Package 'countdata'

September 14, 2021

Type Package

Title The Beta-Binomial Test for Count Data

Version 1.2

Date 2021-09-14

Maintainer Thang Pham <t.pham@amsterdamumc.nl>

Description The beta-binomial test is used for significance analysis of independent samples by Pham et al. (2010) <doi:10.1093/bioinformatics/btp677>. The inverted beta-binomial test is used for paired sample testing, e.g. pre-treatment and post-treatment data, by Pham and Jimenez (2012) <doi:10.1093/bioinformatics/bts394>.

Depends R (>= 2.10)

License BSD_3_clause + file LICENSE

Encoding UTF-8

Suggests knitr, rmarkdown

VignetteBuilder knitr

NeedsCompilation yes

Author Thang Pham [aut, cre, cph, ctb] (<https://orcid.org/0000-0003-0333-2492>)

Repository CRAN

Date/Publication 2021-09-14 19:30:02 UTC

R topics documented:

bb.test	2
fold.change	3
ibb.test	4
normalize	5
	7

Index

bb.test

Description

Performs the beta-binomial test for count data.

Usage

Arguments

x	A vector or matrix of counts. When x a matrix, the test is performed row by row.
tx	A vector or matrix of the total sample counts. When tx is a matrix, the number of rows must be equal to the number of rows of x.
group	A vector of group indicators.
alternative	A character string specifying the alternative hypothesis: "two.sided" (default), "greater" or "less".
n.threads	The number of threads to be used. When n. threads is 0, the maximal number of CPU cores is used. When n. threads is -1 (default), one CPU core less than the maximum is used, and so on.
verbose	A logical value. If TRUE (default), status information is printed.

Details

This test is designed for independent samples, two or more groups.

Value

A list with a single component is returned

p.value The p-value of the test.

Author(s)

Thang V. Pham

References

Pham TV, Piersma SR, Warmoes M, Jimenez CR (2010) On the beta binomial model for analysis of spectral count data in label-free tandem mass spectrometry-based proteomics. *Bioinformatics*, 26(3):363-369.

fold.change

Examples

```
x <- c(1, 5, 1, 10, 9, 11, 2, 8)
tx <- c(19609, 19053, 19235, 19374, 18868, 19018, 18844, 19271)
group <- c(rep("cancer", 3), rep("normal", 5))
bb.test(x, tx, group)
# p.value = 0.01568598
```

fold.change Fold change calculation

Description

Calculates the fold changes between two numerical matrices row by row.

Usage

fold.change(d1, d2, BIG = 1e4)

Arguments

d1	The first data matrix.
d2	The second data matrix.
BIG	A number representing a big value of the result, i.e. black-and-white regulation.

Details

The two matrices d1 and d2 must have the same number of rows. A positive value means upregulation where the average of d2 is higher than that of d1. Conversely, a negative value means down-regulation where the the average of d1 is higher than that of d2. If one group contains all zeros, a positive or negative BIG value is returned.

Value

A vector of fold changes is returned.

Author(s)

Thang V. Pham

References

Pham TV (2021). countdata: The Beta-Binomial Test for Count Data. R package version 1.1. https://CRAN.R-project.org/package=countdata

Examples

ibb.test

The inverted beta-binomial test

Description

Performs the inverted beta-binomial test for paired count data.

Usage

Arguments

x	A vector or matrix of counts. When x is a matrix, the test is performed row by row.
tx	A vector or matrix of the total sample counts. When tx is a matrix, the number of rows must be equal to the number of rows of x.
group	A vector of group indicators. There should be two groups of equal size. The samples are matched by the order of appearance in each group.
alternative	A character string specifying the alternative hypothesis: "two.sided" (default), "greater" or "less".
n.threads	The number of threads to be used. When n. threads is 0, the maximal number of CPU cores is used. When n. threads is -1 (default), one CPU core less than the maximum is used, and so on.
BIG	A number representing a big value of the result, i.e. black-and-white regulation.
verbose	A logical value. If TRUE (default), status information is printed.

Details

This test is designed for paired samples, for example data acquired before and after treatment.

4

normalize

Value

A list of values is returned

p.value	The p-value of the test.
fc	An estimation of the common fold change for all sample pairs. A positive value
	means up-regulation, i.e. the second group is higher, and a negative value down-
	regulation. A black-and-white regulation is denoted by the BIG value.

Author(s)

Thang V. Pham

References

Pham TV, Jimenez CR (2012) An accurate paired sample test for count data. *Bioinformatics*, 28(18):i596-i602.

Examples

```
x <- c(33, 32, 86, 51, 52, 149)
tx <- c(7742608, 15581382, 20933491, 7126839, 13842297, 14760103)
group <- c(rep("cancer", 3), rep("normal", 3))
ibb.test(x, tx, group)
# p.value = 0.004103636
# fc = 2.137632</pre>
```

normalize

Global normalization of count data

Description

Normalize a numerical matrix by scaling each column so that the scaled column sums are equal.

Usage

```
normalize(d)
```

Arguments d

A numerical matrix.

Details

The average of column sums is computed. A scaling factor is calculated for each column so that the scaled column sum is equal to the computed average value.

Value

A matrix of the same size as d is returned. The column sums of this matrix are equal.

Author(s)

Thang V. Pham

References

Pham TV (2021). countdata: The Beta-Binomial Test for Count Data. R package version 1.1. https://CRAN.R-project.org/package=countdata

Examples

Index

* beta-binomial bb.test, 2 * count data bb.test, 2 ibb.test,4 * data normalization normalize, 5 * fold change fold.change, 3* independent sample test bb.test, 2 * inverted beta-binomial test ibb.test,4 * paired sample test ibb.test, 4* significance analysis bb.test, 2 ibb.test, 4bb.test, 2

fold.change, 3

ibb.test, 4

normalize, 5