Package 'countdata'

September 14, 2021
Type Package
Title The Beta-Binomial Test for Count Data
Version 1.2
Date 2021-09-14
Maintainer Thang Pham t.pham@amsterdamumc.nl
Description The beta-binomial test is used for significance analysis of independent samples by Pham et al. (2010) doi:10.1093/bioinformatics/btp677. The inverted betabinomial test is used for paired sample testing, e.g. pre-treatment and posttreatment data, by Pham and Jimenez (2012) doi:10.1093/bioinformatics/bts394.
Depends R (>= 2.10)
License BSD_3_clause + file LICENSE
Encoding UTF-8
Suggests knitr, rmarkdown
VignetteBuilder knitr
NeedsCompilation yes
Author Thang Pham [aut, cre, cph, ctb]
(https://orcid.org/0000-0003-0333-2492)

Repository CRAN

Date/Publication 2021-09-14 19:30:02 UTC

R topics documented:

$$
\text { bb.test . } 2
$$

fold.change 3
ibb.test 4
normalize 5
Index 7
bb.test The beta-binomial test

Description

Performs the beta-binomial test for count data.

Usage

```
    bb.test(x, tx, group, alternative = c("two.sided", "less", "greater"),
            n.threads \(=-1\), verbose \(=\) TRUE)
```


Arguments

$x \quad$ A vector or matrix of counts. When x a matrix, the test is performed row by row.
tx A vector or matrix of the total sample counts. When $t x$ is a matrix, the number of rows must be equal to the number of rows of x.
group A vector of group indicators.
alternative A character string specifying the alternative hypothesis: "two.sided" (default), "greater" or "less".
n . threads The number of threads to be used. When n . threads is 0 , the maximal number of CPU cores is used. When n. threads is -1 (default), one CPU core less than the maximum is used, and so on.
verbose A logical value. If TRUE (default), status information is printed.

Details

This test is designed for independent samples, two or more groups.

Value

A list with a single component is returned
p .value \quad The p -value of the test.

Author(s)

Thang V. Pham

References

Pham TV, Piersma SR, Warmoes M, Jimenez CR (2010) On the beta binomial model for analysis of spectral count data in label-free tandem mass spectrometry-based proteomics. Bioinformatics, 26(3):363-369.

Examples

```
    x <- c(1, 5, 1, 10, 9, 11, 2, 8)
    tx <- c(19609, 19053, 19235, 19374, 18868, 19018, 18844, 19271)
    group <- c(rep("cancer", 3), rep("normal", 5))
    bb.test(x, tx, group)
# p.value = 0.01568598
```

fold.change
Fold change calculation

Description

Calculates the fold changes between two numerical matrices row by row.

Usage

fold.change(d1, d2, BIG = 1e4)

Arguments

d1 The first data matrix.
d2 The second data matrix.
BIG A number representing a big value of the result, i.e. black-and-white regulation.

Details

The two matrices d 1 and d 2 must have the same number of rows. A positive value means upregulation where the average of d 2 is higher than that of d 1 . Conversely, a negative value means down-regulation where the the average of d 1 is higher than that of d 2 . If one group contains all zeros, a positive or negative BIG value is returned.

Value

A vector of fold changes is returned.

Author(s)

Thang V. Pham

References

Pham TV (2021). countdata: The Beta-Binomial Test for Count Data. R package version 1.1. https://CRAN.R-project.org/package=countdata

Examples

$x<-\operatorname{rbind}(c(1.5,1.2,10.2)$,

$$
c(9.1,2.2,8.1))
$$

fold.change ($x, 2$ * x)
\# returns a column vector of 2
fold.change (x, 0.5 * x)
\# returns a column vector of -2
ibb.test
The inverted beta-binomial test

Description

Performs the inverted beta-binomial test for paired count data.

Usage

ibb.test(x, tx, group, alternative = c("two.sided", "less", "greater"), n.threads $=-1$, BIG $=1 e 4$, verbose $=$ TRUE)

Arguments

$x \quad$ A vector or matrix of counts. When x is a matrix, the test is performed row by row.
tx A vector or matrix of the total sample counts. When $t x$ is a matrix, the number of rows must be equal to the number of rows of x.
group A vector of group indicators. There should be two groups of equal size. The samples are matched by the order of appearance in each group.
alternative A character string specifying the alternative hypothesis: "two.sided" (default), "greater" or "less".
n. threads The number of threads to be used. When n . threads is 0 , the maximal number of CPU cores is used. When n. threads is -1 (default), one CPU core less than the maximum is used, and so on.
BIG A number representing a big value of the result, i.e. black-and-white regulation.
verbose A logical value. If TRUE (default), status information is printed.

Details

This test is designed for paired samples, for example data acquired before and after treatment.

Value

A list of values is returned
p value The p-value of the test.
fc An estimation of the common fold change for all sample pairs. A positive value means up-regulation, i.e. the second group is higher, and a negative value downregulation. A black-and-white regulation is denoted by the BIG value.

Author(s)

Thang V. Pham

References

Pham TV, Jimenez CR (2012) An accurate paired sample test for count data. Bioinformatics, 28(18):i596-i602.

Examples

```
    x <- c(33, 32, 86, 51, 52, 149)
    tx <- c(7742608, 15581382, 20933491, 7126839, 13842297, 14760103)
    group <- c(rep("cancer", 3), rep("normal", 3))
    ibb.test(x, tx, group)
    # p.value = 0.004103636
    # fc = 2.137632
```

normalize

Global normalization of count data

Description

Normalize a numerical matrix by scaling each column so that the scaled column sums are equal.

Usage

normalize(d)

Arguments

d A numerical matrix.

Details

The average of column sums is computed. A scaling factor is calculated for each colunm so that the scaled column sum is equal to the computed average value.

Value

A matrix of the same size as d is returned. The column sums of this matrix are equal.

Author(s)

Thang V. Pham

References

Pham TV (2021). countdata: The Beta-Binomial Test for Count Data. R package version 1.1. https://CRAN.R-project.org/package=countdata

Examples

$d<-\operatorname{rbind}(c(2.5,11.2,7.2)$, $c(9.1,2.2,7.1)$)
colSums (d)
\# 11.613 .414 .3
colSums(normalize(d))
\# 13.113 .113 .1

Index

```
* beta-binomial
    bb.test, 2
* count data
    bb.test, 2
    ibb.test,4
* data normalization
    normalize,5
* fold change
    fold.change, }
* independent sample test
    bb.test, 2
* inverted beta-binomial test
    ibb.test,4
* paired sample test
    ibb.test, 4
* significance analysis
    bb.test, 2
    ibb.test,4
bb.test, 2
fold.change, 3
ibb.test,4
normalize,5
```

