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corpus-package The Corpus Package

Description

Text corpus analysis functions

Details

This package contains functions for text corpus analysis. To create a text object, use the read_ndjson
or as_corpus_text function. To split text into sentences or token blocks, use text_split. To
specify preprocessing behavior for transforming a text into a token sequence, use text_filter. To
tokenize text or compute term frequencies, use text_tokens, term_stats or term_matrix. To
search for or count specific terms, use text_locate, text_count, or text_detect.

For a complete list of functions, use library(help = "corpus").
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Author(s)

Patrick O. Perry

abbreviations Abbreviations

Description

Lists of common abbreviations.

Usage

abbreviations_de
abbreviations_en
abbreviations_es
abbreviations_fr
abbreviations_it
abbreviations_pt
abbreviations_ru

Format

A character vector of unique abbreviations.

Details

The abbreviations_ objects are character vectors of abbreviations. These are words or phrases
containing full stops (periods, ambiguous sentence terminators) that require special handling for
sentence detection and tokenization.

The original lists were compiled by the Unicode Common Locale Data Repository. We have tailored
the English list by adding single-letter abbreviations and making a few other additions.

The built-in abbreviation lists are reasonable defaults, but they may require further tailoring to suit
your particular task.

See Also

text_filter.

http://cldr.unicode.org/
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affect_wordnet WordNet-Affect Lexicon

Description

The WordNet-Affect Lexicon is a hand-curate collection of emotion-related words (nouns, verbs,
adjectives, and adverbs), classified as “Positive”, “Negative”, “Neutral”, or “Ambiguous” and cate-
gorized into 28 subcategories (“Joy”, “Love”, “Fear”, etc.).

Terms can and do appear in multiple categories.

The original lexicon contains multi-word phrases, but they are excluded here. Also, we removed
the term ‘thing’ from the lexicon.

The original WordNet-Affect lexicon is distributed as part of the WordNet Domains project, which
is licensed under a Creative Commons Attribution 3.0 Unported License. You are free to share and
adapt the lexicon, as long as you give attribution to the original authors.

Usage

affect_wordnet

Format

A data frame with one row for each term classification.

Source

https://wndomains.fbk.eu/wnaffect.html

References

Strapparava, C and Valitutti A. (2004). WordNet-Affect: an affective extension of WordNet. Pro-
ceedings of the 4th International Conference on Language Resources and Evaluation 1083–1086.

corpus_frame Corpus Data Frame

Description

Create or test for corpus objects.

Usage

corpus_frame(..., row.names = NULL, filter = NULL)

as_corpus_frame(x, filter = NULL, ..., row.names = NULL)

is_corpus_frame(x)

https://creativecommons.org/licenses/by/3.0/
https://wndomains.fbk.eu/wnaffect.html
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Arguments

... data frame columns for corpus_frame; further arguments passed to as_corpus_text
from as_corpus_frame.

row.names character vector of row names for the corpus object.

filter text filter object for the "text" column in the corpus object.

x object to be coerced or tested.

Details

These functions create or convert another object to a corpus object. A corpus object is just a data
frame with special functions for printing, and a column names "text" of type "corpus_text".

corpus has similar semantics to the data.frame function, except that string columns do not get
converted to factors.

as_corpus_frame converts another object to a corpus data frame object. By default, the method
converts x to a data frame with a column named "text" of type "corpus_text", and sets the class
attribute of the result to c("corpus_frame","data.frame").

is_corpus_frame tests whether x is a data frame with a column named "text" of type "corpus_text".

as_corpus_frame is generic: you can write methods to handle specific classes of objects.

Value

corpus_frame creates a data frame with a column named "text" of type "corpus_text", and a
class attribute set to c("corpus_frame","data.frame").

as_corpus_frame attempts to coerce its argument to a corpus data frame object, setting the row.names
and calling as_corpus_text on the "text" column with the filter and ... arguments.

is_corpus_frame returns TRUE or FALSE depending on whether its argument is a valid corpus
object or not.

See Also

corpus-package, print.corpus_frame, corpus_text, read_ndjson.

Examples

# convert a data frame:
emoji <- data.frame(text = sapply(0x1f600 + 1:30, intToUtf8),

stringsAsFactors = FALSE)
as_corpus_frame(emoji)

# construct directly (no need for stringsAsFactors = FALSE):
corpus_frame(text = sapply(0x1f600 + 1:30, intToUtf8))

# convert a character vector:
as_corpus_frame(c(a = "goodnight", b = "moon")) # keeps names
as_corpus_frame(c(a = "goodnight", b = "moon"), row.names = NULL) # drops names
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corpus_text Text Objects

Description

Create or test for text objects.

Usage

as_corpus_text(x, filter = NULL, ..., names = NULL)

is_corpus_text(x)

Arguments

x object to be coerced or tested.

filter if non-NULL, a text filter for the converted result.

... text filter properties to set on the result.

names if non-NULL character vector of names for the converted result.

Details

The corpus_text type is a new data type provided by the corpus package suitable for processing
international (Unicode) text. Text vectors behave like character vectors (and can be converted to
them with the as.character function). They can be created using the read_ndjson function or by
converting another object using the as_corpus_text function.

All text objects have a text_filter property specify how to transform the text into tokens or
segment it into sentences.

The default behavior for as_corpus_text is to proceed as follows:

1. If x is a character vector, then we create a new text vector from x.

2. If x is a data frame, then we call as_corpus_text on x$text if a column named "text"
exists in the data frame. If the data frame does not have a column named "text", then we fail
with an error message.

3. If x is a corpus_text object, then we drop all attributes and we set the class to "corpus_text".

4. The default behavior for when none of the above conditions are true is to call as.character
on the object first, preserving the names, and then and call as_corpus_text on the returned
character object.

In all cases, when the names is NULL, we set the result names to names(x) (or rownames(x) for a
data frame argument). When names is a character vector, we set the result names to this vector of
names

Similarly, when filter is NULL, we set the result text filter to text_filter(x). When filter is
non-NULL missing, we set the result text filter to this value. In either case, if there are additional
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names arguments, then we override the filter properties specified by the names of these arguments
with the new values given.

Note that the special handling for the names of the object is different from the other R conversion
functions (as.numeric, as.character, etc.), which drop the names.

as_corpus_text is generic: you can write methods to handle specific classes of objects.

Value

as_corpus_text attempts to coerce its argument to text type and set its names and text_filter
properties; it strips all other attributes.

is_corpus_text returns TRUE or FALSE depending on whether its argument is of text type or not.

See Also

as_utf8, text_filter, read_ndjson.

Examples

as_corpus_text("hello, world!")
as_corpus_text(c(a = "goodnight", b = "moon")) # keeps names

# set a filter property
as_corpus_text(c(a = "goodnight", b = "moon"), stemmer = "english")

is_corpus_text("hello") # FALSE, "hello" is character, not text

federalist The Federalist Papers

Description

The Federalist Papers comprise 85 articles published under the pseudonym “Publius” in New York
newspapers between 1787 and 1788, written to convince residents to ratify the Constitution. John
Jay wrote 5 papers, while Alexander Hamilton and James Madison wrote the remaining 80. Be-
tween the last two authors there are conflicting accounts of which author wrote which paper. Most
sources agree on the authorships of 65 papers (51 by Hamilton and 14 by Madison), but 15 papers
are in dispute.

In one of the earliest examples of statistical text analysis, F. Mosteller and D. L. Wallace used a
form of Naive Bayes classification to identify the authorships of the 15 disputed papers, finding
strong evidence that Madison was the author of all of the disputed papers.

Usage

federalist

Format

A data frame with 85 rows, one for each paper.
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Source

http://www.gutenberg.org/ebooks/18

References

Mosteller, F and Wallace, D. L. (1963). Inference in an authorship problem. Journal of the Ameri-
can Statistical Association 58 275–309.

gutenberg_corpus Project Gutenberg Corpora

Description

Get a corpus of texts from Project Gutenberg.

Usage

gutenberg_corpus(ids, filter = NULL, mirror = NULL, verbose = TRUE, ...)

Arguments

ids an integer vector of requested Gutenberg text IDs.
filter a text filter to set on the corpus.
mirror a character string URL for the Gutenberg mirror to use, or NULL to determine

automatically.
verbose a logical scalar indicating whether to print progress updates to the console.
... additional arguments passed to as_corpus.

Details

gutenberg_corpus downloads a set of texts from Project Gutenberg, creating a corpus with the
texts as rows. You specify the texts for inclusion using their Project Gutenberg IDs, passed to the
function in the ids argument.

You can search for Project Gutenberg texts and get their IDs using the gutenberg_works function
from the gutenbergr package.

Value

A corpus (data frame) with three columns: "title", "author", and "text".

See Also

corpus_frame.

Examples

# get the texts of George Eliot's novels
## Not run: eliot <- gutenberg_corpus(c(145, 550, 6688))

http://www.gutenberg.org/ebooks/18
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new_stemmer Stemmer Construction

Description

Make a stemmer from a set of (term, stem) pairs.

Usage

new_stemmer(term, stem, default = NULL, duplicates = "first",
vectorize = TRUE)

Arguments

term character vector of terms to stem.

stem character vector the same length as term with entries giving the corresponding
stems.

default if non-NULL, a default value to use for terms that do not have a stem; NULL
specifies that such terms should be left unchanged.

duplicates action to take for duplicates in the term list. See ‘Details’.

vectorize whether to produce a vectorized stemmer that accepts and returns vector argu-
ments.

Details

Giving a list of terms and a corresponding list of stems, this produces a function that maps terms to
their corresponding entry. If default = NULL, then values absent from the term argument get left
as-is; otherwise, they get replaced by the default value.

The duplicates argument indicates the action to take if there are duplicate entries in the term
argument:

• duplicates = "first" take the first matching entry in the stem list.

• duplicates = "last" take the last matching entry in the stem list.

• duplicates = "omit" use the default value for duplicated terms.

• duplicates = "fail" raise an error if there are duplicated terms.

Value

By default, with vectorize = TRUE, the resulting stemmer accepts a character vector as input and
returns a character vector of the same length with entries giving the stems of the corresponding
input entries.

Setting vectorize = FALSE gives a function that accepts a single input and returns a single output.
This can be more efficient when used as part of a text_filter.



10 print.corpus_frame

See Also

stem_snowball,text_filter, text_tokens.

Examples

# map uppercase to lowercase, leave others unchanged
stemmer <- new_stemmer(LETTERS, letters)
stemmer(c("A", "E", "I", "O", "U", "1", "2", "3"))

# map uppercase to lowercase, drop others
stemmer <- new_stemmer(LETTERS, letters, default = NA)
stemmer(c("A", "E", "I", "O", "U", "1", "2", "3"))

print.corpus_frame Corpus Data Frame Printing

Description

Printing and formatting corpus data frames.

Usage

## S3 method for class 'corpus_frame'
print(x, rows = 20L, chars = NULL, digits = NULL,

quote = FALSE, na.print = NULL, print.gap = NULL,right = FALSE,
row.names = TRUE, max = NULL, display = TRUE, ...)

## S3 method for class 'corpus_frame'
format(x, chars = NULL, na.encode = TRUE, quote = FALSE,

na.print = NULL, print.gap = NULL, ..., justify = "none")

Arguments

x data frame object to print or format.

rows integer scalar giving the maximum number of rows to print before truncating the
output. A negative or missing value indicates no upper limit.

chars maximum number of character units to display; see utf8_format.

digits minimal number of significant digits; see print.default.

quote logical scalar indicating whether to put surrounding double-quotes ('"') around
character strings and escape internal double-quotes.

na.print character string (or NULL) indicating the encoding for NA values. Ignored when
na.encode is FALSE.

print.gap non-negative integer (or NULL) giving the number of spaces in gaps between
columns; set to NULL or 1 for a single space.

right logical indicating whether to right-align columns (ignored for text, character,
and factor columns).
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row.names logical indicating whether to print row names, or a character vector giving alter-
nate row names to display.

max maximum number of entries to print; defaults to getOption("max.print").

display logical scalar indicating whether to optimize the printing for display, not byte-
for-byte data transmission; see utf8_encode.

justify justification; one of "left", "right", "centre", or "none". Can be abbrevi-
ated.

na.encode logical scalar indicating whether to encode NA values as character strings.

... further arguments passed to or from other methods.

Details

The "corpus_frame" class is a subclass of "data.frame", overriding the default print and format
methods. To apply this class to a data frame, set is class to c("corpus_frame","data.frame").

Corpus frame printing left-justifies character and text columns, truncates the output, and displays
emoji on Mac OS.

See Also

corpus_frame, print.data.frame, utf8_print

Examples

# default data frame printing
x <- data.frame(text = c("hello world", intToUtf8(0x1f638 + 0:3), letters))
print(x)

# corpus frame printing
y <- x
class(y) <- c("corpus_frame", "data.frame")
print(y)

print(y, 10) # change truncation limit

read_ndjson JSON Data Input

Description

Read data from a file in newline-delimited JavaScript Object Notation (NDJSON) format.

Usage

read_ndjson(file, mmap = FALSE, simplify = TRUE, text = NULL)
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Arguments

file the name of the file which the data are to be read from, or a connection (unless
mmap is TRUE, see below). The data should be encoded as UTF-8, and each line
should be a valid JSON value.

mmap whether to memory-map the file instead of reading all of its data into memory
simultaneously. See the ‘Memory mapping’ section.

simplify whether to attempt to simplify the type of the return value. For example, if each
line of the file stores an integer, if simplify is set to TRUE then the return value
will be an integer vector rather than a corpus_json object.

text a character vector of string fields to interpret as text instead of character, or
NULL to interpret all strings as character.

Details

This function is the recommended means of reading data for processing by the corpus package.

When the text argument is non-NULL string data fields with names indicated by this argument are
decoded as text values, not as character values.

Value

In the default usage, with argument simplify = TRUE, when the lines of the file are records (JSON
object literals), the return value from read_ndjson is a data frame with class c("corpus_frame","data.frame").
With simplify = FALSE, the result is a corpus_json object.

Memory mapping

When you specify mmap = TRUE, the function memory-maps the file instead of reading it into mem-
ory directly. In this case, the file argument must be a character string giving the path to the file, not
a connection object. When you memory-map the file, the operating system reads data into memory
only when it is needed, enabling you to transparently process large data sets that do not fit into
memory.

In terms of memory usage, enabling mmap = TRUE reduces the footprint for corpus_json and corpus_text
objects; native R objects (character, integer, list, logical, and numeric) get fully deserialized
to memory and produce identical results regardless of whether mmap is TRUE or FALSE. To process a
large text corpus with a text field named "text", you should set text = "text" and mmap = TRUE.
Or, to reduce the memory footprint even further, set simplify = FALSE and mmap = TRUE.

One danger in memory-mapping is that if you delete the file after calling read_ndjson but before
processing the data, then the results will be undefined, and your computer may crash. (On POSIX-
compliant systems like Mac OS and Linux, there should be no ill effects to deleting the file. On
recent versions of Windows, the system will not allow you to delete the file as long as the data is
active.)

Another danger in memory-mapping is that if you serialize a corpus_json object or derived corpus_text
object using saveRDS or another similar function, and then you deserialize the object, R will attempt
create a new memory-map using the file argument passed to the original read_ndjson call. If
file is a relative path, then your working directory at the time of deserialization must agree with
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your working directory at the time of the read_ndjson call. You can avoid this situation by speci-
fying an absolute path as the file argument (the normalizePath function will convert a relative to
an absolute path).

See Also

as_corpus_text, as_utf8.

Examples

# Memory mapping
lines <- c('{ "a": 1, "b": true }',

'{ "b": false, "nested": { "c": 100, "d": false }}',
'{ "a": 3.14, "nested": { "d": true }}')

file <- tempfile()
writeLines(lines, file)
(data <- read_ndjson(file, mmap = TRUE))

data$a
data$b
data$nested.c
data$nested.d

rm("data")
invisible(gc()) # force the garbage collector to release the memory-map
file.remove(file)

sentiment_afinn AFINN Sentiment Lexicon

Description

The AFINN lexicon is a list of English terms manually rated for valence with an integer between -5
(negative) and +5 (positive) by Finn Årup Nielsen between 2009 and 2011.

The original lexicon contains some multi-word phrases, but they are excluded here.

The original lexicon is distributed under the Open Database License (ODbL) v1.0. You are free to
share, create works from, and adapt the lexicon, as long as you attribute the original lexicon in your
work. If you adapt the lexicon, you must keep the adapted lexicon open and apply a similar license.

Usage

sentiment_afinn

Format

A data frame with one row for each term

https://opendatacommons.org/licenses/odbl/1-0/
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Source

https://www2.imm.dtu.dk/pubdb/pubs/6010-full.html

References

Finn Årup Nielsen A new ANEW: Evaluation of a word list for sentiment analysis in microblogs.
Proceedings of the ESWC2011 Workshop on ’Making Sense of Microposts’: Big things come in
small packages 718 in CEUR Workshop Proceedings 93-98. 2011 May. https://arxiv.org/
abs/1103.2903.

stem_snowball Snowball Stemmer

Description

Stem a set of terms using one of the algorithms provided by the Snowball stemming library.

Usage

stem_snowball(x, algorithm = "en")

Arguments

x character vector of terms to stem.

algorithm stemming algorithm; see ‘Details’ for the valid choices.

Details

Apply a Snowball stemming algorithm to a vector of input terms, x, returning the result in a char-
acter vector of the same length with the same names.

The algorithm argument specifies the stemming algorithm. Valid choices include the follow-
ing: "ar" ("arabic"), "da" ("danish"), "de" ("german"), "en" ("english"), "es" ("spanish"),
"fi" ("finnish"), "fr" ("french"), "hu" ("hungarian"), "it" ("italian"), "nl" ("dutch"),
"no" ("norwegian"), "pt" ("portuguese"), "ro" ("romanian"), "ru" ("russian"), "sv" ("swedish"),
"ta" ("tamil"), "tr" ("turkish"), and "porter". Setting algorithm = NULL gives a stemmer
that returns its input unchanged.

The function only stems single-word terms of kind "letter"; it leaves other inputs (multi-word terms,
and terms of kind "number", "punct", and "symbol") unchanged.

The Snowball stemming library provides the underlying implementation. The wordStem function
from the SnowballC package provides a similar interface, but that function applies the algorithm to
all input terms, regardless of the kind of the term.

Value

A character vector the same length and names as the input, x, with entries containing the corre-
sponding stems.

https://www2.imm.dtu.dk/pubdb/pubs/6010-full.html
https://arxiv.org/abs/1103.2903
https://arxiv.org/abs/1103.2903
https://snowballstem.org/algorithms/
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See Also

new_stemmer, text_filter.

Examples

# apply english stemming algorithm; don't stem non-letter terms
stem_snowball(c("win", "winning", "winner", "#winning"))

# compare with SnowballC, which stems all kinds, not just letter
## Not run: SnowballC::wordStem(c("win", "winning", "winner", "#winning"), "en")

stopwords Stop Words

Description

Lists of common function words (‘stop’ words).

Usage

stopwords_da
stopwords_de
stopwords_en
stopwords_es
stopwords_fi
stopwords_fr
stopwords_hu
stopwords_it
stopwords_nl
stopwords_no
stopwords_pt
stopwords_ru
stopwords_sv

Format

A character vector of unique stop words.

Details

The stopwords_ objects are character vectors of case-folded ‘stop’ words. These are common
function words that often get discarded before performing other text analysis tasks.

There are lists available for the following languages: Danish (stopwords_da), Dutch (stopwords_nl),
English (stopwords_en), Finnish (stopwords_fi), French (stopwords_fr, German (stopwords_de)
Hungarian (stopwords_hu), Italian (stopwords_it), Norwegian (stopwords_no), Portuguese (stopwords_pt),
Russian (stopwords_ru), Spanish (stopwords_es), and Swedish (stopwords_sv).
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These built-in word lists are reasonable defaults, but they may require further tailoring to suit your
particular task. The original lists were compiled by the Snowball stemming project. Following the
Quanteda text analysis software, we have tailored the original lists by adding the word "will" to the
English list.

See Also

text_filter

term_matrix Term Frequency Tabulation

Description

Tokenize a set of texts and compute a term frequency matrix.

Usage

term_matrix(x, filter = NULL, ngrams = NULL, select = NULL,
group = NULL, transpose = FALSE, ...)

term_counts(x, filter = NULL, ngrams = NULL, select = NULL,
group = NULL, ...)

Arguments

x a text vector to tokenize.

filter if non-NULL, a text filter to to use instead of the default text filter for x.

ngrams an integer vector of n-gram lengths to include, or NULL to use the select argu-
ment to determine the n-gram lengths.

select a character vector of terms to count, or NULL to count all terms that appear in x.

group if non-NULL, a factor, character string, or integer vector the same length of x
specifying the grouping behavior.

transpose a logical value indicating whether to transpose the result, putting terms as rows
instead of columns.

... additional properties to set on the text filter.

Details

term_matrix tokenizes a set of texts and computes the occurrence counts for each term, returning
the result as a sparse matrix (texts-by-terms). term_counts returns the same information, but in a
data frame.

If ngrams is non-NULL, then multi-type n-grams are included in the output for all lengths appearing
in the ngrams argument. If ngrams is NULL but select is non-NULL, then all n-grams appearing in
the select set are included. If both ngrams and select are NULL, then only unigrams (single type
terms) are included.

https://snowballstem.org/
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If group is NULL, then the output has one set of term counts for each input text. Otherwise, we
convert group to a factor and compute one set of term counts for each level. Texts with NA values
for group get skipped.

Value

term_matrix with transpose = FALSE returns a sparse matrix in "dgCMatrix" format with one
column for each term and one row for each input text or (if group is non-NULL) for each grouping
level. If filter$select is non-NULL, then the column names will be equal to filter$select.
Otherwise, the columns are assigned in arbitrary order.

term_matrix with transpose = TRUE returns the transpose of the term matrix, in "dgCMatrix"
format.

term_counts with group = NULL returns a data frame with one row for each entry of the term
matrix, and columns "text", "term", and "count" giving the text ID, term, and count. The "term"
column is a factor with levels equal to the selected terms. The "text" column is a factor with levels
equal to names(as_corpus_text(x)); calling as.integer on the "text" column converts from
the factor values to the integer row index in the term matrix.

term_counts with group non-NULL behaves similarly, but the result instead has columns named
"group", "term", and "count", with "group" giving the grouping level, as a factor.

See Also

text_tokens, term_stats.

Examples

text <- c("A rose is a rose is a rose.",
"A Rose is red, a violet is blue!",
"A rose by any other name would smell as sweet.")

term_matrix(text)

# select certain terms
term_matrix(text, select = c("rose", "red", "violet", "sweet"))

# specify a grouping factor
term_matrix(text, group = c("Good", "Bad", "Good"))

# include higher-order n-grams
term_matrix(text, ngrams = 1:3)

# select certain multi-type terms
term_matrix(text, select = c("a rose", "a violet", "sweet", "smell"))

# transpose the result
term_matrix(text, ngrams = 1:2, transpose = TRUE)[1:10, ] # first 10 rows

# data frame
head(term_counts(text), n = 10) # first 10 rows

# with grouping



18 term_stats

term_counts(text, group = c("Good", "Bad", "Good"))

# taking names from the input
term_counts(c(a = "One sentence.", b = "Another", c = "!!"))

term_stats Term Statistics

Description

Tokenize a set of texts and tabulate the term occurrence statistics.

Usage

term_stats(x, filter = NULL, ngrams = NULL,
min_count = NULL, max_count = NULL,
min_support = NULL, max_support = NULL, types = FALSE,
subset, ...)

Arguments

x a text vector to tokenize.

filter if non-NULL, a text filter to to use instead of the default text filter for x.

ngrams an integer vector of n-gram lengths to include, or NULL for length-1 n-grams
only.

min_count a numeric scalar giving the minimum term count to include in the output, or
NULL for no minimum count.

max_count a numeric scalar giving the maximum term count to include in the output, or
NULL for no maximum count.

min_support a numeric scalar giving the minimum term support to include in the output, or
NULL for no minimum support.

max_support a numeric scalar giving the maximum term support to include in the output, or
NULL for no maximum support.

types a logical value indicating whether to include columns for the types that make up
the terms.

subset logical expression indicating elements or rows to keep: missing values are taken
as false.

... additional properties to set on the text filter.

Details

term_stats tokenizes a set of texts and computes the occurrence counts and supports for each term.
The ‘count’ is the number of occurrences of the term across all texts; the ‘support’ is the number
of texts containing the term. Each appearance of a term increments its count by one. Likewise, an
appearance of a term in text i increments its support once, not for each occurrence in the text.

To include multi-type terms, specify the designed term lengths using the ngrams argument.
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Value

A data frame with columns named term, count, and support, with one row for each appearing
term. Rows are sorted in descending order according to support and then count, with ties bro-
ken lexicographically by term, using the character ordering determined by the current locale (see
Comparison for details).

If types = TRUE, then the result also includes columns named type1, type2, etc. for the types that
make up the term.

See Also

text_tokens, term_matrix.

Examples

term_stats("A rose is a rose is a rose.")

# remove punctuation and English stop words
term_stats("A rose is a rose is a rose.",

text_filter(drop_symbol = TRUE, drop = stopwords_en))

# unigrams, bigrams, and trigrams
term_stats("A rose is a rose is a rose.", ngrams = 1:3)

# also include the type information
term_stats("A rose is a rose is a rose.", ngrams = 1:3, types = TRUE)

text_filter Text Filters

Description

Get or specify the process by which text gets transformed into a sequence of tokens or sentences.

Usage

text_filter(x = NULL, ...)
text_filter(x) <- value

## S3 method for class 'corpus_text'
text_filter(x = NULL, ...)

## S3 method for class 'data.frame'
text_filter(x = NULL, ...)

## Default S3 method:
text_filter(x = NULL, ...,

map_case = TRUE, map_quote = TRUE,
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remove_ignorable = TRUE,
combine = NULL,
stemmer = NULL, stem_dropped = FALSE,
stem_except = NULL,
drop_letter = FALSE, drop_number = FALSE,
drop_punct = FALSE, drop_symbol = FALSE,
drop = NULL, drop_except = NULL,
connector = "_",
sent_crlf = FALSE,
sent_suppress = corpus::abbreviations_en)

Arguments

x text or corpus object.

value text filter object, or NULL for the default.

... further arguments passed to or from other methods.

map_case a logical value indicating whether to apply Unicode case mapping to the text.
For most languages, this transformation changes uppercase characters to their
lowercase equivalents.

map_quote a logical value indicating whether to replace curly single quotes and other Uni-
code apostrophe characters with ASCII apostrophe (U+0027).

remove_ignorable

a logical value indicating whether to remove Unicode "default ignorable" char-
acters like zero-width spaces and soft hyphens.

combine a character vector of multi-word phrases to combine, or NULL; see ‘Combining
words’.

stemmer a character value giving the name of a Snowball stemming algorithm (see stem_snowball
for choices), a custom stemming function, or NULL to leave words unchanged.

stem_dropped a logical value indicating whether to stem words in the "drop" list.

stem_except a character vector of exception words to exempt from stemming, or NULL. If left
unspecified, stem_except is set equal to the drop argument.

drop_letter a logical value indicating whether to replace "letter" tokens (cased letters,
kana, ideographic, letter-like numeric characters and other letters) with NA.

drop_number a logical value indicating whether to replace "number" tokens (decimal digits,
words appearing to be numbers, and other numeric characters) with NA.

drop_punct a logical value indicating whether to replace "punct" tokens (punctuation) with
NA.

drop_symbol a logical value indicating whether to replace "symbol" tokens (emoji, math,
currency, URLs, and other symbols) with NA.

drop a character vector of types to replace with NA, or NULL.

drop_except a character of types to exempt from the drop rules specified by the drop_letter,
drop_number, drop_punct, drop_symbol, and drop arguments, or NULL.

connector a character to use as a connector in lieu of white space for types that stem to
multi-word phrases.
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sent_crlf a logical value indicating whether to break sentences on carriage returns or line
feeds.

sent_suppress a character vector of sentence break suppressions.

Details

The set of properties in a text filter determine the tokenization and sentence breaking rules. See the
documentation for text_tokens and text_split for details on the tokenization process.

Value

text_filter retrieves an objects text filter, optionally with modifications to some of its properties.

text_filter<- sets an object’s text filter. Setting the text filter on a character object is not al-
lowed; the object must have type "corpus_text" or be a data frame with a "text" column of type
"corpus_text".

See Also

as_corpus_text, text_tokens, text_split, abbreviations, stopwords.

Examples

# text filter with default options set
text_filter()

# specify some options but leave others unchanged
f <- text_filter(map_case = FALSE, drop = stopwords_en)

# set the text filter property
x <- as_corpus_text(c("Marnie the Dog is #1 on the internet."))
text_filter(x) <- f
text_tokens(x) # by default, uses x's text_filter to tokenize

# change a filter property
f2 <- text_filter(x, map_case = TRUE)
# equivalent to:
# f2 <- text_filter(x)
# f2$map_case <- TRUE

text_tokens(x, f2) # override text_filter(x)

# setting text_filter on a data frame is allowed if it has a
# column names "text" of type "corpus_text"
d <- data.frame(text = x)
text_filter(d) <- f2
text_tokens(d)

# but you can't set text filters on character objects
y <- "hello world"
## Not run: text_filter(y) <- f2 # gives an error
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d2 <- data.frame(text = "hello world", stringsAsFactors = FALSE)
## Not run: text_filter(d2) <- f2 # gives an error

text_locate Searching for Terms

Description

Look for instances of one or more terms in a set of texts.

Usage

text_locate(x, terms, filter = NULL, ...)

text_count(x, terms, filter = NULL, ...)

text_detect(x, terms, filter = NULL, ...)

text_match(x, terms, filter = NULL, ...)

text_sample(x, terms, size = NULL, filter = NULL, ...)

text_subset(x, terms, filter = NULL, ...)

Arguments

x a text or character vector.

terms a character vector of search terms.

filter if non-NULL, a text filter to to use instead of the default text filter for x.

size the maximum number of results to return, or NULL.

... additional properties to set on the text filter.

Details

text_locate finds all instances of the search terms in the input text, along with their contexts.

text_count counts the number of search term instances in each element of the text vector.

text_detect indicates whether each text contains at least one of the search terms.

text_match reports the matching instances as a factor variable with levels equal to the terms
argument.

text_subset returns the texts that contain the search terms.

text_sample returns a random sample of the results from text_locate, in random order. This is
this is useful for hand-inspecting a subset of the text_locate matches.
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Value

text_count and text_detect return a numeric vector and a logical vector, respectively, with
length equal to the number of input texts and names equal to the text names.

text_locate and text_sample both return a data frame with one row for each search result and
columns named ‘text’, ‘before’, ‘instance’, and ‘after’. The ‘text’ column gives the name of the
text containing the instance; ‘before’ and ‘after’ are text vectors giving the text before and after the
instance. The ‘instance’ column gives the token or tokens matching the search term.

text_match returns a data frame for one row for each search result, with columns names ‘text’ and
‘term’. Both columns are factors. The ‘text’ column has levels equal to the text labels, and the
‘term’ column has levels equal to terms argument.

text_subset returns the subset of texts that contain the given search terms. The resulting has its
text_filter set to the passed-in filter argument.

See Also

term_stats, term_matrix.

Examples

text <- c("Rose is a rose is a rose is a rose.",
"A rose by any other name would smell as sweet.",
"Snow White and Rose Red")

text_count(text, "rose")
text_detect(text, "rose")
text_locate(text, "rose")
text_match(text, "rose")
text_sample(text, "rose", 3)
text_subset(text, "a rose")

# search for multiple terms
text_locate(text, c("rose", "rose red", "snow white"))

text_split Segmenting Text

Description

Segment text into smaller units.

Usage

text_split(x, units = "sentences", size = 1, filter = NULL, ...)

text_nsentence(x, filter = NULL, ...)



24 text_split

Arguments

x a text or character vector.

units the block size units, either "sentences" or "tokens".

size the block size, a positive integer giving the maximum number of units per block.

filter if non-NULL, a text filter to to use instead of the default text filter for x.

... additional properties to set on the text filter.

Details

text_split splits text into roughly evenly-sized blocks, measured in the specified units. When
units = "sentences", units are sentences; when units = "tokens", units are non-NA tokens. The
size parameter specifies the maximum block size.

When the minimum block size does not evenly divide the number of total units in a text, the block
sizes will not be exactly equal. However, it will still be the case that no block will has more than
one unit more than any other block. The extra units get allocated to the first segments in the split.

Sentences and tokens are defined by the filter argument. The documentation for text_tokens
describes the tokenization rules. For sentence boundaries, see the ‘Sentences’ section below.

Value

text_split returns a data frame with three columns named parent, index, and text, and one row
for each text block. The columns are as follows:

1. The parent column is a factor. The levels of this factor are the names of as_corpus_text(x).
Calling as.integer on the parent column gives the indices of the parent texts for the parent
text for each sentence.

2. The index column gives the integer index of the sentence in its parent.

3. The text value is the text of the block, a value of type corpus_text (not a character vector).

text_nsentence returns a numeric vector with the same length as x with each element giving the
number of sentences in the corresponding text.

Sentences

Sentences are defined according to a tailored version of the boundaries specified by Unicode Stan-
dard Annex #29, Section 5.

The UAX 29 sentence boundaries handle Unicode correctly and they give reasonable behavior
across a variety of languages, but they do not handle abbreviations correctly and by default they
treat carriage returns and line feeds as paragraph separators, often leading to incorrect breaks. To
get around these shortcomings, the text filter allows tailoring the UAX 29 rules using the sent_crlf
and the sent_suppress properties.

The UAX 29 rules break after full stops (periods) whenever they are followed by uppercase let-
ters. Under these rules, the text "I saw Mr. Jones today." gets split into two sentences. To get
around this, we allow a sent_suppress property, a list of sentence break suppressions which, when
followed by uppercase characters, do not signal the end of a sentence.

http://unicode.org/reports/tr29/#Sentence_Boundaries
http://unicode.org/reports/tr29/#Sentence_Boundaries
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The UAX 29 rules also specify that a carriage return (CR) or line feed (LF) indicates the end of of a
sentence, so that "A split\nsentence." gets split into two sentences. This often leads to incorrect
breaks, so by default, with sent_crlf = FALSE, we deviate from the UAX 29 rules and we treat CR
and LF like spaces. To break sentences on CRLF, CR, and LF, specify sent_crlf = TRUE.

See Also

text_tokens, text_filter.

Examples

text <- c("I saw Mr. Jones today.",
"Split across\na line.",
"What. Are. You. Doing????",
"She asked 'do you really mean that?' and I said 'yes.'")

# split text into sentences
text_split(text, units = "sentences")

# get the number of sentences
text_nsentence(text)

# disable the default sentence suppressions
text_split("I saw Mr. Jones today.", units = "sentences", filter = NULL)

# break on CR and LF
text_split("Split across\na line.", units = "sentences",

filter = text_filter(sent_crlf = TRUE))

# 2-sentence blocks
text_split(c("What. Are. You. Doing????",

"She asked 'do you really mean that?' and I said 'yes.'"),
units = "sentences", size = 2)

# 4-token blocks
text_split(c("What. Are. You. Doing????",

"She asked 'do you really mean that?' and I said 'yes.'"),
units = "tokens", size = 4)

# blocks are approximately evenly sized; 'size' gives maximum size
text_split(paste(letters, collapse = " "), "tokens", 4)
text_split(paste(letters, collapse = " "), "tokens", 16)

text_stats Text Statistics

Description

Report descriptive statistics for a set of texts.
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Usage

text_stats(x, filter = NULL, ...)

Arguments

x a text corpus.

filter if non-NULL, a text filter to to use instead of the default text filter for x.

... additional properties to set on the text filter.

Details

text_stats reports descriptive statistics for a set of texts: the number of tokens, unique types, and
sentences.

Value

A data frame with columns named tokens, types, and sentences, with one row for each text.

See Also

text_filter, term_stats.

Examples

text_stats(c("A rose is a rose is a rose.",
"A Rose is red. A violet is blue!"))

text_sub Text Subsequences

Description

Extract token subsequences from a set of texts.

Usage

text_sub(x, start = 1L, end = -1L, filter = NULL, ...)

Arguments

x text vector or corpus object.

start integer vector giving the starting positions of the subsequences, or a two-column
integer matrix giving the starting and ending positions.

end integer vector giving the ending positions of the subsequences; ignored if start
is a two-column matrix.

filter if non-NULL, a text filter to to use instead of the default text filter for x.

... additional properties to set on the text filter.
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Details

text_sub extracts token subsequences from a set of texts. The start and end arguments specifying
the positions of the subsequences within the parent texts, as an inclusive range. Negative indices
are interpreted as counting from the end of the text, with -1L referring to the last element.

Value

A text vector with the same length and names as x, with the desired subsequences.

See Also

text_tokens, text_ntoken.

Examples

x <- as_corpus_text(c("A man, a plan.", "A \"canal\"?", "Panama!"),
drop_punct = TRUE)

# entire text
text_sub(x, 1, -1)

# first three elements
text_sub(x, 1, 3)

# last two elements
text_sub(x, -2, -1)

text_tokens Text Tokenization

Description

Segment text into tokens, each of which is an instance of a particular ‘type’.

Usage

text_tokens(x, filter = NULL, ...)

text_ntoken(x, filter = NULL, ...)

Arguments

x object to be tokenized.

filter if non-NULL, a text filter to to use instead of the default text filter for x.

... additional properties to set on the text filter.
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Details

text_tokens splits texts into token sequences. Each token is an instance of a particular type. This
operation proceeds in a series of stages, controlled by the filter argument:

1. First, we segment the text into words and spaces using the boundaries defined by Unicode
Standard Annex #29, Section 4, with special handling for @mentions, #hashtags, and URLs.

2. Next, we normalize the words by applying the character mappings indicated by the map_case,
map_quote, and remove_ignorable properties. We replace sequences of spaces by a space
(U+0020). At the end of the second stage, we have segmented the text into a sequence of
normalized words and spaces, in Unicode composed normal form (NFC).

3. In the third stage, if the combine property is non-NULL, we scan the word sequence from left
to right, searching for the longest possible match in the combine list. If a match exists, we
replace the word sequence with a single token for that term; otherwise, we leave the word as-
is. We drop spaces at this point, unless they are part of a multi-word term. See the ‘Combining
words’ section below for more details.

4. Next, if the stemmer property is non-NULL, we apply the indicated stemming algorithm to each
word that does not match one of the elements of the stem_except character vector. Terms that
stem to NA get dropped from the sequence.

5. After stemming, we categorize each remaining token as "letter", "number", "punct", or
"symbol" according to the first character in the word. For words that start with extenders like
underscore (_), use the first non-extender to classify it.

6. If any of drop_letter, drop_number, drop_punct, or drop_symbol are TRUE, then we drop
the tokens in the corresponding categories. We also drop any terms that match an element of
the drop character vector. We can add exceptions to the drop rules by specifying a non-NULL
value for the drop_except property: drop_except is a character vector, then we we restore
tokens that match elements of vector to their values prior to dropping.

7. Finally, we replace sequences of white-space in the terms with the specified connector, which
defaults to a low line character (_, U+005F).

Multi-word terms specified by the combine property can be specified as tokens, prior to normal-
ization. Terms specified by the stem_except, drop, and drop_except need to be normalized and
stemmed (if stemmer is non-NULL). Thus, for example, if map_case = TRUE, then a token filter with
combine = "Mx." produces the same results as a token filter with combine = "mx.". However, drop
= "Mx." behaves different from drop = "mx.".

Value

text_tokens returns a list of the same length as x, with the same names. Each list item is a
character vector with the tokens for the corresponding element of x.

text_ntoken returns a numeric vector the same length as x, with each element giving the number
of tokens in the corresponding text.

Combining words

The combine property of a text_filter enables transformations that combine two or more words
into a single token. For example, specifying combine = "new york" will cause consecutive in-
stances of the words new and york to get replaced by a single token, new york.

http://unicode.org/reports/tr29/#Word_Boundaries
http://unicode.org/reports/tr29/#Word_Boundaries
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See Also

stopwords, text_filter, text_types.

Examples

text_tokens("The quick ('brown') fox can't jump 32.3 feet, right?")

# count tokens:
text_ntoken("The quick ('brown') fox can't jump 32.3 feet, right?")

# don't change case or quotes:
f <- text_filter(map_case = FALSE, map_quote = FALSE)
text_tokens("The quick ('brown') fox can't jump 32.3 feet, right?", f)

# drop common function words ('stop' words):
text_tokens("Able was I ere I saw Elba.",

text_filter(drop = stopwords_en))

# drop numbers, with some exceptions:"
text_tokens("0, 1, 2, 3, 4, 5",

text_filter(drop_number = TRUE,
drop_except = c("0", "2", "4")))

# apply stemming...
text_tokens("Mary is running", text_filter(stemmer = "english"))

# ...except for certain words
text_tokens("Mary is running",

text_filter(stemmer = "english", stem_except = "mary"))

# default tokenization
text_tokens("Ms. Jones")

# combine abbreviations
text_tokens("Ms. Jones", text_filter(combine = abbreviations_en))

# add custom combinations
text_tokens("Ms. Jones is from New York City, New York.",

text_filter(combine = c(abbreviations_en,
"new york", "new york city")))

text_types Text Type Sets

Description

Get or measure the set of types (unique token values).
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Usage

text_types(x, filter = NULL, collapse = FALSE, ...)

text_ntype(x, filter = NULL, collapse = FALSE, ...)

Arguments

x a text or character vector.

filter if non-NULL, a text filter to to use instead of the default text filter for x.

collapse a logical value indicating whether to collapse the aggregation over all rows of
the input.

... additional properties to set on the text filter.

Details

text_ntype counts the number of unique types in each text; text_types returns the set of unique
types, as a character vector. Types are determined according to the filter argument.

Value

If collapse = FALSE, then text_ntype produces a numeric vector with the same length and names
as the input text, with the elements giving the number of units in the corresponding texts. For
text_types, the result is a list of character vector with each vector giving the unique types in the
corresponding text, ordered according to the sort function.

If collapse = TRUE, then we aggregate over all rows of the input. In this case, text_ntype produces
a scalar indicating the number of unique types in x, and text_types produces a character vector
with the unique types.

See Also

text_filter, text_tokens.

Examples

text <- c("I saw Mr. Jones today.",
"Split across\na line.",
"What. Are. You. Doing????",
"She asked 'do you really mean that?' and I said 'yes.'")

# count the number of unique types
text_ntype(text)
text_ntype(text, collapse = TRUE)

# get the type sets
text_types(text)
text_types(text, collapse = TRUE)
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