Package ‘cpfa’

June 20, 2022

Type Package

Title Classification with Parallel Factor Analysis

Version 1.0-4

Date 2022-06-20

Author Matthew A. Snodgress <snodg@31@umn.edu>
Maintainer Matthew A. Snodgress <snodg@31@umn.edu>
Depends multiway, glmnet, e1071, randomForest, nnet
Imports foreach, doParallel

Description Classification using Richard A. Harshman's Parallel Factor Analysis (Parafac) model-
1 fit to a three-way or four-way data tensor/array. See Harsh-
man and Lundy (1994): <doi:10.1016/0167-9473(94)90132-5>. Uses Parafac fac-
tor weights from one mode of this model as predictors to tune parameters for one or more classi-
fication methods via a k-fold cross-validation procedure. Supports penalized logistic regres-
sion, support vector machine, random forest, and feed-forward neural network. Supports bi-
nary and multiclass classification. Predicts class labels or class probabilities and calculates multi-
ple classification performance measures. Parallel computing is implemented via the 'paral-
lel' and 'doParallel' packages.

License GPL (>=2)

NeedsCompilation no

Repository CRAN

Date/Publication 2022-06-20 14:20:06 UTC

R topics documented:

cpfa . . . 2
73] 1 6
predict.epfa L 9
Index 13

https://doi.org/10.1016/0167-9473(94)90132-5

2 cpfa
cpfa Tuning for Classification with Parallel Factor Analysis
Description
Fits Richard A. Harshman’s Parallel Factor Analysis (Parafac) model-1 to a three-way or four-way
data tensor/array. Uses Parafac factor weights from a single mode of this model as predictors to
tune parameters for one or more classification methods via a k-fold cross-validation procedure (see
package vignette for procedure’s details). Supports binary and multiclass classification.
Usage
cpfa(x, y, nfac = 1, nfolds = 10, foldid = NULL, prior = NULL,
method = c("PLR", "SVM", "RF", "NN"),
family = c("binomial”, "multinomial”),
alpha = NULL, lambda = NULL, cost = NULL, gamma = NULL,
ntree = NULL, nodesize = NULL, size = NULL, decay = NULL,
parallel = FALSE, cl = NULL,
verbose = TRUE, cmode = NULL, ...)
Arguments

X Three-way or four-way data array. See note below.

y A factor with two or more levels containing class labels. For binary case, ensure
the order of factor levels (left to right) is such that negative class is first and
positive class is second.

nfac Number of factors for each Parafac model to estimate. Default is nfac = 1.

nfolds Numeric setting number of folds for k-fold cross-validation. Must be 2 or
greater. Default is 10 folds.

foldid Integer vector containing fold IDs for k-fold cross-validation. If not provided,
fold IDs are generated randomly for number of folds *nfolds’.

prior Prior probabilities of class membership. If unspecified, the class proportions for
input 'y’ are used. If present, the probabilities should be specified in the order
of the factor levels of input ’y’.

method Character vector indicating classification methods to use. Possible methods in-
clude penalized logistic regression (PLR), support vector machine (SVM), and
random forest (RF). If none selected, default is to use all methods. See example.

family Character value specifying binary classification (family = "binomial”) or mul-
ticlass classification (family = "multinomial”). If not provided, number of
levels of input ’y’ is used, where two levels is binary, and where three or more
levels is multiclass.

alpha Values for penalized logistic regression alpha parameter; default is alpha =

seq(0, 1, length = 6). Must be numeric and contain only real numbers between
0 and 1, inclusive.

cpfa 3

lambda Optional user-supplied lambda sequence for cv.glmnet. Default is NULL.

cost Values for support vector machine cost parameter; default is cost = c(1, 2, 4,
8, 16, 32, 64). Must be numeric and contain only real numbers greater than or
equal to zero.

gamma Values for support vector machine gamma parameter; default is gamma = c(0,
0.01, 0.1, 1, 10, 100, 1000). Must be numeric and greater than or equal to 0.

ntree Values for random forest number of trees parameter; default is ntree = c(100,
200, 400, 600, 800, 1600, 3200). Must be numeric and contain only integers
greater than or equal to 1.

nodesize Values for random forest node size parameter; default is nodesize = c(1, 2, 4, 8,
16, 32, 64). Must be numeric and contain only integers greater than or equal to
1.

size Values for single-layer neural network size parameter; default is size = ¢(1, 2, 4,
8, 16, 32, 64). Must be numeric and contain only integers greater than or equal
to 0.

decay Values for neural network decay parameter; default is decay = ¢(0.001, 0.01,
0.1, 1, 2, 4, 8, 16). Must be numeric and contain only real numbers.

parallel Logical indicating if package parallel should be used for parallel computing.
For support vector machine and random forest, doParallel package is used as
a wrapper. Defaults to FALSE, which implements sequential computing.

cl Cluster for parallel computing, which is used when parallel = TRUE. Note that
if parallel =TRUE and cl =NULL, then the cluster is defined as makeClus-
ter(detectCores()).

verbose If TRUE, progress is printed.

cmode Integer value of 1, 2, or 3 (or 4 if ’x’ is a four-way array) specifying mode

whose factor weights will be predictors for classification. Defaults to last mode
of inputted array (i.e. 3 for three-way array, and 4 for four-way array).

Additional arguments to be passed to function ’parafac’ for Parafac model esti-
mation.

Details

After fitting a Parafac model with package multiway (see parafac in multiway for details), esti-
mated classification mode weight matrix is passed to one or several of four classification methods—
including penalized logistic regression (PLR); support vector machine (SVM); random forest (RF);
and feed-forward neural network (NN).

Package glmnet fits models for PLR. PLR tunes penalty parameter lambda; elastic net parameter
alpha is set by user (see cv.glmnet in package glmnet). For SVM, package e1071 is used with a
radial basis kernel. Penalty parameter cost and radial basis parameter gamma are used (see svm in
package e1071). For RF, package randomForest is used and implements Breiman’s random forest
algorithm. Number of predictors sampled at each node split is set at default of sqrt(R), where R
is the number of Parafac factors. Two tuning parameters allowed are ntree, the number of trees
to be grown, and nodesize, the minimum size of terminal nodes (see randomForest in package
randomForest). For NN, package nnet fits a single-hidden-layer, feed-forward neural network

4 cpfa

model. Penalty parameters size (number of hidden layer units) and decay (weight decay) are used
(see nnet).

For all four methods, k-fold cross-validation is implemented to tune classification parameters where
the number of folds is set by argument nfolds.

Value

Returns an object of class *cpfa’ with the following elements:

opt.model List containing optimal model for tuned classification methods for each Parafac
model estimated.

opt.param Data frame containing optimal parameters for tuned classification methods.

kcv.error Data frame containing KCV misclassification error for optimal parameters for
tuned classification methods.

est.time Data frame containing estimation times for fitting Parafac model and for tuning
classification methods.

method Numeric indicating classification methods used. Value of ’1’ indicates PLR;
value of ’2’ indicates SVM; and value of ’3’ indicates 'RF’.

X three-way or four-way array used.

y Factor containing class labels used. Note that output y is recoded such that the

input labels of y are converted to numeric integers from 0 through the number
of levels, which are then applied as labels for output y.

Aweights List containing estimated A weights for each Parafac model estimated.
Bweights List containing estimated B weights for each Parafac model estimated.
Cweights List containing estimated C weights for each Parafac model estimated. Null if

inputted argument x was a 3 array.

const Constraints used in Parafac model estimation. If argument const was not in-
putted, output value will be unconstrained for all modes.

cmode Integer value of 1, 2, or 3 (or 4 if x is a four-way array) specifying mode whose
factor weights were predictors for classification.

family Character value specifying whether classification was binary (family = "binomial”)
or multiclass (family = "multinomial”).

Note

If argument cmode is not null, input array x is reshaped with function aperm such that the cmode
dimension of x is ordered last. Estimated mode A and B (and mode C for a four-way array x)
weights that are outputted as Aweights and Bweights (and Cweights) reflect this permutation. For
example, if x is a four-way array and cmode = 2, original modes/dimensions 1, 2, 3, and 4 will
correspond to output order 1, 3, 4, 2. Here, output A =input 1; B =3, and C =4 (i.e. second mode
specified by cmode has been moved to the last/D mode).

Author(s)

Matthew A. Snodgress <snodg031@umn.edu>

cpfa

References

Breiman, L. (2001). Random forests. Machine Learning, 45(1), 5-32.
Cortes, C. and Vapnik, V. (1995). Support-vector networks. Machine Learning, 20(3), 273-297.

Friedman, J. Hastie, T., and Tibshirani, R. (2010). Regularization Paths for Generalized Linear
Models via Coordinate Descent. Journal of Statistical Software, 33(1), 1-22.

Harshman, R. A. (1970). Foundations of the PARAFAC procedure: Models and conditions for an
"explanatory" multimodal factor analysis. UCLA Working Papers in Phonetics, 16, 1-84.

Harshman, R. A. and Lundy, M. E. (1994). PARAFAC: Parallel factor analysis. Computational
Statistics and Data Analysis, 18, 39-72.

Helwig, N. E. (2017). Estimating latent trends in multivariate longitudinal data via Parafac2 with
functional and structural constraints. Biometrical Journal, 59(4), 783-803.

Helwig, N. E. (2019). multiway: Component Models for Multi-Way Data. R package version 1.0-6.

Liaw, A. and Wiener, M. (2002). Classification and Regression by randomForest. R News 2(3),
18-22.

Meyer, D., Dimitriadou, E., Hornik, K., Weingessel, A., and Leisch, F. (2021). e1071: Misc Func-
tions of the Department of Statistics, Probability Theory Group (Formerly: E1071), TU Wien. R
package version 1.7-6.

Ripley, B. (1994). Neural networks and related methods for classification. Journal of the Royal
Statistical Society: Series B (Methodological), 56(3), 409-437.

Venables, W. and Ripley, B. (2002) Modern Applied Statistics with S. Fourth Edition. Springer,
New York. ISBN 0-387-95457-0.

Zou, H. and Hastie, T. (2005). Regularization and variable selection via the elastic net. Journal of
the Royal Statistical Society: Series B (Statistical Methodology), 67(2), 301-320.

Examples

H#iHHHHH#H### Random binary example with 3-way array #i#t###H####

create random data array with Parafac structure

set.seed(3)

mydim <- c(60, 16, 80)

nf <- 3

Amat <- matrix(rnorm(mydim[1]*nf), nrow = mydim[1], ncol = nf)
Bmat <- matrix(runif(mydim[2]*nf), nrow = mydim[2], ncol = nf)
Cmat <- matrix(runif(mydim[3]*nf), nrow = mydim[3], ncol = nf)
Xmat <- tcrossprod(Amat, krprod(Cmat, Bmat))

Xmat <- array(Xmat, dim = mydim)

Emat <- array(rnorm(prod(mydim)), dim = mydim)

X <- Xmat + Emat

y <- factor(rbinom(mydim[3], 1, 0.4))

initialize

alpha <- seq(@, 1, length = 2)
gamma <- c(0, 0.01)

cost <- c(1, 2)

ntree <- c(100, 200)

6 cpm

nodesize <- c(1, 2)

size <- c(1, 2)

decay <- c(0, 1)

method <- c("PLR", "SVM", "RF", "NN")

nfolds <- 3

const <- c("orthog", "uncons”, "uncons")

foldid <- sample(rep(1:nfolds, length.out = length(y)))

estimate Parafac models and use third mode to tune classification methods
tune.object <- cpfa(x = X, y =y, nfac = 3, nfolds = nfolds,
foldid = foldid, method = method, alpha = alpha,
gamma = gamma, cost = cost, ntree = ntree,
nodesize = nodesize, size = size, decay = decay,
parallel = FALSE, const = const)
print.cpfa(tune.object)

Note: see package vignette for more examples

cpm Classification Performance Measures

Description

Calculates multiple performance measures for binary or multiclass classification. Uses known class
labels and evaluates against predicted labels.

Usage
cpm(x, y, level = NULL, fbeta = NULL, prior = NULL)

Arguments

X Known class labels of class numeric, factor, or integer. If factor, converted to
class integer in order of factor levels with integers beginning at O (i.e. for binary
classification, factor levels become 0 and 1; for multiclass, 0, 1, 2, etc.).

y Predicted class labels of class numeric, factor, or integer. If factor, converted to
class integer in order of factor levels with integers beginning at O (i.e. for binary
classification, factor levels become 0 and 1; for multiclass, 0, 1, 2, etc.).

level Optional argument specifying possible class labels. For cases when x or y do
not contain all possible classes. Can be of class numeric, integer, or character.
Must contain two elements for binary classification, and contain three or more
elements for multiclass classification. If integer, integers should be ordered (e.g.
c(@, 1); or c(@, 1, 2)). Note: if both x and y jointly contain only a single
value (e.g. 1), must specify argument level in order to identify classification as
binary or multiclass.

fbeta Optional numeric argument specifying beta value for F-score. Defaults to fbeta
=1, providing an F1-score (balanced harmonic mean between precision and re-
call).

cpm 7

prior Optional numeric argument specifying weights for classes. Defaults to prior =
c(rep(1/1lev, 1lev)), where ’llev’ is the number of classes, providing equal
importance across classes.

Details

Selecting one class as a negative class and one class as positive, binary classification generates four
possible outcomes: (1) negative cases classified as positives, called false positives (FP); (2) negative
cases classified as negatives, called true negatives (TN); (3) positive cases classified as negatives,
called false negatives (FN); and (4) positive cases classified as positives, called true positives (TP).

Multiple evaluation measures are calculated using these four outcomes. Measures include: overall
error (ERR), also called fraction incorrect; overall accuracy (ACC), also called fraction correct;
true positive rate (TPR), also called recall, hit rate, or sensitivity; false negative rate (FNR), also
called miss rate; false positive rate (FPR), also called fall-out; true negative rate (TNR), also called
specificity or selectivity; positive predictive value (PPV), also called precision; false discovery rate
(FDR); negative predictive value (NPV); false omission rate (FOR); and F-score (FS).

In multiclass classification, the four outcomes are possible for each individual class in macro-
averaging, and evaluation measures are averaged over classes. Macro-averaging gives equal im-
portance to all classes. For multiclass classification, calculated measures are currently only macro-
averaged.

Note that binary classification assumes a positive class and negative class (i.e. contains a reference
group) and is ordered. Multiclass classification is currently unordered.

Computational details:

ERR = (FP + FN) / (TP + TN + FP + EN).

ACC = (TP + TN) / (TP + TN + FP + FN), and ACC =1 - ERR.
TPR =TP /(TP + FN).

FNR =FN/ (FN + TP), and FNR =1 - TPR.

FPR =FP/ (FP + TN).

TNR =TN /(TN + FP), and TNR =1 - FPR.

PPV =TP/ (TP + FP).

FDR =FP/ (FP + TP), and FDR =1 - PPV.

NPV =TN /(TN + EN).

FOR =FN/ (FN + TN), and FOR =1 - NPV.

FS = (1 + beta®2) * (PPV * TPR) / (((beta®2)*PPV) + TPR)).

All evaluation measures calculated are between O and 1, inclusive. For multiclass classification,
macro-averaged values are provided for each performance measure. Note that *beta’ in FS repre-
sents the relative weight such that recall (TPR) is beta times more important than precision (PPV).
See reference in help document for more details.

Value

Returns list where first element is a full confusion matrix cm and second element is a data frame
containing performance measures. Note that for multiclass classification, macro-averaged values
are provided (each measure calculated for each class, then averaged over all classes; average is

cpm

weighted by argument prior if provided). Excluding cm, second list element contains following
performance measures:

cm
err
acc
tpr
fpr
tnr
fnr
ppv
npv
fdr
fom
fs

Author(s)

A confusion matrix with counts for each of possible outcomes.
Overall error (ERR). Also called fraction incorrect.

Overall accuracy (ACC). Also called fraction correct.

True positive rate (TPR). Also called recall, hit rate, or sensitivity.
False positive rate (FPR). Also called fall-out.

True negative rate (TNR). Also called specificity or selectivity.
False negative rate (FNR). Also called miss rate.

Positive predictive value (PPV). Also called precision.
Negative predicted value (NPV).

False discovery rate (FDR).

False omission rate (FOR).

F-score. Mean between TPR (recall) and PPV (precision) varying by importance
given to recall over precision (see Details section and argument fbeta).

Matthew Snodgress <snodg031@umn.edu>

References

Sokolova, M., and Lapalme, G. (2009). A systematic analysis of performance measures for classi-
fication tasks. Information Processing and Management, 45(4), 427-437.

Examples

H#iHHHHH#H### Random binary example with 3-way array #i#t###H####

create random data array with Parafac structure

set.seed(3)

mydim <- c(60, 16, 80)

nf <-

Amat
Bmat
Cmat
Xmat
Xmat
Emat
X <-
y <-

initialize

3

matrix(rnorm(mydim[1]*nf), nrow = mydim[1], ncol = nf)
matrix(runif(mydim[2]*nf), nrow = mydim[2], ncol = nf)
matrix(runif(mydim[3]*nf), nrow = mydim[3], ncol = nf)

tcrossprod(Amat, krprod(Cmat, Bmat))
array(Xmat, dim = mydim)
array(rnorm(prod(mydim)), dim = mydim)
Xmat + Emat

factor(rbinom(mydim[3], 1, 0.4))

alpha <- seq(@, 1, length = 2)
gamma <- c(0, 0.01)

cost <- c(1, 2)

ntree <- c(100, 200)

predict.cpta

nodesize <- c(1, 2)

size <- c(1, 2)

decay <- c(0, 1)

method <- c("PLR", "SVM", "RF", "NN")

nfolds <- 3

const <- c("orthog", "uncons”, "uncons")

foldid <- sample(rep(1:nfolds, length.out = length(y)))

estimate Parafac models and use third mode to tune classification methods

tune.object <- cpfa(x = X, y =y, nfac = 3, nfolds = nfolds,

foldid = foldid, method = method, alpha =
gamma = gamma, cost = cost, ntree = ntree,
nodesize = nodesize, size = size, decay =

parallel = FALSE, const = const)

create random data array with Parafac structure and same A and B

mydim.new <- c(60, 16, 20)

Cmat <- matrix(runif(mydim.new[3]*nf), nrow = mydim.new[3], ncol =

Xmat <- tcrossprod(Amat, krprod(Cmat, Bmat))

Xmat <- array(Xmat, dim = mydim.new)

Emat <- array(rnorm(prod(mydim.new)), dim = mydim.new)
Xnew <- Xmat + Emat

predict class labels
predict.labels <- predict(object = tune.object, newdata = Xnew,
type = "response”)

create new random class labels for two levels
newlabel <- as.numeric(factor(rbinom(mydim.new[3], 1, 0.4))) - 1

calculate evaluation measure for PLR predicted
y.pred <- predict.labels[, 1]

evalmeasure <- cpm(x = newlabel, y = y.pred)
evalmeasure

Note: see package vignette for more examples

alpha,

decay,

weights

nf)

predict.cpfa

Predict Method for Classification with Parallel Factor Analysis

Description

predict method for class "cpfa".

Usage

S3 method for class 'cpfa'

predict(object, newdata = NULL, nfac = NULL, method = NULL,
type = c("response”, "prob", "classify.weights"”),
threshold = NULL, ...)

10

Arguments

object
newdata

nfac

method

type

threshold

Details

predict.cpta

A fit object of class ’cpfa’ from function ’cpfa’.

An optional three-way or four-way data array used to predict Parafac factor
weights using estimated Parafac model factor weights from inputted object. Di-
mensions must match dimensions of original data for all modes except classifi-
cation mode. If omitted, the original data are used.

Number of factors in models for prediction. Defaults to number of factors for
each Parafac model from input ’object’.

Classification methods used for prediction. Defaults to methods used in input
"object’.

Character vector indicating type of prediction to return. Possible values include:
(1) "response”, returning predicted class labels; (2) "prob”, returning pre-
dicted class probabilities; or (3) "classify.weights”, returning predicted fac-
tor weights used in classification from Parafac models specified. Defaults to
"response”.

For binary classification, value indicating prediction threshold over which obser-
vations are classified as the positive class. If not provided, calculates threshold
using class proportions in original data. For multiclass classification, threshold
is not currently implemented.

additional arguments affecting the prediction produced (currently ignored).

Predicts class labels for a binary or a multiclass outcome. Specifically, predicts factor weights for
one mode of a Parallel Factor Analysis (Parafac) model-1 using newdata and previously estimated
mode weights from original data. Passes predicted factor weights to one or several classification
methods as new data for predicting class labels.

Tuning parameters optimized by k-fold cross-validation are used for each classification method (see
help for cpfa). If not supplied in argument ’threshold’, prediction threshold for all classification
methods is calculated using proportions of class labels for original data in the binary case (and
positive proportion is set as threshold). For multiclass case, class with highest probability is chosen.
Calculates and returns only predicted probabilities without class assignment by specifying type =
"prob". Returns only predicted factor weights if type = "classify.weights".

Value

Returns one of the following: (1) a data frame ’storfac’; (2) a list ’storprob’, or (3) a list ’clas-

sify.weights’:

storfac

storprob

A data frame containing predicted class labels or probabilities (binary case) for
each Parafac model and classification method selected (see argument ’type’).
Number of columns is equal to number of methods times number of Parafac
models. Number of rows is equal to number of predicted observations.

A list containing predicted probabilities for each Parafac model and classifica-
tion method selected (see argument "type’). Only returned if original response
was multiclass (3 or more class labels). Number of elements is equal to number
of methods times number of Parafac models.

predict.cpta 11

cweights List containing predicted factor weights for each Parafac model. Length is equal
to number of Parafac models estimated.

Author(s)

Matthew Snodgress <snodg031@umn.edu>

References

Breiman, L. (2001). Random forests. Machine learning, 45(1), 5-32.
Cortes, C., and Vapnik, V. (1995). Support-vector networks. Machine learning, 20(3), 273-297.

Friedman, J. Hastie, T., and Tibshirani, R. (2010). Regularization Paths for Generalized Linear
Models via Coordinate Descent. Journal of Statistical Software, 33(1), 1-22.

Harshman, R. A. (1970). Foundations of the PARAFAC procedure: Models and conditions for an
"explanatory" multimodal factor analysis. UCLA Working Papers in Phonetics, 16, 1-84.

Harshman, R. A. and Lundy, M. E. (1994). PARAFAC: Parallel factor analysis. Computational
Statistics and Data Analysis, 18, 39-72.

Helwig, N. E. (2017). Estimating latent trends in multivariate longitudinal data via Parafac2 with
functional and structural constraints. Biometrical Journal, 59(4), 783-803.

Helwig, N. E. (2019). multiway: Component Models for Multi-Way Data. R Package version 1.0-6.

Liaw, A., and Wiener, M. (2002). Classification and Regression by randomForest. R News 2(3),
18-22.

Meyer, D., Dimitriadou, E., Hornik, K., Weingessel, A., and Leisch, F. (2021). e1071: Misc Func-
tions of the Department of Statistics, Probability Theory Group (Formerly: E1071), TU Wien. R
package version 1.7-6.

Ripley, B. (1994). Neural networks and related methods for classification. Journal of the Royal
Statistical Society: Series B (Methodological), 56(3), 409-437.

Venables, W. and Ripley, B. (2002) Modern Applied Statistics with S. Fourth Edition. Springer,
New York. ISBN 0-387-95457-0.

Zou, H. and Hastie, T. (2005). Regularization and variable selection via the elastic net. Journal of
the Royal Statistical Society: Series B (Statistical Methodology). 67(2), 301-320.

Examples

#iHHEHHHA# Random binary example with 3-way array #i###HH##HH

create random data array with Parafac structure

set.seed(3)

mydim <- c(60@, 16, 80)

nf <- 3

Amat <- matrix(rnorm(mydim[1]*nf), nrow = mydim[1], ncol = nf)
Bmat <- matrix(runif(mydim[2]*nf), nrow = mydim[2], ncol = nf)
Cmat <- matrix(runif(mydim[3]*nf), nrow = mydim[3], ncol = nf)
Xmat <- tcrossprod(Amat, krprod(Cmat, Bmat))

Xmat <- array(Xmat, dim = mydim)

Emat <- array(rnorm(prod(mydim)), dim = mydim)

X <- Xmat + Emat

12

predict.cpta

y <- factor(rbinom(mydim[3], 1, 0.4))

initialize

alpha <- seq(@, 1, length = 2)

gamma <- c(0, 0.01)

cost <- c(1, 2)

ntree <- c(100, 200)

nodesize <- c(1, 2)

size <- c(1, 2)

decay <- c(o, 1)

method <- c("PLR", "SVM", "RF", "NN")
nfolds <- 3

const <- c("orthog"”, "uncons"”, "uncons")
foldid <- sample(rep(1:nfolds, length.out = length(y)))

estimate Parafac models and use third mode to tune classification methods
tune.object <- cpfa(x = X, y =y, nfac = 3, nfolds = nfolds,
foldid = foldid, method = method, alpha = alpha,
gamma = gamma, cost = cost, ntree = ntree,
nodesize = nodesize, size = size, decay = decay,
parallel = FALSE, const = const)

create random data array with Parafac structure and same A and B weights
mydim.new <- c(60, 16, 20)

Cmat <- matrix(runif(mydim.new[3]*nf), nrow = mydim.new[3], ncol = nf)
Xmat <- tcrossprod(Amat, krprod(Cmat, Bmat))

Xmat <- array(Xmat, dim = mydim.new)

Emat <- array(rnorm(prod(mydim.new)), dim = mydim.new)

Xnew <- Xmat + Emat

predict class labels

predict.labels <- predict(object = tune.object, newdata = Xnew,
type = "response”)

head(predict.labels)

Note: see package vignette for more examples

Index

cpfa, 2
cpm, 6

predict.cpfa, 9

13

	cpfa
	cpm
	predict.cpfa
	Index

