Package 'cosa'

November 20, 2021
Type Package
Title Bound Constrained Optimal Sample Size Allocation
Version 2.1.0
Date 2021-11-20
Description Implements bound constrained optimal sample size allocation (BCOSSA) framework de-scribed in Bulus \& Dong (2021) doi:10.1080/00220973.2019.1636197 for power analy-sis of multilevel regression discontinuity designs (MRDDs) and multilevel randomized tri-als (MRTs) with continuous outcomes.
Minimum detectable effect size (MDES) and power computations for MRDDs allow polyno-
mial functional form specification for the score variable (with or without interac-
tion with the treatment indicator). See Bulus (2021) doi:10.1080/19345747.2021.1947425.
Imports nloptr($>=1.0 .4$), $\operatorname{msm}(>=1.6 .7)$
Suggests knitr, rmarkdown
VignetteBuilder knitr
License GPL (>= 3)
NeedsCompilation no
Author Metin Bulus [aut, cre],
Nianbo Dong [aut]
Maintainer Metin Bulus bulusmetin@gmail.com
Repository CRAN
Date/Publication 2021-11-20 22:50:05 UTC
R topics documented:
cosa-package 2
bcrd3r2 3
bcrd4r2 6
bcrd4r3 9
bird2 12
bird3 14
bird4 17
cosa-deprecated 20
crd2 21
crd3 24
crd4 27
inspect.score 30
ird 32
moments 34
plot 35
Vectorize BCOSSA 36
Index 38cosa-package Bound Constrained Optimal Design of MRDDs and MRTs

Description

Bound Constrained Optimal Sample Size Allocation (BCOSSA) functions are designed to optimize sample sizes at one or more levels subject to budget, statistical power, or effect size constraints. BCOSSA can be found in the following forms; (i) under budgetary constraints given marginal costs per unit while minimizing sampling variance of the treatment effect (or, alternatively, while maximizing power rate), (ii) under statistical power or effect size (ES) constraints while minimizing the total cost, and (iii) under sample size constraints for one or more levels along with (i) or (ii). Specifying rhots $=0$ or order $=0$ produces results equivalent to corresponding random assignment designs, which means there is no relationship between the treatment [randomly assigned] and the score variable. Therefore, BCOSSA functions also allow optimization of treatment group sampling rate (p) under unequal marginal costs when primary constraint is placed on the total cost. Different starting values and algorithms may produce different results when marginal cost information is not provided and sample sizes at two or more levels and p are optimized because the design is not uniquely identified. In such cases, experimenting different starting values and/or comparing several algorithms may faciliate decisions regarding sample sizes and p.

Designs available in the cosa package:

Design	Total Levels	Treatment Level	Top Level
ird	1	1	random
bird2	2	1	random
bird2f1	2	1	fixed
bird3	3	1	random
bird4	4	1	random
crd2	2	2	random
bcrd3f2	3	2	fixed
bcrd3r2	3	2	random
bcrd4r2	4	2	random
crd3	3	3	random
bcrd4f3	4	3	fixed
bcrd4r3	4	3	random
crd4	4	4	random

ird: individual-level regression discontinuity. bird: blocked individual-level regression discontinuity. crd: cluster-level regression discontinuity. bcrd: blocked cluster-level regression discontinuity.

Design parameters follow a sequential order. Numbers at the end of a sequential parameter refers to the corresponding level. For example rho 2 is the proportion of variance in the outcome between level 2 units, rho 3 is the proportion of variance in the outcome between level 3 units. Similiarly, $r 21$ is the proportion of the variance in the outcome explained by level 1 covariates, $r 22$ is the proportion of the variance in the outcome explained by level 2 covariates and so on. Similiar naming conventions applies to other design parameters.

bcrd3r2	Blocked (Random) Cluster-level Regression Discontinuity (Three-level Design, Discontinuity at Level 2)

Description

Use mdes.bcrd3r2() to calculate minimum detectable effect size, power.bcrd3r2() to calculate statistical power, and cosa.bcrd3r2() for bound constrained optimal sample size allocation (BCOSSA).

Usage

```
mdes.bcrd3r2(score \(=\) NULL, dists = "normal", k1 = -6, k2 = 6,
    order \(=1\), interaction = FALSE,
    treat.lower \(=\) TRUE, cutoff \(=0, p=\) NULL,
    power \(=.80\), alpha \(=.05\), two.tailed \(=\) TRUE, \(d f=n 3-\mathrm{g} 3-1\),
    rho2, rho3, omega3, r21 = 0, r22 = 0, r2t3 = 0, g3 = 0,
    rate.tp \(=1\), rate.cc \(=0, \mathrm{n} 1, \mathrm{n} 2, \mathrm{n} 3\) )
power.bcrd3r2(score \(=\) NULL, dists = "normal", k1 = -6, k2 = 6,
    order = 1, interaction = FALSE,
    treat.lower \(=\) TRUE, cutoff \(=0, p=\) NULL,
    es \(=.25\), alpha \(=.05\), two.tailed \(=\) TRUE, \(d f=\mathrm{n} 3-\mathrm{g} 3-1\),
    rho2, rho3, omega3, r21 = 0, r22 = 0, r2t3 = 0, g3 = 0,
    rate.tp \(=1\), rate. \(\mathrm{cc}=0, \mathrm{n} 1, \mathrm{n} 2, \mathrm{n} 3\) )
cosa.bcrd3r2(score \(=\) NULL, dists = "normal", k1 = -6 , k2 = 6, rhots \(=\) NULL,
    order \(=1\), interaction = FALSE,
    treat.lower \(=\) TRUE, cutoff \(=0, p=N U L L\),
    \(\mathrm{cn} 1=0, \mathrm{cn} 2=0, \mathrm{cn} 3=0\), cost \(=\) NULL,
    \(\mathrm{n} 1=\) NULL, \(\mathrm{n} 2=\) NULL, \(\mathrm{n} 3=\mathrm{NULL}, \mathrm{n} 0=\mathrm{c}(10,3,100), \mathrm{p} 0=.499\),
    constrain = "power", round = TRUE, max.power = FALSE,
    local.solver = c("LBFGS", "SLSQP"),
    power \(=.80\), es \(=.25\), alpha \(=.05\), two.tailed \(=\) TRUE,
    rho2, rho3, omega3, g3 \(=0, r 21=0, r 22=0, r 2 t 3=0\) )
```


Arguments

score
vector or list; an empirical score variable or an object with class 'score' returned from the inspect. score() function.
dists character; distribution of the score variable, "normal" or "uniform". By default, dists $=$ "normal" specification implies a truncated normal distribution with $\mathrm{k} 1=-6$ and $\mathrm{k} 2=6$.
k1 left truncation point for (uncentered) empirical, truncated normal, or uniform distribution. Ignored when rhots $=0$ or order $=0$.
k2
right truncation point for (uncentered) empirical, truncated normal, or uniform distribution. Ignored when rhots $=0$ or order $=0$.
order integer $>=0$; order of polynomial functional form specification for the score variable.
interaction logical; if TRUE polynomial specification interacts with the treatment variable.
rhots
treat.lower
cutoff
p
power
es
alpha
two.tailed
df
rho2
rho3
omega3
g3
r21
r22
r2t3
rate.tp
rate.cc
n1
n2
n3
cn1 obsolote; use order $=0$ to obtain results equivalent to random assignment designs.
logical; if TRUE units below the cutoff are treated.
decision threshold.
proportion of level 2 units in the treatment condition.
statistical power ($1-\beta$).
effect size (Cohen's d).
probability of type I error (α).
logical; TRUE for two-tailed hypothesis testing.
degrees of freedom.
proportion of variance in the outcome between level 2 units (unconditional ICC2).
proportion of variance in the outcome between level 3 units (unconditional ICC3).
ratio of the treatment effect variance between level 3 units to the variance in the outcome between level 3 units.
number of covariates at level 3 .
proportion of level 1 variance in the outcome explained by level 1 covariates.
proportion of level 2 variance in the outcome explained by level 2 covariates.
proportion of treatment effect variance between level 3 units explained by level 3 covariates.
treatment group participation rate.
control group crossover rate.
average number of level 1 units per level 2 unit. average number of level 2 units per level 3 unit.
number of level 3 units (blocks).
marginal costs per level 1 unit in treatment and control conditions (positional), e.g. $c(10,5)$.

cn2	marginal costs per level 2 unit in treatment and control conditions (positional), e.g. $c(50,20)$.
cn3	marginal cost per level 3 unit.
cost	total cost or budget. Ignored when constrain = "power" or constrain = "es".
p0	starting value for p when rhots $=0$ and $p=$ NULL. Starting value is replaced with the average when p is constrained by bounds.
n0	vector of starting values for $n 1, n 2, n 3$ (positional). Starting values are replaced with the averages when sample sizes are constrained by bounds.
constrain	character; constrains one of the "cost", "power", or "es" at the specified value.
round	logical; TRUE for rounded BCOSSA solution.
max. power	logical; TRUE for maximizing the power rate instead of minimizing the variance. Applies when constrain = "cost".
local.solver	subset of c("LBFGS", "SLSQP")

Value

parms list of parameters used in the function.
df degrees of freedom.
sse standardized standard error.
cosa BCOSSA solution.
mdes minimum detectable effect size and $(1-\alpha) \%$ confidence limits.
power \quad statistical power $(1-\beta)$

Examples

```
score.obj <- inspect.score(rnorm(1000),
    order = 1, interaction = FALSE,
    cutoff = 0, k1 = -1, k2 = 1)
power.bcrd3r2(score.obj,
    es = 0.25, rho2 = . 20, rho3 = .10, omega3 = . 30,
    g3 = 0, r2t3 = 0, n1 = 50, n2 = 10, n3 = 10)
# minimum required number of level 2 units for each block
cosa.bcrd3r2(score.obj,
    es = 0.25, rho2 = . 20, rho3 = .10, omega3 = . 30,
    g3 = 0, r2t3 = 0,
    n1 = 50, n2 = NULL, n3 = 10)
```


bcrd4r2 Blocked (Random) Cluster-level Regression Discontinuity (Four-level Design, Discontinuity at Level 2)

Description

Use mdes.bcrd4r2() to calculate minimum detectable effect size, power.bcrd4r2() to calculate statistical power, and use cosa.bcrd4r2() for bound constrained optimal sample size allocation (BCOSSA).

Usage

mdes.bcrd4r2(score $=$ NULL, dists $=$ "normal", $\mathrm{k} 1=-6, \mathrm{k} 2=6$, order $=1$, interaction = FALSE, treat. lower $=$ TRUE, cutoff $=0, p=$ NULL,
power $=.80$, alpha $=.05$, two.tailed $=$ TRUE, $d f=n 4-\mathrm{g} 4-1$,
rho2, rho3, rho4, omega3, omega4,
r21 = 0, r22 = 0, r2t3 = 0, r2t4 = 0, g4 = 0,
rate.tp $=1$, rate.cc $=0, \mathrm{n} 1, \mathrm{n} 2, \mathrm{n} 3, \mathrm{n} 4$)
power.bcrd4r2(score $=$ NULL, dists = "normal", k1 = -6, k2 = 6,
order = 1, interaction = FALSE,
treat.lower $=$ TRUE, cutoff $=0, p=$ NULL,
es $=.25$, alpha $=.05$, two.tailed $=$ TRUE, $d f=\mathrm{n} 4-\mathrm{g} 4-1$,
rho2, rho3, rho4, omega3, omega4,
$\mathrm{r} 21=0, \mathrm{r} 22=0, \mathrm{r} 2 \mathrm{t} 3=0, \mathrm{r} 2 \mathrm{t} 4=0, \mathrm{~g} 4=0$,
rate.tp $=1$, rate. $\mathrm{cc}=0, \mathrm{n} 1, \mathrm{n} 2, \mathrm{n} 3, \mathrm{n} 4$)
cosa.bcrd4r2 (score = NULL, dists = "normal", k1 = -6, k2 = 6, rhots = NULL,
order = 1, interaction = FALSE,
treat.lower $=$ TRUE, cutoff $=0, p=N U L L$,
$\mathrm{cn} 1=0, \mathrm{cn} 2=0, \mathrm{cn} 3=0, \mathrm{cn} 4=0$, cost $=$ NULL,
$\mathrm{n} 1=$ NULL, $\mathrm{n} 2=$ NULL, n3 $=$ NULL, n4 $=$ NULL,
$\mathrm{n} 0=\mathrm{c}(10,3,100,5+\mathrm{g} 4), \mathrm{p} 0=.499$,
constrain = "power", round = TRUE, max.power = FALSE,
local.solver = c("LBFGS", "SLSQP"),
power $=.80$, es $=.25$, alpha $=.05$, two.tailed $=$ TRUE,
rho2, rho3, rho4, omega3, omega4,
$\mathrm{g} 4=0, \mathrm{r} 21=0, \mathrm{r} 22=0, r 2 \mathrm{t} 3=0, r 2 \mathrm{t} 4=0$)

Arguments

score vector or list; an empirical score variable or an object with class 'score' returned from the inspect.score() function.
dists character; distribution of the score variable, "normal" or "uniform". By default, dists = "normal" specification implies a truncated normal distribution with $\mathrm{k} 1=-6$ and $\mathrm{k} 2=6$.

k1	left truncation point for (uncentered) empirical, truncated normal, or uniform distribution. Ignored when rhots $=0$ or order $=0$.
k2	right truncation point for (uncentered) empirical, truncated normal, or uniform distribution. Ignored when rhots $=0$ or order $=0$.
order	integer $>=0$; order of polynomial functional form specification for the score variable.
interaction rhots	logical; if TRUE polynomial specification interacts with the treatment variable. obsolote; use order $=0$ to obtain results equivalent to random assignment designs.
treat.lower	logical; if TRUE units below the cutoff are treated.
cutoff	decision threshold.
p	proportion of level 2 units in the treatment condition.
power	statistical power ($1-\beta$).
es	effect size (Cohen's d).
alpha	probability of type I error (α).
two.tailed	logical; TRUE for two-tailed hypothesis testing.
df	degrees of freedom.
rho2	proportion of variance in the outcome between level 2 units (unconditional ICC2).
rho3	proportion of variance in the outcome between level 3 units (unconditional ICC3).
rho4	proportion of variance in the outcome between level 4 units (unconditional ICC4).
omega3	ratio of the treatment effect variance between level 3 units to the variance in the outcome between level 3 units.
omega4	ratio of the treatment effect variance between level 4 units to the variance in the outcome between level 4 units.
g4	number of covariates at level 4.
r21	proportion of level 1 variance in the outcome explained by level 1 covariates.
r22	proportion of level 2 variance in the outcome explained by level 2 covariates.
r2t3	proportion of treatment effect variance between level 3 units explained by level 3 covariates.
r2t4	proportion of treatment effect variance between level 4 units explained by level 4 covariates.
rate.tp	treatment group participation rate.
rate.cc	control group crossover rate.
n1	average number of level 1 units per level 2 unit.
n2	average number of level 2 units per level 3 unit.
n3	average number of level 3 units (blocks) per level 4 unit.
n4	number of level 4 units (blocks).
cn1	marginal costs per level 1 unit in treatment and control conditions (positional), e.g. $c(10,5)$.

Value

parms
df
sse
cosa
mdes
power statistical power $(1-\beta)$

Examples

```
score.obj <- inspect.score(rnorm(1000),
                                    order = 1, interaction = FALSE,
                                    cutoff = 0, k1 = -1, k2 = 1)
power.bcrd4r2(score.obj,
    es = 0.25, rho2 = . 20, rho3 = . 10, rho4 = .05,
    omega3 = .30, omega4 = .30,
    g4 = 0, r2t4 = 0,
    n1 = 20, n2 = 3, n3 = 20, n4 = 10)
# minimum required number of level 2 units for each one of the level 3 block
cosa.bcrd4r2(score.obj,
    es = 0.25, rho2 = . 20, rho3 = .10, rho4 = .05,
    omega3 = .30, omega4 = .30,
    g4 = 0, r2t4 = 0,
    n1 = 20, n2 = NULL, n3 = 20, n4 = 10)
```


bcrd4r3

Blocked (Random) Cluster-level Regression Discontinuity (Four-level

 Design, Discontinuity at Level 3)
Description

Use mdes.bcrd4r3() to calculate minimum detectable effect size, power.bcrd4r3() to calculate statistical power, and cosa.bcrd4r3() for bound constrained optimal sample size allocation (BCOSSA).

Usage

mdes.bcrd4r3(score $=$ NULL, dists $=$ "normal", $\mathrm{k} 1=-6$, $\mathrm{k} 2=6$,
order $=1$, interaction = FALSE,
treat. lower $=$ TRUE, cutoff $=0, p=$ NULL,
power $=.80$, alpha $=.05$, two.tailed $=$ TRUE, $d f=n 4-\mathrm{g} 4-1$,
rho2, rho3, rho4, omega4,
r21 = 0, r22 = 0, r23 = 0, r2t4 = 0, g4 = 0, rate.tp $=1$, rate.cc $=0, \mathrm{n} 1, \mathrm{n} 2, \mathrm{n} 3, \mathrm{n} 4)$
power.bcrd4r3(score $=$ NULL, dists $=$ "normal", k1 $=-6$, $k 2=6$,
order $=1$, interaction = FALSE,
treat.lower $=$ TRUE, cutoff $=0, p=$ NULL,
es $=.25$, alpha $=.05$, two.tailed $=$ TRUE, $d f=n 4-\mathrm{g} 4-1$,
rho2, rho3, rho4, omega4,
r21 $=0, \mathrm{r} 22=0, \mathrm{r} 23=0, \mathrm{r} 2 \mathrm{t} 4=0, \mathrm{~g} 4=0$, rate.tp $=1$, rate. $\mathrm{cc}=0, \mathrm{n} 1, \mathrm{n} 2, \mathrm{n} 3, \mathrm{n} 4$)
cosa.bcrd4r3(score $=$ NULL, dists = "normal", k1 = -6, k2 = 6, rhots $=$ NULL,
order = 1, interaction = FALSE,
treat. lower $=$ TRUE, cutoff $=0, p=$ NULL,
$\mathrm{cn} 1=0, \mathrm{cn} 2=0, \mathrm{cn} 3=0, \mathrm{cn} 4=0$, cost $=$ NULL,
$\mathrm{n} 1=$ NULL, $\mathrm{n} 2=$ NULL, $\mathrm{n} 3=$ NULL, n4 $=$ NULL,
$\mathrm{n} 0=\mathrm{c}(10,3,100,5+\mathrm{g} 4), \mathrm{p} 0=.499$,
constrain = "power", round = TRUE, max. power = FALSE,
local.solver = c("LBFGS", "SLSQP"),
power $=.80$, es $=.25$, alpha $=.05$, two.tailed $=$ TRUE, rho2, rho3, rho4, omega4, $\mathrm{g} 4=0, \mathrm{r} 21=0, \mathrm{r} 22=0, r 23=0, r 2 \mathrm{t} 4=0)$

Arguments

score vector or list; an empirical score variable or an object with class 'score' returned from the inspect. score() function.
dists character; distribution of the score variable, "normal" or "uniform". By default, dists = "normal" specification implies a truncated normal distribution with $\mathrm{k} 1=-6$ and $\mathrm{k} 2=6$.

k1	left truncation point for (uncentered) empirical, truncated normal, or uniform distribution. Ignored when rhots $=0$ or order $=0$.
k2	right truncation point for (uncentered) empirical, truncated normal, or uniform distribution. Ignored when rhots $=0$ or order $=0$.
order	integer $>=0$; order of polynomial functional form specification for the score variable.
interaction rhots	logical; if TRUE polynomial specification interacts with the treatment variable. obsolote; use order $=0$ to obtain results equivalent to random assignment designs.
treat.lower	logical; if TRUE units below the cutoff are treated.
cutoff	decision threshold.
p	proportion of level 3 units in the treatment condition.
power	statistical power ($1-\beta$).
es	effect size (Cohen's d).
alpha	probability of type I error (α).
two.tailed	logical; TRUE for two-tailed hypothesis testing.
df	degrees of freedom.
rho2	proportion of variance in the outcome between level 2 units (unconditional ICC2).
rho3	proportion of variance in the outcome between level 3 units (unconditional ICC3).
rho4	proportion of variance in the outcome between level 4 units (unconditional ICC4).
omega4	ratio of the treatment effect variance between level 4 units to the variance in the outcome between level 4 units.
g4	number of covariates at level 4.
r21	proportion of level 1 variance in the outcome explained by level 1 covariates.
r22	proportion of level 2 variance in the outcome explained by level 2 covariates.
r23	proportion of level 3 variance in the outcome explained by level 3 covariates.
r2t4	proportion of treatment effect variance between level 4 units explained by level 4 covariates.
rate.tp	treatment group participation rate.
rate.cc	control group crossover rate.
n1	average number of level 1 units per level 2 unit.
n2	average number of level 2 units per level 3 unit.
n3	average number of level 3 units per level 4 unit.
n4	number of level 4 units (blocks).
cn1	marginal costs per level 1 unit in treatment and control conditions (positional), e.g. $c(10,5)$.
cn2	marginal costs per level 2 unit in treatment and control conditions (positional), e.g. $c(50,20)$.
cn3	marginal costs per level 3 unit in treatment and control conditions (positional), e.g. $c(80,50)$.

cn4	marginal cost per level 4 unit.
cost	total cost or budget. Ignored when constrain = "power" or constrain = "es".
p0	starting value for p when rhots $=0$ and $p=$ NULL. Starting value is replaced with the average when p is constrained by bounds.
n0	vector of starting values for $\mathrm{n} 1, \mathrm{n} 2, \mathrm{n} 3, \mathrm{n} 4$ (positional). Starting values are re- placed with the averages when sample sizes are constrained by bounds.
constrain	character; constrains one of the "cost", "power", or "es" at the specified value.
round	logical; TRUE for rounded BCOSSA solution. max. power
logical; TRUE for maximizing the power rate instead of minimizing the variance.	
Applies when constrain = "cost".	

Value

parms list of parameters used in the function.
df degrees of freedom.
sse standardized standard error.
cosa BCOSSA solution.
mdes minimum detectable effect size and (1- α)\% confidence limits.
power \quad statistical power $(1-\beta)$

Examples

```
score.obj <- inspect.score(rnorm(1000),
    order = 1, interaction = FALSE,
    cutoff = 0, k1 = -1, k2 = 1)
power.bcrd4r3(score.obj,
    es = 0.25, rho2 = . 20, rho3 = .10, rho4 = .05,
    omega4 = . 30, g4 = 0, r2t4 = 0,
    n1 = 20, n2 = 3, n3 = 20, n4 = 10)
# minimum required number of level 3 units for each one of the level 4 block
cosa.bcrd4r3(score.obj,
    es = 0.25, rho2 = . 20, rho3 = . 10, rho4 = .05,
    omega4 = . 30, g4 = 0, r2t4 = 0,
    n1 = 20, n2 = 3, n3 = NULL, n4 = 10)
```


Description

Use mdes.bird2() to calculate minimum detectable effect size, power .bird2() to calculate statistical power, and cosa.bird2() for bound constrained optimal sample size allocation (BCOSSA).

Usage

```
    mdes.bird2(score = NULL, dists = "normal", k1 = -6, k2 = 6,
            order = 1, interaction = FALSE,
            treat.lower \(=\) TRUE, cutoff \(=0, p=N U L L\),
            power \(=.80\), alpha \(=.05\), two.tailed \(=\) TRUE, df \(=\mathrm{n} 2-\mathrm{g} 2-1\),
            rho2, omega2, r21 = 0, r2t2 = 0, g2 = 0,
            rate. \(\mathrm{tp}=1\), rate. \(\mathrm{cc}=0, \mathrm{n} 1, \mathrm{n} 2\) )
    power.bird2(score \(=\) NULL, dists \(=\) "normal", \(\mathrm{k} 1=-6\), \(\mathrm{k} 2=6\),
            order \(=1\), interaction = FALSE,
            treat. lower \(=\) TRUE, cutoff \(=0, p=\) NULL,
            es \(=.25\), alpha \(=.05\), two.tailed \(=\) TRUE, \(d f=\mathrm{n} 2-\mathrm{g} 2-1\),
            rho2, omega2, r21 = 0, r2t2 = 0, g2 = 0,
            rate.tp \(=1\), rate.cc \(=0, \mathrm{n} 1, \mathrm{n} 2\) )
    cosa.bird2(score \(=\) NULL, dists = "normal", k1 = -6, k2 = 6, rhots \(=\) NULL,
    order \(=1\), interaction = FALSE,
    treat. lower \(=\) TRUE, cutoff \(=0, p=\) NULL,
    \(\mathrm{cn} 1=0, \mathrm{cn} 2=0\), cost \(=\) NULL,
    \(\mathrm{n} 1=\) NULL, \(\mathrm{n} 2=\) NULL, \(\mathrm{n} 0=\mathrm{c}(10,100), \mathrm{p} 0=.499\),
    constrain = "power", round = TRUE, max. power = FALSE,
    local.solver = c("LBFGS", "SLSQP"),
    power \(=.80\), es \(=.25\), alpha \(=.05\), two.tailed \(=\) TRUE,
    rho2, omega2, g2 = 0, r21 = 0, r2t2 = 0)
```


Arguments

score vector or list; an empirical score variable or an object with class 'score' returned from the inspect.score() function.
dists character; distribution of the score variable, "normal" or "uniform". By default, dists $=$ "normal" specification implies a truncated normal distribution with $\mathrm{k} 1=-6$ and $\mathrm{k} 2=6$.
k1 left truncation point for (uncentered) empirical, truncated normal, or uniform distribution. Ignored when rhots $=0$ or order $=0$.
k2 right truncation point for (uncentered) empirical, truncated normal, or uniform distribution. Ignored when rhots $=0$ or order $=0$.

order	integer $>=0$; order of polynomial functional form specification for the score variable.
interaction	logical; if TRUE polynomial specification interacts with the treatment variable.
rhots	obsolote; use order $=0$ to obtain results equivalent to random assignment designs.
treat.lower	logical; if TRUE units below the cutoff are treated.
cutoff	decision threshold.
p	proportion of level 1 units in the treatment condition.
power	statistical power ($1-\beta$).
es	effect size (Cohen's d).
alpha	probability of type I error (α).
two.tailed	logical; TRUE for two-tailed hypothesis testing.
df	degrees of freedom.
rho2	proportion of variance in the outcome between level 2 units (unconditional ICC2).
omega2	ratio of the treatment effect variance between level 2 units to the variance in the outcome between level 2 units.
g2	number of covariates at level 2.
r21	proportion of level 1 variance in the outcome explained by level 1 covariates.
r2t2	proportion of treatment effect variance between level 2 units explained by level 2 covariates.
rate.tp	treatment group participation rate.
rate.cc	control group crossover rate.
n1	average number of level 1 units per level 2 units.
n2	number of level 2 units (blocks).
cn1	marginal costs per level 1 unit in treatment and control conditions (positional), e.g. $c(10,5)$.
cn2	marginal cost per level 2 unit.
cost	total cost or budget. Ignored when constrain = "power" or constrain = "es".
p0	starting value for p when rhots $=0$ and $p=$ NULL. Starting value is replaced with the average when p is constrained by bounds.
n0	vector of starting values for $\mathrm{n} 1, \mathrm{n} 2$ (positional). Starting values are replaced with the averages when sample sizes are constrained by bounds.
constrain	character; constrains one of the "cost", "power", or "es" at the specified value.
round	logical; TRUE for rounded BCOSSA solution.
max. power	logical; TRUE for maximizing the power rate instead of minimizing the variance. Applies when constrain = "cost".
local.solver	subset of c("LBFGS", "SLSQP")

Value

parms	list of parameters used in the function.
df	degrees of freedom.
sse	standardized standard error.
cosa	BCOSSA solution.
mdes	minimum detectable effect size and $(1-\alpha) \%$ confidence limits.
power	statistical power $(1-\beta)$

Examples

```
score.obj <- inspect.score(rnorm(1000),
    order = 1, interaction = FALSE,
    cutoff = 0, k1 = -1, k2 = 1)
power.bird2(score.obj,
    es = 0.25, rho2 = . 20, omega2 = . 30,
    g2 = 0, r2t2 = 0, n1 = 50, n2 = 30)
# minimum required number of level 1 units for each one of the level 2 block
cosa.bird2(score.obj,
    es = 0.25, rho2 = . 20, omega2 = .30,
    g2 = 0, r2t2 = 0,
    n1 = NULL, n2 = 30)
```

```
bird3
```

Blocked (Random) Individual-level Regression Discontinuity (Three-
level Design, Discontinuity at Level 1)

Description

Use mdes.bird3() to calculate minimum detectable effect size, power .bird3() to calculate statistical power, and cosa.bird3() for bound constrained optimal sample size allocation (BCOSSA).

Usage

```
mdes.bird3(score = NULL, dists = "normal", k1 = -6, k2 = 6,
    order = 1, interaction = FALSE,
    treat.lower = TRUE, cutoff = 0, p = NULL,
    power = . 80, alpha = .05, two.tailed = TRUE, df = n3 - g3 - 1,
    rho2, rho3, omega2, omega3, r21 = 0, r2t2 = 0, r2t3 = 0, g3 = 0,
    rate.tp = 1, rate.cc = 0, n1, n2, n3)
power.bird3(score = NULL, dists = "normal", k1 = -6, k2 = 6,
    order = 1, interaction = FALSE,
    treat.lower = TRUE, cutoff = 0, p = NULL,
    es = . 25, alpha = .05, two.tailed = TRUE, df = n3 - g3 - 1,
```

```
    rho2, rho3, omega2, omega3, r21 = 0, r2t2 = 0, r2t3 = 0, g3 = 0,
    rate.tp = 1, rate.cc = 0, n1, n2, n3)
cosa.bird3(score = NULL, dists = "normal", k1 = -6, k2 = 6, rhots = NULL,
    order = 1, interaction = FALSE,
    treat.lower = TRUE, cutoff = 0, p = NULL,
    cn1 = 0, cn2 = 0, cn3 = 0, cost = NULL,
    n1 = NULL, n2 = NULL, n3 = NULL,
    n0 = c(10, 3, 100), p0 = .499,
    constrain = "power", round = TRUE, max.power = FALSE,
    local.solver = c("LBFGS", "SLSQP"),
    power = . 80, es = . 25, alpha = .05, two.tailed = TRUE,
    rho2, rho3, omega2, omega3,
    g3 = 0, r21 = 0, r2t2 = 0, r2t3 = 0)
```


Arguments

score vector or list; an empirical score variable or an object with class 'score' returned from the inspect.score() function.
dists character; distribution of the score variable, "normal" or "uniform". By default, dists = "normal" specification implies a truncated normal distribution with $\mathrm{k} 1=-6$ and $\mathrm{k} 2=6$.
k1
left truncation point for (uncentered) empirical, truncated normal, or uniform distribution. Ignored when rhots $=0$ or order $=0$.
k2 right truncation point for (uncentered) empirical, truncated normal, or uniform distribution. Ignored when rhots $=0$ or order $=0$.
order integer $>=0$; order of polynomial functional form specification for the score variable.
interaction logical; if TRUE polynomial specification interacts with the treatment variable.
rhots obsolote; use order $=0$ to obtain results equivalent to random assignment designs.
treat.lower logical; if TRUE units below the cutoff are treated.
cutoff decision threshold.
$\mathrm{p} \quad$ proportion of level 1 units in the treatment condition.
power statistical power (1- β).
es
alpha probability of type I error (α).
two.tailed logical; TRUE for two-tailed hypothesis testing.
$\mathrm{df} \quad$ degrees of freedom.
rho2 proportion of variance in the outcome between level 2 units (unconditional ICC2).
rho3 proportion of variance in the outcome between level 3 units (unconditional ICC3).
omega2 ratio of the treatment effect variance between level 2 units to the variance in the outcome between level 2 units.

omega3	ratio of the treatment effect variance between level 3 units to the variance in the outcome between level 3 units.
g3	number of covariates at level 3 .
r21	proportion of level 1 variance in the outcome explained by level 1 covariates.
r2t2	proportion of treatment effect variance between level 2 units explained by level 2 covariates.
r2t3	proportion of treatment effect variance between level 3 units explained by level 3 covariates.
rate.tp	treatment group participation rate.
rate.cc	control group crossover rate.
n1	average number of level 1 units per level 2 unit.
n2	average number of level 2 units (blocks) per level 3 unit.
n3	number of level 3 units (blocks).
cn1	marginal costs per level 1 unit in treatment and control conditions (positional), e.g. $c(10,5)$.
cn2	marginal cost per level 2 unit.
cn3	marginal cost per level 3 unit.
cost	total cost or budget. Ignored when constrain = "power" or constrain = "es".
p0	starting value for p when rhots $=0$ and $p=$ NULL. Starting value is replaced with the average when p is constrained by bounds.
n0	vector of starting values for $\mathrm{n} 1, \mathrm{n} 2, \mathrm{n} 3$ (positional). Starting values are replaced with the averages when sample sizes are constrained by bounds.
constrain	character; constrains one of the "cost", "power", or "es" at the specified value.
round	logical; TRUE for rounded BCOSSA solution.
max. power	logical; TRUE for maximizing the power rate instead of minimizing the variance. Applies when constrain = "cost".
local.solver	subset of c ("LBFGS", "SLSQP")

Value

parms
df
sse
cosa
mdes
power
list of parameters used in the function.
degrees of freedom.
standardized standard error.
BCOSSA solution.
minimum detectable effect size and (1- α)\% confidence limits.
statistical power $(1-\beta)$

Examples

```
    score.obj <- inspect.score(rnorm(1000),
                    order = 1, interaction = FALSE,
                cutoff = 0, k1 = -1, k2 = 1)
```

power.bird3(score.obj,
es $=0.25$, rho2 $=.20$, rho3 $=.10$,
omega2 $=.30$, omega3 $=.30$,
g3 $=0, r 2 t 3=0$,
$\mathrm{n} 1=20, \mathrm{n} 2=3, \mathrm{n} 3=20)$
\# minimum required number of level 1 units for each one of the level 2 block
cosa.bird3(score.obj,
es $=0.25$, rho2 $=.20$, rho3 $=.10$,
omega2 $=.30$, omega3 $=.30$,
g3 $=0, r 2 t 3=0$,
$\mathrm{n} 1=$ NULL, $\mathrm{n} 2=3, \mathrm{n} 3=20$)
bird4 Blocked (Random) Individual-level Regression Discontinuity (Fourlevel Design, Discontinuity at Level 1)

Description

Use mdes.bird4() to calculate minimum detectable effect size, power. bird4() to calculate statistical power, and cosa.bird4() for bound constrained optimal sample size allocation (BCOSSA).

Usage

```
mdes.bird4(score = NULL, dists = "normal", k1 = -6, k2 = 6,
    order = 1, interaction = FALSE,
    treat.lower = TRUE, cutoff = 0, p = NULL,
    power = . 80, alpha = .05, two.tailed = TRUE, df = n4 - g4 - 1,
    rho2, rho3, rho4, omega2, omega3, omega4,
    r21 = 0, r2t2 = 0, r2t3 = 0, r2t4 = 0, g4 = 0,
    rate.tp = 1, rate.cc = 0, n1, n2, n3, n4)
power.bird4(score = NULL, dists = "normal", k1 = -6, k2 = 6,
    order = 1, interaction = FALSE,
    treat.lower = TRUE, cutoff = 0, p = NULL,
    es = . 25, alpha = .05, two.tailed = TRUE, df = n4 - g4 - 1,
    rho2, rho3, rho4, omega2, omega3, omega4,
    r21 = 0, r2t2 = 0, r2t3 = 0, r2t4 = 0, g4 = 0,
    rate.tp = 1, rate.cc = 0, n1, n2, n3, n4)
cosa.bird4(score = NULL, dists = "normal", k1 = -6, k2 = 6, rhots = NULL,
    order = 1, interaction = FALSE,
    treat.lower = TRUE, cutoff = 0, p = NULL,
```

```
cn1 = 0, cn2 = 0, cn3 = 0, cn4 = 0, cost = NULL,
n1 = NULL, n2 = NULL, n3 = NULL, n4 = NULL,
n0 = c(10, 3, 100, 5 + g4), p0 = .499,
constrain = "power", round = TRUE, max.power = FALSE,
local.solver = c("LBFGS", "SLSQP"),
power = . 80, es = . 25, alpha = .05, two.tailed = TRUE,
rho2, rho3, rho4, omega2, omega3, omega4,
g4 = 0, r21 = 0, r2t2 = 0, r2t3 = 0, r2t4 = 0)
```


Arguments

```
    score
```

 dists character; distribution of the score variable, "normal" or "uniform". By de- fault, dists \(=\) "normal" specification implies a truncated normal distribution with \(\mathrm{k} 1=-6\) and \(\mathrm{k} 2=6\).
 k1
k2
order
interaction
rhots
treat.lower
cutoff decision threshold.
p
power
es
alpha
two.tailed
df
rho2 proportion of variance in the outcome between level 2 units (unconditional ICC2).
rho3

rho4

omega2
omega3 ratio of the treatment effect variance between level 3 units to the variance in the outcome between level 3 units.
omega4 ratio of the treatment effect variance between level 4 units to the variance in the outcome between level 4 units.
g4
rate.tp
rate.cc
n1
n2
n3
n4
cn1
cn2
cn3
cn4
cost
p0
n0

> constrain
round
max. power
local.solver
number of covariates at level 4.
proportion of level 1 variance in the outcome explained by level 1 covariates.
proportion of treatment effect variance between level 2 units explained by level 2 covariates.
proportion of treatment effect variance between level 3 units explained by level 3 covariates.
proportion of treatment effect variance between level 4 units explained by level 4 covariates.
treatment group participation rate.
control group crossover rate.
average number of level 1 units per level 2 unit.
average number of level 2 units (blocks) per level 3 unit.
average number of level 3 units (blcoks) per level 4 unit.
number of level 4 units (blocks).
marginal costs per level 1 unit in treatment and control conditions (positional), e.g. $c(10,5)$.
marginal cost per level 2 unit.
marginal cost per level 3 unit.
marginal cost per level 4 unit.
total cost or budget. Ignored when constrain = "power" or constrain = "es".
starting value for p when rhots $=0$ and $p=$ NULL. Starting value is replaced with the average when p is constrained by bounds.
vector of starting values for $\mathrm{n} 1, \mathrm{n} 2, \mathrm{n} 3, \mathrm{n} 4$ (positional). Starting values are replaced with the averages when sample sizes are constrained by bounds.
character; constrains one of the "cost", "power", or "es" at the specified value.
logical; TRUE for rounded BCOSSA solution.
logical; TRUE for maximizing the power rate instead of minimizing the variance. Applies when constrain = "cost".

Value

parms
df
sse
cosa
mdes
power
list of parameters used in the function.
degrees of freedom.
standardized standard error.
BCOSSA solution.
minimum detectable effect size and $(1-\alpha) \%$ confidence limits.
statistical power $(1-\beta)$

Examples

```
score.obj <- inspect.score(rnorm(1000),
    order = 1, interaction = FALSE,
    cutoff = 0, k1 = -1, k2 = 1)
```

power.bird4(score.obj,
es $=.25$, rho2 $=.20$, rho3 $=.10$, rho4 $=.05$,
omega2 $=.30$, omega3 $=.30$, omega4 $=.30$,
$\mathrm{g} 4=0, \mathrm{r} 2 \mathrm{t} 4=0, \mathrm{n} 1=20, \mathrm{n} 2=3, \mathrm{n} 3=20, \mathrm{n} 4=5$)
\# minimum required number of level 1 units for each one of the level 2 block
cosa.bird4(score.obj, order $=2$,
$\mathrm{es}=.25$, rho2 $=.20$, rho3 $=.10$, rho4 $=.05$,
omega2 $=.30$, omega3 $=.30$, omega $4=.30$,
$\mathrm{g} 4=0, \mathrm{r} 2 \mathrm{t} 4=0, \mathrm{n} 1=\mathrm{NULL}, \mathrm{n} 2=3, \mathrm{n} 3=20, \mathrm{n} 4=5$)
cosa-deprecated Deprecated and Defunct functions in cosa

Description

Some function are renamed and depreciated. They may be removed in the future.

Details

Depreciated function names:

- power.crd2r2 is depreciated, use power.crd2 instead.
- mdes.crd2r2 is depreciated, use mdes.crd2 instead.
- cosa.crd2r2 is depreciated, use cosa.crd2 instead.
- power. crd3r3 is depreciated, use power. crd3 instead.
- mdes. crd3r3 is depreciated, use mdes.crd3 instead.
- cosa. crd3r3 is depreciated, use cosa. crd3 instead.
- power.crd4r4 is depreciated, use power.crd4 instead.
- mdes.crd4r4 is depreciated, use mdes.crd4 instead.
- cosa.crd4r4 is depreciated, use cosa.crd4 instead.
- power.ira1r1 is depreciated, use power.ira instead.
- mdes.ira1r1 is depreciated, use mdes.ira instead.
- power.bira2r1 is depreciated, use power.bira2 instead.
- mdes.bira2r1 is depreciated, use mdes.bira2 instead.
- cosa.bira2r1 is depreciated, use cosa.bira2 instead.
- power.bira3r1 is depreciated, use power.bira3 instead.
- mdes.bira3r1 is depreciated, use mdes.bira3 instead.
- cosa.bira3r1 is depreciated, use cosa.bira3 instead.
- power.bira4r1 is depreciated, use power.bira4 instead.
- mdes.bira4r1 is depreciated, use mdes.bira4 instead.
- cosa.bira4r1 is depreciated, use cosa.bira4 instead.
crd2 Cluster-level Regression Discontinuity (Two-level Design, Discontinuity at Level 2, w/ or w/o Strata or Fixed Blocks)

Description

Use mdes.crd2() to calculate minimum detectable effect size, power.crd2() to calculate statistical power, and cosa.crd2() for bound constrained optimal sample size allocation (BCOSSA). If higher level strata or fixed blocks exist, use mdes.bcrd3f2() to calculate minimum detectable effect size, power.bcrd3f2() to calculate statistical power, and cosa.bcrd3f2() for BCOSSA.

Usage

```
    mdes.crd2(score = NULL, dists = "normal", k1 = -6, k2 = 6,
            order = 1, interaction = FALSE,
            treat.lower \(=\) TRUE, cutoff \(=0, p=N U L L\),
            power \(=.80\), alpha \(=.05\), two.tailed \(=\) TRUE,
            df = n2 - g2 - order * (1 + interaction) - 2,
            rho2, r21 = 0, r22 = 0, g2 = 0, rate.tp \(=1\), rate. \(\mathrm{cc}=0, \mathrm{n} 1, \mathrm{n} 2\) )
    power.crd2 (score \(=\) NULL, dists \(=\) "normal", \(\mathrm{k} 1=-6\), \(\mathrm{k} 2=6\),
            order \(=1\), interaction = FALSE,
            treat.lower \(=\) TRUE, cutoff \(=0, p=\) NULL,
            es \(=.25\), alpha \(=.05\), two.tailed \(=\) TRUE,
            df = n2 - g2 - order * (1 + interaction) - 2,
            rho2, r21 = 0, r22 = 0, g2 = 0, rate.tp \(=1\), rate. \(c c=0, n 1, ~ n 2)\)
    cosa.crd2(score = NULL, dists = "normal", k1 = -6, k2 = 6, rhots = NULL,
    order = 1, interaction = FALSE,
    treat. lower \(=\) TRUE, cutoff \(=0, p=\) NULL,
    \(\mathrm{cn} 1=0, \mathrm{cn} 2=0\), cost \(=\) NULL,
    \(\mathrm{n} 1=\) NULL, \(\mathrm{n} 2=\) NULL, \(\mathrm{n} 0=\mathrm{c}(10,100), \mathrm{p} 0=.499\),
    constrain = "power", round = TRUE,
    max.power = FALSE, local.solver = c("LBFGS", "SLSQP"),
    power \(=.80\), es \(=.25\), alpha \(=.05\), two.tailed \(=\) TRUE,
    rho2, g2 = 0, r21 = 0, r22 = 0)
    mdes.bcrd3f2(score = NULL, dists = "normal", k1 = -6, k2 = 6,
        order = 1, interaction = FALSE,
        treat.lower \(=\) TRUE, cutoff \(=0, p=N U L L\),
        power \(=.80\), alpha \(=.05\), two.tailed \(=\) TRUE,
```

```
    df = n3 * (n2 - 2) - g2 - order * (1 + interaction),
    rho2, r21 = 0, r22 = 0, g2 = 0,
    rate.tp = 1, rate.cc = 0, n1, n2, n3)
power.bcrd3f2(score = NULL, dists = "normal", k1 = -6, k2 = 6,
    order = 1, interaction = FALSE,
    treat.lower = TRUE, cutoff = 0, p = NULL,
    es = . 25, alpha = .05, two.tailed = TRUE,
    df = n3 * (n2 - 2) - g2 - order * (1 + interaction),
    rho2, r21 = 0, r22 = 0, g2 = 0,
    rate.tp = 1, rate.cc = 0, n1, n2, n3)
cosa.bcrd3f2(score = NULL, dists = "normal", k1 = -6, k2 = 6, rhots = NULL,
    order = 1, interaction = FALSE,
    treat.lower = TRUE, cutoff = 0, p = NULL,
    cn1 = 0, cn2 = 0, cn3 = 0, cost = NULL,
    n1 = NULL, n2 = NULL, n3 = NULL,
    n0 = c(10, 100, 5), p0 = .499,
    constrain = "power", round = TRUE, max.power = FALSE,
    local.solver = c("LBFGS", "SLSQP"),
    power = . 80, es = . 25, alpha = .05, two.tailed = TRUE,
    rho2, g2 = 0, r21 = 0, r22 = 0)
```


Arguments

score	vector or list; an empirical score variable or an object with class 'score' returned from the inspect. score() function. character; distribution of the score variable, "normal" or "uni form". By de- fault, dists = "normal" specification implies a truncated normal distribution with k1 $=-6$ and k2 $=6$.
k1	left truncation point for (uncentered) empirical, truncated normal, or uniform distribution. Ignored when rhots $=0$ or order $=0$.
k2	right truncation point for (uncentered) empirical, truncated normal, or uniform distribution. Ignored when rhots $=0$ or order $=0$.
order	integer >= 0; order of polynomial functional form specification for the score variable.
interaction	logical; if TRUE polynomial specification interacts with the treatment variable.
rhots	obsolote; use order $=0$ to obtain results equivalent to random assignment de- signs.
treat. lower	logical; if TRUE units below the cutoff are treated.
cutoff	decision threshold.
p	proportion of level 2 units in the treatment condition.
power	statistical power $(1-\beta)$. effect size $($ Cohen's d).
alpha	probability of type I error (α).

two.tailed	logical; TRUE for two-tailed hypothesis testing.
df	degrees of freedom.
rho2	proportion of variance in the outcome between level 2 units (unconditional ICC2).
g2	number of covariates at level 2.
r21	proportion of level 1 variance in the outcome explained by level 1 covariates.
r22	proportion of level 2 variance in the outcome explained by level 2 covariates.
rate.tp	treatment group participation rate.
rate.cc	control group crossover rate.
n1	average number of level 1 units per level 2 unit.
n2	number of level 2 units (per stratum or block, if exists).
n3	number of stratum or fixed blocks.
cn1	marginal costs per level 1 unit in treatment and control conditions (positional), e.g. $c(10,5)$.
cn2	marginal costs per level 2 unit in treatment and control conditions (positional), e.g. $c(50,30)$.
cn3	marginal cost per stratum or fixed block.
cost	total cost or budget. Ignored when constrain = "power" or constrain = "es".
n0	vector of starting values for $\mathrm{n} 1, \mathrm{n} 2$ or $\mathrm{n} 1, \mathrm{n} 2, \mathrm{n} 3$ (positional). Starting values are replaced with the averages when sample sizes are constrained by bounds.
p0	starting value for p when rhots $=0$ or order $=0$, and $p=$ NULL. Starting value is replaced with the average when p is constrained by bounds.
constrain	character; constrains one of the "cost", "power", or "es" at the specified value.
round	logical; TRUE for rounded BCOSSA solution.
max. power	logical; TRUE for maximizing the power rate instead of minimizing the variance. Applies when constrain = "cost".
local.solver	subset of c("LBFGS", "SLSQP")

Value

parms	list of parameters used in the function.
df	degrees of freedom.
sse	standardized standard error.
cosa	BCOSSA solution.
mdes	minimum detectable effect size and $(1-\alpha) \%$ confidence limits.
power	statistical power $(1-\beta)$

Examples

```
score.obj <- inspect.score(rnorm(1000),
    order = 1, interaction = FALSE,
    cutoff = 0, k1 = -1, k2 = 1)
# single site (no blocks)
power.crd2(score.obj,
    es = . 25, rho2 = . 20, g2 = 0, r22 = 0,
    n1 = 50, n2 = 30)
```

\# with 5 blocks (note that r 22 is modified but g 2 remains the same)
power.bcrd3f2(score.obj,
es $=.25$, rho2 $=.20, \mathrm{~g} 2=0, \mathrm{r} 22=.30$,
$\mathrm{n} 1=50, \mathrm{n} 2=30, \mathrm{n} 3=5$)
\# minimum required number of level 2 units for each block
cosa.bcrd3f2(score.obj,
es $=.25$, rho2 $=.20, \mathrm{~g} 2=0, \mathrm{r} 22=.30$,
$\mathrm{n} 1=50, \mathrm{n} 2=$ NULL, $\mathrm{n} 3=5$)
crd3

Cluster-level Regression Discontinuity (Three-level Design, Discontinuity at Level 3, w/ or w/o Strata or Fixed Blocks)

Description

Use mdes.crd3() to calculate minimum detectable effect size, power.crd3() to calculate statistical power, and cosa.crd3() for bound constrained optimal sample size allocation (BCOSSA). If higher level strata or fixed blocks exist, use mdes.bcrd4f3() to calculate minimum detectable effect size, power.berd4f3() to calculate statistical power, and cosa.bcrd4f3() for BCOSSA.

Usage

```
    mdes.crd3(score = NULL, dists = "normal", k1 = -6, k2 = 6,
    order = 1, interaction = FALSE,
    treat.lower = TRUE, cutoff = 0, p = NULL,
    power = . 80, alpha = .05, two.tailed = TRUE,
    df = n3 - g3 - order * (1 + interaction) - 2,
    rho2, rho3, r21 = 0, r22 = 0, r23 = 0,
    g3 = 0, rate.tp = 1, rate.cc = 0, n1, n2, n3)
    power.crd3(score = NULL, dists = "normal", k1 = -6, k2 = 6,
    order = 1, interaction = FALSE,
    treat.lower = TRUE, cutoff = 0, p = NULL,
    es = . 25, alpha = .05, two.tailed = TRUE,
    df = n3 - g3 - order * (1 + interaction) - 2,
    rho2, rho3, r21 = 0, r22 = 0, r23 = 0,
```

```
        g3 = 0, rate.tp = 1, rate.cc = 0, n1, n2, n3)
cosa.crd3(score = NULL, dists = "normal", k1 = -6, k2 = 6, rhots = NULL,
    order = 1, interaction = FALSE,
    treat.lower = TRUE, cutoff = 0, p = NULL,
    cn1 = 0, cn2 = 0, cn3 = 0, cost = NULL,
    n1 = NULL, n2 = NULL, n3 = NULL,
    n0 = c(10, 3, 100), p0 = .499,
    constrain = "power", round = TRUE, max.power = FALSE,
    local.solver = c("LBFGS", "SLSQP"),
    power = . 80, es = . 25, alpha = .05, two.tailed = TRUE,
    rho2, rho3, g3 = 0, r21 = 0, r22 = 0, r23 = 0)
mdes.bcrd4f3(score = NULL, dists = "normal", k1 = -6, k2 = 6,
    order = 1, interaction = FALSE,
    treat.lower = TRUE, cutoff = 0, p = NULL,
    power = .80, alpha = .05, two.tailed = TRUE,
    df = n4 * (n3 - 2) - g3 - order * (1 + interaction),
    rho2, rho3, r21 = 0, r22 = 0, r23 = 0, g3 = 0,
    rate.tp = 1, rate.cc = 0, n1, n2, n3, n4)
power.bcrd4f3(score = NULL, dists = "normal", k1 = -6, k2 = 6,
    order = 1, interaction = FALSE,
    treat.lower = TRUE, cutoff = 0, p = NULL,
    es = . 25, alpha = .05, two.tailed = TRUE,
    df = n4 * (n3 - 2) - g3 - order * (1 + interaction),
    rho2, rho3, r21 = 0, r22 = 0, r23 = 0, g3 = 0,
    rate.tp = 1, rate.cc = 0, n1, n2, n3, n4)
cosa.bcrd4f3(score = NULL, dists = "normal", k1 = -6, k2 = 6, rhots = NULL,
    order = 1, interaction = FALSE,
    treat.lower = TRUE, cutoff = 0, p = NULL,
    cn1 = 0, cn2 = 0, cn3 = 0, cn4 = 0, cost = NULL,
    n1 = NULL, n2 = NULL, n3 = NULL, n4 = NULL,
    n0 = c(10, 3, 100 + g3 + order * (1 + interaction), 5), p0 = .499,
    constrain = "power", round = TRUE, max.power = FALSE,
    local.solver = c("LBFGS", "SLSQP"),
    power = .80, es = . 25, alpha = .05, two.tailed = TRUE,
    rho2, rho3, g3 = 0, r21 = 0, r22 = 0, r23 = 0)
```


Arguments

score vector or list; an empirical score variable or an object with class 'score' returned from the inspect. score() function.
dists character; distribution of the score variable, "normal" or "uniform". By default, dists = "normal" specification implies a truncated normal distribution with $\mathrm{k} 1=-6$ and $\mathrm{k} 2=6$.
k1
left truncation point for (uncentered) empirical, truncated normal, or uniform
order

interaction

rhots
treat.lower cutoff
p
power
es
alpha
two.tailed
df
rho2
rho3
g3
r21
r22
r23
rate.tp
rate.cc
n1
n2
n3
n4
cn1
cn2
cn3
cn4
cost
p0
distribution. Ignored when rhots $=0$ or order $=0$.
right truncation point for (uncentered) empirical, truncated normal, or uniform distribution. Ignored when rhots $=0$ or order $=0$.
integer $>=0$; order of polynomial functional form specification for the score variable.
logical; if TRUE polynomial specification interacts with the treatment variable.
obsolote; use order $=0$ to obtain results equivalent to random assignment designs.
logical; if TRUE units below the cutoff are treated.
decision threshold.
proportion of level 3 units in the treatment condition.
statistical power $(1-\beta)$.
effect size (Cohen's d).
probability of type I error (α).
logical; TRUE for two-tailed hypothesis testing.
degrees of freedom.
proportion of variance in the outcome between level 2 units (unconditional ICC2).
proportion of variance in the outcome between level 3 units (unconditional ICC3).
number of covariates at level 3 .
proportion of level 1 variance in the outcome explained by level 1 covariates.
proportion of level 2 variance in the outcome explained by level 2 covariates.
proportion of level 3 variance in the outcome explained by level 3 covariates.
treatment group participation rate.
control group crossover rate.
average number of level 1 units per level 2 unit.
average number of level 2 units per level 3 unit.
number of level 3 units(per stratum or block, if exists).
number of stratum or fixed blocks.
marginal costs per level 1 unit in treatment and control conditions (positional), e.g. $c(10,5)$.
marginal costs per level 2 unit in treatment and control conditions (positional), e.g. $c(50,30)$.
marginal costs per level 3 unit in treatment and control conditions (positional), e.g. $c(80,50)$.
marginal cost per stratum or fixed block.
total cost or budget. Ignored when constrain = "power" or constrain = "es". starting value for p when rhots $=0$ and $p=$ NULL. Starting value is replaced with the average when p is constrained by bounds.

n0	vector of starting values for $\mathrm{n} 1, \mathrm{n} 2, \mathrm{n} 3$ or $\mathrm{n} 1, \mathrm{n} 2, \mathrm{n} 3, \mathrm{n} 4$ (positional). Starting values are replaced with the averages when sample sizes are constrained by bounds.
constrain	character; constrains one of the "cost", "power", or "es" at the specified value.
round	logical; TRUE for rounded BCOSSA solution.
max. power	logical; TRUE for maximizing the power rate instead of minimizing the variance. Applies when constrain = "cost".
local.solver	subset of c("LBFGS","SLSQP")

Value

parms	list of parameters used in the function.
$d f$	degrees of freedom.
sse	standardized standard error.
cosa	BCOSSA solution.
mdes	minimum detectable effect size and $(1-\alpha) \%$ confidence limits.
power	statistical power $(1-\beta)$

Examples

```
score.obj <- inspect.score(rnorm(1000),
    order = 1, interaction = FALSE,
    cutoff = 0, k1 = -1, k2 = 1)
# single site (no blocks)
power.crd3(score.obj,
    es = . 25, rho2 = .20, rho3 = .10,
    g3 = 0, r23 = 0, n1 = 20, n2 = 3, n3 = 40)
# with 5 blocks (note that r23 is modified but g3 remains the same)
power.bcrd4f3(score.obj,
    es = . 25, rho2 = . 20, rho3 = .10,
    g3 = 0, r23 = .30,
    n1 = 20, n2 = 3, n3 = 40, n4 = 5)
# minimum required number of level 3 units for each block
cosa.bcrd4f3(score.obj,
    es = . 25, rho2 = . 20, rho3 = .10,
    g3 = 0, r23 = .30,
    n1 = 20, n2 = 2, n3 = NULL, n4 = 5)
```

crd4	Cluster-level Regression Discontinuity (Four-level Design, Disconti- nuity at Level 4)

Description

Use mdes.crd4() to calculate minimum detectable effect size, power.crd4() to calculate statistical power, and cosa.crd4() for bound constrained optimal sample size allocation (BCOSSA).

Usage

```
    mdes.crd4(score = NULL, dists = "normal", k1 = -6, k2 = 6,
    order = 1, interaction = FALSE,
    treat.lower = TRUE, cutoff = 0, p = NULL,
    power = .80, alpha = .05, two.tailed = TRUE,
    df = n4 - g4 - order * (1 + interaction) - 2,
    rho2, rho3, rho4, r21 = 0, r22 = 0, r23 = 0, r24 = 0,
    g4 = 0, rate.tp = 1, rate.cc = 0, n1, n2, n3, n4)
power.crd4(score = NULL, dists = "normal", k1 = -6, k2 = 6,
            order = 1, interaction = FALSE,
            treat.lower = TRUE, cutoff = 0, p = NULL,
            es = . 25, alpha = .05, two.tailed = TRUE,
            df = n4 - g4 - order * (1 + interaction) - 2,
            rho2, rho3, rho4, r21 = 0, r22 = 0, r23 = 0, r24 = 0,
            g4 = 0, rate.tp = 1, rate.cc = 0, n1, n2, n3, n4)
cosa.crd4(score = NULL, dists = "normal", k1 = -6, k2 = 6, rhots = NULL,
    order = 1, interaction = FALSE,
    treat.lower = TRUE, cutoff = 0, p = NULL,
    cn1 = 0, cn2 = 0, cn3 = 0, cn4 = 0, cost = NULL,
    n1 = NULL, n2 = NULL, n3 = NULL, n4 = NULL,
    n0 = c(10, 3, 100, 5 + g4 + order * (1 + interaction)), p0 = .499,
    constrain = "power", round = TRUE, max.power = FALSE,
    local.solver = c("LBFGS", "SLSQP"),
    power = .80, es = . 25, alpha = .05, two.tailed = TRUE,
    rho2, rho3, rho4, g4 = 0, r21 = 0, r22 = 0, r23 = 0, r24 = 0)
```


Arguments

score vector or list; an empirical score variable or an object with class 'score' returned from the inspect.score() function.
dists character; distribution of the score variable, "normal" or "uniform". By default, dists = "normal" specification implies a truncated normal distribution with $\mathrm{k} 1=-6$ and $\mathrm{k} 2=6$.
k1 left truncation point for (uncentered) empirical, truncated normal, or uniform distribution. Ignored when rhots $=0$ or order $=0$.
k2 right truncation point for (uncentered) empirical, truncated normal, or uniform distribution. Ignored when rhots $=0$ or order $=0$.
order integer $>=0$; order of polynomial functional form specification for the score variable.
interaction logical; if TRUE polynomial specification interacts with the treatment variable.

rhots	obsolote; use order $=0$ to obtain results equivalent to random assignment designs.
treat.lower	logical; if TRUE units below the cutoff are treated.
cutoff	decision threshold.
p	proportion of level 4 units in the treatment condition.
power	statistical power (1- β).
es	effect size (Cohen's d).
alpha	probability of type I error (α).
two.tailed	logical; TRUE for two-tailed hypothesis testing.
df	degrees of freedom.
rho2	proportion of variance in the outcome between level 2 units (unconditional ICC2).
rho3	proportion of variance in the outcome between level 3 units (unconditional ICC3).
rho4	proportion of variance in the outcome between level 4 units (unconditional ICC4).
g4	number of covariates at level 4.
r21	proportion of level 1 variance in the outcome explained by level 1 covariates.
r22	proportion of level 2 variance in the outcome explained by level 2 covariates.
r23	proportion of level 3 variance in the outcome explained by level 3 covariates.
r24	proportion of level 4 variance in the outcome explained by level 4 covariates.
rate.tp	treatment group participation rate.
rate.cc	control group crossover rate.
n1	average number of level 1 units per level 2 unit.
n2	average number of level 2 units per level 3 unit.
n3	average number of level 3 units per level 4 unit.
n4	number of level 4 units.
cn1	marginal costs per level 1 unit in treatment and control conditions (positional), e.g. $c(10,5)$.
cn2	marginal costs per level 2 unit in treatment and control conditions (positional), e.g. $c(50,30)$.
cn3	marginal costs per level 3 unit in treatment and control conditions (positional), e.g. $c(80,50)$.
cn4	marginal costs per level 4 unit in treatment and control conditions (positional), e.g. $c(100,40)$.
cost	total cost or budget. Ignored when constrain = "power" or constrain = "es".
p0	starting value for p when rhots $=0$ and $p=$ NULL. Starting value is replaced with the average when p is constrained by bounds.
n0	vector of starting values for $\mathrm{n} 1, \mathrm{n} 2, \mathrm{n} 3, \mathrm{n} 4$ (positional). Starting values are replaced with the averages when sample sizes are constrained by bounds.
constrain	character; constrains one of the "cost", "power", or "es" at the specified value.
round	logical; TRUE for rounded BCOSSA solution.
max. power	logical; TRUE for maximizing the power rate instead of minimizing the variance. Applies when constrain = "cost".
local.solver	subset of c("LBFGS", "SLSQP").

Value

parms	list of parameters used in the function.
df	degrees of freedom.
sse	standardized standard error.
cosa	BCOSSA solution.
mdes	minimum detectable effect size and $(1-\alpha) \%$ confidence limits.
power	statistical power $(1-\beta)$

Examples

```
score.obj <- inspect.score(rnorm(1000),
    order = 1, interaction = FALSE,
    cutoff = 0, k1 = -1, k2 = 1)
    power.crd4(score.obj,
    es =. 25, rho2 = . 20, rho3 = . 10, rho4 = .05,
    g4 = 0, r24 = 0, n1 = 20, n2 = 3, n3 = 50, n4 = 20)
# minimum required number of level 4 units
cosa.crd4(score.obj,
    es =.25, rho2 = . 20, rho3 = . 10, rho4 = .05,
    g4 = 0, r24 = 0,
    n1 = 20, n2 = 3, n3 = 50, n4 = NULL)
```

 inspect.score Computes Regression Discontinuity Design Effects

Description

Computes Regression Discontinuity Design Effects (RDDE) either based on analytic deviations (up to second order with interactions), an empirical score variable, or simulation.

Usage

```
inspect.score(score = NULL, p = NULL, cutoff = NULL,
    treat.lower = FALSE, order = 1, interaction = FALSE,
    mu = 0, sigma = 1, k1 = -Inf, k2 = Inf,
    dists = "normal", sim = FALSE, ndraw = 1000, nsim = 1000)
```


Arguments

sim	logical; if TRUE results are based on simulation.
score	vector; score variable.
p	proportion of units in the treatment condition.
cutoff	decision threshold.

treat.lower	logical; if TRUE units below cutoff are treated.
order	integer $>=0$; order of polynomial functional form specification for the score variable.
interaction	logical; if TRUE polynomial specification interacts with the treatment variable.
mu	mean of (uncentered) truncated normal - applies when score $=$ NULL and dists = "normal".
sigma	standard deviation of (uncentered) truncated normal - applies when score $=$ NULL and dists = "normal".
k1	left truncation point for (uncentered) empirical, truncated normal, or uniform distribution.
k2	right truncation point for (uncentered) empirical, truncated normal, or uniform distribution.
dists	char; type of distribution, "normal" or "uniform".
ndraw	number of draws - applies when sim = TRUE.
nsim	number of simulations - applies when sim $=$ TRUE.

Value

parms list; list of parameters used in the computation.

$$
\text { cutoff } \quad \text { decision threshold (computed if } p \text { is provided). }
$$

treat. lower if TRUE units below cutoff are treated.
p
order
interaction if TRUE polynomial specification interacts with the treatment variable.
center if TRUE the score variable is centered on the cutoff
rdde regression discontinuity design effect.

Examples

```
# based on an empirical score variable
inspect.score(score = rnorm(10000), cutoff = 0)
# based on analytic derivation
inspect.score(cutoff = 0)
# based on simulation
inspect.score(sim = TRUE, cutoff = 0)
```

Simple Individual-level Regression Discontinuity (w/ or w/o Strata or Fixed Blocks)

Description

Use mdes.ird() to calculate minimum detectable effect size and power.ird() to calculate statistical power. If higher level strata or fixed blocks exist, use mdes.bird2f1 () to calculate minimum detectable effect size, power.bird2f1() to calculate statistical power, and cosa.bird2f1() for bound constrained optimal sample size allocation (BCOSSA).

Usage

```
mdes.ird(score \(=\) NULL, dists = "normal", k1 = -6, k2 = 6,
    order \(=1\), interaction = FALSE,
    treat.lower \(=\) TRUE, cutoff \(=0, p=\) NULL,
    power \(=.80\), alpha \(=.05\), two.tailed \(=\) TRUE,
    df = n1 - g1 - order * (1 + interaction) - 2,
    r21 = 0, g1 = 0, rate.tp \(=1\), rate. cc = 0, n1)
```

power.ird(score $=$ NULL, dists $=$ "normal", k1 = -6, k2 = 6,
order $=1$, interaction = FALSE,
treat.lower $=$ TRUE, cutoff $=0, p=N U L L$,
es $=.25$, alpha $=.05$, two.tailed $=$ TRUE,
$\mathrm{df}=\mathrm{n} 1-\mathrm{g} 1-\operatorname{order} *(1+$ interaction $)-2$,
$\mathrm{r} 21=0, \mathrm{~g} 1=0$, rate. $\mathrm{tp}=1$, rate. $\mathrm{cc}=0, \mathrm{n} 1$)
mdes.bird2f1(score = NULL, dists = "normal", k1 = -6, k2 = 6,
order $=1$, interaction = FALSE,
treat.lower $=$ TRUE, cutoff $=0, p=N U L L$,
power $=.80$, alpha $=.05$, two.tailed $=$ TRUE,
df = n2 * (n1 - 2) - g1 - order * (1 + interaction),
r21 = 0, g1 = 0, rate.tp = 1, rate.cc = 0, n1, n2 = 1)
power.bird2f1(score $=$ NULL, dists $=$ "normal", k1 = -6, k2 = 6,
order $=1$, interaction $=$ FALSE,
treat.lower $=$ TRUE, cutoff $=0, p=$ NULL,
es $=.25$, alpha $=.05$, two.tailed $=$ TRUE,
$\mathrm{df}=\mathrm{n} 2$ * (n1-2) - g1 - order * (1 + interaction),
$\mathrm{r} 21=0, \mathrm{~g} 1=0$, rate. $\mathrm{tp}=1$, rate. $\mathrm{cc}=0, \mathrm{n} 1, \mathrm{n} 2=1$)
cosa.bird2f1(score = NULL, dists = "normal", k1 = -6, k2 = 6, rhots = NULL,
order $=1$, interaction = FALSE,
treat.lower $=$ TRUE, cutoff $=0, p=N U L L$,
cn1 = 0, cn2 = 0, cost = NULL,
$\mathrm{n} 1=$ NULL, $\mathrm{n} 2=$ NULL,
$\mathrm{n} 0=\mathrm{c}(400,5), \mathrm{p} 0=.499$,

```
constrain = "power", round = TRUE, max.power = FALSE,
local.solver = c("LBFGS", "SLSQP"),
power = .80, es = . 25, alpha = .05, two.tailed = TRUE,
g1 = 0, r21 = 0)
```


Arguments

score
dists
k1
k2
order
interaction
rhots
treat.lower
cutoff
p
power
es
alpha
two.tailed
df
g1
r21
rate.tp
rate.cc
n1
n2
cn1
cn2
cost
constrain
n0
vector or list; an empirical score variable or an object with class 'score' returned from the inspect. score() function.
character; distribution of the score variable, "normal" or "uniform". By default, dists $=$ "normal" specification implies a truncated normal distribution with $\mathrm{k} 1=-6$ and $\mathrm{k} 2=6$.
left truncation point for (uncentered) empirical, truncated normal, or uniform distribution. Ignored when rhots $=0$ or order $=0$.
right truncation point for (uncentered) empirical, truncated normal, or uniform distribution. Ignored when rhots $=0$ or order $=0$.
integer $>=0$; order of polynomial functional form specification for the score variable.
logical; if TRUE polynomial specification interacts with the treatment variable.
obsolote; use order $=0$ to obtain results equivalent to random assignment designs.
logical; if TRUE units below cutoff the are treated.
decision threshold.
proportion of units in the treatment condition.
statistical power $(1-\beta)$.
numeric >0; effect size (Cohen's d).
probability of type I error (α).
logical; TRUE for two-tailed hypothesis testing.
degrees of freedom.
number of covariates.
proportion of variance in the outcome explained by covariates.
treatment group participation rate.
control group crossover rate.
sample size (per stratum or block, if exists).
number of stratum or fixed blocks.
marginal cost per unit in treatment and control conditions, e.g. $c(10,5)$.
marginal cost per stratum or fixed block.
total cost or budget. Ignored when constrain = "power" or constrain = "es". character; constrains one of the "cost", "power", or "es" at the specified value. starting value for $n 1$ or $n 1, n 2$. Starting value is replaced with the average when sample size is constrained by bounds.

p0	starting value for p when rhots $=0$ and $p=$ NULL. Starting value is replaced with average when p is constrained by bounds.
round	logical; TRUE for rounded BCOSSA solution.
max. power	logical; TRUE for maximizing power instead of minimizing variance, applies when constrain = "cost"
local.solver	subset of c("LBFGS", "SLSQP")

Value

parms list of parameters used in the function.
df degrees of freedom.
sse standardized standard error.
cosa BCOSSA solution.
mdes minimum detectable effect size and (1- α)\% confidence limits.
power \quad statistical power $(1-\beta)$

Examples

```
score.obj <- inspect.score(rnorm(1000),
    order = 1, interaction = FALSE,
    cutoff = 0, k1 = -1, k2 = 1)
# single site (no blocks)
power.ird(score.obj, g1 = 0, r21 = 0,
    es = 0.25, n = 100)
# with 5 blocks (note that r21 is modified but g1 remains the same)
power.bird2f1(score.obj, g1 = 0, r21 = . 30,
    es = 0.25, n1 = 100, n2 = 5)
# minimum required sample size for each block
cosa.bird2f1(score.obj, g1 = 0, r21 = . 30,
        n1 = NULL, n2 = 5)
```

moments Moments

Description

If data (vector) is provided use emp.moment () function, otherwise for truncated normal distribution use tnorm. moment (), and for uniform distribution use unif.moment ().

Usage

tnorm.moment (mu $=0$, sigma $=1, \mathrm{k} 1=-\mathrm{Inf}, \mathrm{k} 2=\operatorname{Inf}$, order $=1$, central $=$ FALSE) unif.moment (k1 = 0, k2 = 1, order = 1, central = FALSE) emp.moment (x , order $=1$, central = FALSE, absolute $=$ FALSE, na.rm = FALSE)

Arguments

mu
sigma
k1
k2 right truncation point for truncated normal distribution or upper bound for uniform distribution.
order $\quad+$ int; order of moment
X
central logical; if TRUE produces central moments.
absolute logical; if TRUE produces absolute moments - applies to emp.moment ().
na.rm logical; if TRUE removes missing values - applies to emp.moment ().

Examples

```
tnorm.moment(k1 = -20, k2 = 20, order = 4, central = FALSE)
emp.moment(rnorm(10000), order = 4, central = FALSE)
unif.moment(k1 = 0, k2 = 1, order = 4, central = FALSE)
emp.moment(runif(10000), order = 4, central = FALSE)
```

plot

Description

Plots statistical power or minimum detectable effect size curves with (1- α)x100 \% confidence interval for the design of interest.

Usage

```
## S3 method for class 'power'
plot(x, score = NULL, ypar = "mdes", xpar = NULL,
    xlim = NULL, ylim = NULL,
    xlab = NULL, ylab = NULL,
    main = NULL, sub = NULL,
    locate = FALSE, benchmark = NULL, ...)
    ## S3 method for class 'mdes'
    plot(x, score = NULL, ypar = "mdes", xpar = NULL,
    xlim = NULL, ylim = NULL,
    xlab = NULL, ylab = NULL,
    main = NULL, sub = NULL,
    locate = FALSE, benchmark = NULL, ...)
```

```
## S3 method for class 'cosa'
plot(x, score = NULL, ypar = "mdes", xpar = NULL,
    xlim = NULL, ylim = NULL,
    xlab = NULL, ylab = NULL,
    main = NULL, sub = NULL,
    locate = FALSE, benchmark = NULL, ...)
```


Arguments

X
score vector or list; an empirical score variable or an object with class 'score' returned from the inspect.score() function.
ypar character; "mdes" or "power" on y axis.
xpar character; one of the sample sizes on x axis.
xlim limits for xpar.
ylim limits for ypar.
xlab x axis label.
ylab y axis label.
main title for the plot.
sub subtitle for the plot.
locate logical; TRUE locates parameter values for design x on the plot.
benchmark benchmark line.
.. other graphical parameters to pass to plot.new().

Examples

```
d1 <- mdes.bcrd3r2(rho2 = .10, rho3 = .20, omega3 = .30,
    n1 = 20, n2 = 44, n3 = 50)
plot(d1, xpar = "n3", xlim = c(30, 100))
```


Description

Vectorizes bound constrained optimal sample size allocation (BCOSSA) solutions based on multiple sets of parameter values. This is particularly useful when multiple values of design parameters are to be considered.

Usage

```
vectorize.cosa(x, score = NULL,
    args.grid, args.names = NULL,
    ordered = TRUE, ncase = 10L)
```


Arguments

X
score
args.grid
args.names
ordered
ncase integer: number of cases to be subsetted, ignored if ordered $=$ FALSE

Examples

```
design <- cosa.crd2(order = 0, round = FALSE,
    constrain = "power", power = . 80,
    cn1 = c(20, 10), cn2 = c(200, 50),
    es = .25, rho2 = .10,
    g2 = 3, r22 = . 30,
    n1 = NULL, n2 = NULL, p = NULL)
args.grid <- expand.grid(
    rho2 = seq(.15, .25, .05)
)
vectorize.cosa(design, args.grid = args.grid, ordered = FALSE)
```


Index

bcrd3f2 (crd2), 21
bcrd3r2, 3
bcrd4f3 (crd3), 24
bcrd4r2, 6
bcrd4r3, 9
bird2, 12
bird2f1 (ird), 32
bird2r1 (bird2), 12
bird3, 14
bird3r1 (bird3), 14
bird4, 17
bird4r1 (bird4), 17
cosa-deprecated, 20
cosa-package, 2
cosa.bcrd3f2 (crd2), 21
cosa.bcrd3r2 (bcrd3r2), 3
cosa.bcrd4f3 (crd3), 24
cosa.berd4r2 (bcrd4r2), 6
cosa.berd4r3 (bcrd4r3), 9
cosa.bird2 (bird2), 12
cosa.bird2f1 (ird), 32
cosa.bird2r1 (bird2), 12
cosa.bird3 (bird3), 14
cosa.bird3r1 (bird3), 14
cosa.bird4 (bird4), 17
cosa.bird4r1 (bird4), 17
cosa.crd2 (crd2), 21
cosa.crd2r2 (crd2), 21
cosa.crd3 (crd3), 24
cosa.crd3r3 (crd3), 24
cosa.crd4 (crd4), 27
cosa.crd4r4 (crd4), 27
crd2, 21
crd2r2 (crd2), 21
crd3, 24
crd3r3 (crd3), 24
crd4, 27
crd4r4 (crd4), 27
emp.moment (moments), 34
inspect.score, 30
ird, 32
ird1r1 (ird), 32
mdes.bcrd3f2 (crd2), 21
mdes.bcrd3r2 (bcrd3r2), 3
mdes.bcrd4f3 (crd3), 24
mdes.bcrd4r2 (bcrd4r2), 6
mdes.bcrd4r3 (bcrd4r3), 9
mdes.bird2 (bird2), 12
mdes.bird2f1 (ird), 32
mdes.bird2r1 (bird2), 12
mdes.bird3 (bird3), 14
mdes.bird3r1 (bird3), 14
mdes.bird4 (bird4), 17
mdes.bird4r1 (bird4), 17
mdes.crd2 (crd2), 21
mdes.crd2r2(crd2), 21
mdes.crd3 (crd3), 24
mdes. crd3r3 (crd3), 24
mdes.crd4 (crd4), 27
mdes.crd4r4 (crd4), 27
mdes.ird (ird), 32
mdes.ird1r1 (ird), 32
moments, 34
plot, 35
power.bcrd3f2 (crd2), 21
power.bcrd3r2 (bcrd3r2), 3
power.bcrd4f3 (crd3), 24
power.bcrd4r2 (bcrd4r2), 6
power.bcrd4r3 (bcrd4r3), 9
power.bird2 (bird2), 12
power.bird2f1 (ird), 32
power.bird2r1 (bird2), 12
power.bird3 (bird3), 14
power.bird3r1 (bird3), 14
power.bird4 (bird4), 17
power.bird4r1 (bird4), 17
power.crd2 (crd2), 21
power.crd2r2 (crd2), 21
power.crd3 (crd3), 24
power.crd3r3 (crd3), 24
power.crd4 (crd4), 27
power.crd4r4 (crd4), 27
power.ird (ird), 32
power.ird1r1 (ird), 32
tnorm.moment (moments), 34
unif.moment (moments), 34
Vectorize BCOSSA, 36
vectorize.cosa (Vectorize BCOSSA), 36

