reportParameters = TRUE)

calves.edges<-ntwrkEdges(x =calves.contact.NOblock, importBlocks = FALSE,
removeDuplicates = TRUE)

calves.network1 <- igraph::graph_from_data_frame(d=calves.edges,
directed=FALSE)

igraph::V(calves.network1)$color<- "orange1"
igraph::V(calves.network1)$size <-13
igraph::E(calves.network1)$width <- calves.edges$duration
igraph::E(calves.network1)$color <- "black"
igraph::plot.igraph(calves.network1, vertex.label.cex=0.4,

layout = igraph::layout.circle, main = "Inter-Calf Contacts") #plot the network

potentialDurations Identify Potential Contact Durations

Description

This function uses the output from dist2... functions to determine the potential maximum number
of direct-contact durations between individuals in a data set. The max number of durations po-
tentially observed is the number of TSWs both individuals (or an individual and fixed area) were
simulataneously observed at the same time over the study period/temporal block.

Please note that this function assumes the desired minimum contact duration (MCD), as defined
by Dawson et al. (2019), is 1 (i.e., a "contact" occurs when individuals are within a specified
distance threshold for a single timestep). In a future version of this function we will aim to increase
flexability by allowing for variable MCD values. For further clarification on the MCD definition
and various contact-determination assumptions, please see:

44 potentialDurations

Dawson, D.E., Farthing, T.S., Sanderson, M.W., and Lanzas, C. 2019. Transmission on empir-
ical dynamic contact networks is influenced by data processing decisions. Epidemics 26:32-42.
https://doi.org/10.1016/j.epidem.2018.08.003/

Usage

potentialDurations(
x,
blocking = FALSE,
blockLength = 1,
blockUnit = "hours",
blockingStartTime = NULL,
distFunction = "dist2All_df"

)

Arguments

x Output from the dist2All or dist2Area function. Can be either a data frame or
non-data-frame list.

blocking Logical. If TRUE, contacts will be evaluated for temporal blocks spanning
blockLength blockUnit (e.g., 6 hours) within the data set. Defaults to FALSE.

blockLength Integer. Describes the number blockUnits within each temporal block. Defaults
to 1.

blockUnit Character string taking the values: "secs," "mins," "hours," "days," or "weeks."
Describes the temporal unit associated with each block. Defaults to "hours."

blockingStartTime

Character string or date object describing the date OR dateTime starting point
of the first time block. For example, if blockingStartTime = "2016-05-01"
OR "2016-05-01 00:00:00", the first timeblock would begin at "2016-05-01
00:00:00." If NULL, the blockingStartTime defaults to the minimum dateTime
point in x. Note: any blockingStartTime MUST precede or be equivalent to the
minimum timepoint in x. Additional note: If blockingStartTime is a character
string, it must be in the format ymd OR ymd hms.

distFunction Character string taking the values: "dist2All_df", or "dist2Area_df." Describes
the contact-package function used to generate x.

Value

Returns a data frame (or list of data frames if x is a list of data frames) with the following columns:

id The unique ID of an individual observed in the data set.

potenDegree The maximum degree possible for individual id based on the number of other
individuals observed during the time period.

potenTotalContactDurations

The maximum number of contact durations individual id may experience during
the time period.

randomizeFeature 45

potenContactDurations_...

The maximum number of contact durations individual id may experience with
each specific individual/fixed area during the time period.

If blocking == TRUE, the following columns are appended to the output data frame described
above:

block Integer ID describing unique blocks of time during which contacts may occur.

block.start The timepoint in x at which the block begins.

block.end The timepoint in x at which the block ends.

Examples

data(calves)

calves.dateTime<-datetime.append(calves, date = calves$date, time =
calves$time) #create a dataframe with dateTime identifiers for location foxes

calves.agg<-tempAggregate(calves.dateTime, id = calves.dateTime$calftag,
dateTime = calves.dateTime$dateTime, point.x = calves.dateTime$x,
point.y = calves.dateTime$y, secondAgg = 300, extrapolate.left = FALSE,
extrapolate.right = FALSE, resolutionLevel = "reduced", parallel = FALSE,
na.rm = TRUE, smooth.type = 1) #smooth locations to 5-min fix intervals.

calves.dist<-dist2All_df(x = calves.agg, parallel = FALSE, dataType = "Point",
lonlat = FALSE) #calculate distance between all individuals at each timepoint

calves.potentialContacts<-potentialDurations(x = calves.dist, blocking = FALSE)

randomizeFeature Randomize or Pseudorandomize Categorical Variables

Description

This function randomizes the values in a given column (or set of columns (i.e., c(colname(x)[1],
colname(x)[2]))), identified by the "feature" argument in a dataset (x).

Usage

randomizeFeature(
x,
feature = NULL,
shuffle = FALSE,
maintainDistr = TRUE,
numRandomizations = 1

)

46 randomizeFeature

Arguments

x Data frame containing real-time-location data.

feature Vector of 1 or more column names describing variables in x to be randomized.

shuffle Logical. If TRUE, unique values will be replaced with another, random unique
value from the same distribution with 100 certainty. For example if the values
in a "dose" column c(0mg,100mg,300mg) were shuffled, one possible outcome
would be: x$dose.shuff[which(x$dose == "0mg")] <- 300mg, x$dose.shuff[which(x$dose
== "100mg")] <- 0mg, and x$dose.shuff[which(x$dose == "300mg")] <- 100mg.
Defaults to FALSE.

maintainDistr Logical. If TRUE, the number of each unique value in the column will be main-
tained in the function output. Otherwise, the function will draw on the initial
distribution to assign randomized values, but the specific number of each unique
value may not be maintained. Defaults to TRUE.

numRandomizations

Integer. The number of replicate data frames produced in output. Defaults to 1.

Details

Note: the shuffle argument supercedes the maintainDistr argument. Therefore, if shuffle == TRUE,
the maintainDistr argument is irrelevant.

Value

Output is x appended with columns described below.

...shuff Randomized value of specified variables.

randomRep Randomization replicate.

References

Farine, D.R., 2017. A guide to null models for animal social network analysis. Methods in Ecology
and Evolution 8:1309-1320. https://doi.org/10.1111/2041-210X.12772.

Examples

data(calves)

system.time(randomizedValues<-contact::randomizeFeature(x = calves,
feature = c("calftag", "date"), shuffle = TRUE, maintainDistr = TRUE,
numRandomizations = 3))

randomizedFrame<-data.frame(randomizedValues[[1]], stringsAsFactors = TRUE)

head(randomizedFrame) #see that randomized-value columns have been appended.

randomizePaths 47

randomizePaths Randomize or Pseudorandomize Individuals’ Relocation Events

Description

Randomizes or pseudorandomizes individuals’ spatial locations. Randomized datasets can later
be compared to empirical ones to determine if individuals’ space use differ from what would be
expected at random (using the contactTest function).

Usage

randomizePaths(
x = NULL,
id = NULL,
dateTime = NULL,
point.x = NULL,
point.y = NULL,
poly.xy = NULL,
parallel = FALSE,
nCores = (parallel::detectCores()/2),
dataType = "Point",
numVertices = 4,
blocking = TRUE,
blockUnit = "hours",
blockLength = 1,
shuffle.type = 0,
shuffleUnit = "days",
indivPaths = TRUE,
numRandomizations = 1,
reduceOutput = FALSE

)

Arguments

x Data frame containing real-time-location data.
id Vector of length nrow(x) or singular character data, detailing the relevant col-

name in x, that denotes what unique ids for tracked individuals will be used.
If argument == NULL, the function assumes a column with the colname "id"
exists in x. Defaults to NULL.

dateTime Vector of length nrow(x) or singular character data, detailing the relevant col-
name in x, that denotes what dateTime information will be used. If argument ==
NULL, the function assumes a column with the colname "dateTime" exists in x.
Defaults to NULL.

point.x Vector of length nrow(x) or singular character data, detailing the relevant col-
name in x, that denotes what planar-x or longitude coordinate information will
be used. If argument == NULL, the function assumes a column with the col-
name "x" exists in x. Defaults to NULL.

48 randomizePaths

point.y Vector of length nrow(x) or singular character data, detailing the relevant col-
name in x, that denotes what planar-y or lattitude coordinate information will be
used. If argument == NULL, the function assumes a column with the colname
"y" exists in x. Defaults to NULL.

poly.xy Columns within x denoting polygon xy-coordinates. Polygon coordinates must
be arranged in the format of those in referencePointToPolygon output. Defaults
to NULL.

parallel Logical. If TRUE, sub-functions within the randomizePaths wrapper will be
parallelized. Defaults to FALSE.

nCores Integer. Describes the number of cores to be dedicated to parallel processes. De-
faults to half of the maximum number of cores available (i.e., (parallel::detectCores()/2)).

dataType Character string refering to the type of real-time-location data presented in x,
taking values of "Point" or "Polygon." If dataType == "Point," individuals’ loca-
tions are drawn from point.x and point.y. If argument == "Polygon," individuals’
locations are drawn from poly.xy. Defaults to "Point."

numVertices Integer. If dataType == "Polygon," users must specify the number of vertices
contained in each polygon. Defaults to 4. Note: all polygons must contain the
same number of vertices.

blocking Logical. If TRUE, prior to randomization, timepoints will be categorized into a
series of temporal blocks of blockLength-blockUnit length (e.g., 10 mins). After
generating blocks, the spatial-location randomization methodology will follow
shuffle.type. If FALSE, paths will be randomized by sampling from observed
timepoints. No timepoints will be represented more than once in the randomized
set. Defaults to TRUE.

blockUnit Integer. Describes the number blockUnits within each temporal block. Defaults
to 1.

blockLength Character string taking the values, "secs," "mins," "hours," "days," or "weeks."
Describes the temporal unit associated with each block. Defaults to "hours."

shuffle.type Integer. Describes which shuffle.type is used to randomize the rand.input data
set(s), given that blocking == TRUE (Note: this value is irrelevant if blocking
== FALSE). Takes the values "0," "1," or "2," and defaults to 0. Descriptions of
each shuffle.type value can be found under Details.

shuffleUnit Character string taking the values, "secs," "mins," "hours," "days," or "weeks."
Defaults to "days." Describes what temporal unit blocks will be shuffled across
given shuffle.type == 2. Blocklength-units may never exceed 1 shuffleUnit (e.g.,
25-hour blocks cannot be shuffled using shuffleUnit == "Days," but 1:24-hour
blocks work just fine).

indivPaths Logical. If TRUE, paths will be randomized with no location switching be-
tween ids (e.g., randomized xy locations for individual 1 will be generated by
sampling only from individual 1’s location distribution). If FALSE, paths will be
randomized with potential location switching between ids (e.g., randomized xy
locations for individual 1 will be generated by sampling from the entire dataset’s
location distribution). Defaults to TRUE.

numRandomizations

Integer. The number of replicate data frames produced in output. Defaults to 1.

randomizePaths 49

reduceOutput Logical. If TRUE, to reduce output size, only "id," "x.rand," "y.rand," "date-
Time," and "rand.rep" columns will be included in function output. Defaults to
FALSE.

Details

Paths can be randomized, or pseudorandomized differently according to what logical arguments are
set to TRUE.

Detailed shuffle.type description: If shuffle.type == 0, within-block timepoints will be randomized
by sampling from observed timepoints only within the relevant block (e.g., points in block 1 may
be redistributed). Block order in the data set does not change, and no timepoints will be represented
more than once in the randomized set. If shuffle.type == 1, blocks are shuffled around, but points
within blocks are not redistributed (e.g., block 1 <- block 5, block 3 <- block 2, block 5 <- block
4). If shuffle.type == 2, blocks are shuffled, but their relative temporal location in the shuffleUnit is
maintained. For example, there are 144 10-min blocks in a 24-hour day. Say our data set contains
3 days worth of data (i.e., 432 blocks). During the randomization, because blocks maintain their
relative locations in shuffleUnits (e.g., Days), block 1 in the random set will be determined by
sampling from a distribution of blocks 1,145,and 289, which each represent the first block of a
given shuffleUnit (e.g., Day 1, Day 2, Day 3). All blocks in the randomized set are decided in this
fashion (e.g., block 2 of the randomized set is identified by sampling from a distribution of blocks 2,
146, and 290). Therefore, blocklength-units may never exceed 1 shuffleUnit (e.g., 25-hour blocks
cannot be shuffled using shuffleUnit == "Days," but 1:24-hour blocks work just fine). Points within
blocks are not redistributed. Shuffle.types 1 & 2 are both variants of the randomization methodology
described by Spiegel et al. 2016.

Note that, if shuffle.type == 2, all dateTime values in individuals movement paths described in x
must be equidistant (e.g., relocations for individual i occur every 10 seconds), or erroneous date-
Times will be reported. If raw dateTime values are not equidistant, we recommend using our tem-
pAggregate function, with na.rm == FALSE, to make it so.

Value

If reduceOutput == FALSE, output is x appended with columns described below.

x.rand Randomized values taken from the point.x argument.

y.rand Randomized values taken from the point.y argument.

shuffle.type The value specified by the shuffle.type argument.

rand.rep Randomization replicate.

If blocking == TRUE AND reduceOutput == FALSE, the following codes are appended to the
output data frame described above:

block Integer ID describing unique blocks of time during which contacts occur.

block.start The timepoint in x at which the block begins.

block.end The timepoint in x at which the block ends.

numBlocks Integer describing the total number of time blocks observed within x at which
the block

50 referencePoint2Polygon

blockLength Character string describing the length of blocks described by blockLength and
blockUnit arguments.

If reduceOutput == TRUE, only id, x.rand, y.rand, dateTime, and rand.rep will be included in
output.

References

Spiegel, O., Leu, S.T., Sih, A., and C.M. Bull. 2016. Socially interacting or indifferent neighbors?
Randomization of movement paths to tease apart social preference and spatial constraints. Methods
in Ecology and Evolution 7:971-979. https://doi.org/10.1111/2041-210X.12553.

Farine, D.R., 2017. A guide to null models for animal social network analysis. Methods in Ecology
and Evolution 8:1309-1320. https://doi.org/10.1111/2041-210X.12772.

Examples

data(calves)

calves.dateTime<-datetime.append(calves, date = calves$date,
time = calves$time) #create a dataframe with dateTime identifiers for location fixes.

calves.agg<-tempAggregate(calves.dateTime, id = calves.dateTime$calftag,
dateTime = calves.dateTime$dateTime, point.x = calves.dateTime$x,
point.y = calves.dateTime$y, secondAgg = 300, extrapolate.left = FALSE,
extrapolate.right = FALSE, resolutionLevel = "reduced", parallel = FALSE,
na.rm = TRUE, smooth.type = 1) #smooth to 5-min fix intervals.

calves.agg.rand<-randomizePaths(x = calves.agg, id = "id",
dateTime = "dateTime", point.x = "x", point.y = "y", poly.xy = NULL,
parallel = FALSE, dataType = "Point", numVertices = 1, blocking = TRUE,
blockUnit = "mins", blockLength = 10, shuffle.type = 0, shuffleUnit = NA,
indivPaths = TRUE, numRandomizations = 1)

referencePoint2Polygon

Create a Rectangular Polygon Using Planar XY Coordinates

Description

This function creates a square/rectangular polygon from a single reference point by translating its
location multiple times using the same method used in repositionReferencePoint. For example, even
though calves in our study (see data(calves2018)) were only equiped with RFID tags on their left ear.
With this function, we can create polygons that account for the total space used by each individual
at each time step.This function is different from similar point-to-polygon functions for two reasons:
1.) It does not assume points lie within the center of the polygon. Rather, the reference point must
be a corner of the polygon (Note: "UL" denotes that the reference point lies on the upper-left corner
of the polygon, "UR" denotes that reference point lies on the upper-right corner of the polygon,"DL"

referencePoint2Polygon 51

denotes that reference point lies on the down-left corner of the polygon, "DR" denotes that reference
point lies on the down-left corner of the polygon). Note that if you want the reference point to be
at the center of the polygon, you can first translate the reference point to a central location on
tracked individuals using repositionReferencePoint. 2.) Polygon angles/directionality are based on
observed movements of tracked individuals or gyroscope data.

Usage

referencePoint2Polygon(
x = NULL,
id = NULL,
dateTime = NULL,
point.x = NULL,
point.y = NULL,
direction = NULL,
StartLocation = "UL",
UpDownRepositionLen = 1,
LeftRightRepositionLen = 1,
CenterPoint = FALSE,
MidPoints = FALSE,
immobThreshold = 0,
parallel = FALSE,
nCores = (parallel::detectCores()/2),
modelOrientation = 90

)

Arguments

x Data frame or list of data frames containing real-time-location point data.

id Vector of length nrow(data.frame(x)) or singular character data, detailing the
relevant colname in x, that denotes what unique ids for tracked individuals will
be used. If argument == NULL, the function assumes a column with the colname
"id" exists in x. Defaults to NULL.

dateTime Vector of length nrow(data.frame(x)) or singular character data, detailing the
relevant colname in x, that denotes what dateTime information will be used. If
argument == NULL, the function assumes a column with the colname "date-
Time" exists in x. Defaults to NULL.

point.x Vector of length nrow(data.frame(x)) or singular character data, detailing the
relevant colname in x, that denotes what planar-x or longitude coordinate infor-
mation will be used. If argument == NULL, the function assumes a column with
the colname "x" exists in x. Defaults to NULL.

point.y Vector of length nrow(data.frame(x)) or singular character data, detailing the
relevant colname in x, that denotes what planar-y or lattitude coordinate infor-
mation will be used. If argument == NULL, the function assumes a column with
the colname "y" exists in x. Defaults to NULL.

direction Numerical vector of length nrow(data.frame(x)) or singular character data de-
tailing the relevant colname in x, that denotes what movement-direction infor-

52 referencePoint2Polygon

mation will be used. Observations in this vector represent the direction (in de-
grees) that tracked individuals moved to reach their position at each time point,
NOT the direction that they will move to reach their subsequent position (i.e.,
values represent known orientations at each time point). Note that for the pur-
poses of this function, observations of 0, 90, 180, and 270 degrees indicates
that an individual moved straight Eastward, Northward, Westward, and South-
ward, respectively. If NULL, direction will be calculated using observed point-
locations. Defaults to NULL.

StartLocation Character string taking the values "UL," "UR," "DL," or "DR" describing where
the reference point (i.e., point corresponding to xy-coordinates in the data set)
lies on the rectangle that this function will delineate. Defaults to "UL."

UpDownRepositionLen

Numerical. Describes the height, in planar units (e.g., meters) of the output
polygon. Planar units are inherent to the real-time-location input. Defaults to 1.

LeftRightRepositionLen

Numerical. Describes the width, in planar units (e.g., meters) of the output
polygon. Planar units are inherent to the real-time-location input. Defaults to 1.

CenterPoint Logical. If TRUE, in addition to the xy-coordinates for each polygon vertex, xy-
coordinates for centroid of each polygon will be reported in the output. Defaults
to FALSE.

MidPoints Logical. If TRUE, in addition to the xy-coordinates for each polygon vertex, xy-
coordinates for mid-point of each polygon edge will be reported in the output.
Defaults to FALSE.

immobThreshold Numerical. Describes what we call, the immobility threshold, which is a move-
ment distance (in planar units) within which we assume individuals’ physical
locations and orientations remain unchanged. This immobility threshold allows
us to discount observed movements so miniscule that the majority of animals’
physical-space usage is likely unaffected (e.g., head shaking). Defaults to 0.

parallel Logical. If TRUE, sub-functions within the referencePoint2Polygon wrapper
will be parallelized. Defaults to FALSE.

nCores Integer. Describes the number of cores to be dedicated to parallel processes. De-
faults to half of the maximum number of cores available (i.e., (parallel::detectCores()/2)).

modelOrientation

Numerical. Describes the relative orientation (in degrees) of a planar model
(see vignette or Farthing et al. in Press (note: when this manuscript is officially
published, we will update this citation/reference information)) describing vertex
locations relative to tracking-device point-locations. Defaults to 90.

Details

Currently, this function only supports input data with coordinates representing planar (’Euclidean’)
space (e.g. units of meters).

In the output, point1.x and point1.y represent the xy coordinates from the input file. Point2-n
coordinates move in a clockwise direction from point1. For example: if point1 is located on the
upper left ("UL") corner of the polygon, point2 would be on the upper right corner, point3 on the
bottom right, and point 4 on the bottom left.

referencePoint2Polygon 53

If distance == NULL, then function will require information (dist, dx, dy) from 2 points on an
individual’s path to work properly. Because of this, when no gyroscopic data are provided, at least
the first point in each individual’s path will be removed (the function will report NAs for adjusted
locations). Also note that if the distance between an individual’s first point in their path and the
second one is 0, the function will also report NAs for the second point’s adjusted coordinates. The
first non-NA values will only be reported for the instance where dist > 0.

Note that populating the direction argument with gyroscopic accelerometer data (or data collected
using similar devices) collected concurrently with point-locations allows us to overcome a couple
of assumptions associated with using point-locations alone.

First, unless the direction argument is specifically given (i.e., direction != NULL), vertex locations
in output are subject to the assumption that dt values are sufficiently small to capture individuals’
orientations (i.e., individuals do not face unknown directions inbetween observed relocations). If
input was previously processed using tempAggregate with resolutionLevel == "reduced," dt > sec-
ondAgg indicates that tracked individuals were missing in the original dataset for a period of time.
In this case, the assumption that individuals are facing a given direction because they moved from
the previous timepoint may not be accurate. Consider removing these rows (rows following one
with dt > secondAgg; remember that dt indicates the time between reported xy coordinates in row i
to row i + 1) from your data set.

Second, unless the direction argument is specifically given (i.e., direction != NULL), this function
assumes tracked individuals are always forward-facing. This is because by observing only a sin-
gle point on each individual, we cannot ascertain the true positioning of individuals’ bodies. For
example, even if we know a point-location moved x distance in a 90-degree direction, from this
information alone we cannot determine what direction said individual was facing at the time (e.g.,
this could be an example of forward, bawckward, or sideward movement). However, gyroscopic
data (or data collected using similar devices) can tell us absolute movement directions, as opposed
to relative ones.

Value

Output is a data frame with the following columns:

id Unique ID of tracked individuals.
cornerPoint...x

Planar x coordinates of polygon-corner vertices.
cornerPoint...y

Planar y coordinates of polygon-corner vertices.

startLocation Describes the location of input point-locations in the vertex outputs. see StartLocation
argument.

upDownRepositionLength

Describes the vertical movement of point-locations on planar models. see UpDownRepositionLen
argument.

leftRightRepositionLength

Describes the horizontal movement of point-locations on planar models. see
leftRightRepositionLen argument.

immob If "0", distance between observed movements is < immobThreshold.

immobThreshold Returns the value from the immobThreshold argument.

54 repositionReferencePoint

dateTime Timepoint at which polygons were observed.

dt The time between reported xy coordinates in row i to row i + 1 in each individ-
uals’ movement path.

If MidPoints or CenterPoints == TRUE, additional columns will be appended to output data frame.

References

Farthing, T.S., Dawson, D.E., Sanderson, M.W., and Lanzas, C. 2020. Accounting for space
and uncertainty in real-time-location- system-derived contact networks. Ecology and Evolution
10(11):4702-4715.

Examples

data("calves")
calves.dateTime<-datetime.append(calves, date = calves$date,

time = calves$time) #add dateTime identifiers for location fixes.

calves.agg<-tempAggregate(calves.dateTime, id = calves.dateTime$calftag,
dateTime = calves.dateTime$dateTime, point.x = calves.dateTime$x,
point.y = calves.dateTime$y, secondAgg = 300, extrapolate.left = FALSE,
extrapolate.right = FALSE, resolutionLevel = "reduced", parallel = FALSE,
na.rm = TRUE, smooth.type = 1) #smooth to 5-min fix intervals.

calf_heads <- referencePoint2Polygon(x = calves.agg,
id = calves.agg$id, dateTime = calves.agg$dateTime,
point.x = calves.agg$x, point.y = calves.agg$y, direction = NULL,
StartLocation = "DL", UpDownRepositionLen = 0.333, LeftRightRepositionLen = 0.333,
CenterPoint = FALSE, MidPoints = FALSE, immobThreshold = 0.1, parallel = FALSE,
modelOrientation = 90)

repositionReferencePoint

Move Data Point a Specified Distance

Description

Translates locations of a single rfid tag/gps transmitter to a different location a fixed distance away,
given a known angular offset (in degrees), while maintaining orientations associated with observed
movements (see vignette or Farthing et al. in Review (note: when this manuscript is officially
published, we will update this citation/reference information)) For example, calves in our study
(see calves2018) were equiped with RFID tags on their left ear. With this function, we can move
this reference point somewhere else on the body of each individual. This might be done for a
number of reasons, but is very useful for use in the referencePoint2Polygon function later on (for
delineating polygons representing entire individuals). Currently, this function only supports input
data with coordinates representing planar (’Euclidean’) space (e.g. units of meters).

repositionReferencePoint 55

Usage

repositionReferencePoint(
x = NULL,
id = NULL,
dateTime = NULL,
point.x = NULL,
point.y = NULL,
direction = NULL,
repositionAngle = 0,
repositionDist = 1,
immobThreshold = 0,
parallel = FALSE,
nCores = (parallel::detectCores()/2),
modelOrientation = 90

)

Arguments

x Data frame or list of data frames containing real-time-location point data.

id Vector of length nrow(data.frame(x)) or singular character data, detailing the
relevant colname in x, that denotes what unique ids for tracked individuals will
be used. If argument == NULL, the function assumes a column with the colname
"id" exists in x. Defaults to NULL.

dateTime Vector of length nrow(data.frame(x)) or singular character data, detailing the
relevant colname in x, that denotes what dateTime information will be used. If
argument == NULL, the function assumes a column with the colname "date-
Time" exists in x. Defaults to NULL.

point.x Vector of length nrow(data.frame(x)) or singular character data, detailing the
relevant colname in x, that denotes what planar-x or longitude coordinate infor-
mation will be used. If argument == NULL, the function assumes a column with
the colname "x" exists in x. Defaults to NULL.

point.y Vector of length nrow(data.frame(x)) or singular character data, detailing the
relevant colname in x, that denotes what planar-y or lattitude coordinate infor-
mation will be used. If argument == NULL, the function assumes a column with
the colname "y" exists in x. Defaults to NULL.

direction Numerical vector of length nrow(data.frame(x)) or singular character data de-
tailing the relevant colname in x, that denotes what movement-direction infor-
mation will be used. Observations in this vector represent the direction (in de-
grees) that tracked individuals moved to reach their position at each time point,
NOT the direction that they will move to reach their subsequent position (i.e.,
values represent known orientations at each time point). Note that for the pur-
poses of this function, observations of 0, 90, 180, and 270 degrees indicates
that an individual moved straight Eastward, Northward, Westward, and South-
ward, respectively. If NULL, direction will be calculated using observed point-
locations. Defaults to NULL.

56 repositionReferencePoint

repositionAngle

Numerical. Describes the angle (in degrees) between empirical point-locations
and the desired vertex location as represented in a planar model (see vignette or
Farthing et al. in Review (note: when this manuscript is officially published, we
will update this citation/reference information)). Essentially, this is the direction
you want new points to be from orginal points. Note that for the purposes of this
function, observations of 0, 90, 180, and 270 degrees indicates that an individual
moved straight Eastward, Northward, Westward, and Southward, respectively.
Defaults to 0.

repositionDist Numerical. Describes the distance from the empirical point-locations to desired
vertex locations in planar units (e.g., meters) inherent to the real-time-location
input. Defaults to 1.

immobThreshold Numerical. Describes what we call, the immobility threshold, which is a move-
ment distance (in planar units) within which we assume individuals’ physical
locations and orientations remain unchanged. This immobility threshold allows
us to discount observed movements so miniscule that the majority of animals’
physical-space usage is likely unaffected (e.g., head shaking). Defaults to 0.

parallel Logical. If TRUE, sub-functions within the repositionReferencePoint wrapper
will be parallelized. Note that this can significantly speed up processing of rela-
tively small data sets, but may cause R to crash due to lack of available memory
when attempting to process large datasets. Defaults to FALSE.

nCores Integer. Describes the number of cores to be dedicated to parallel processes. De-
faults to half of the maximum number of cores available (i.e., (parallel::detectCores()/2)).

modelOrientation

Numerical. Describes the relative orientation (in degrees) of a planar model
(see vignette or Farthing et al. in Press (note: when this manuscript is officially
published, we will update this citation/reference information)) describing vertex
locations relative to tracking-device point-locations. Defaults to 90.

Details

In this function, if the distance individuals moved was less than/equal to the noted immobThresh-
old, individuals are said to be immobile ("immob"), and their position will not change relative to
their previous one. (i.e., you assume that any observed movement less than immobThreshold was
due to errors or miniscule bodily movements (e.g., head shaking) that are not indicative of actual
movement.)

If distance == NULL, then function will require information (dist, dx, dy) from 2 points on an
individual’s path to work properly. Because of this, when no gyroscopic data are provided, at least
the first point in each individual’s path will be removed (the function will report NAs for adjusted
locations). Also note that if the distance between an individual’s first point in their path and the
second one is 0, the function will also report NAs for the second point’s adjusted coordinates. The
first non-NA values will only be reported for the instance where dist > 0.

Note that populating the direction argument with gyroscopic accelerometer data (or data collected
using similar devices) collected concurrently with point-locations allows us to overcome a couple
of assumptions associated with using point-locations alone.

First, unless the direction argument is specifically given (i.e., direction != NULL), new point-
locations in output are subject to the assumption that dt values are sufficiently small to capture

repositionReferencePoint 57

individuals’ orientations (i.e., individuals do not face unknown directions inbetween observed re-
locations). If input was previously processed using tempAggregate with resolutionLevel == "re-
duced," dt > secondAgg indicates that tracked individuals were missing in the original dataset for
a period of time. In this case, the assumption that individuals are facing a given direction because
they moved from the previous timepoint may not be accurate. Consider removing these rows (rows
following one with dt > secondAgg; remember that dt indicates the time between recording xy
coordinates in row i to row i + 1) from your data set.

Second, unless the direction argument is specifically given (i.e., direction != NULL), this function
assumes tracked individuals are always forward-facing. This is because by observing only a sin-
gle point on each individual, we cannot ascertain the true positioning of individuals’ bodies. For
example, even if we know a point-location moved x distance in a 90-degree direction, from this
information alone we cannot determine what direction said individual was facing at the time (e.g.,
this could be an example of forward, bawckward, or sideward movement). However, gyroscopic
data (or data collected using similar devices) can tell us absolute movement directions, as opposed
to relative ones.

Value

Output is a data frame with the following columns:

id Unique ID of tracked individuals.
x.original Original x coordinates from input.
y.original Original y coordinates from input.
distance.original

Original planar distance (m) between point-location i to point-location i + 1.
dx.original Original difference between point-location x-coordinate i to x-coordinate i + 1.
dy.original Original difference between point-location y-coordinate i to y-coordinate i + 1.
x.adjusted Translated x coordinates.
y.adjusted Translated y coordinates.
dist.adjusted Planar distance (m) between translated point-location i to translated point-location

i + 1.
dx.adjusted Difference between translated point-location x-coordinate i to translated x-coordinate

i + 1.
dy.adjusted Difference between translated point-location y-coordinate i to translated y-coordinate

i + 1.
movementDirection

Describes the angle of movement (in degrees) required to translate point-locations
to be congruent with planar-model adjustments.

repositionAngle

Describes the value repositionAngle of the argument.
repositionDist Describes the value repositionDist of the argument.
immob If "0", distance between observed movements is < immobThreshold.
immobThreshold Returns the value from the immobThreshold argument.
dateTime Timepoint at which polygons were observed.
dt The time between reported xy coordinates in row i to row i + 1 in each individ-

uals’ movement path.

58 socialEdges

References

Farthing, T.S., Dawson, D.E., Sanderson, M.W., and Lanzas, C. 2020. Accounting for space
and uncertainty in real-time-location- system-derived contact networks. Ecology and Evolution
10(11):4702-4715.

Examples

data("calves")
calves.dateTime<-datetime.append(calves, date = calves$date,

time = calves$time) #create a dataframe with dateTime identifiers for location fixes.

calves.agg<-tempAggregate(calves.dateTime, id = calves.dateTime$calftag,
dateTime = calves.dateTime$dateTime, point.x = calves.dateTime$x,
point.y = calves.dateTime$y, secondAgg = 300, extrapolate.left = FALSE,
extrapolate.right = FALSE, resolutionLevel = "reduced", parallel = FALSE,
na.rm = TRUE, smooth.type = 1) #smooth to 5-min fix intervals.

leftShoulder.point<-repositionReferencePoint(x = calves.agg,
id = calves.agg$id, dateTime = calves.agg$dateTime,
point.x = calves.agg$x, point.y = calves.agg$y, direction = NULL,
repositionAngle = 180, repositionDist = 0.0835, immobThreshold = 0, parallel = FALSE,
modelOrientation = 90)

socialEdges Identify Edges in Social Networks

Description

This function identifies edges in social networks representative of instances where there are greater
or fewer contacts than would be expected at random, given a pre-determined p-value threshold for
significance (i.e., alpha level).

Usage

socialEdges(x, alpha = 0.05, weight = NULL, removeDuplicates = TRUE)

Arguments

x A data frame created by a contactCompare function (e.g., contactCompare_chisq).

alpha Numerical threshold for determining social significance given p-values reported
in x. Observations in x with p.values >= alpha will be returned by this function.

weight Vector of length nrow(data.frame(x)) denoting what information should be car-
ried over from x to the function output (e.g., number of observed contacts). If the
weight is not specified, the "weight" in function output is presented as the pro-
portion of total potential contact durations that nodes were observed in contact
with one another (in each separate timeblock if applicable).

socialEdges 59

removeDuplicates

Logical. If removeDuplicates == true, duplicated edges are removed are re-
moved from the output. Defaults to TRUE.

Details

This function will automatically import defined time blocks if applicable. Furthermore, because
this function is intended describe social relationships between individuals, any "totalDegree" and
"totalContactDurations" metrics are not included in function output, even if they are present in x.

Value

Returns a list with three objects

Greater Data frame of dyads with more contacts than would be expected at random given
the chosen alpha level.

Fewer Data frame of dyads with fewer contacts than would be expected at random
given the chosen alpha level.

p.val_threshold

Reports the chosen alpha level.

Examples

data(calves) #load data

calves.dateTime<-datetime.append(calves, date = calves$date,
time = calves$time) #add dateTime column

calves.agg<-tempAggregate(calves.dateTime, id = calves.dateTime$calftag,
dateTime = calves.dateTime$dateTime, point.x = calves.dateTime$x,

point.y = calves.dateTime$y, secondAgg = 300, extrapolate.left = FALSE,
extrapolate.right = FALSE, resolutionLevel = "reduced", parallel = FALSE,

na.rm = TRUE, smooth.type = 1) #aggregate to 5-min timepoints

calves.dist<-dist2All_df(x = calves.agg, parallel = FALSE,
dataType = "Point", lonlat = FALSE) #calculate inter-calf distances

calves.contact.block<-contactDur.all(x = calves.dist, dist.threshold=1,
sec.threshold=10, blocking = TRUE, blockUnit = "hours", blockLength = 1,

equidistant.time = FALSE, parallel = FALSE, reportParameters = TRUE)

emp.summary <- summarizeContacts(calves.contact.block,
importBlocks = TRUE) #empirical contact summ.

emp.potential <- potentialDurations(calves.dist, blocking = TRUE,
blockUnit = "hours", blockLength = 1,
distFunction = "dist2All_df")

calves.agg.rand<-randomizePaths(x = calves.agg, id = "id",
dateTime = "dateTime", point.x = "x", point.y = "y", poly.xy = NULL,

parallel = FALSE, dataType = "Point", numVertices = 1, blocking = TRUE,

60 summarizeContacts

blockUnit = "mins", blockLength = 20, shuffle.type = 0, shuffleUnit = NA,
indivPaths = TRUE, numRandomizations = 2) #randomize calves.agg

calves.dist.rand<-dist2All_df(x = calves.agg.rand, point.x = "x.rand",
point.y = "y.rand", parallel = FALSE, dataType = "Point", lonlat = FALSE)

calves.contact.rand<-contactDur.all(x = calves.dist.rand,
dist.threshold=1, sec.threshold=10, blocking = TRUE, blockUnit = "hours",

blockLength = 1, equidistant.time = FALSE, parallel = FALSE,
reportParameters = TRUE) #NULL model contacts (list of 2)

rand.summary <- summarizeContacts(calves.contact.rand, avg = TRUE,
importBlocks = TRUE) #NULL contact summary

rand.potential <- potentialDurations(calves.dist.rand, blocking = TRUE,
blockUnit = "hours", blockLength = 1,
distFunction = "dist2All_df")

CC1 <-contactCompare_chisq(x.summary = emp.summary, y.summary = rand.summary,
x.potential = emp.potential, y.potential = rand.potential,
importBlocks = FALSE, shuffle.type = 0,
popLevelOut = TRUE, parallel = FALSE) #no blocking

socEdges <- socialEdges(x = CC1[[1]], alpha = 0.05, weight = NULL,
removeDuplicates = TRUE)

summarizeContacts Summarize Contact Events

Description

This function takes the output from contactDur.all or contactDur.area and reports the number of du-
rations when tracked individuals are in "contact" with one another (contactDur.all) or with specified
fixed points/polygons (contactDur.area).

Usage

summarizeContacts(
x,
importBlocks = FALSE,
avg = FALSE,
parallel = FALSE,
nCores = (parallel::detectCores()/2)

)

Arguments

x Output from the contactDur.all or contactDur.area functions. Can be either a
data frame or list of data frames.

summarizeContacts 61

importBlocks Logical. If true, each block in x will be analyzed separately. Defaults to FALSE.
Note that the "block" column must exist in x.

avg Logical. If TRUE, summary output from all data frames contained in x will be
averaged together. Output will produce an extra data frame containing the mean
column values for each id (per block if importBlocks == TRUE). Defaults to
FALSE.

parallel Logical. If TRUE, sub-functions within the summarizeContacts wrapper will be
parallelized. Note that the only sub-function parallelized here is called ONLY
when importBlocks == TRUE.

nCores Integer. Describes the number of cores to be dedicated to parallel processes. De-
faults to half of the maximum number of cores available (i.e., (parallel::detectCores()/2)).

Details

If x is a list, and avg == TRUE, this function will produce an extra data frame containing the mean
column values for each id (per block if importBlocks == TRUE).

This is a sub-function found within the contactTest and ntwrkEdges function.

Value

Returns a data frame (or list of data frames if x is a list of data frames) with the following columns:

id The unique ID of a tracked individual for which we will summarize to all other
individuals/fixed locations observed in x.

id Sum number of individuals/fixed locations observed in contact specific individ-
uals.

id Sum number of contacts associated with specific individuals.
contactDuration_...

Number of contacts between specific dyads.

If importBlocks == TRUE, the following columns are appended to the output data frame described
above:

block Integer ID describing unique blocks of time during which contacts occur.

block.start The timepoint in x at which the block begins.

block.end The timepoint in x at which the block ends.

numBlocks Integer describing the total number of time blocks observed within x at which
the block

Examples

data(calves)

calves.dateTime<-datetime.append(calves, date = calves$date,
time = calves$time) #create a dataframe with dateTime identifiers for location fixes

calves.agg<-tempAggregate(calves.dateTime, id = calves.dateTime$calftag,

62 tempAggregate

dateTime = calves.dateTime$dateTime, point.x = calves.dateTime$x,
point.y = calves.dateTime$y, secondAgg = 300, extrapolate.left = FALSE,
extrapolate.right = FALSE, resolutionLevel = "reduced", parallel = FALSE,
na.rm = TRUE, smooth.type = 1) #smooth to 5-min fix intervals.

calves.dist<-dist2All_df(x = calves.agg, parallel = FALSE,
dataType = "Point", lonlat = FALSE)

calves.contact.block<-contactDur.all(x = calves.dist, dist.threshold=1,
sec.threshold=10, blocking = TRUE, blockUnit = "hours", blockLength = 1,
equidistant.time = FALSE, parallel = FALSE, reportParameters = TRUE)

calves.contactSumm.NOblock <- summarizeContacts(calves.contact.block)
head(calves.contactSumm.NOblock)

calves.contactSumm.block <- summarizeContacts(calves.contact.block,
importBlocks = TRUE)

head(calves.contactSumm.block)

tempAggregate Smooth Point-Locations Over Time

Description

Aggregate location data by secondAgg seconds over the course of each day represented in the
dataset. The function smooths xy data forwards (smooth.type == 1) or backwards (smooth.type ==
2) according to a data-point-averaging smoothing methodology. As part of the smoothing process,
tempAggregate fills in any missing values (either due to a lack of data transmission or faulty prior
interpolation). We recognize that this procedure is not sensitive to individual presence at given
timesteps (e.g., some individuals may be missing on certain days, hours, etc., and therefore may
produce inaccurate location aggregates if days/hours exist where individuals are not present in the
dataset (e.g., they were purposefully removed, or moved outside of the monitoring area)). To in-
crease accuracy, package users may specify a resolutionLevel ("full" or "reduced") to process indi-
viduals’ locations at different resolutions. If resolution == "reduced", if no locations of individuals
exist over any secondAgg time block, NAs will be produced for the time points of interest.

This function is based on real-time-location-data-smoothing methods presented by Dawson et al.
2019.

Usage

tempAggregate(
x = NULL,
id = NULL,
point.x = NULL,
point.y = NULL,
dateTime = NULL,
secondAgg = 10,
extrapolate.left = FALSE,
extrapolate.right = FALSE,

tempAggregate 63

resolutionLevel = "full",
parallel = FALSE,
nCores = (parallel::detectCores()/2),
na.rm = TRUE,
smooth.type = 1

)

Arguments

x Data frame or list of data frames containing real-time-location data.

id Vector of length nrow(data.frame(x)) or singular character data, detailing the
relevant colname in x, that denotes what unique ids for tracked individuals will
be used. If argument == NULL, the function assumes a column with the colname
"id" exists in x. Defaults to NULL.

point.x Vector of length nrow(data.frame(x)) or singular character data, detailing the
relevant colname in x, that denotes what planar-x or longitude coordinate infor-
mation will be used. If argument == NULL, the function assumes a column with
the colname "x" exists in x. Defaults to NULL.

point.y Vector of length nrow(data.frame(x)) or singular character data, detailing the
relevant colname in x, that denotes what planar-y or lattitude coordinate infor-
mation will be used. If argument == NULL, the function assumes a column with
the colname "y" exists in x. Defaults to NULL.

dateTime Vector of length nrow(data.frame(x)) or singular character data, detailing the
relevant colname in x, that denotes what dateTime information will be used. If
argument == NULL, the function assumes a column with the colname "date-
Time" exists in x. Defaults to NULL.

secondAgg Integer. The number of seconds over which tracked-individuals’ location will
be averaged. Defaults to 10.

extrapolate.left

Logical. If TRUE, individuals position at time points prior to their first location
fix will revert to their first recorded location. If FALSE, NAs will be placed at
these time points in individuals’ movement paths. Defaults to FALSE.

extrapolate.right

Logical. If TRUE, individuals position at time points following their last loca-
tion fix will revert to their final recorded location. If FALSE, NAs will be placed
at these time points in individuals’ movement paths. Defaults to FALSE.

resolutionLevel

Character string taking the value of "full" or "reduced." If "full," if no known
locations of individuals exist over any secondAgg time block, xy-coordinates
revert to the last-known values for that individual. If "reduced," if no known
locations of individuals exist over any secondAgg time block, NAs will be pro-
duced for the time blocks of interest. Defaults to "full."

parallel Logical. If TRUE, sub-functions within the tempAggregate wrapper will be
parallelized. Defaults to FALSE.

nCores Integer. Describes the number of cores to be dedicated to parallel processes. De-
faults to half of the maximum number of cores available (i.e., (parallel::detectCores()/2)).

64 timeBlock.append

na.rm Logical. If TRUE, all unknown locations (i.e., xy-coordinate pairs reported as
NAs) will be removed from the output. Defaults to TRUE. Note that if na.rm ==
FALSE, all aggregated location fixes will be temporally equidistant.

smooth.type Numerical, taking the values 1 or 2. Indicates the type of smooting used to
average individuals’ xy-coordinates. If smooth.type == 1, data are smoothed
forwards. If smooth.type == 2, data are smoothed backwards. Defaults to 1.

Value

Returns a data frame (or list of data frames if x is a list of data frames) with the following columns:

id The unique ID of tracked individuals.

x Smoothed x coordinates.

y Smoothed y coordinates.

dateTime Timepoint at which smoothed points were observed.

References

Dawson, D.E., Farthing, T.S., Sanderson, M.W., and Lanzas, C. 2019. Transmission on empir-
ical dynamic contact networks is influenced by data processing decisions. Epidemics 26:32-42.
https://doi.org/10.1016/j.epidem.2018.08.003/

Examples

data("calves")
head(calves) #observe that fix intervals occur ever 4-5 seconds.

calves.dateTime<-datetime.append(calves, date = calves$date,
time = calves$time) #add dateTime identifiers for location fixes.

calves.agg<-tempAggregate(calves.dateTime, id = calves.dateTime$calftag,
dateTime = calves.dateTime$dateTime, point.x = calves.dateTime$x,
point.y = calves.dateTime$y, secondAgg = 300, extrapolate.left = FALSE,
extrapolate.right = FALSE, resolutionLevel = "reduced", parallel = FALSE,
na.rm = TRUE, smooth.type = 1) #smooth to 5-min fix intervals.

timeBlock.append Append TimeBlock Information to a Data Frame

Description

Appends "block," "block.start," "block.end," and "numBlocks" columns to an input data frame (x)
with a dateTime (see dateTime.append) column. This allows users to "block" data into blockLength-
blockUnit-long (e.g., 10-min-long) temporal blocks. If x == NULL, the function output will be a
data frame with "dateTime" and block-related columns.

timeBlock.append 65

Usage

timeBlock.append(
x = NULL,
dateTime = NULL,
blockLength = 1,
blockUnit = "hours",
blockingStartTime = NULL

)

Arguments

x Data frame containing dateTime information, and to which block information
will be appended. if NULL, dateTime input relies solely on the dateTime argu-
ment.

dateTime Vector of length nrow(x) or singular character data, detailing the relevant col-
name in x, that denotes what dateTime information will be used. If argument ==
NULL, the function assumes a column with the colname "dateTime" exists in x.
Defaults to NULL.

blockLength Integer. Describes the number of blockUnits within each temporal block. De-
faults to 1.

blockUnit Character string taking the values, "secs," "mins," "hours," "days," or "weeks."
Defaults to "hours."

blockingStartTime

Character string or date object describing the date OR dateTime starting point
of the first time block. For example, if blockingStartTime = "2016-05-01"
OR "2016-05-01 00:00:00", the first timeblock would begin at "2016-05-01
00:00:00." If NULL, the blockingStartTime defaults to the minimum dateTime
point in x. Note: any blockingStartTime MUST precede or be equivalent to the
minimum timepoint in x. Additional note: If blockingStartTime is a character
string, it must be in the format ymd OR ymd hms.

Details

This is a sub-function that can be found in the contactDur functions.

Value

Appends the following columns to x.

block Integer ID describing unique blocks of time of pre-specified length.

block.start The timepoint in x at which the block begins.

block.end The timepoint in x at which the block ends.

numBlocks Integer describing the total number of time blocks observed within x at which
the block

66 timeBlock.append

Examples

data("calves")
calves.dateTime<-datetime.append(calves, date = calves$date,

time = calves$time) #add dateTime identifiers for location fixes.
calves.block<-timeBlock.append(x = calves.dateTime,

dateTime = calves.dateTime$dateTime, blockLength = 10,
blockUnit = "mins")

head(calves.block) #see that block information has been appended.

Index

∗ GRC
dist2All_df, 28
dist2Area_df, 31
makePlanar, 38

∗ baboons
baboons, 3

∗ calves
calves, 4
calves2018, 5

∗ confinement
confine, 6

∗ contact
contactDur.all, 19
contactDur.area, 22
dt.calc, 33
findDistThresh, 37
ntwrkEdges, 42
potentialDurations, 43
summarizeContacts, 60

∗ data-processing
contactDur.all, 19
contactDur.area, 22
dateFake, 25
dist2All_df, 28
dist2Area_df, 31
dt.calc, 33
makePlanar, 38
ntwrkEdges, 42
potentialDurations, 43
randomizeFeature, 45
randomizePaths, 47
referencePoint2Polygon, 50
repositionReferencePoint, 54
summarizeContacts, 60
tempAggregate, 62
timeBlock.append, 64

∗ datasets
baboons, 3
calves, 4

calves2018, 5
∗ date-time

datetime.append, 26
∗ date

datetime.append, 26
∗ defunct

contactTest, 24
∗ duplicates

dup, 35
∗ filter

confine, 6
dup, 35
mps, 40

∗ geographic
baboons, 3

∗ location
baboons, 3
calves, 4
calves2018, 5
dist2All_df, 28
dist2Area_df, 31
findDistThresh, 37
makePlanar, 38
referencePoint2Polygon, 50
repositionReferencePoint, 54
tempAggregate, 62

∗ network-analysis
contactCompare_binom, 8
contactCompare_chisq, 12
contactCompare_mantel, 17
contactTest, 24
socialEdges, 58

∗ planar
calves, 4
calves2018, 5
dist2All_df, 28
dist2Area_df, 31
makePlanar, 38
referencePoint2Polygon, 50

67

68 INDEX

repositionReferencePoint, 54
∗ point

baboons, 3
calves, 4
calves2018, 5
dist2All_df, 28
dist2Area_df, 31
findDistThresh, 37
makePlanar, 38
referencePoint2Polygon, 50
repositionReferencePoint, 54
tempAggregate, 62

∗ polygon
confine, 6
dist2All_df, 28
dist2Area_df, 31
referencePoint2Polygon, 50

∗ randomize
randomizeFeature, 45
randomizePaths, 47

∗ smoothing
tempAggregate, 62

∗ social-network
contactCompare_binom, 8
contactCompare_chisq, 12
contactTest, 24
socialEdges, 58

∗ sub-function
dateFake, 25
dt.calc, 33
summarizeContacts, 60
timeBlock.append, 64

∗ time
datetime.append, 26

baboons, 3

calves, 4
calves2018, 5
confine, 6
contact-defunct, 7
contactCompare_binom, 8, 13
contactCompare_chisq, 12, 25
contactCompare_mantel, 17, 25
contactDur.all, 19
contactDur.area, 22
contactTest, 7, 24

dateFake, 25

datetime.append, 26
dist2All_df, 28
dist2Area_df, 31
dt.calc, 33
dup, 35

findDistThresh, 37

makePlanar, 38
mps, 40

ntwrkEdges, 42

potentialDurations, 43

randomizeFeature, 45
randomizePaths, 47
referencePoint2Polygon, 50
repositionReferencePoint, 54

socialEdges, 58
summarizeContacts, 60

tempAggregate, 62
timeBlock.append, 64

	baboons
	calves
	calves2018
	confine
	contact-defunct
	contactCompare_binom
	contactCompare_chisq
	contactCompare_mantel
	contactDur.all
	contactDur.area
	contactTest
	dateFake
	datetime.append
	dist2All_df
	dist2Area_df
	dt.calc
	dup
	findDistThresh
	makePlanar
	mps
	ntwrkEdges
	potentialDurations
	randomizeFeature
	randomizePaths
	referencePoint2Polygon
	repositionReferencePoint
	socialEdges
	summarizeContacts
	tempAggregate
	timeBlock.append
	Index

