Package 'coopProductGame'

August 25, 2018

Type Package

Version 2.0

Date 2018-08-17

Title Cooperative Aspects of Linear Production Programming Problems

Author Daniel Prieto

Maintainer Daniel Prieto <daniel.prieto.rodriguez89@gmail.com>

Depends R (>= 2.7.0)

Imports lpSolveAPI (>= 5.5.2), ggplot2 (>= 2.2.1), grid, GameTheory (>= 2.7), dplyr (>= 0.7.4), kappalab, gtools

Description Computes cooperative games and allocation rules associated with linear production programming problems.

License GPL-3

NeedsCompilation no

RoxygenNote 6.1.0

Repository CRAN

Date/Publication 2018-08-25 16:34:29 UTC

R topics documented:

coopProducGame-package	. 2
coalitions	. 3
coopProductGame	. 4
linearProductionGame	. 5
makeLP	. 6
nucleolus	. 7
owenSet	. 8
plotCoreSet	. 9
plotlm	. 10
productLinearProblem	. 11
shapleyValue	. 12

14

Index

coopProducGame-package

Cooperative aspects of linear product games

Description

G. Owen (1975, Math. Programming 9, 358-370) assigned to each linear production process a cooperative game, a "linear production game". Further, he introduced a method to find a subset of the core of linear production games that verifies certain properties, which is called the "Owen set." This package computes the linear production games and allocation rules associated.

Details

Package:	coopProductGame
Type:	Package
Version:	2.0
Date:	2018-07-01
License:	GPL-3

The most important function is coopProductGame. Other functions included in the package are auxiliary ones that can be used independently.

Author(s)

Daniel Prieto Rodríguez

Maintainer: Daniel Prieto Rodríguez <daniel.prieto.rodriguez89@gmail.com>

References

S. Cano-Berlanga, J. M. Gimenez-Gomez, and C. Vilella. Enjoying cooperative games: The r package gametheory. Working Paper No. 06; CREIP; Spain, March 2015.

D. B. Gillies. Some Theorems on n-Person Games. PhD thesis, Princeton University, 1953.

G. Owen. On the core of linear production games. Mathematical Programming, 9:358–370, 1975.

D. Schmeidler. The nucleolus of a characteristic function game. SIAM Journal of Applied Mathematics, 17:1163–1170, 1969.

L. S. Shapley. A value for n-person games. Contributions to the theory games II, 28:124–131, 1953.

J. R. G. van Gellekom et al. Characterization of the owen set of linear production processes. Games and Economic Behavior, 32:139–156, 2000.

coalitions

Description

This functions gives all the coalitions, including the empty coalition, for a number of players n.

Usage

coalitions(n)

Arguments n

Number of players.

Value

A list with the following components:

Binary	Matrix where each row is a binary representation of the coalition.
Usual	Vector with the usual configurations of the coalitions.

Author(s)

D. Prieto

Examples

```
# Number of players:
n <- 3
# Associated coalitions:
coalitions(n)
# $Binary
      [,1] [,2] [,3]
#
# [1,]
      0
            0
                 0
# [2,]
       1 0
                 0
# [3,]
        0
           1
                 0
# [4,]
        0
           0 1
# [5,]
        1
           1
                0
# [6,]
       1
            0
               1
# [7,]
        0
            1
                 1
# [8,]
        1
            1
                 1
#
# $Usual
# [1] 0 1 2 3 12 13 23 123
```

coopProductGame

Description

Given a linear production problem $A\%*\%x \le B$, the coopProductGame solves the problem by making use of lpSolveAPI where each agent provides his own resources.

Usage

coopProductGame(c, A, B, plot = FALSE, show.data = FALSE)

Arguments

с	vector containing the benefits of the products.
A	production matrix.
В	matrix containing the amount of resources of the several players where each row is one player.
plot	logical value indicating if the function displays graphical solution (TRUE) or not (FALSE). Note that this option only makes sense when we have a two-dimension problem.
show.data	logical value indicating if the function displays the console output (TRUE) or not (FALSE). By default the value is TRUE.

Value

coopProductGame returns a list with the solution of the problem, the objective value and a Owen allocation if it exists. If we have a two dimension dual problem, the function returns all the Owen allocations (if there are more than one we obtain the end points of the segment that contains all possible allocations.)

Author(s)

D. Prieto

Examples

```
# Vector of benefits
c <- c(68, 52)
# Production matrix
A <- matrix(c(4, 5, 6, 2), ncol = 2, byrow = TRUE)
# Matrix of resources. Each row is the vector of resources of each player
B <- matrix(c(4, 6, 60, 33, 39, 0), ncol = 3, byrow = TRUE)
# Solution of the associated linear production game
coopProductGame(c, A, B, show.data = TRUE)
```

Optimal solution of the problem for each coalition: _____ # # # S={1} 1.00 0.00 # S={2} 1.50 0.00 # S={3} 0.00 0.00 # S={1,2} 2.50 0.00 # S={1,3} 1.68 11.45 # S={2,3} 2.86 10.91 # S={1,2,3} 10.00 6.00 # # ------# Cooperative production game: # _____ _____ # S={0} S={1} S={2} S={3} S={1,2} S={1,3} S={2,3} S={1,2,3} # Associated game 0 68 102 0 170 710 762 992 _____ # # # _____ # The game has a unique Owen's allocation: # ------# [1] "(230, 282, 480)" ------#

linearProductionGame Cooperative linear production games

Description

Given a linear production problem, the linearProductionGame function solves the problem by making use of lpSolveAPI where each agent provides his own resources.

Usage

linearProductionGame(c, A, B, plot = FALSE, show.data = FALSE)

Arguments

с	vector containing the benefits of the products.
A	production matrix.
В	matrix containing the amount of resources of the several players where each row is one player.
plot	logical value indicating if the function displays graphical solution (TRUE) or not (FALSE). Note that this option only makes sense when we have a two-dimension problem.
show.data	logical value indicating if the function displays the console output (TRUE) or not (FALSE). By default the value is TRUE.

Value

linearProductionGame returns a list with the solutions of the associated problem of each coalition and the objective value for coalition N.

Author(s)

D. Prieto

Examples

```
# Vector of benefits
c <- c(68, 52)
# Production matrix
A <- matrix(c(4,5,6,2),ncol=2, byrow = TRUE)</pre>
# Matrix of resources. Each column is the vector of resources of each player
B <- matrix(c(4, 6, 60, 33, 39, 0),ncol = 3, byrow = TRUE)
# Solution of the associated linear production game
linearProductionGame(c, A, B, show.data = TRUE)
# ------
# Optimal solution of the problem for each coalition:
# ------
#
# S={1}
        1.00 0.00
# S={2}
      1.50 0.00
        0.00 0.00
# S={3}
# S={1,2} 2.50 0.00
# S={1,3} 1.68 11.45
# S={2,3} 2.86 10.91
# S={1,2,3} 10.00 6.00
#
#
  Cooperative production game:
# ------
#
           S={0} S={1} S={2} S={3} S={1,2} S={1,3} S={2,3} S={1,2,3}
# Associated game 0 68 102 0 170 710 762 992
 _____
#
```

makeLP

Make a linear production programming problem

Description

Given a linear production problem A %*% x <= b, the makeLP function creates a new lpSolve linear program model object.

nucleolus

Usage

makeLP(c, A, b)

Arguments

С	vector of benefits.
A	production matrix.
b	vector of resources.

Value

makeLP returns a lpSolve linear program model object. Specifically an R external pointer with class lpExtPtr.

Author(s)

D. Prieto

Examples

```
# Vector of benefits
c <- c(68,52)
# Production matrix
A <- matrix(c(4, 5, 6, 2), ncol = 2, byrow = TRUE)
# Vector of resources
b <- c(4,33)
# Make the associated linear production problem
prod <- makeLP(c, A, b)</pre>
```

nucleolus

Nucleolus solution

Description

This function computes the nucleolus solution of a game with a maximum of 4 agents.

Usage

nucleolus(game, show.data = FALSE)

Arguments

game	a vector that represents the cooperative game.
show.data	logical value indicating if the function displays the console output (TRUE) or not (FALSE). By default the value is FALSE.

Value

nucleolus returns and prints the Nucleolus Solution of associated cooperative game.

Author(s)

D. Prieto

Examples

```
# Cooperative game
game <- c(68, 102, 0, 170, 710, 762, 992)
# Nucleolus solution
nucleolus(game, show.data = TRUE)
# ------
# Nucleolus Solution
# ------</pre>
```

```
# [1] "(149, 192, 651)"
```

owenSet

Owen Set

Description

This function computes the Owen Set of a linear production game

Usage

owenSet(c, A, B, show.data = FALSE)

Arguments

С	vector containing the benefits of the products.
A	production matrix.
В	matrix containing the amount of resources of the several players where each row is one player.
show.data	logical value indicating if the function displays the console output (TRUE) or not (FALSE). By default the value is FALSE.

Value

owenSet returns and prints the owen Set of associated linear production problem.

Author(s)

D. Prieto

plotCoreSet

Examples

plotCoreSet

Plot Core Set for cooperative production linear games.

Description

Given a linear production game, the plotCoreSet function plots the imputation Set, Core Set and the most common solutions (Nucleolus, Shapley Value and allocations of the Owen Set).

Usage

plotCoreSet(c, A, B)

Arguments

С	vector containing the benefits of the products.
A	production matrix.
В	matrix containing the amount of resources of the several players where each row is one player.

Details

In most cases the Owen Set consists of a single allocation, but in some cases there are infinities. In the case that there are infinite allocations, if the problem has two dimensions, they will be given by a line, which we will represent graphically. If the problem has more than two dimensions, an allocation of all possible ones will be represented.

Value

plotCoreSet returns a ggplot object with the imputation set of the game, the core and the most common solutions.

plotlm

Author(s)

D. Prieto

See Also

coopProductGame

Examples

```
# Vector of benefits
c <- c(68, 52)
# Production matrix
A <- matrix(c(4, 5, 6, 2), ncol = 2, byrow = TRUE)
# Matrix of resources. Each row is the vector of resources of each player
B <- matrix(c(4, 6, 60, 33, 39, 0), ncol = 3, byrow = TRUE)
# Solution of the associated linear production game
plotCoreSet(c, A, B)
```

```
plotlm
```

Plot method for linear production programming problems

Description

This function plots the graphical solution of simple linear production programming problems with two decision variables. The decision variables must be real, nonnegative and cannot have a finite upper bound. Only inequality constraints are supported.

Usage

plotlm(prod, A, b, c, title = NULL)

Arguments

prod	a linear production programming problem of class lpExtPtr.
A	production matrix.
b	vector of resources.
С	vector of benefits.
title	title of the plot. By default is NULL, so it returns a plot without title

Value

Returns and plot a ggplot object with graphical solution of the problem.

Author(s)

D. Prieto

productLinearProblem

See Also

makeLP.

Examples

```
# Vector of benefits
c <- c(68,52)
# Matrix of coefficients
A <- matrix(c(4,5,6,2), ncol = 2, byrow = TRUE)
# Vector of resources
b <- c(4,33)
# Make the associated linear program
prod <- makeLP(c, A, b)
plotlm(prod, A, b, c)
```

productLinearProblem Linear production programming problems

Description

Given a linear production programming problem A %*% x <= b, the productLinearProblem solves the problem by making use of lpSolveAPI.

Usage

```
productLinearProblem(c, A, b, plot = FALSE, show.data = FALSE)
```

Arguments

С	vector of benefits.
A	production matrix.
b	vector of resources.
plot	logical value indicating if the function displays graphical solution (TRUE) or not (FALSE). Note that this option only makes sense when we have a two-dimension problem.
show.data	logical value indicating if the function displays the console output (TRUE) or not (FALSE). By default the value is TRUE.

Value

productLinearProblem returns and prints a list with the following components:

ObjetiveValue Value of the objetive function from a successfully solved linear production programming problem.

OptimalSolution Values of the variables from a successfully solved linear production programming problem.

Author(s)

D. Prieto

Examples

```
# Vector of benefits
c <- c(68,52)
# Production matrix
A <- matrix(c(4,5,6,2),ncol=2, byrow = TRUE)</pre>
# Matrix of resources. Each row is the vector of resources of each player
b <- c(4,33)
# Solution of the associated linear production game
productLinearProblem(c,A,b, show.data = TRUE)
# -----
# Objetive value:
# -----
  [1] "Z = 68"
#
#
# -----
# Optimal solution:
```

```
# ------
# [1] 1 0
# ------
```

ution

Description

Calculates the Shapley Value for a N-agent cooperative game.

Usage

```
shapleyValue(game, show.data = FALSE)
```

Arguments

game	a vector that represents the cooperative game.
show.data	logical value indicating if the function displays the console output (TRUE) or not
	(FALSE). By default the value is FALSE.

Value

shapleyValue returns and prints the Shapley Value of associated cooperative game.

shapley Value

Author(s)

D. Prieto

Examples

```
# Cooperative game
game <- c(68, 102, 0, 170, 710, 762, 992)
# Shapley Value
shapleyValue(game, show.data = TRUE)
# ------</pre>
```

Shapley Value Solution:

[1] "(229, 272, 491)"

Index

coalitions, 3
coopProducGame-package, 2
coopProductGame, 2, 4, 10

linearProductionGame, 5

makeLP, 6, 11

nucleolus, 7

owenSet, 8

plotCoreSet, 9
plotlm, 10
productLinearProblem, 11

shapleyValue, 12