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cta-package cta: Contingency Table Analysis Based on ML Fitting of MPH Models

Description

Contingency table analysis is performed based on maximum likelihood (ML) fitting of multinomial-
Poisson homogeneous (MPH) models (Lang, 2004) and homogeneous linear predictor (HLP) mod-
els (Lang, 2005). Objects computed include model goodness-of-fit statistics; likelihood-based (cell-
and link-specific) residuals; and cell probability and expected count estimates along with standard
errors. This package can also compute test-inversion–e.g. Wald, profile likelihood, score, power-
divergence–confidence intervals for contingency table estimands, when table probabilities are po-
tentially subject to equality constraints. See Lang (2008) and Zhu (2020) for test-inversion intervals.

Details

Please call the following two R functions in this cta package.

mph.fit: Computes maximum likelihood estimates and fit statistics for MPH and HLP models for
contingency tables.

ci.table: Constructs test-inversion approximate confidence intervals for estimands in contingency
tables with or without equality constraints.
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Author(s)

Joseph B. Lang, Qiansheng Zhu

References

Lang, J. B. (2004) Multinomial-Poisson homogeneous models for contingency tables, Annals of
Statistics, 32, 340–383.

Lang, J. B. (2005) Homogeneous linear predictor models for contingency tables, Journal of the
American Statistical Association, 100, 121–134.

Lang, J. B. (2008) Score and profile likelihood confidence intervals for contingency table parame-
ters, Statistics in Medicine, 27, 5975–5990.

Zhu, Q. (2020) "On improved confidence intervals for parameters of discrete distributions." PhD
dissertation, University of Iowa.

block.fct Matrix Direct Sum

Description

Matrix direct sum function. Creates a block diagonal matrix.

Usage

block.fct(...)

Arguments

... R matrices (matrix).

Value

block.fct returns a block diagonal matrix, where the direct sum is in the order of the input matrices
(matrix).

Author(s)

Joseph B. Lang

Examples

A <- matrix(c(1, 2, 3, 4), nrow = 2, byrow = TRUE)
B <- matrix(c(5, 6, 7, 8, 9, 10), nrow = 2, byrow = TRUE)
C <- matrix(c(11, 12, 13, 14), nrow = 1, byrow = TRUE)
block.fct(A, B, C)
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check.HLP HLP Link Status Check

Description

Checks whether the link function L(·) is a candidate HLP link function.

Specifically, this program checks whether L(·) satisfies certain necessary conditions that follow
from a sufficient condition for HLP link status.

If the necessary conditions are satisfied then there is corroborating evidence that L(·) has HLP link
status. If the necessary conditions are not satisfied, then the sufficient condition for HLP link status
is not satisfied, so L(·) may or may not have HLP link status.

Usage

check.HLP(L.fct, Z, tol = NULL)

Arguments

L.fct An R function object, indicating the link L(·) for HLP link status check.

Z Population (aka strata) matrix Z.

tol The pre-set tolerance with which norm(diff) is to be compared with.

Details

The main idea:

The model L(m) = Xβ is an HLP model if L(·) is a smooth link function that satisfies the HLP
conditions with respect to Z (i.e. strata s) and X . That is,

• (1) L(·) has HLP link status with respect to Z, and

• (2) The implied constraint function h(m) = U ′L(m) is Z homogeneous. Here, null(U ′) =
span(X).

Here, (1) L(·) has HLP link status with respect to Z if, for m = Diag(Zγ)p, equivalently, for
γ = Z ′m and p = Diag−1(ZZ ′m)m,

• (1)(a) L(m) = a(γ) +L(p), where a(γ1/γ2)− a(1) = a(γ1)− a(γ2), i.e. a(γ) has the form
C log γ + constant; or

• (1)(b) L(m) = G(γ)L(p), where G(γ) is a diagonal matrix with diagonal elements that are
powers of the γ elements, i.e. L(·) is Z homogeneous (see Lang (2004)); or

• (1)(c) The components of L(·) are a mixture of types (a) and (b): Lj(m) = aj(γ) + Lj(p) or
Lj(m) = Gj(γ)Lj(p), j = 1, . . . , l.

N.B. Lang (2005) defined HLP models as those satisfying (1)(a) and (2). mph.fit uses a broader
definition of HLP model. Specifically, models satisfying (1)(b) and (2) or (1)(c) and (2) are also
considered HLP models.
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Conditions (1)(b) and (2) can be checked using the check.homog function. Condition (1)(c) is not
checked.

This function, check.HLP, is concerned with sufficient condition (1)(a) only. If L(·) satisfies (1)(a)
then

• (i) diff1 = [L(Diag(Zγ1)p1)− L(Diag(Zγ2)p1)]− [L(Diag(Zγ1/γ2)p1)− L(p1)] = 0,
and

• (ii) diff2 = [L(Diag(Zγ1)p1)− L(Diag(Zγ1)p2)]− [L(p1)− L(p2)] = 0.

Here pi = Diag−1(ZZ ′mi)mi, where mi = Diag(Zγi)pi, i = 1, 2.

This program randomly generates g1 (γ1), g2 (γ2), p1, p2, and computes norm(diff) = sqrt(norm(diff1)^2
+ norm(diff2)^2). It returns a warning if norm(diff) is too far from 0.

Value

check.HLP returns a character string chk. If chk = "", then there is corroborating evidence that L(·)
has HLP link status. If chk = paste("L(m) may not be an HLP link [based on tol=",tol,"]!"),
then the sufficient condition for HLP link status is not satisfied, so L(·) may or may not have HLP
link status.

Author(s)

Joseph B. Lang

References

Lang, J. B. (2004) Multinomial-Poisson homogeneous models for contingency tables, Annals of
Statistics, 32, 340–383.

Lang, J. B. (2005) Homogeneous linear predictor models for contingency tables, Journal of the
American Statistical Association, 100, 121–134.

See Also

mph.fit, check.homog, check.zero.order.homog

Examples

# 3-by-3-by-3 Table.
# For a description of the model, see Michael Haber's Example 2,
# p. 433, in Biometrics (in Shorter Communications), Vol. 42,
# No. 2. (Jun., 1986), pp. 429-435.
A <- gl(3, 9, 27)
B <- gl(3, 3, 27)
C <- gl(3, 1, 27)
MAB <- kronecker(diag(9), matrix(1, 1, 3))
MAC <- kronecker(diag(3), kronecker(matrix(1, 1, 3), diag(3)))
MBC <- kronecker(matrix(1, 1, 3), diag(9))
M <- rbind(MAB, MAC, MBC)
Mr <- M[-c(3, 6, 7, 8, 9, 12, 15, 16, 17, 18, 21, 24,

25, 26, 27), ]
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C <- c(1, -1, -1, 1, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 1, -1, -1, 1, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 1, -1, -1, 1)

C <- matrix(C, 3, 12, byrow = TRUE)
L.fct <- function(m) {

p <- m / sum(m)
C %*% log(Mr %*% p)

}
Z <- matrix(rep(1, 27), ncol = 1)
check.HLP(L.fct, Z)

check.homog Z Homogeneity Check

Description

Checks whether the constraint function h(·) satisfies a necessary condition for Z homogeneity.

Usage

check.homog(h.fct, Z, tol = NULL)

Arguments

h.fct An R function object, indicating the constraint function h(·) for Z homogeneity
check.

Z Population (aka strata) matrix Z.

tol The pre-set tolerance with which norm(diff) is to be compared with.

Details

The main idea:

h(·) is Z homogeneous if h(Diag(Zγ)x) = G(γ)h(x), where G is a diagonal matrix with γ
elements raised to some power.

As a check, if h(·) is homogeneous then

h(Diag(Zγ)x1)/h(Diag(Zγ)x2) = h(x1)/h(x2);

That is,
diff = h(Diag(Zγ)x1)h(x2)− h(Diag(Zγ)x2)h(x1) = 0.

Here, the division and multiplication are taken element-wise.

This program randomly generates gamma, x1, and x2, and computes norm(diff). It returns a warn-
ing if norm(diff) is too far from 0.

Value

check.homog returns a character string chk that states whether h(·) is Z homogeneous. If chk =
"", it means that based on the necessary condition, we cannot state that h(·) is not Z homogeneous.
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Author(s)

Joseph B. Lang

References

Lang, J. B. (2004) Multinomial-Poisson homogeneous models for contingency tables, Annals of
Statistics, 32, 340–383.

See Also

check.zero.order.homog, mph.fit, check.HLP

Examples

# EXAMPLE 1
h.fct <- function(m) {m[1] - m[2]}
Z <- matrix(c(1, 1), nrow = 2)
check.homog(h.fct, Z)

# EXAMPLE 2
h.fct.2 <- function(m) {m[1]^2 - m[2]}
Z <- matrix(c(1, 1), nrow = 2)
check.homog(h.fct.2, Z)

check.zero.order.homog

Zero-Order Z Homogeneity Check

Description

Checks whether the estimand function S(·) is zero-order Z homogeneous.

Usage

check.zero.order.homog(S.fct, Z, tol = 1e-9)

Arguments

S.fct An R function object, indicating the estimand function S(·) for zero-order Z
homogeneity check.

Z Population (aka strata) matrix Z.

tol The pre-set tolerance with which norm(diff.LRHS) is to be compared with.
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Details

The main idea:

S(·) is zero-order Z homogeneous if S(Diag(Zγ)x) = S(x), for all γ > 0, and for all x within its
domain. This program randomly generates gam (γ) and x (x), and computes

diff.LRHS = S(Diag(Zγ)x)− S(x).

It returns a warning if norm(diff.LRHS) is too far from 0.

Value

check.zero.order.homog returns a character string check.result that states whether S(·) is
zero-order Z homogeneous. If check.result = "", it means that we cannot state that S(·) is not
zero-order Z homogeneous based on the result of the check.

Author(s)

Qiansheng Zhu

References

Lang, J. B. (2004) Multinomial-Poisson homogeneous models for contingency tables, Annals of
Statistics, 32, 340–383.

See Also

check.homog, check.HLP

Examples

# EXAMPLE 1
S.fct <- function(m) {(m[1] - m[2]) / (m[1] + m[2])}
Z <- matrix(c(1, 1, 1, 1), nrow = 4)
check.zero.order.homog(S.fct, Z)

# EXAMPLE 2
S.fct.2 <- function(m) {m[1] - m[2]}
Z <- matrix(c(1, 1, 1, 1), nrow = 4)
check.zero.order.homog(S.fct.2, Z)

ci.table Test-Inversion CIs for Estimands in Contingency Tables

Description

Constructs test-inversion approximate confidence intervals (CIs) for estimands in contingency ta-
bles subject to equality constraints. Test statistics include Wald-type statistics, and difference and
nested versions of power-divergence statistics. This program can also compute test-inversion ap-
proximate confidence intervals for estimands in contingency tables without additionally imposed
equality constraints, by setting the constraint function h.fct = 0.
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Usage

ci.table(y, h.fct = 0, h.mean = FALSE, S.fct, S.mean = FALSE, S.P = FALSE,
S.space.H0 = NULL, method = "all", cc = 0.95, pdlambda = 2/3,
trans.g = NULL, trans.g.epsilon = 0, trans.g.inv = NULL,
strata = rep(1, length(y)), fixed.strata = "all", delta = 0.5,
max.iter = 50, tol = 1e-2, tol.psi = 1e-4, adj.epsilon = 0.03,
iter.robust.max = 30, iter.robust.eff = 10, check.homog.tol = 1e-9,
check.zero.order.homog.tol = 1e-9, max.mph.iter = 1000, step = 1,
change.step.after = 0.25 * max.mph.iter, y.eps = 0, iter.orig = 5,
norm.diff.conv = 1e-6, norm.score.conv = 1e-6,
max.score.diff.iter = 10, h0.fct.deriv = NULL,
S0.fct.deriv = NULL, trans.g.deriv = NULL, plot.CIs = TRUE)

Arguments

y Observed table counts in the contingency table(s), in vector form.

h.fct The imposed equality constraint(s). Note that sampling constraints are not in-
cluded in h.fct, and the imposed equality constraints should be non-redundant.
If h.mean = FALSE (default), h(p) should be the input, where p is the vector of
data model probabilities, or it can be called the vector of table probabilities; If
h.mean = TRUE, h(m) should be the input, where m is the vector of expected
table counts, i.e. m = E(Y ). In the case of h(m) being the input, the function
h(·) should be Z homogeneous, where Z is the population matrix. For the
definition of Z homogeneity and the population matrix, see Lang (2004). Note
that if there is no imposed equality constraint, we should input h.fct = 0 (real
number 0). Please do not specify h.fct as a zero function in this case. On the
contrary, if there is (are) imposed equality constraint(s), please specify h.fct
as an R function. Another important note is that if there are multiple imposed
equality constraints, please use rbind(), not c(), to concatenate the imposed
equality constraints into a column vector.
By default, h.fct = 0.

h.mean Logical argument, TRUE or FALSE. If h.mean = FALSE (default), the input h.fct
is treated as a function of p; If h.mean = TRUE, the input h.fct is treated as a
function of m.

S.fct Parameter or estimand of interest. It should be an R function, which returns a
real number. i.e. S(·) is a real-valued function. If S.mean = FALSE and S.P =
FALSE (default), S(p) should be the input; If S.mean = TRUE, S(m) should be
the input; If S.P = TRUE, S(P ) should be the input, where P is the vector of
joint probabilities, or it can be called the vector of pre-data probabilities. In the
case of S(m) or S(P ) being the input, the function S(·) should be zero-order Z
homogeneous, then S(P ) is Z estimable with S(P ) = S(m). In addition, when
we are in the process of computing test-inversion confidence intervals other than
Wald intervals, we have to fit several models and obtain constrained MLEs of
expected table counts. These models have equality constraints h∗0(m) = 0,
where h∗0(m) = (h′0(m), S0(m) − ψ, samp′0(m))′. Here h0(m) = 0 is (are)
the imposed equality constraint(s), written in terms ofm; S0(m)−ψ = 0 means
that the estimand of interest is equal to ψ; samp0(m) = 0 is (are) the sampling
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constraint(s), written in terms ofm. Restriction of S(m) [or S(P )] to zero-order
Z homogeneity guarantees the Z homogeneity of h∗0(m).

S.mean, S.P Logical argument, TRUE or FALSE. If S.mean = FALSE and S.P = FALSE (default),
the input S.fct is treated as a function of p; If S.mean = TRUE, the input S.fct is
treated as a function ofm; If S.P = TRUE, the input S.fct is treated as a function
of P .

S.space.H0 Restricted estimand space of S(·) under H0, i.e. subject to the imposed equal-
ity constraints along with sampling constraints. If S.space.H0 is not speci-
fied or the input S.space.H0 = NULL, the restricted estimand space is treated
as (−∞,∞), i.e. the whole real number line. If S.space.H0 is specified, it
can either be input as a vector of length of an even number, or be input in class
Intervals_full {intervals}. As an example, if the restricted estimand space
is (−∞,−1]∪ [1,∞), then the input S.space.H0 could be c(-Inf,-1,1,Inf),
or Intervals_full(matrix(c(-Inf,-1,1,Inf),ncol = 2,byrow = TRUE),closed
= matrix(c(FALSE,TRUE,TRUE,FALSE),ncol = 2,byrow = TRUE),type = "R").
It is strongly recommended that S.space.H0 be specified, as it will improve the
accuracy and (possibly) speed in interval estimation. However, it is often dif-
ficult to have an idea of the restricted estimand space exactly. In this scenario,
specification of one (or several) possibly larger interval(s) that cover(s) the exact
restricted estimand space is also helpful.

method The test statistic(s) in constructing the test-inversion approximate confidence
interval(s). There are eight different test statistics, and the user is allowed to
choose any number of the test statistics out of the eight. The eight test statis-
tics are listed as follows: "Wald", "trans.Wald" (need specification of the
transformation g), "diff.Xsq", "nested.Xsq", "diff.Gsq" (same as "PL"
or "LR"), "nested.Gsq", "diff.PD", "nested.PD" (need specification of the
power-divergence index parameter λ). If the input method = "all" (default), all
test statistics will be employed to compute confidence intervals.

cc Confidence coefficient, or the nominal level of the confidence interval.

pdlambda The index parameter λ in the power-divergence statistic.

trans.g The transformation g used in the transformed Wald confidence interval. First, we
construct a confidence interval for g(S(·)), then we back-transform, i.e. apply
g−1 to the endpoints in order to obtain a confidence interval for S(·). There are
several built-in options for the transformation: "Fisher's z", "log", "-log"
(same as "negative log"), and "[A,B]". "[A,B]" refers to the reparameter-
ization trick as stated in the Discussion part of Lang (2008). The user is also
allowed to input their own choice of trans.g. Ordinarily, the transformation
g should be a bijection. Ideally, g should be smooth, strictly monotonically
increasing, and "to parameterize away the boundary" (Lang, 2008).

trans.g.epsilon

The small ε adjustment included in the transformation g. For example, the
"[A,B]" transformation g with the small ε is

g(x) = log(x−A+ ε)− log(B + ε− x).

By default, trans.g.epsilon = 0.
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trans.g.inv g−1 function used in back-transformation step in construction of the transformed
Wald confidence interval. If trans.g is any one of the built-in options, then
trans.g.inv is automatically specified accordingly.

strata Vector of the same length as y that gives the stratum membership identifier. By
default, strata = rep(1,length(y)) refers to the single stratum (non-stratified)
setting. As another example, strata = c(1,1,2,2) means that the first and sec-
ond table cells belong to the first stratum, and the third and fourth table cells
belong to the second stratum.

fixed.strata The object that gives information on which stratum (strata) has (have) fixed
sample sizes. It can equal one of the keywords, fixed.strata = "all" or
fixed.strata = "none", or it can be a vector of stratum membership identi-
fiers, e.g. fixed.strata = c(1,3) or fixed.strata = c("pop1","pop5").

delta The constant δ that is in expressions of the moving critical values within each
sliding quadratic step. By default, delta = 0.5.

max.iter One of the stopping criteria. It is the maximum number of iterations in the
sliding quadratic root-finding algorithm for searching the two roots to the test-
inversion equation.

tol One of the stopping criteria. In solving for the roots to the test-inversion equa-
tion, if the test statistic for testing H0(ψ) : S0(m) = ψ vs. not H0(ψ) under the
general hypothesis H0 : (h′0(m), samp′0(m))′ = 0, for a certain ψ, is within
tol of the critical value, then we stop the iterations, and this current ψ is treated
as one root. Note that since we are constructing approximate (contrary to exact)
confidence intervals based on the asymptotic distribution under the null hypoth-
esis, tol need not be too small.

tol.psi One of the stopping criteria. In solving for the roots to the test-inversion equa-
tion, if the two ψ’s that are in nearby iterates in the corresponding tests H0(ψ)
vs. not H0(ψ) under the general hypothesis H0, are less than tol.psi apart
in distance, then we stop the iterations, and the current ψ is treated as one root.
Note that we should specify tol.psi to be sufficiently small (compared with the
size of the restricted estimand space) so that the iterations are to be terminated
mainly because of closeness of the test statistic to the critical value.

adj.epsilon, iter.robust.max, iter.robust.eff

The parameters used in the robustifying procedure. First, we attempt to con-
struct confidence intervals based on the original data y, but an error might occur
during this process. The reason for occurrence of the error might be the non-
existence of the constrained MLE subject to H0, or it might be because of the
fact that the ψ in the hypothesis test H0(ψ) vs. not H0(ψ) is, on some scale,
too far away from ψ̂ which is the constrained MLE of the estimand subject to
H0, although this ψ is still within the restricted estimand space. If an error, or
non-convergence issue occurs, then the program will go through the robustify-
ing procedure, with the goal of reporting a confidence interval anyway, even in
the most extreme configuration and/or with the most "extreme" data.
In the robustifying procedure, we adjust the original data y by adding 1 * adj.epsilon
to each original table count, and compute the confidence interval based on the
adjusted data y + 1 * adj.epsilon. Note, however, that even the adjusted data
may lead to non-convergence issue sometimes. We also adjust the original data
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by adding 2 * adj.epsilon, . . ., iter.robust.max * adj.epsilon, and com-
pute confidence intervals based on these adjusted data, respectively. For com-
puting purposes, as soon as iter.robust.eff confidence intervals based on the
adjusted data have been successfully computed, we will not proceed further into
adjustment and interval estimation based on adjusted data. Now, by exploiting
the property that

lim
adj.epsilon→0+

CI(y + adj.epsilon;H0) = CI(y;H0),

we extrapolate using a polynomial fit of degree at most three based on lower and
upper endpoints of the confidence intervals on adjusted data. It is advised that
adj.epsilon should not exceed 0.1, but it should not be too small. By default,
adj.epsilon = 0.03.

check.homog.tol

Round-off tolerance for Z homogeneity check. If the function h(·) with respect
to m is not Z homogeneous, the algorithm will stop immediately and report an
error.

check.zero.order.homog.tol

Round-off tolerance for zero-order Z homogeneity check. If the function S(·)
with respect to m or P is not zero-order Z homogeneous, the algorithm will
stop immediately and report an error.

max.mph.iter, step, change.step.after, y.eps, iter.orig, norm.diff.conv, norm.score.conv, max.score.diff.iter

The parameters used in mph.fit.

h0.fct.deriv The R function object that computes analytic derivative of the transpose of the
constraint function h0(·) with respect to m. In this algorithm, if the input func-
tion h.fct is a function of p, then the algorithm automatically rewrites it into
another function of m: h(p) = h(Diag−1(ZZ ′m)m) = h0(m). If the input
function h.fct is a function of m, then we let h0(m) = h(m). h0.fct.deriv,
if it is specified, equals ∂h′0(m)/∂m. Note that if h0(·) maps from Rp to Rq ,
i.e. there are q constraints, then h0.fct.deriv returns a p-by-q matrix of partial
derivatives. If h0.fct.deriv is not specified or h0.fct.deriv = NULL, numer-
ical derivatives will be used.

S0.fct.deriv The R function object that computes analytic derivative of the estimand function
S0(·) with respect to m. In this algorithm, if the input function S.fct is a
function of p, then the algorithm automatically rewrites it into another function
of m: S(p) = S(Diag−1(ZZ ′m)m) = S0(m). If the input function S.fct
is a function of m, then we let S0(m) = S(m). If the input function S.fct
is a function of P , since S(·) is required to be zero-order Z homogeneous, in
which case S(P ) = S(m), we let S0(m) = S(P ). S0.fct.deriv, if it is
specified, equals ∂S0(m)/∂m. It is a column vector, whose length is the same
as the length of m. If S0.fct.deriv is not specified or S0.fct.deriv = NULL,
numerical derivatives will be used.

trans.g.deriv The derivative function of the transformation g, i.e. dg(w)/dw. If it is specified,
it should be an R function, even if the derivative function is a constant function.

plot.CIs Logical argument, TRUE or FALSE. If plot.CIs = TRUE (default), a visual display
of the computed confidence interval(s) will be created. If plot.CIs = FALSE, no
plots will be created.
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Value

ci.table returns a list, which includes the following objects:

result.table A table that displays lower and upper endpoints of the computed confidence
interval(s). The length(s) of the confidence interval(s) is (are) reported in the
last column.

CIs An object of class Intervals_full {intervals} that includes all of the com-
puted confidence interval(s).

Shat The constrained MLE of S(·) subject toH0. If there is an error or non-convergence
issue during the process of fitting the model subject to H0 by mph.fit, Shat is
set to be NA; or if the constrained MLE does not exist, Shat is also set to be NA.

ase.Shat The asymptotic standard error, i.e. ase, of the constrained MLE of S(·) subject to
H0. If there is an error or non-convergence issue during the process of fitting the
model subject to H0 by mph.fit, ase.Shat is set to be NA; or if the constrained
MLE does not exist, ase.Shat is also set to be NA.

S.space.H0 Restricted estimand space of S(·) under H0. It might be different from the input
S.space.H0. If the input S.space.H0 is the union of at least two disjoint inter-
vals, then the output S.space.H0 displays the particular interval in which Shat,
the constrained MLE of S(·) subject to H0, lies. If the input S.space.H0 is an
interval, then the output S.space.H0 is the same as the input. If S.space.H0 is
unspecified or S.space.H0 = NULL in the input, then the output S.space.H0 =
NULL.

cc Confidence coefficient, or the nominal level of the confidence interval. It is the
same as the cc in the input.

method The test statistic(s) that is (are) actually used to construct the test-inversion ap-
proximate confidence interval(s).

pdlambda The index parameter λ in the power-divergence statistic. It is the same as the
pdlambda in the input.

warnings.collection

Includes all of the warning messages that occur during construction of the con-
fidence interval(s). They might be on evoking of the robustifying procedure:
"xxx.CI: Adjustment used. Not on original data.\n", or they might be on
unsuccessful construction of the confidence interval(s): "xxx.CI: NA.\n"

Author(s)

Qiansheng Zhu
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See Also

mph.fit, mph.summary

Examples

### Construct test-inversion CIs subject to equality constraints.

# I. Mice-Fungicide data: Innes et al. (1969) conducted an experiment
# to test the possible carcinogenic effect of a fungicide Avadex on
# four subgroups of mice. The data is reproduced as a 2-by-2-by-4
# three-way contingency table. Within each of the four 2-by-2 two-way
# sub-tables, there is one fixed stratum for the treated group, and
# there is also one fixed stratum for the control group. Overall,
# the data was collected under the product-multinomial sampling scheme.
# We assume that the relative risks that correspond to the four 2-by-2
# two-way sub-tables are the same, and we construct 95% test-inversion
# confidence intervals for this common relative risk.
#
# For a detailed description of the Mice-Fungicide data set, see
# Gart (1971):
# Gart, J. J. (1971) The comparison of proportions: a review of
# significance tests, confidence intervals and adjustments for
# stratification. Revue de l'Institut International de Statistique,
# 39(2), pp. 148-169.

obs.y <- c(4, 12, 5, 74, 2, 14, 3, 84, 4, 14, 10, 80, 1, 14, 3, 79)

h.fct <- function(p) {
RR_1 <- p[1] / p[3]
RR_2 <- p[5] / p[7]
RR_3 <- p[9] / p[11]
RR_4 <- p[13] / p[15]
rbind(RR_1 - RR_2, RR_1 - RR_3, RR_1 - RR_4)

}

S.fct <- function(p) {
p[1] / p[3]

}

mice_result <- ci.table(obs.y, h.fct = h.fct, S.fct = S.fct,
S.space.H0 = c(0, Inf), trans.g = "log",
strata = rep(seq(1, 8), each = 2))

# II. Suppose there is a 3-by-4-by-2 three-way contingency table which
# cross-classifies three variables: X, Y, and Z. We assign scores
# {1,2,3}, {1,2,3,4}, and {1,2} to the variables X, Y, and Z,
# respectively. At each level of Z, there is a 3-by-4 two-way sub-table
# for variables X and Y, and the 3-by-4 sub-table forms a fixed
# stratum. We assume that the Pearson's correlation coefficient between
# X and Y when Z = 1 is the same as that when Z = 2. The observed table
# counts are (1,2,3,4,5,6,7,8,9,10,11,12) for the 3-by-4 sub-table when
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# Z = 1, and (13,14,15,16,17,18,19,20,21,22,23,24) for the 3-by-4 sub-
# table when Z = 2. We construct a 95% profile likelihood confidence
# interval for this common Pearson's correlation coefficient.

corr_freq_prob <- function(freq, score.X, score.Y) {
# Compute the Pearson's correlation coefficient based on the vector
# of table (frequency) counts or the vector of underlying table
# probabilities.
# Note that the input freq is a vector.
c <- length(score.X)
d <- length(score.Y)
freq <- matrix(freq, nrow = c, ncol = d, byrow = TRUE)
P <- freq / sum(freq)
P.row.sum <- apply(P, 1, sum)
P.column.sum <- apply(P, 2, sum)
EX <- crossprod(score.X, P.row.sum)
EY <- crossprod(score.Y, P.column.sum)
EXsq <- crossprod(score.X^2, P.row.sum)
EYsq <- crossprod(score.Y^2, P.column.sum)
sdX <- sqrt(EXsq - EX^2)
sdY <- sqrt(EYsq - EY^2)
EXY <- 0
for (i in seq(1, c)) {
for (j in seq(1, d)) {

EXY <- EXY + score.X[i] * score.Y[j] * P[i, j]
}

}
Cov.X.Y <- EXY - EX * EY
if (Cov.X.Y == 0) {

corr <- 0
}
else {

corr <- as.numeric(Cov.X.Y / (sdX * sdY))
}
corr

}

h.fct <- function(p) {
corr_1 <- corr_freq_prob(p[seq(1, 12)], c(1, 2, 3), c(1, 2, 3, 4))
corr_2 <- corr_freq_prob(p[seq(13, 24)], c(1, 2, 3), c(1, 2, 3, 4))
corr_1 - corr_2

}

S.fct <- function(p) {
corr_freq_prob(p[seq(1, 12)], c(1, 2, 3), c(1, 2, 3, 4))

}

corr_result <- ci.table(y = seq(1, 24), h.fct = h.fct, S.fct = S.fct,
S.space.H0 = c(-1, 1), method = "LR",
trans.g = "Fisher's z", strata = rep(c(1, 2), each = 12),
plot.CIs = FALSE)
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# III. Crying Baby data: Gordon and Foss (1966) conducted an experiment to
# investigate the effect of rocking on the crying of full term babies.
# The data set can be reproduced as a 2-by-2-by-18 three-way contingency
# table. Within each of the eighteen 2-by-2 two-way sub-tables, there is
# one fixed stratum for the experimental group and one fixed stratum for
# the control group. Overall, the data was collected under the product-
# multinomial sampling scheme. We assume common odds ratios among the
# eighteen two-way sub-tables, and we construct 95% test-inversion
# confidence intervals for this common odds ratio.
#
# For a detailed description of the Crying Baby data set, see Cox (1966):
# Cox, D. R. (1966) A simple example of a comparison involving quantal
# data. Biometrika, 53(1-2), pp. 213-220.

obs.y <- c(0,1,5,3,0,1,4,2,0,1,4,1,1,0,5,1,0,1,1,4,0,1,5,4,0,1,3,5,0,1,
4,4,0,1,2,3,1,0,1,8,0,1,1,5,0,1,1,8,0,1,3,5,0,1,1,4,0,1,2,4,
0,1,1,7,1,0,2,4,0,1,3,5)

strata <- rep(seq(1, 36), each = 2)

h.fct <- function(p) {
OR_1 <- p[1] * p[4] / (p[2] * p[3])
OR_2 <- p[5] * p[8] / (p[6] * p[7])
OR_3 <- p[9] * p[12] / (p[10] * p[11])
OR_4 <- p[13] * p[16] / (p[14] * p[15])
OR_5 <- p[17] * p[20] / (p[18] * p[19])
OR_6 <- p[21] * p[24] / (p[22] * p[23])
OR_7 <- p[25] * p[28] / (p[26] * p[27])
OR_8 <- p[29] * p[32] / (p[30] * p[31])
OR_9 <- p[33] * p[36] / (p[34] * p[35])
OR_10 <- p[37] * p[40] / (p[38] * p[39])
OR_11 <- p[41] * p[44] / (p[42] * p[43])
OR_12 <- p[45] * p[48] / (p[46] * p[47])
OR_13 <- p[49] * p[52] / (p[50] * p[51])
OR_14 <- p[53] * p[56] / (p[54] * p[55])
OR_15 <- p[57] * p[60] / (p[58] * p[59])
OR_16 <- p[61] * p[64] / (p[62] * p[63])
OR_17 <- p[65] * p[68] / (p[66] * p[67])
OR_18 <- p[69] * p[72] / (p[70] * p[71])
rbind(OR_1 - OR_2, OR_1 - OR_3, OR_1 - OR_4, OR_1 - OR_5, OR_1 - OR_6,

OR_1 - OR_7, OR_1 - OR_8, OR_1 - OR_9, OR_1 - OR_10, OR_1 - OR_11,
OR_1 - OR_12, OR_1 - OR_13, OR_1 - OR_14, OR_1 - OR_15,
OR_1 - OR_16, OR_1 - OR_17, OR_1 - OR_18)

}

S.fct <- function(p) {
p[1] * p[4] / (p[2] * p[3])

}

crying_baby_result <- ci.table(obs.y, h.fct = h.fct, S.fct = S.fct,
S.space.H0 = c(0, Inf), trans.g = "log",
strata = strata, fixed.strata = "all",
y.eps = 0.4)
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# IV. Homicide data: Radelet & Pierce (1985) examined cases of 1017 homicide
# defendants in Florida between 1973 and 1977. Both the police department
# and prosecutors classified these cases into three mutually exclusive
# categories: 1 = "No Felony", 2 = "Possible Felony", 3 = "Felony".
# Three variables: police classification (P), court (i.e. prosecutors')
# classification (C), and race of defendant/victim (R) are cross-
# classified in a 3-by-3-by-4 three-way contingency table. The data
# was collected based on independent Poisson sampling, and the strata
# correspond to levels of the race combination (R).
#
# For a detailed description of the Homicide data set, see Agresti (1984)
# and Radelet & Pierce (1985):
# Agresti, A. (1984). Analysis of Ordinal Categorical Data. John Wiley &
# Sons.
# Radelet, M. L., & Pierce, G. L. (1985). Race and prosecutorial
# discretion in homicide cases. Law & Society Review, 19(4), pp. 587-622.
#
# To measure agreement between police and court classifications, the four
# estimands of interest are Cohen's unweighted kappa coefficients at four
# levels of R, respectively. We construct 95% test-inversion confidence
# intervals for the estimands subject to two sets of equality constraints,
# respectively.
# (1) WkW and BkB have the same unweighted kappa, and BkW and WkB have
# the same unweighted kappa.
# (2) A "row effects" model for the conditional R-C association:
# log mu_{ijk} = lambda + lambda_{i}^{R} + lambda_{j}^{P} + lambda_{k}^{C} +
# lambda_{ij}^{RP} + lambda_{jk}^{PC} + tau_{i}^{RC}(w_{k} - bar{w}),
# where race effects {tau_{i}^{RC}} that sum to zero are introduced for an
# R-C association. The variable C is viewed as being ordinal with integer
# monotonic scores {w_{k}}={1,2,3}.

BkW_v <- c(7, 1, 3, 0, 2, 6, 5, 5, 109)
WkW_v <- c(236, 11, 26, 7, 2, 21, 25, 4, 101)
BkB_v <- c(328, 6, 13, 7, 2, 3, 21, 1, 36)
WkB_v <- c(14, 1, 0, 6, 1, 1, 1, 0, 5)
obs.y <- c(BkW_v, WkW_v, BkB_v, WkB_v)

Unweighted.Kappa.BkW <- function(p) {
mat.p <- matrix(p[seq(1,9)], nrow = 3, byrow = TRUE)
Kappa(mat.p)$Unweighted[1]

}
Unweighted.Kappa.WkW <- function(p) {

mat.p <- matrix(p[seq(10,18)], nrow = 3, byrow = TRUE)
Kappa(mat.p)$Unweighted[1]

}
Unweighted.Kappa.BkB <- function(p) {

mat.p <- matrix(p[seq(19,27)], nrow = 3, byrow = TRUE)
Kappa(mat.p)$Unweighted[1]

}
Unweighted.Kappa.WkB <- function(p) {

mat.p <- matrix(p[seq(28,36)], nrow = 3, byrow = TRUE)
Kappa(mat.p)$Unweighted[1]
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}

# Constraints (1)
library(vcd)
WkW.BkB_BkW.WkB_cons <- function(p) {

mat.BkW <- matrix(p[seq(1,9)], nrow = 3, byrow = TRUE)
mat.WkW <- matrix(p[seq(10,18)], nrow = 3, byrow = TRUE)
mat.BkB <- matrix(p[seq(19,27)], nrow = 3, byrow = TRUE)
mat.WkB <- matrix(p[seq(28,36)], nrow = 3, byrow = TRUE)
rbind(Kappa(mat.BkW)$Unweighted[1] - Kappa(mat.WkB)$Unweighted[1],

Kappa(mat.WkW)$Unweighted[1] - Kappa(mat.BkB)$Unweighted[1])
}
homicide_kappa_same_fit <- mph.fit(obs.y, h.fct = WkW.BkB_BkW.WkB_cons,

strata = rep(c(1,2,3,4), each = 9),
fixed.strata = "none")

homicide_kappa_same_fit$Gsq
pchisq(homicide_kappa_same_fit$Gsq, 2, lower.tail = FALSE) # p-value

BkW_kappa_same <- ci.table(obs.y, h.fct = WkW.BkB_BkW.WkB_cons,
S.fct = Unweighted.Kappa.BkW, S.space.H0 = c(0,1),
strata = rep(c(1,2,3,4), each = 9),
fixed.strata = "none", trans.g = "[A,B]")

WkW_kappa_same <- ci.table(obs.y, h.fct = WkW.BkB_BkW.WkB_cons,
S.fct = Unweighted.Kappa.WkW, S.space.H0 = c(0,1),
strata = rep(c(1,2,3,4), each = 9),
fixed.strata = "none", trans.g = "[A,B]")

# Constraints (2)
X_cond_RC_v <- c(1,1,0,0,1,0,1,0,1,0,0,0,0,0,1,0,0,0,-1,0,0,

1,1,0,0,1,0,0,1,1,0,0,0,0,0,0,1,0,0,0,0,0,
1,1,0,0,1,0,0,0,1,0,0,0,0,0,0,0,0,0,1,0,0,
1,1,0,0,0,1,1,0,0,1,0,0,0,0,0,0,1,0,-1,0,0,
1,1,0,0,0,1,0,1,0,1,0,0,0,0,0,0,0,1,0,0,0,
1,1,0,0,0,1,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,
1,1,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,
1,1,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,
1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,
1,0,1,0,1,0,1,0,0,0,1,0,0,0,1,0,0,0,0,-1,0,
1,0,1,0,1,0,0,1,0,0,1,0,0,0,0,1,0,0,0,0,0,
1,0,1,0,1,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,
1,0,1,0,0,1,1,0,0,0,0,1,0,0,0,0,1,0,0,-1,0,
1,0,1,0,0,1,0,1,0,0,0,1,0,0,0,0,0,1,0,0,0,
1,0,1,0,0,1,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,
1,0,1,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,
1,0,1,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,
1,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,
1,0,0,1,1,0,1,0,0,0,0,0,1,0,1,0,0,0,0,0,-1,
1,0,0,1,1,0,0,1,0,0,0,0,1,0,0,1,0,0,0,0,0,
1,0,0,1,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,
1,0,0,1,0,1,1,0,0,0,0,0,0,1,0,0,1,0,0,0,-1,
1,0,0,1,0,1,0,1,0,0,0,0,0,1,0,0,0,1,0,0,0,
1,0,0,1,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,
1,0,0,1,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,
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1,0,0,1,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,
1,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,
1,0,0,0,1,0,1,0,0,0,0,0,0,0,1,0,0,0,1,1,1,
1,0,0,0,1,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,
1,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,-1,-1,
1,0,0,0,0,1,1,0,0,0,0,0,0,0,0,0,1,0,1,1,1,
1,0,0,0,0,1,0,1,0,0,0,0,0,0,0,0,0,1,0,0,0,
1,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,-1,-1,-1,
1,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,1,1,1,
1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,
1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,-1,-1)

X_cond_RC_mat <- matrix(X_cond_RC_v, ncol = 21, byrow = TRUE)

cond_RC_HLP_fit <- mph.fit(obs.y, L.fct = "logm", L.mean = TRUE,
X = X_cond_RC_mat,
strata = rep(c(1,2,3,4), each = 9),
fixed.strata = "none")

mph.summary(cond_RC_HLP_fit)

library(MASS)
X_cond_RC_U <- Null(X_cond_RC_mat)
cond_RC_MPH_fit <- mph.fit(obs.y, h.fct = function(m) {t(X_cond_RC_U) %*% log(m)},

h.mean = TRUE, strata = rep(c(1,2,3,4), each = 9),
fixed.strata = "none")

mph.summary(cond_RC_MPH_fit)

BkW_cond_RC <- ci.table(obs.y, h.fct = function(m) {t(X_cond_RC_U) %*% log(m)},
h.mean = TRUE, S.fct = Unweighted.Kappa.BkW,
S.space.H0 = c(0,1), trans.g = "[A,B]",
strata = rep(c(1,2,3,4), each = 9), fixed.strata = "none")

WkW_cond_RC <- ci.table(obs.y, h.fct = function(m) {t(X_cond_RC_U) %*% log(m)},
h.mean = TRUE, S.fct = Unweighted.Kappa.WkW,
S.space.H0 = c(0,1), trans.g = "[A,B]",
strata = rep(c(1,2,3,4), each = 9), fixed.strata = "none")

BkB_cond_RC <- ci.table(obs.y, h.fct = function(m) {t(X_cond_RC_U) %*% log(m)},
h.mean = TRUE, S.fct = Unweighted.Kappa.BkB,
S.space.H0 = c(0,1), trans.g = "[A,B]",
strata = rep(c(1,2,3,4), each = 9), fixed.strata = "none")

WkB_cond_RC <- ci.table(obs.y, h.fct = function(m) {t(X_cond_RC_U) %*% log(m)},
h.mean = TRUE, S.fct = Unweighted.Kappa.WkB,
S.space.H0 = c(0,1), trans.g = "[A,B]",
strata = rep(c(1,2,3,4), each = 9), fixed.strata = "none")

### Construct test-inversion CIs, without additionally imposed constraints.

# V. Binomial success rate parameter p.
# Model: 0 = x <- X | p ~ Bin(n = 5, p).
# Goal: Compute approximate 90% CIs for the success probability p.

bin_p_result <- ci.table(c(0, 5), h.fct = 0, S.fct = function(p) {p[1]},
S.space.H0 = c(0, 1), cc = 0.9, y.eps = 0.1)
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# Example 2.1 in Lang (2008).
# Model: y = (39, 1) <- Y ~ mult(40, p1, p2).
# Goal: Compute approximate 95% CIs for the success probability p1.

bin_p_eg21_result <- ci.table(c(39,1), h.fct = 0, S.fct = function(p) {p[1]},
S.space.H0 = c(0,1), trans.g = "[A,B]")

# VI. Conditional probability.
# Model: y = (0, 39, 18, 11) <- Y ~ mult(68, p1, p2, p3, p4)
# Goal: Compute approximate 95% CIs for the conditional probability
# p1 / (p1 + p2).

cond_prob_result <- ci.table(c(0, 39, 18, 11), h.fct = 0,
S.fct = function(p) {p[1] / (p[1] + p[2])},
S.space.H0 = c(0, 1), y.eps = 0.1)

# Model: y = (0, 39 // 18, 11) <- Y ~ prod mult(39, p1, p2 // 29, p3, p4).
# That is,
# y <- Y ~ MP(gamma, p | strata = c(1, 1, 2, 2), fixed = "all"),
# where gamma = (39, 29)'.
# Goal: Compute approximate 95% CIs for p1.

cond_prob_SS_result <- ci.table(c(0, 39, 18, 11), h.fct = 0,
S.fct = function(p) {p[1]}, S.space.H0 = c(0, 1),
strata = c(1, 1, 2, 2), y.eps = 0.1)

# VII. Difference between conditional probabilities.
# Model: y = (0, 39, 18, 11) <- Y ~ mult(68, p1, p2, p3, p4)
# Goal: Compute approximate 95% CIs for the difference between conditional
# probabilities, p1 / (p1 + p2) - p3 / (p3 + p4).

diff_cond_prob_result <- ci.table(c(0, 39, 18, 11), h.fct = 0,
S.fct = function(p) {p[1]/(p[1]+p[2]) - p[3]/(p[3]+p[4])},

S.space.H0 = c(-1, 1), trans.g = "[A,B]")

# VIII. Gamma variant.
# Example 2.3 in Lang (2008).
# Model: y = (25, 25, 12 // 0, 1, 3)
# ~ prod mult(62, p11, p12, p13 // 4, p21, p22, p23).
# Goal: Compute approximate 95% CIs for the Gamma* parameter as
# described in Lang (2008).

Gamma_variant_23 <- function(p) {
p <- matrix(p, 2, 3, byrow = TRUE)
P.case.gt.control <- (p[2, 2] + p[2, 3]) * p[1, 1] + p[2, 3] * p[1, 2]
P.case.lt.control <- p[1, 2] * p[2, 1] + p[1, 3] * (p[2, 1] + p[2, 2])
P.case.neq.control <- P.case.gt.control + P.case.lt.control
P.case.gt.control / P.case.neq.control

}
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Gamma_variant_result <- ci.table(c(25, 25, 12, 0, 1, 3), h.fct = 0,
S.fct = Gamma_variant_23, S.space.H0 = c(0, 1),
trans.g = "[A,B]", strata = c(1, 1, 1, 2, 2, 2))

### Alternative code...
gammastar.fct <- function(p) {

nr <- nrow(p)
nc <- ncol(p)
probC <- 0
probD <- 0
for (i in 1:(nr-1)) {
for (j in 1:(nc-1)) {

Aij <- 0
for (h in (i+1):nr) {

for (k in (j+1):nc) {
Aij <- Aij + p[h, k]

}
}
probC <- probC + p[i, j] * Aij

}
}
for (i in 1:(nr-1)) {

for (j in 2:nc) {
Aij <- 0
for (h in (i+1):nr) {

for (k in 1:(j-1)) {
Aij <- Aij + p[h, k]

}
}
probD <- probD + p[i, j] * Aij

}
}
probC / (probC + probD)

}

Gamma_variant_23_a <- function(p) {
p <- matrix(p, 2, 3, byrow = TRUE)
gammastar.fct(p)

}
Gamma_variant_a_result <- ci.table(c(25, 25, 12, 0, 1, 3), h.fct = 0,

S.fct = Gamma_variant_23_a,
S.space.H0 = c(0, 1), trans.g = "[A,B]",
strata = c(1, 1, 1, 2, 2, 2))

# IX. Global odds ratio.
# Model: y = (25, 25, 12 // 0, 1, 3)
# ~ prod mult(62, p11, p12, p13 // 4, p21, p22, p23).
# Goal: Compute approximate 95% CIs for the first global odds ratio.

global_odds_ratio_23_11 <- function(p) {
p <- matrix(p, 2, 3, byrow = TRUE)
p[1, 1] * (p[2, 2] + p[2, 3]) / (p[2, 1] * (p[1, 2] + p[1, 3]))
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}
global_odds_ratio_result <- ci.table(c(25, 25, 12, 0, 1, 3), h.fct = 0,

S.fct = global_odds_ratio_23_11,
S.space.H0 = c(0, Inf), trans.g = "log",
strata = c(1, 1, 1, 2, 2, 2))

# X. Difference between product-multinomial probabilities.
# Example 2.2 in Lang (2008).
# Source (secondary): Agresti 2002:65
# Early study of the death penalty in Florida (Radelet)
# Victim Black...
# White Defendant 0/9 received Death Penalty
# Black Defendant 6/103 received Death Penalty
#
# Model: y = (0, 9 // 6, 97) <- Y ~ prod mult(9, p1, p2 // 103, p3, p4).
# Goal: Compute approximate 95% CIs for the difference between
# product-multinomial probabilities, p1 - p3.

diff_prod_mult_prob_result <- ci.table(c(0, 9, 6, 97), h.fct = 0,
S.fct = function(p) {p[1] - p[3]},
S.space.H0 = c(-1, 1),
trans.g = "Fisher's z",
strata = c(1, 1, 2, 2))

### Alternative (artificial) data that is even more sparse...

diff_prod_mult_prob_a_result <- ci.table(c(0, 9, 0, 97), h.fct = 0,
S.fct = function(p) {p[1] - p[3]},
S.space.H0 = c(-1, 1),
trans.g = "Fisher's z",
strata = c(1, 1, 2, 2), y.eps = 0.4)

# XI. Kappa coefficient.
# Example 2.4 in Lang (2008).
# Model: y = (4, 0, 0, 0, 1, 0, 0, 0, 15)
# <- Y ~ mult(20, p11, p12, ..., p33).
# Goal: Compute approximate 95% CIs for the unweighted kappa coefficient.

Kappa_coeff_33 <- function(p) {
p <- matrix(p, 3, 3, byrow = TRUE)
s1 <- p[1, 1] + p[2, 2] + p[3, 3]
prow <- apply(p, 1, sum)
pcol <- apply(p, 2, sum)
s2 <- prow[1] * pcol[1] + prow[2] * pcol[2] + prow[3] * pcol[3]
(s1 - s2) / (1 - s2)

}
kappa_coeff_result <- ci.table(c(4, 0, 0, 0, 1, 0, 0, 0, 15), h.fct = 0,

S.fct = Kappa_coeff_33, S.space.H0 = c(-1, 1))
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compute_cons_MLE_ase Constrained MLE and ASE

Description

Computes the constrained MLE of S0(m) subject to equality constraints h0(m) = 0 under the
specified strata and fixed.strata configuration, and its associated asymptotic standard error.
Here m is the vector of expected table counts, i.e. m = E(Y ).

Usage

compute_cons_MLE_ase(y, strata, fixed.strata, h0.fct, h0.fct.deriv, S0.fct,
S0.fct.deriv, max.mph.iter, step, change.step.after,
y.eps, iter.orig, norm.diff.conv, norm.score.conv,
max.score.diff.iter)

Arguments

y Observed table counts in the contingency table(s), in vector form.

strata Vector of the same length as y that gives the stratum membership identifier.

fixed.strata The object that gives information on which stratum (strata) has (have) fixed
sample sizes.

h0.fct The constraint function h0(·) with respect to m, where m = E(Y ), the vector
of expected table counts.

h0.fct.deriv The R function object that computes analytic derivative of the transpose of the
constraint function h0(·) with respect to m. If h0.fct.deriv is not specified or
h0.fct.deriv = NULL, numerical derivatives will be used.

S0.fct The estimand function S0(·) with respect to m.

S0.fct.deriv The R function object that computes analytic derivative of the estimand function
S0(·) with respect to m. If S0.fct.deriv is not specified or S0.fct.deriv =
NULL, numerical derivatives will be used.

max.mph.iter, step, change.step.after, y.eps, iter.orig, norm.diff.conv, norm.score.conv, max.score.diff.iter

The parameters used in mph.fit.

Value

compute_cons_MLE_ase returns a vector of length two. The first element S0.fct.m_H0 is the
constrained MLE of S0(m) subject to equality constraints h0(m) = 0, and the second element
ase.S0.fct.m_H0 is the associated asymptotic standard error.

Author(s)

Qiansheng Zhu
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References

Lang, J. B. (2004) Multinomial-Poisson homogeneous models for contingency tables, Annals of
Statistics, 32, 340–383.

Zhu, Q. (2020) "On improved confidence intervals for parameters of discrete distributions." PhD
dissertation, University of Iowa.

See Also

ci.table

create.U Orthogonal Complement of the Column Space of a Matrix

Description

Creates a full column rank matrix, U , with column space equal to the orthogonal complement of
the column space of X . That is, U has column space equal to the null space of X ′.

Usage

create.U(X)

Arguments

X A full column rank matrix.

Value

create.U returns a full column rank matrix U, with column space equal to the orthogonal comple-
ment of the column space of X.

Author(s)

Joseph B. Lang

See Also

mph.fit

Examples

X <- matrix(seq(1, 12), ncol = 2, byrow = TRUE)
create.U(X)
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create.Z.ZF Population Matrix and Sampling Constraint Matrix

Description

Creates the population (aka strata) matrix Z and the sampling constraint matrix ZF using strata and
sampling constraint information found in input variables strata and fixed.strata.

Usage

create.Z.ZF(strata, nrowZ = length(strata), fixed.strata = "all")

Arguments

strata The vector that gives the stratum membership identifier.

nrowZ Number of rows of the to-be-created population (aka strata) matrix Z.

fixed.strata The object that gives information on which stratum have fixed sample sizes.
It can equal one of the keywords, fixed.strata = "all" or fixed.strata =
"none", or it can be a vector of stratum membership identifiers, e.g. fixed.strata
= c(1,3). Default: fixed.strata = "all".

Value

create.Z.ZF returns a list, which includes the following two objects:

Z Population (aka strata) matrix.

ZF Sampling constraint matrix.

Author(s)

Joseph B. Lang

References

Lang, J. B. (2004) Multinomial-Poisson homogeneous models for contingency tables, Annals of
Statistics, 32, 340–383.

See Also

mph.fit

Examples

create.Z.ZF(c(1, 1, 2, 3, 3), fixed.strata = "all")
create.Z.ZF(c(1, 1, 2, 3, 3), fixed.strata = "none")
create.Z.ZF(c(1, 1, 2, 3, 3), fixed.strata = c(1, 2))
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diff_Gsq_nr Difference in G-Squared Statistic Based CIs (Non-Robust)

Description

Constructs confidence intervals (CIs), based on the difference in G2 statistic, for estimands in con-
tingency tables subject to equality constraints.

These confidence intervals are also referred to as likelihood ratio confidence intervals or profile
likelihood confidence intervals.

The program may stop because of a non-convergence issue.

Usage

diff_Gsq_nr(y, strata, fixed.strata, h0.fct, h0.fct.deriv, S0.fct,
S0.fct.deriv, max.mph.iter, step, change.step.after,
y.eps, iter.orig, norm.diff.conv, norm.score.conv,
max.score.diff.iter, S.space.H0, tol.psi, tol,
max.iter, cut.off, delta)

Arguments

y Observed table counts in the contingency table(s), in vector form.
strata Vector of the same length as y that gives the stratum membership identifier.
fixed.strata The object that gives information on which stratum (strata) has (have) fixed

sample sizes.
h0.fct The constraint function h0(·) with respect to m, where m = E(Y ), the vector

of expected table counts.
h0.fct.deriv The R function object that computes analytic derivative of the transpose of the

constraint function h0(·) with respect to m. If h0.fct.deriv is not specified or
h0.fct.deriv = NULL, numerical derivatives will be used.

S0.fct The estimand function S0(·) with respect to m.
S0.fct.deriv The R function object that computes analytic derivative of the estimand function

S0(·) with respect to m. If S0.fct.deriv is not specified or S0.fct.deriv =
NULL, numerical derivatives will be used.

max.mph.iter, step, change.step.after, y.eps, iter.orig, norm.diff.conv, norm.score.conv, max.score.diff.iter

The parameters used in mph.fit.
S.space.H0 Restricted estimand space of S(·) under H0, i.e. subject to the imposed equality

constraints along with sampling constraints.
tol.psi, tol, max.iter

The parameters used in the three stopping criteria in solving for the roots to the
test-inversion equation.

cut.off qchisq(cc,1). i.e. The chi-square cutoff, with 1 df, based on the significance
level 1-cc.

delta The constant δ that is in expressions of the moving critical values within each
sliding quadratic step.
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Value

Provided that diff_Gsq_nr does not stop, it returns a 1-by-2 matrix which displays two endpoints
of the confidence interval based on the difference in G2 statistic.

Author(s)

Qiansheng Zhu

References

Zhu, Q. (2020) "On improved confidence intervals for parameters of discrete distributions." PhD
dissertation, University of Iowa.

See Also

diff_Gsq_robust, f.psi, ci.table

diff_Gsq_robust Difference in G-Squared Statistic Based CIs (Robust)

Description

Constructs confidence intervals (CIs), based on the difference in G2 statistic, for estimands in con-
tingency tables subject to equality constraints.

These confidence intervals are also referred to as likelihood ratio confidence intervals or profile
likelihood confidence intervals.

Usage

diff_Gsq_robust(y, strata, fixed.strata, h0.fct, h0.fct.deriv,
S0.fct, S0.fct.deriv, max.mph.iter, step,
change.step.after, y.eps, iter.orig, norm.diff.conv,
norm.score.conv, max.score.diff.iter, S.space.H0,
tol.psi, tol, max.iter, cut.off, delta, adj.epsilon,
iter.robust.max, iter.robust.eff)

Arguments

y Observed table counts in the contingency table(s), in vector form.

strata Vector of the same length as y that gives the stratum membership identifier.

fixed.strata The object that gives information on which stratum (strata) has (have) fixed
sample sizes.

h0.fct The constraint function h0(·) with respect to m, where m = E(Y ), the vector
of expected table counts.
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h0.fct.deriv The R function object that computes analytic derivative of the transpose of the
constraint function h0(·) with respect to m. If h0.fct.deriv is not specified or
h0.fct.deriv = NULL, numerical derivatives will be used.

S0.fct The estimand function S0(·) with respect to m.

S0.fct.deriv The R function object that computes analytic derivative of the estimand function
S0(·) with respect to m. If S0.fct.deriv is not specified or S0.fct.deriv =
NULL, numerical derivatives will be used.

max.mph.iter, step, change.step.after, y.eps, iter.orig, norm.diff.conv, norm.score.conv, max.score.diff.iter

The parameters used in mph.fit.

S.space.H0 Restricted estimand space of S(·) under H0, i.e. subject to the imposed equality
constraints along with sampling constraints.

tol.psi, tol, max.iter

The parameters used in the three stopping criteria in solving for the roots to the
test-inversion equation.

cut.off qchisq(cc,1). i.e. The chi-square cutoff, with 1 df, based on the significance
level 1-cc.

delta The constant δ that is in expressions of the moving critical values within each
sliding quadratic step.

adj.epsilon, iter.robust.max, iter.robust.eff

The parameters used in the robustifying procedure.

Value

diff_Gsq_robust returns a list, which includes two objects. The first object is a 1-by-2 matrix
which displays two endpoints of the confidence interval based on the difference in G2 statistic. For
the second object, it includes the warning message that occurs during construction of the confi-
dence interval if the robustifying procedure is evoked: "diff.Gsq.CI: Adjustment used. Not on
original data.\n". If the robustifying procedure is not evoked, the second object is NULL.

Author(s)

Qiansheng Zhu

References

Zhu, Q. (2020) "On improved confidence intervals for parameters of discrete distributions." PhD
dissertation, University of Iowa.

See Also

diff_Gsq_nr, f.psi, ci.table
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diff_PD_nr Difference in Power-Divergence Statistic Based CIs (Non-Robust)

Description

Constructs confidence intervals (CIs), based on the difference in power-divergence statistic, for
estimands in contingency tables subject to equality constraints.

The program may stop because of a non-convergence issue.

Usage

diff_PD_nr(y, strata, fixed.strata, h0.fct, h0.fct.deriv, S0.fct,
S0.fct.deriv, max.mph.iter, step, change.step.after,
y.eps, iter.orig, norm.diff.conv, norm.score.conv,
max.score.diff.iter, S.space.H0, tol.psi, tol,
max.iter, cut.off, delta, pdlambda)

Arguments

y Observed table counts in the contingency table(s), in vector form.

strata Vector of the same length as y that gives the stratum membership identifier.

fixed.strata The object that gives information on which stratum (strata) has (have) fixed
sample sizes.

h0.fct The constraint function h0(·) with respect to m, where m = E(Y ), the vector
of expected table counts.

h0.fct.deriv The R function object that computes analytic derivative of the transpose of the
constraint function h0(·) with respect to m. If h0.fct.deriv is not specified or
h0.fct.deriv = NULL, numerical derivatives will be used.

S0.fct The estimand function S0(·) with respect to m.

S0.fct.deriv The R function object that computes analytic derivative of the estimand function
S0(·) with respect to m. If S0.fct.deriv is not specified or S0.fct.deriv =
NULL, numerical derivatives will be used.

max.mph.iter, step, change.step.after, y.eps, iter.orig, norm.diff.conv, norm.score.conv, max.score.diff.iter

The parameters used in mph.fit.

S.space.H0 Restricted estimand space of S(·) under H0, i.e. subject to the imposed equality
constraints along with sampling constraints.

tol.psi, tol, max.iter

The parameters used in the three stopping criteria in solving for the roots to the
test-inversion equation.

cut.off qchisq(cc,1). i.e. The chi-square cutoff, with 1 df, based on the significance
level 1-cc.

delta The constant δ that is in expressions of the moving critical values within each
sliding quadratic step.

pdlambda The index parameter λ in the power-divergence statistic.



30 diff_PD_robust

Value

Provided that diff_PD_nr does not stop, it returns a 1-by-2 matrix which displays two endpoints
of the confidence interval based on the difference in power-divergence statistic.

Author(s)

Qiansheng Zhu

References

Zhu, Q. (2020) "On improved confidence intervals for parameters of discrete distributions." PhD
dissertation, University of Iowa.

See Also

diff_PD_robust, f.psi, ci.table

diff_PD_robust Difference in Power-Divergence Statistic Based CIs (Robust)

Description

Constructs confidence intervals (CIs), based on the difference in power-divergence statistic, for
estimands in contingency tables subject to equality constraints.

Usage

diff_PD_robust(y, strata, fixed.strata, h0.fct, h0.fct.deriv,
S0.fct, S0.fct.deriv, max.mph.iter, step,
change.step.after, y.eps, iter.orig, norm.diff.conv,
norm.score.conv, max.score.diff.iter, S.space.H0,
tol.psi, tol, max.iter, cut.off, delta, pdlambda,
adj.epsilon, iter.robust.max, iter.robust.eff)

Arguments

y Observed table counts in the contingency table(s), in vector form.

strata Vector of the same length as y that gives the stratum membership identifier.

fixed.strata The object that gives information on which stratum (strata) has (have) fixed
sample sizes.

h0.fct The constraint function h0(·) with respect to m, where m = E(Y ), the vector
of expected table counts.

h0.fct.deriv The R function object that computes analytic derivative of the transpose of the
constraint function h0(·) with respect to m. If h0.fct.deriv is not specified or
h0.fct.deriv = NULL, numerical derivatives will be used.

S0.fct The estimand function S0(·) with respect to m.
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S0.fct.deriv The R function object that computes analytic derivative of the estimand function
S0(·) with respect to m. If S0.fct.deriv is not specified or S0.fct.deriv =
NULL, numerical derivatives will be used.

max.mph.iter, step, change.step.after, y.eps, iter.orig, norm.diff.conv, norm.score.conv, max.score.diff.iter

The parameters used in mph.fit.

S.space.H0 Restricted estimand space of S(·) under H0, i.e. subject to the imposed equality
constraints along with sampling constraints.

tol.psi, tol, max.iter

The parameters used in the three stopping criteria in solving for the roots to the
test-inversion equation.

cut.off qchisq(cc,1). i.e. The chi-square cutoff, with 1 df, based on the significance
level 1-cc.

delta The constant δ that is in expressions of the moving critical values within each
sliding quadratic step.

pdlambda The index parameter λ in the power-divergence statistic.

adj.epsilon, iter.robust.max, iter.robust.eff

The parameters used in the robustifying procedure.

Value

diff_PD_robust returns a list, which includes two objects. The first object is a 1-by-2 matrix
which displays two endpoints of the confidence interval based on the difference in power-divergence
statistic. For the second object, it includes the warning message that occurs during construction of
the confidence interval if the robustifying procedure is evoked: "diff.PD.CI: Adjustment used.
Not on original data.\n". If the robustifying procedure is not evoked, the second object is NULL.

Author(s)

Qiansheng Zhu

References

Zhu, Q. (2020) "On improved confidence intervals for parameters of discrete distributions." PhD
dissertation, University of Iowa.

See Also

diff_PD_nr, f.psi, ci.table
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diff_Xsq_nr Difference in X-Squared Statistic Based CIs (Non-Robust)

Description

Constructs confidence intervals (CIs), based on the difference in X2 statistic, for estimands in
contingency tables subject to equality constraints.

The program may stop because of a non-convergence issue.

Usage

diff_Xsq_nr(y, strata, fixed.strata, h0.fct, h0.fct.deriv,
S0.fct, S0.fct.deriv, max.mph.iter, step,
change.step.after, y.eps, iter.orig, norm.diff.conv,
norm.score.conv, max.score.diff.iter, S.space.H0,
tol.psi, tol, max.iter, cut.off, delta)

Arguments

y Observed table counts in the contingency table(s), in vector form.

strata Vector of the same length as y that gives the stratum membership identifier.

fixed.strata The object that gives information on which stratum (strata) has (have) fixed
sample sizes.

h0.fct The constraint function h0(·) with respect to m, where m = E(Y ), the vector
of expected table counts.

h0.fct.deriv The R function object that computes analytic derivative of the transpose of the
constraint function h0(·) with respect to m. If h0.fct.deriv is not specified or
h0.fct.deriv = NULL, numerical derivatives will be used.

S0.fct The estimand function S0(·) with respect to m.

S0.fct.deriv The R function object that computes analytic derivative of the estimand function
S0(·) with respect to m. If S0.fct.deriv is not specified or S0.fct.deriv =
NULL, numerical derivatives will be used.

max.mph.iter, step, change.step.after, y.eps, iter.orig, norm.diff.conv, norm.score.conv, max.score.diff.iter

The parameters used in mph.fit.

S.space.H0 Restricted estimand space of S(·) under H0, i.e. subject to the imposed equality
constraints along with sampling constraints.

tol.psi, tol, max.iter

The parameters used in the three stopping criteria in solving for the roots to the
test-inversion equation.

cut.off qchisq(cc,1). i.e. The chi-square cutoff, with 1 df, based on the significance
level 1-cc.

delta The constant δ that is in expressions of the moving critical values within each
sliding quadratic step.



diff_Xsq_robust 33

Value

Provided that diff_Xsq_nr does not stop, it returns a 1-by-2 matrix which displays two endpoints
of the confidence interval based on the difference in X2 statistic.

Author(s)

Qiansheng Zhu

References

Zhu, Q. (2020) "On improved confidence intervals for parameters of discrete distributions." PhD
dissertation, University of Iowa.

See Also

diff_Xsq_robust, f.psi, ci.table

diff_Xsq_robust Difference in X-Squared Statistic Based CIs (Robust)

Description

Constructs confidence intervals (CIs), based on the difference in X2 statistic, for estimands in
contingency tables subject to equality constraints.

Usage

diff_Xsq_robust(y, strata, fixed.strata, h0.fct, h0.fct.deriv,
S0.fct, S0.fct.deriv, max.mph.iter, step,
change.step.after, y.eps, iter.orig, norm.diff.conv,
norm.score.conv, max.score.diff.iter, S.space.H0,
tol.psi, tol, max.iter, cut.off, delta, adj.epsilon,
iter.robust.max, iter.robust.eff)

Arguments

y Observed table counts in the contingency table(s), in vector form.

strata Vector of the same length as y that gives the stratum membership identifier.

fixed.strata The object that gives information on which stratum (strata) has (have) fixed
sample sizes.

h0.fct The constraint function h0(·) with respect to m, where m = E(Y ), the vector
of expected table counts.

h0.fct.deriv The R function object that computes analytic derivative of the transpose of the
constraint function h0(·) with respect to m. If h0.fct.deriv is not specified or
h0.fct.deriv = NULL, numerical derivatives will be used.

S0.fct The estimand function S0(·) with respect to m.
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S0.fct.deriv The R function object that computes analytic derivative of the estimand function
S0(·) with respect to m. If S0.fct.deriv is not specified or S0.fct.deriv =
NULL, numerical derivatives will be used.

max.mph.iter, step, change.step.after, y.eps, iter.orig, norm.diff.conv, norm.score.conv, max.score.diff.iter

The parameters used in mph.fit.

S.space.H0 Restricted estimand space of S(·) under H0, i.e. subject to the imposed equality
constraints along with sampling constraints.

tol.psi, tol, max.iter

The parameters used in the three stopping criteria in solving for the roots to the
test-inversion equation.

cut.off qchisq(cc,1). i.e. The chi-square cutoff, with 1 df, based on the significance
level 1-cc.

delta The constant δ that is in expressions of the moving critical values within each
sliding quadratic step.

adj.epsilon, iter.robust.max, iter.robust.eff

The parameters used in the robustifying procedure.

Value

diff_Xsq_robust returns a list, which includes two objects. The first object is a 1-by-2 matrix
which displays two endpoints of the confidence interval based on the difference in X2 statistic. For
the second object, it includes the warning message that occurs during construction of the confi-
dence interval if the robustifying procedure is evoked: "diff.Xsq.CI: Adjustment used. Not on
original data.\n". If the robustifying procedure is not evoked, the second object is NULL.

Author(s)

Qiansheng Zhu

References

Zhu, Q. (2020) "On improved confidence intervals for parameters of discrete distributions." PhD
dissertation, University of Iowa.

See Also

diff_Xsq_nr, f.psi, ci.table

f.psi Model Comparison Statistics
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Description

Computes one of the model comparison statistics.

The model comparison statistics include:

• "diff.Gsq": The difference in G2 statistic,

G2(ψ)−G2 = G2(y;H0(ψ))−G2(y;H0);

• "diff.Xsq": The difference in X2 statistic,

X2(ψ)−X2 = X2(y;H0(ψ))−X2(y;H0);

• "diff.PD": The difference in power-divergence statistic, with index parameter λ,

PDλ(ψ)− PDλ = PDλ(y;H0(ψ))− PDλ(y;H0);

• "nested.Gsq": The nested G2 statistic,

G2(y;H0(ψ)|H0);

• "nested.Xsq": The nested X2 statistic,

X2(y;H0(ψ)|H0);

• "nested.PD": The nested power-divergence statistic, with index parameter λ,

PDλ(y;H0(ψ)|H0).

Usage

f.psi(y, strata, fixed.strata, h0.fct, h0.fct.deriv = NULL,
S0.fct, S0.fct.deriv = NULL, method_specific, psi,
max.mph.iter, step, change.step.after, y.eps, iter.orig,
norm.diff.conv, norm.score.conv, max.score.diff.iter,
pdlambda = NULL, Gsq_H0, Xsq_H0, PD_H0, cons.MLE.m_H0)

Arguments

y Observed table counts in the contingency table(s), in vector form.

strata Vector of the same length as y that gives the stratum membership identifier.

fixed.strata The object that gives information on which stratum (strata) has (have) fixed
sample sizes.

h0.fct The constraint function h0(·) with respect to m, where m = E(Y ), the vector
of expected table counts.

h0.fct.deriv The R function object that computes analytic derivative of the transpose of the
constraint function h0(·) with respect to m. If h0.fct.deriv is not specified or
h0.fct.deriv = NULL, numerical derivatives will be used.

S0.fct The estimand function S0(·) with respect to m.
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S0.fct.deriv The R function object that computes analytic derivative of the estimand function
S0(·) with respect to m. If S0.fct.deriv is not specified or S0.fct.deriv =
NULL, numerical derivatives will be used.

method_specific

A character string that indicates which model comparison statistic to compute.
It can be one of "diff.Xsq", "nested.Xsq", "diff.Gsq", "nested.Gsq",
"diff.PD", or "nested.PD".

psi The real number ψ in the model comparison statistic.

max.mph.iter, step, change.step.after, y.eps, iter.orig, norm.diff.conv, norm.score.conv, max.score.diff.iter

The parameters used in mph.fit.

pdlambda The index parameter λ in the power-divergence statistic.

Gsq_H0 The G2 statistic for testing H0 vs. not H0, i.e. G2(y;H0).

Xsq_H0 The X2 statistic for testing H0 vs. not H0, i.e. X2(y;H0).

PD_H0 The power-divergence statistic for testing H0 vs. not H0, i.e. PDλ(y;H0).

cons.MLE.m_H0 Constrained MLE of m = E(Y ) subject to H0.

Value

f.psi returns a numeric value, which is the computed model comparison statistic.

Note

Among the four inputs: Gsq_H0, Xsq_H0, PD_H0, and cons.MLE.m_H0, only one of them needs to
be specified.

Author(s)

Qiansheng Zhu

References

Zhu, Q. (2020) "On improved confidence intervals for parameters of discrete distributions." PhD
dissertation, University of Iowa.

See Also

diff_Xsq_nr, nested_Xsq_nr, diff_Gsq_nr, nested_Gsq_nr, diff_PD_nr, nested_PD_nr, diff_Xsq_robust,
nested_Xsq_robust, diff_Gsq_robust, nested_Gsq_robust, diff_PD_robust, nested_PD_robust,
ci.table
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M.fct Marginalizing Matrix Based on Strata Information

Description

Creates the marginalizing matrix M using strata information found in input variable strata. That
is, Mp gives the marginal probabilities corresponding to the levels of factor strata.

Usage

M.fct(strata, ncells = length(strata))

Arguments

strata The vector that gives the stratum membership identifier.

ncells Number of contingency table cells. Default: ncells = length(strata).

Value

M.fct returns the marginalizing matrix M.

Note

Marginals are ordered according to the levels of factor strata.

Examples:

V1 V2 y
b yes 15
a no 12
a yes 13
b yes 5
b no 1

M1 <-M.fct(V1)
M1 %*% y

[,1]
a 25
b 21

M2 <-M.fct(V2)
M2 %*% y
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[,1]
no 13
yes 33

M12 <-M.fct(paste(V1,V2))
M12 %*% y

[,1]
a no 12
a yes 13
b no 1
b yes 20

Author(s)

Joseph B. Lang

References

Lang, J. B. (2004) Multinomial-Poisson homogeneous models for contingency tables, Annals of
Statistics, 32, 340–383.

Examples

M.fct(rep(1, 9))
M.fct(seq(1, 9))
M.fct(c(1, 1, 2, 3, 3))

mph.fit Fitting MPH and HLP Models

Description

Computes maximum likelihood estimates and fit statistics for multinomial-Poisson homogeneous
(MPH) and homogeneous linear predictor (HLP) models for contingency tables.

More detailed DOCUMENTATION and EXAMPLES of mph.fit are online.

Usage

mph.fit(y, h.fct = constraint, constraint = NULL, h.mean = FALSE,
L.fct = link, link = NULL, L.mean = FALSE, X = NULL,
strata = rep(1, length(y)), fixed.strata = "all",
check.homog.tol = 1e-9, check.HLP.tol = 1e-9, maxiter = 100,
step = 1, change.step.after = 0.25 * maxiter, y.eps = 0,
iter.orig = 5, m.initial = y, norm.diff.conv = 1e-6,

https://homepage.divms.uiowa.edu/~jblang/mph.fitting/
https://homepage.divms.uiowa.edu/~jblang/mph.fitting/


mph.fit 39

norm.score.conv = 1e-6, max.score.diff.iter = 10,
derht.fct = NULL, derLt.fct = NULL, pdlambda = 2/3,
verbose = FALSE)

Arguments

y Vector (not matrix) of table counts.

h.fct Function object that defines the constraint function h(·). It must return a column
vector. h.fct can also be set to 0, in which case h(·) is viewed as the 0 function,
so no constraints are imposed.
By default, h(·) is viewed as a function of the table probabilities p. If h.mean is
set to h.mean = TRUE, then h(·) is viewed as a function of the expected counts
m.
Default: h.fct = NULL. If both h.fct = NULL and L.fct = NULL, then h.fct is
set to 0 and no constraints are imposed. If h.fct = NULL and L.fct is not NULL,
then h.fct will be computed as t(U) %*% L.fct.

constraint Alias for the argument h.fct. Argument constraint is secondary to the pri-
mary argument h.fct in the following senses: If constraint and h.fct are not
equal, h.fct is used.

h.mean Logical argument. If h.mean = FALSE (the default), h.fct is treated as a func-
tion of p. If h.mean = TRUE, then h.fct is treated as a function of m.

L.fct Function object that defines the link L(·) in the HLP model; it must return a col-
umn vector. Or ... L.fct = keyword, where candidate keywords include "logp"
and "logm".
Entering L.fct = "logp" tells the program to create the function object as L.fct
<-function(p) {log(p)}. L.fct = "logm" tells the program to (i) create the
function object as L.fct <-function(m) {log(m)} and (ii) set L.mean = TRUE.
By default, L.fct is treated as a function of the table probabilities p (even if the
argument in the L.fct function object is m ). If L.mean is set to L.mean = TRUE,
then L.fct is treated as a function of the expected counts m. Default: L.fct =
NULL means no constraints of the form L(p) = Xβ are imposed.

link Alias for the argument L.fct. Argument link is secondary to the primary ar-
gument L.fct in the following senses: If link and L.fct are not equal, L.fct
is used.

L.mean Logical argument. If L.mean = FALSE (the default), L.fct is treated as a func-
tion of p. If L.mean = TRUE, L.fct is treated as a function of m.

X HLP model design matrix, assumed to be full rank. Default: X = NULL; i.e., it is
left unspecified and unused.

strata Vector of the same length as y that gives the stratum membership identifier. De-
fault: strata = rep(1,length(y)); i.e. the default is the single stratum (non-
stratified) setting. Examples: strata = A, or strata = c(1,1,1,2,2,2,3,3,3),
or strata = paste(sep = "","A=",A,",B=",B).

fixed.strata The object that gives information on which stratum have fixed sample sizes.
It can equal one of the keywords, fixed.strata = "all" or fixed.strata =
"none", or it can be a vector of stratum membership identifiers, e.g. fixed.strata
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= c(1,3) or fixed.strata = c("pop1","pop5"). Default: fixed.strata =
"all".

check.homog.tol

Round-off tolerance for Z homogeneity check. Default: check.homog.tol =
1e-9.

check.HLP.tol Round-off tolerance for HLP link status check. Default: check.HLP.tol =
1e-9.

maxiter Maximum number of iterations. Default: maxiter = 100.

step Step-size value. Default: step = 1.

change.step.after

If the score value increases for more than change.step.after iterations in a
row, then the initial step size is halved. Default: change.step.after = 0.25 *
maxiter.

y.eps Non-negative constant to be temporarily added to the original counts in y. De-
fault: y.eps = 0.

iter.orig Iteration at which the original counts will be used. Default: iter.orig = 5.

m.initial Initial estimate of m. Default: m.initial = y. See Input Note 6 below.

norm.diff.conv Convergence criteria value; see norm.diff in the Value section. Default: norm.diff.conv
= 1e-6.

norm.score.conv

Convergence criteria value; see norm.score in the Value section. Default:
norm.score.conv = 1e-6.

max.score.diff.iter

The variable score.diff.iter keeps track of how long norm.score is smaller
than norm.score.conv, but norm.diff is greater than norm.diff.conv. If this
is the case too long (i.e. score.diff.iter >= max.score.diff.iter), then
stop the iterations because the solution likely includes at least one ML fitted
value of 0. Default: max.score.diff.iter = 10.

derht.fct Function object that computes analytic derivative of the transpose of the con-
straint function h(·) with respect to m. If h(·) maps from Rp to Rq (i.e. there
are q constraints), then derht.fct returns a p-by-q matrix of partial derivatives.
Default: derht.fct = NULL. This means that the derivative is calculated numer-
ically.

derLt.fct Function object that computes analytic derivative of the transpose of the link
function L(·) with respect to m. If L(·) maps from Rp to Rq (i.e. there are
q link components), then derLt.fct returns a p-by-q matrix of partial deriva-
tives. Default: derLt.fct = NULL, i.e. by default this derivative is calculated
numerically.

pdlambda The index parameter λ in the power-divergence statistic.

verbose Logical argument. If verbose = FALSE, do not print out iteration information.
If verbose = TRUE, then iteration information is printed out. Default: verbose
= FALSE.
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Details

In the following, let y be the vector of contingency table counts, p be the unknown vector of contin-
gency table probabilities, s be a vector of strata identifiers, and F be the set of strata with a priori
fixed sample sizes.

Although mph.fit can fit more general models (see below), two important special cases include:

• MPH (Special-Case): y is a realization of random vector Y , where Y ∼ MP (γ, p|strata =
s, fixed = F ), h(p) = 0.

• HLP (Special-Case): y is a realization of random vector Y , where Y ∼ MP (γ, p|strata =
s, fixed = F ), L(p) = Xβ.

Here, h(·) is a smooth constraint function and L(·) is a smooth link function. It is assumed that the
constraints in h(p) = 0 are non-redundant so that the Jacobian, ∂h′(p)/∂p, is full column rank.

The link L(·) is allowed to be many-to-one and row-rank deficient, so this HLP model is quite
general. It is only required that the implied constraints, U ′L(p) = 0, where null(U ′) = span(X),
are non-redundant.

Here, MP stands for the multinomial-Poisson distribution. The parameters are γ, the vector of
expected sample sizes, and p, the vector of table probabilities.

The notation
Y ∼MP (γ, p|strata = s, fixed = F )

means that the random vector Y is composed of independent blocks of multinomial and/or Poisson
random variables. The strata vector s determines the blocks and F determines which blocks are
multinomial and which blocks comprise independent Poisson random variables. More specifically,
suppose there are K strata, so s contains K distinct strata identifiers. The components in Y cor-
responding to s = identifier[k] make up a block. If identifier[k] is included in F , then
this block has a multinomial distribution and γk is the a priori known, i.e. fixed, sample size. If
identifier[k] is not in F , then this block comprises independent Poisson random variables and
γk is an unknown expected sample size.

Note: Given the observed counts y, the pair (strata, fixed) = (s, F ) contains the same in-
formation as the sampling plan triple (Z,ZF , nF ) described in Lang (2004, 2005). Specifically,
Z = Z(s), the strata/population matrix, is determined by s. ZF = ZF (s, F ), the sampling con-
straint matrix, is determined by s and F . nF = Z ′F y is the vector of a priori fixed sample sizes.

Special case MP distributions include...

• Full Multinomial: MP (γ, p|strata = 1, fixed = "all"). A simple random sample of
fixed size γ is taken from a single strata (population).

• Product Multinomial: MP (γ, p|strata = s, fixed = "all"). A stratified random sample
of fixed sample sizes γ = (γ1, . . . , γK)′ is taken from the K strata determined by s.

• Full Poisson: MP (γ, p|strata = 1, fixed = "none"). A simple random sample is taken
from a single strata (population). The sample size is random and follows a Poisson distribution
with unknown mean γ.

• Product Poisson: MP (γ, p|strata = s, fixed = "none"). A stratified random sample is
taken from K strata. The sample sizes are all random and distributed as Poissons with un-
known means in γ = (γ1, . . . , γK)′.
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Specifying the MP distribution in mph.fit...

The user need only enter (strata,fixed.strata), the input variables corresponding to (s, F ).
Keywords, fixed.strata = "all" ["none"] means that all [none] of the strata have a priori fixed
sample sizes.

To fit MPH (Special Case), the user must enter the counts y, the constraint function h.fct (alias
constraint), and the sampling plan variables, strata and fixed.strata. Note: The user can omit
the sampling plan variables if the default, multinomial sampling (strata = 1,fixed = "all"), can
be assumed.

To fit HLP (Special Case), the user must enter the counts y, the link function L.fct (alias link),
the model matrix X, and the sampling plan variables, strata and fixed.strata. Note: The user
can omit the sampling plan variables if the default, multinomial sampling, can be assumed.

IMPORTANT: When specifying the model and creating the input objects for mph.fit, keep in mind
that the interpretation of the table probabilities p depends on the sampling plan!

Specifically, if the ith count yi is in block k (i.e. corresponds with strata identifier[k]), then the
ith table probability pi is the conditional probability defined as pi = probability of a Type i outcome
GIVEN that the outcome is one of the types in stratum k.

For example, in an I-by-J table with row variable A and column variable B, if row-stratified sam-
pling is used, the table probabilities have the interpretation, pij = prob of a Type (i, j) outcome
GIVEN that the outcome is one of the types in stratum i (i.e. one of (i, 1), . . . , (i, J)) = P (A =
i, B = j|A = i) = P (B = j|A = i). For column-stratified sampling, pij = P (A = i|B = j).
And for non-stratified sampling, pij = P (A = i, B = j).

Log-Linear Models: Log-linear models specified as log(p) = Xβ, are HLP models.

As with any HLP model, log(p) = Xβ can be restated as a collection of constraints; specifically,
log(p) = Xβ is equivalent to h(p) = U ′ log(p) = 0, where null(U ′) = span(X). Noting that
Z ′p = 1, we see that to avoid redundant constraints, span(X) should contain span(Z). Loosely,
fixed-by-sampling-design parameters should be included.

Log-linear models of the form log(p) = Xβ are simple to fit using mph.fit. For example,
> mph.fit(y,link = "logp",X = model.matrix(~ A + B)),
or, equivalently,
> mph.fit(y,link = function(p) {log(p)},X = model.matrix(~ A + B)).

MORE GENERAL MPH and HLP MODELS...

Instead of (γ, p), the MP distribution can alternatively be parameterized in terms of the vector of
expected table counts, m = E(Y ). Formally, (γ, p) and m are in one-to-one correspondence and
satisfy:

m = Diag(Zγ)p,

and
γ = Z ′m, p = Diag−1(ZZ ′m)m.

Here, Z = Z(s) is the c-by-K strata/population matrix determined by strata vector s. Specifically,
Zik = I{si = identifier[k]}.
The MPH (Special-Case) Model given above is a special case because it constrains the expected
counts m only through the table probabilities p. Similarly, the HLP (Special-Case) Model given
above is a special case because it uses a link function that depends on m only through the table
probabilities p.
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More generally, mph.fit computes maximum likelihood estimates and fit statistics for MPH and
HLP models of the form...

• MPH: y is a realization of random vector Y , where Y ∼ MP (γ, p|strata = s, fixed =
F ), h(m) = 0.

• HLP: y is a realization of random vector Y , where Y ∼ MP (γ, p|strata = s, fixed =
F ), L(m) = Xβ.

Here, h(·) is a smooth constraint function that must also be Z (i.e. strata s) homogeneous. L(·) is a
smooth link function that must also satisfy the HLP conditions with respect to Z (i.e. strata s) and
X . That is,

• (1) L(·) has HLP link status with respect to Z, and

• (2) The implied constraint function h(m) = U ′L(m) is Z homogeneous. Here, null(U ′) =
span(X).

Here, (1) L(·) has HLP link status with respect to Z if, for m = Diag(Zγ)p,

• (1)(a) L(m) = a(γ) +L(p), where a(γ1/γ2)− a(1) = a(γ1)− a(γ2), i.e. a(γ) has the form
C log γ + constant; or

• (1)(b) L(m) = G(γ)L(p), where G(γ) is a diagonal matrix with diagonal elements that are
powers of the γ elements, i.e. L(·) is Z homogeneous (see Lang (2004)); or

• (1)(c) The components of L(·) are a mixture of types (a) and (b): Lj(m) = aj(γ) + Lj(p) or
Lj(m) = Gj(γ)Lj(p), j = 1, . . . , l.

Lang (2005) described HLP models that satisfied (1)(a) and (2), but the definition of HLP models
can be broadened to include those models satisfying (1) and (2). That is, HLP models can be defined
so they also include models that satisfy (1)(b) and (2) or (1)(c) and (2). mph.fit uses this broader
definition of HLP Model.

Note: The input variable h.mean must be set to TRUE to fit this more general MPH model. Similarly,
the input variable L.mean must be set to TRUE to fit this more general HLP model. (An exception: If
the link function is specified using the keyword "logm" then L.mean is automatically set to TRUE.)

Note: mph.fit carries out "necessary-condition" checks of Z homogeneity of h(·) and HLP link
status of L(·) for these general models.

Log-Linear Models: Log-linear models of the form log(m) = Xβ are HLP models provided the
span(X) contains the span(Z). Loosely, provided fixed-by-design parameters are included, the
log-linear model is a special case HLP model.

Log-linear models of the form log(m) = Xβ are simple to fit using mph.fit. For example,
> mph.fit(y,link = "logm",X = model.matrix(~ A + B)),
or, equivalently,
> mph.fit(y,link = function(m) {log(m)},L.mean = TRUE,X = model.matrix(~ A + B)).

Note: Most reasonable generalized log-linear models, which have the form L(m) = C logMm =
Xβ, are also HLP models. See Lang (2005).

Value

mph.fit returns a list, which includes the following objects:
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y Vector of counts used in the algorithm for ML estimation. Usually, this vector
is identical to the observed table counts.

m Vector of ML fitted values.

covm Approximate covariance matrix of fitted values.

p Vector of cell probability ML estimates.

covp Approximate covariance matrix of cell probability estimators.

lambda Vector of Lagrange multiplier ML estimates.

covlambda Approximate covariance matrix of multiplier estimators.

resid Vector of raw residuals (i.e. observed minus fitted counts).

presid Vector of Pearson residuals.

adjresid Vector of adjusted residuals.

covresid Approximate covariance matrix of raw residuals.

Gsq Likelihood ratio statistic for testing H0 : h(m) = 0 vs. H1 : not H0.

Xsq Pearson’s score statistic (same as Lagrange multiplier statistic) for testing H0 :
h(m) = 0 vs. H1 : not H0.

Wsq Generalized Wald statistic for testing H0 : h(m) = 0 vs. H1 : not H0.

PD.stat Power-divergence statistic (with index parameter pdlambda) for testing H0 :
h(m) = 0 vs. H1 : not H0.

df Degrees of freedom associated with Gsq, Xsq, and PD.stat. df = dim(h).

beta Vector of HLP model parameter ML estimates.

covbeta Approximate covariance matrix of HLP model parameter estimators.

L Vector of HLP model link ML estimates.

Lobs Vector of HLP model observed link values, L(y).

covL Approximate covariance matrix of HLP model link estimators.

Lresid Vector of adjusted link residuals of the form

(L(obs)− L(fitted))/ase(L(obs)− L(fitted)).

iter Number of update iterations performed.

norm.diff Distance between last and second last theta iterates (theta is the vector of log
fitted values and Lagrange multipliers).

norm.score Distance between the score vector and zero.

h.fct Constraint function used in algorithm.

h.input.fct Constraint function as originally input.

h.mean Logical variable. If h.mean = FALSE, h.fct is treated as a function of p. If
h.mean = TRUE, h.fct is treated as a function of m.

derht.fct Analytic function used in algorithm that computes derivative of transpose of
constraint function h.

L.fct Link function used in algorithm.

L.input.fct Link function as originally input.
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L.mean Logical variable. If L.mean = FALSE, L.fct is treated as a function of p. If
L.mean = TRUE, L.fct is treated as a function of m.

derLt.fct Analytic function used in algorithm that computes derivative of transpose of link
function L.

X HLP model design matrix used in algorithm.

U Orthogonal complement of design matrix X .

triple A list object containing the sampling plan triple (Z,ZF , n), where Z is the
population (or strata) matrix, ZF is the sampling constraint matrix, and n is the
collection of fixed sample sizes.

strata strata variable used as input.

fixed.strata The strata corresponding to fixed sample sizes.

warn.message Message stating whether or not the original counts were used.
warn.message.score

Message stating whether or not the norm score convergence criterion was met.
warn.message.diff

Message stating whether or not the norm diff convergence criterion was met.

Note

Input Notes:

1. CONSTRAINT FUNCTION.
constraint is an alias for h.fct. If h.fct is a function object, it must return a column vector.
By default, h.fct is treated as a function of the table probabilities p. To treat h.fct as a
function of the expected countsm, you must set h.mean = TRUE (by default, h.mean = FALSE).
The fitting algorithm will fail if the constraints in h.fct = 0 are redundant.

2. MODEL WITH NO CONSTRAINTS.
The model with no constraints can be specified using h.fct = 0. The no-constraint model is
the default when neither h.fct nor L.fct are input (i.e. when h.fct = NULL and L.fct =
NULL).

3. HLP MODEL SPECIFICATION.
link is an alias for L.fct. For HLP models, both L.fct and X must be specified. The
design matrix X must be of full column rank. mph.fit recognizes two keywords for link
specification, "logp" and "logm". These are convenient for log-linear modeling. If L.fct is
a function object, it must return a column vector.
By default, L.fct is treated as a function of the table probabilities p. To treat L.fct as a
function of the expected countsm, you must set L.mean = TRUE (by default, L.mean = FALSE).
The constraint function h.fct is typically left unspecified for HLP models, but it need not be.
If h.fct is left unspecified, it is created within the program as h.fct(m) <-function(m)
{t(U) %*% L.fct(m)}, where matrix U is an orthogonal complement of X . If h.fct is spec-
ified, the constraints implied by L.fct(p) = Xβ, or L.fct(m) = Xβ, are ignored.
Note: Although the HLP constraints are ignored when h.fct is specified, estimates of β and
the link are computed under the model with constraints h.fct(p) = 0 or h.fct(m) = 0.
The fitting algorithm will fail to converge if the implied constraints, U ′ L.fct = 0, include
redundancies.
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4. EXTENDED ML ESTIMATES.
When ML estimates are non-existent owing to zero counts, norm.diff will not converge to
zero, instead it tends to level off at some constant positive value. This is because at least
one ML fitted value is 0, which on the log scale is log(0) = −∞, and the log-scale iter-
ates slowly move toward −∞. One solution to this problem is to set the convergence value
norm.diff.conv to some large number so only the score convergence criterion is used. In
this case, the algorithm often converges to a solution that can be viewed as an extended ML
estimate, for which 0 estimates are allowed. mph.fit automates the detection of such prob-
lems. See the description of the input variable max.score.diff.iter above and the MISC
COMPUTATIONAL NOTES in mph.fit online documentation.

5. CONVERGENCE PROBLEMS / FINE TUNING ITERATIONS.
First check to make sure that the model is correctly specified and redundant constraints are
avoided.
When ML estimates exist, but there are non-convergence problems (perhaps caused by zero
counts), a modification to the tuning parameters step, change.step.after, y.eps, and/or
iter.orig will often lead to convergence.
With zero counts, it might help to set y.eps = 0.1 (or some other positive number) and
iter.orig = 5 (the default). This tells the program to initially use y + y.eps rather than
the original counts y. At iteration 5 = iter.orig, after the algorithm has had time to move
toward a non-boundary solution, the original counts are again used.
To further mitigate non-convergence problems, the parameter step can be set to a smaller
value (default: step = 1) so the iterates do not change as much.

6. The initial estimate of m is actually m.initial + y.eps + 0.01 * ((m.initial + y.eps) ==
0). The program defaults are m.initial = y and y.eps = 0. Note: If m.initial > 0 and
y.eps = 0, then the initial estimate of m is simply m.initial.

Output Notes:

1. ITERATION HISTORY.
An iteration history is printed out when verbose is set equal to TRUE. A single line of the
history looks like the following:
"iter= 18[0] norm.diff= 3.574936e-08 norm.score= 1.901705e-15".
Here, iter is the number of update iterations performed. The number in [] gives the number
of step size searches required within each iteration. norm.diff and norm.score are defined
above. Finally, the time elapsed is output. Note: For the model with no restrictions (h.fct =
0), there are no step size changes.

2. STORING and VIEWING RESULTS.
To store the results of mph.fit, issue a command like the following example
> results <-mph.fit(y,h.fct = h.fct)

Use program mph.summary to view the results of mph.fit. Specifically, if the results of
mph.fit are saved in object results, submit the command mph.summary(results) [or
mph.summary(results,TRUE) or mph.summary(results,TRUE,TRUE) depending on how
much of the output you need to see.]

3. The output objects beta, covbeta, L, covL, and Lresid will be set to NA unless an HLP model
is specified (i.e. L.fct and X are input).

https://homepage.divms.uiowa.edu/~jblang/mph.fitting/mph.fit.documentation.htm
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Examples

# Listed below is a collection of Basic Examples:
# https://homepage.divms.uiowa.edu/~jblang/mph.fitting/mph.basic.numerical.examples.htm

# Another collection of Less Basic Examples is online:
# https://homepage.divms.uiowa.edu/~jblang/mph.fitting/mph.numerical.examples.htm

# EXAMPLE 1. Test whether a binomial probability equals 0.5.
#
# y = (15, 22) <- Y ~ MP(gamma, p | strata = 1, fixed = "all");
# i.e. Y ~ multinomial.
#
# In other symbols,
#
# y = (15, 22) <- Y = (Y[1], Y[2]) ~ multinomial(37, p = (p[1], p[2])).
#
# GOAL: Test H0: p[1] = 0.5 vs. H1: not H0.

a1 <- mph.fit(y = c(15, 22), constraint = function(p) {p[1] - 0.5})

# Alternative specifications...
a2 <- mph.fit(y = c(15, 22), constraint = function(p) {p[1] - p[2]})
a3 <- mph.fit(y = c(15, 22), constraint = function(p) {log(p[1] / p[2])})
a4 <- mph.fit(y = c(15, 22), constraint = function(m) {m[1] - m[2]},

h.mean = TRUE)
a5 <- mph.fit(y = c(15, 22), link = function(p) {p}, X = matrix(1, 2, 1))
a6 <- mph.fit(y = c(15, 22), link = "logm", X = matrix(1, 2, 1))

# Alternatively, assume that
#
# y = (15, 22) <- Y ~ MP(gamma, p | strata = 1, fixed = "none");
# i.e. Y ~ indep Poisson.
#
# In other symbols,
#
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# y = (15, 22) <- Y = (Y[1], Y[2]), where
# Y[i] indep ~ Poisson(gamma * p[i]), i = 1, 2.
#
# GOAL: Test H0: p[1] = 0.5 vs. H1: not H0.

b1 <- mph.fit(y = c(15, 22), constraint = function(p) {p[1] - 0.5},
fixed.strata = "none")

mph.summary(a1, TRUE)
mph.summary(b1, TRUE)

# EXAMPLE 2. Test whether a multinomial probability vector is uniform.
# Test whether a multinomial probability vector equals a
# specific value.
#
# y <- Y = (Y[1], ..., Y[6]) ~ MP(gamma, p | strata = 1, fixed = "all");
# i.e. Y ~ multinomial.
#
# In other symbols,
#
# y <- Y ~ multinomial(15, p = (p[1], ..., p[6]))
#
# GOAL: Test H0: p[1] = p[2] = ... = p[6] vs. H1: not H0.

y <- rmultinom(1, 15, rep(1, 6))
a1 <- mph.fit(y, L.fct = function(p) {p}, X = matrix(1, 6, 1),

y.eps = 0.1)

# Alternative specification...
a2 <- mph.fit(y, h.fct = function(p) {as.matrix(p[-6] - 1/6)},

y.eps = 0.1)

mph.summary(a1, TRUE)
mph.summary(a2, TRUE)

# Test whether p = (1, 2, 3, 1, 2, 3) / 12 .

p0 <- c(1, 2, 3, 1, 2, 3) / 12
b <- mph.fit(y, h.fct = function(p) {as.matrix(p[-6] - p0[-6])},

y.eps = 0.1)
mph.summary(b, TRUE)

# EXAMPLE 3. Test whether a multinomial probability vector satisfies a
# particular constraint.
#
# Data Source: Agresti 25:2002.
#
# y = (30, 63, 63) <- Y ~ MP(gamma, p | strata = 1, fixed = "all");
# i.e. Y ~ multinomial.
#
# In other symbols,
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#
# y = (30, 63, 63) <- Y ~ multinomial(156, p = (p[1], p[2], p[3]))
#
# GOAL: Test H0: p[1] + p[2] = p[1] / (p[1] + p[2]) vs. H1: not H0.

y <- c(30, 63, 63)
h.fct <- function(p) {

(p[1] + p[2]) - p[1] / (p[1] + p[2])
}
a <- mph.fit(y, h.fct = h.fct)
mph.summary(a, TRUE)

# EXAMPLE 4. Test of Independence in a 2-by-2 Table.
#
# y = (y[1, 1], y[1, 2], y[2, 1], y[2, 2]) = (25, 18, 13, 21)
# <- Y ~ MP(gamma, p | strata = 1, fixed = "all");
# i.e. Y ~ multinomial.
#
# In other symbols,
# y = (y[1, 1], y[1, 2], y[2, 1], y[2, 2])
# <- Y ~ multinomial(77, p = (p[1, 1], p[1, 2], p[2, 1], p[2, 2]))
#
# GOAL: Test H0: p[1, 1] * p[2, 2] / p[1, 2] / p[2, 1] = 1
# vs. H1: not H0.

d <- data.frame(A = c(1, 1, 2, 2), B = c(1, 2, 1, 2),
count = c(25, 18, 13, 21))

a1 <- mph.fit(y = d$count, h.fct = function(p)
{log(p[1] * p[4] / p[2] / p[3])})

# Alternative specifications of independence....
a2 <- mph.fit(y = d$count, h.fct = function(p)

{p <- matrix(p, 2, 2, byrow = TRUE);
log(p[1, 1] * p[2, 2] / p[1, 2] / p[2, 1])})

a3 <- mph.fit(y = d$count, h.fct = function(p)
{p[1] * p[4] / p[2] / p[3] - 1})

a4 <- mph.fit(y = d$count, h.fct = function(p)
{p[1] / (p[1] + p[2]) - p[3] / (p[3] + p[4])})

a5 <- mph.fit(y = d$count, L.fct = "logm",
X = model.matrix(~ A + B, data = d))

# Suppose we wished to output observed and fitted values of
# log OR, OR, and P(B = 1 | A = 1) - P(B = 1 | A = 2)...

L.fct <- function(p) {
L <- as.matrix(c(
log(p[1] * p[4] / p[2] / p[3]),
p[1] * p[4] / p[2] / p[3],
p[1] / (p[1] + p[2]) - p[3] / (p[3] + p[4])

))
rownames(L) <- c("log OR", "OR",
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"P(B = 1 | A = 1) - P(B = 1 | A = 2)")
L

}

a6 <- mph.fit(y = d$count, h.fct = function(p)
{log(p[1] * p[4] / p[2] / p[3])},
L.fct = L.fct, X = diag(3))

# Unrestricted Model...
b <- mph.fit(y = d$count, L.fct = L.fct, X = diag(3))

mph.summary(a6, TRUE)
mph.summary(b, TRUE)

# EXAMPLE 5. Test of Independence in a 4-by-4 Table.
# (Using Log-Linear Model.)
#
# Data Source: Table 2.8, Agresti, 57:2002.
#
# y <- Y ~ MP(gamma, p | strata = 1, fixed = "all");
# i.e. Y ~ multinomial.
#
# In other symbols,
# y <- Y ~ multinomial(96, p = (p[1, 1], p[1, 2], p[2, 1], p[2, 2]))
#
# GOAL: Test H0: p[1, 1] * p[2, 2] / p[1, 2] / p[2, 1] = 1 vs. H1: not H0.

d <- data.frame(Income = c("<15", "<15", "<15", "<15", "15-25", "15-25",
"15-25", "15-25", "25-40", "25-40", "25-40",
"25-40", ">40", ">40", ">40", ">40"),

JobSatisf = c("VD", "LD", "MS", "VS", "VD", "LD", "MS", "VS",
"VD", "LD", "MS", "VS", "VD", "LD", "MS", "VS"),

count = c(1, 3, 10, 6, 2, 3, 10, 7, 1, 6, 14, 12, 0, 1, 9, 11))

a <- mph.fit(y = d$count, link = "logp",
X = model.matrix(~ Income + JobSatisf, data = d))

mph.summary(a)

# Alternatively,
b <- mph.fit(y = d$count, link = "logm",

X = model.matrix(~ Income + JobSatisf, data = d))
mph.summary(b)

# EXAMPLE 6. Test Marginal Homogeneity in a 3-by-3 Table.
#
# Data Source: Table 10.16, Agresti, 445:2002.
#
# y <- Y ~ MP(gamma, p | strata = 1, fixed = "all");
# i.e. Y ~ multinomial.
#
# Specifically,
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# y <- Y ~ multinomial(160, p = (p[1, 1], ..., p[3, 3]))
#
# GOAL: Test H0: p[1, +] = p[+, 1], p[2, +] = p[+, 2], p[3, +] = p[+, 3]
# vs. H1: not H0.

d <- data.frame(Siskel = c("Pro", "Pro", "Pro", "Mixed", "Mixed",
"Mixed", "Con", "Con", "Con"),

Ebert = c("Pro", "Mixed", "Con", "Pro", "Mixed",
"Con", "Pro", "Mixed", "Con"),

count = c(64, 9, 10, 11, 13, 8, 13, 8, 24))

h.fct <- function(p){
p.Siskel <- M.fct(d$Siskel) %*% p
p.Ebert <- M.fct(d$Ebert) %*% p
as.matrix(c(p.Siskel[-3] - p.Ebert[-3]))

}
a1 <- mph.fit(y = d$count, h.fct = h.fct)
mph.summary(a1, TRUE)

# Suppose that we wish to report on the observed and fitted
# marginal probabilities.

L.fct <- function(p) {
p.Siskel <- M.fct(d$Siskel) %*% p
p.Ebert <- M.fct(d$Ebert) %*% p
L <- as.matrix(c(p.Siskel, p.Ebert))
rownames(L) <- c(paste(sep = "", "P(Siskel=", levels(as.factor(d$Siskel)), ")"),

paste(sep = "", "P(Ebert=", levels(as.factor(d$Ebert)), ")"))
L

}
a2 <- mph.fit(y = d$count, h.fct = h.fct, L.fct = L.fct, X = diag(6))
mph.summary(a2, TRUE)

# M.fct(factor) %*% p gives the marginal probabilities corresponding to
# the levels of 'factor'. The marginal probabilities are ordered by the
# levels of 'factor'.
#
# Alternatively, in this rectangular table setting, we can find the
# marginal probabilities using the apply(...) function. In this case,
# the marginal probabilities are ordered as they are entered in the
# data set.

h.fct <- function(p) {
p <- matrix(p, 3, 3, byrow = TRUE)
p.Siskel <- apply(p, 1, sum)
p.Ebert <- apply(p, 2, sum)
as.matrix(c(p.Siskel[-3] - p.Ebert[-3]))

}

L.fct <- function(p) {
p <- matrix(p, 3, 3, byrow = TRUE)
p.Siskel <- apply(p, 1, sum)
p.Ebert <- apply(p, 2, sum)
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L <- as.matrix(c(p.Siskel, p.Ebert))
rownames(L) <- c("P(Siskel=Pro)", "P(Siskel=Mixed)",

"P(Siskel=Con)", "P(Ebert=Pro)",
"P(Ebert=Mixed)", "P(Ebert=Con)")

L
}
b <- mph.fit(y = d$count, h.fct = h.fct, L.fct = L.fct, X = diag(6))

# EXAMPLE 7. Log-Linear Model for 2-by-2-by-2 Table.
#
# Data Source: Table 8.16, Agresti 347:2002
#
# y <- Y ~ MP(gamma, p | strata = 1, fixed = "all");
# i.e. Y ~ multinomial.
#
# Specifically,
#
# y <- Y ~ multinomial(621, p).
#
# The counts in y are cross-classification counts for variables
# G = Gender, I = Information Opinion, H = Health Opinion.
#
# GOAL: Fit the loglinear models [GI, GH, IH] and [G, IH].

d <- data.frame(G = c("Male", "Male", "Male", "Male",
"Female", "Female", "Female", "Female"),

I = c("Support", "Support", "Oppose", "Oppose",
"Support", "Support", "Oppose", "Oppose"),

H = c("Support", "Oppose", "Support", "Oppose",
"Support", "Oppose", "Support", "Oppose"),

count = c(76, 160, 6, 25, 114, 181, 11, 48))

# Fit loglinear model [GI, GH, IH]...

a1 <- mph.fit(y = d$count, link = "logm",
X = model.matrix(~ G + I + H + G:I + G:H + I:H, data = d))

# Fit loglinear model [G, IH]...

a2 <- mph.fit(y = d$count, link = "logm",
X = model.matrix(~ G + I + H + I:H, data = d))

# Different Sampling Distribution Assumptions:
#
# Alternatively, assume
# y <- Y ~ MP(gamma, p | strata = 1, fixed = "none");
# that is, Y ~ indep Poisson.
#
# In other symbols,
# y <- Y, where Y[i] indep ~ Poisson(m[i] = gamma * p[i]).
# Here, gamma is the unknown expected sample size.
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b2 <- mph.fit(y = d$count, link = "logm",
X = model.matrix(~ G + I + H + I:H, data = d),
fixed = "none")

# Alternatively, assume
# y <- Y ~ MP(gamma, p | strata = Gender, fixed = "all");
# that is, Y ~ prod multinomial.
#
# In other symbols,
# y <- Y = (Y[1, 1, 1], Y[1, 1, 2], ..., Y[2, 2, 2]),
# where (Y[i, 1, 1], ..., Y[i, 2, 2]) indep ~ multinomial(n[i], p[i, , ]).
# Here, p[i, j, k] = P(I = j, H = k | G = i) and n[1] = 267 and
# n[2] = 354 are the a priori fixed sample sizes for males and females.

c2 <- mph.fit(y = d$count, link = "logm",
X = model.matrix(~ G + I + H + I:H, data = d),
strata = d$G)

# Alternatively, assume
# y <- Y ~ MP(gamma, p | strata = Gender, fixed = "none");
# that is, Y ~ prod Poisson.
#
# In other symbols,
# y <- Y = (Y[1, 1, 1], Y[1, 1, 2], ..., Y[2, 2, 2]),
# where Y[i, j, k] indep ~ Poisson(m[i, j, k] = gamma[i] * p[i, j, k]).
# Here, p[i, j, k] = P(I = j, H = k | G = i) and gamma[1] and gamma[2] are the
# unknown expected sample sizes for males and for females.

d2 <- mph.fit(y = d$count, link = "logm",
X = model.matrix(~ G + I + H + I:H, data = d),
strata = d$G, fixed = "none")

cbind(a2$m, b2$m, c2$m, d2$m, sqrt(diag(a2$covm)), sqrt(diag(b2$covm)),
sqrt(diag(c2$covm)), sqrt(diag(d2$covm)))

cbind(a2$p, b2$p, c2$p, d2$p, sqrt(diag(a2$covp)), sqrt(diag(b2$covp)),
sqrt(diag(c2$covp)), sqrt(diag(d2$covp)))

# EXAMPLE 8. Fit Linear-by-Linear Log-Linear Model
#
# Data Source: Table 8.15, Agresti, 345:2002
#
# y <- Y ~ MP(gamma, p | strata = 1, fixed = "all");
# i.e. Y ~ multinomial.
#
# Specifically,
# y <- Y ~ multinomial(1425, p)
#
# GOAL: Assess the fit of the linear-by-linear log-linear model.

d <- list(Schooling = c("<HS", "<HS", "<HS", "HS", "HS", "HS", ">HS", ">HS", ">HS"),
Abortion = c("Disapprove", "Middle", "Approve", "Disapprove", "Middle",

"Approve", "Disapprove", "Middle", "Approve"),
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count = c(209, 101, 237, 151, 126, 426, 16, 21, 138))

Schooling.score <- -1 * (d$Schooling == "<HS") +
0 * (d$Schooling == "HS") +
1 * (d$Schooling == ">HS")

Abortion.score <- -1 * (d$Abortion == "Disapprove") +
0 * (d$Abortion == "Middle") +
1 * (d$Abortion == "Approve")

d <- data.frame(d, Schooling.score, Abortion.score)

a <- mph.fit(y = d$count, link = "logm",
X = model.matrix(~ Schooling + Abortion +
Schooling.score : Abortion.score, data = d))

mph.summary(a, TRUE)

# EXAMPLE 9. Marginal Standardization of a Contingency Table.
#
# Data Source: Table 8.15, Agresti 345:2002.
#
# GOAL: For a two-way table, find the standardized values of y, say y*,
# that satisfy (i) y* has the same odds ratios as y, and
# (ii) y* has row and column totals equal to 100.
#
# Note: This is equivalent to the problem of finding the fitted values
# for the following model...
# x <- Y ~ multinomial(n, p = (p[1, 1], ..., p[3, 3]))
# p[1, +] = p[2, +] = p[3, +] = p[+, 1] = p[+, 2] = p[+, 3] = 1/3
# p[1, 1] * p[2, 2] / p[2, 1] / p[1, 2] = or[1, 1]
# p[1, 2] * p[2, 3] / p[2, 2] / p[1, 3] = or[1, 2]
# p[2, 1] * p[3, 2] / p[3, 1] / p[2, 2] = or[2, 1]
# p[2, 2] * p[3, 3] / p[3, 2] / p[2, 3] = or[2, 2],
# where or[i, j] = y[i, j] * y[i + 1, j + 1] / y[i + 1, j] / y[i, j + 1]
# are the observed (y) odds ratios.
# If m is the vector of fitted values, then y* = m * 300 / sum(m)
# are the standardized values of y.
# Here x can be any vector of 9 counts.
# Choosing x so that the sum is 300 leads to sum(m) = 300, so that
# y* = m in this case.

d <- data.frame(Schooling = c("<HS", "<HS", "<HS", "HS", "HS", "HS", ">HS", ">HS", ">HS"),
Abortion = c("Disapprove", "Middle", "Approve", "Disapprove", "Middle",

"Approve", "Disapprove", "Middle", "Approve"),
count = c(209, 101, 237, 151, 126, 426, 16, 21, 138))

h.fct <- function(p) {
p.Schooling <- M.fct(d$Schooling) %*% p
p.Abortion <- M.fct(d$Abortion) %*% p
p <- matrix(p, 3, 3, byrow = TRUE)
as.matrix(c(

p.Schooling[-3] - 1/3, p.Abortion[-3] - 1/3,
p[1, 1] * p[2, 2] / p[2, 1] / p[1, 2] - 209 * 126 / 151 / 101,
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p[1, 2] * p[2, 3] / p[2, 2] / p[1, 3] - 101 * 426 / 126 / 237,
p[2, 1] * p[3, 2] / p[3, 1] / p[2, 2] - 151 * 21 / 16 / 126,
p[2, 2] * p[3, 3] / p[3, 2] / p[2, 3] - 126 * 138 / 21 / 426

))
}

b <- mph.fit(y = d$count, h.fct = h.fct)
ystar <- b$m * 300 / sum(b$m)
matrix(round(ystar, 1), 3, 3, byrow = TRUE)

x <- c(rep(33, 8), 36)
b <- mph.fit(y = x, h.fct = h.fct)
ystar <- b$m
matrix(round(ystar, 1), 3, 3, byrow = TRUE)

# EXAMPLE 10. Cumulative Logit Model.
#
# Data Source: Table 7.19, Agresti, 306:2002.
#
# y <- Y ~ MP(gamma, p | strata = Therapy * Gender, fixed = "all");
# i.e. Y ~ prod multinomial.
#
# Here, y[i, j, k] is the cross-classification count corresponding to
# Therapy = i, Gender = j, Response = k.
#
# The table probabilities are defined as
# p[i, j, k] = P(Response = k | Therapy = i, Gender = j).
#
# Goal: Fit the cumulative logit proportional odds model that includes
# the main effect of Therapy and Gender.

d <- data.frame(Therapy = c("Sequential", "Sequential", "Sequential", "Sequential",
"Sequential", "Sequential", "Sequential", "Sequential",
"Alternating", "Alternating", "Alternating", "Alternating",
"Alternating", "Alternating", "Alternating", "Alternating"),

Gender = c("Male", "Male", "Male", "Male", "Female", "Female",
"Female", "Female", "Male", "Male", "Male", "Male",
"Female", "Female", "Female", "Female"),

Response = c("Progressive", "NoChange", "Partial", "Complete",
"Progressive", "NoChange", "Partial", "Complete",
"Progressive", "NoChange", "Partial", "Complete",
"Progressive", "NoChange", "Partial", "Complete"),

count = c(28, 45, 29, 26, 4, 12, 5, 2, 41, 44, 20, 20, 12, 7, 3, 1))

strata <- paste(sep = "", d$Therapy, ".", d$Gender)
d <- data.frame(d, strata)

d3 <- subset(d, Response != "Complete")
levels(d3$Response) <- c(NA, "NoChange", "Partial", "Progressive")

L.fct <- function(p) {
p <- matrix(p, 4, 4, byrow = TRUE)
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clogit <- c()
for (s in 1:4) {

clogit <- c(clogit,
log(sum(p[s, 1]) / sum(p[s, 2:4])),
log(sum(p[s, 1:2]) / sum(p[s, 3:4])),
log(sum(p[s, 1:3]) / sum(p[s, 4]))

)
}
L <- as.matrix(clogit)
rownames(L) <- c(paste(sep = "", "log odds(R < ", 2:4, "|",

d3$strata, ")"))
L

}

a <- mph.fit(d$count, link = L.fct,
X = model.matrix(~ -1 + Response + Therapy + Gender,

data = d3),
strata = strata)

# Fit the related non-proportional odds cumulative logit model
b <- mph.fit(d$count, link = L.fct,

X = model.matrix(~ Response + Response * Therapy +
Response * Gender - 1 - Therapy - Gender,

data = d3),
strata = strata)

mph.summary(a, TRUE)
mph.summary(b, TRUE)

mph.summary Summary Statistics of the Fitted MPH Model

Description

Computes and prints a collection of summary statistics of the fitted MPH model.

This function is used in conjunction with the ML fitting function mph.fit.

Usage

mph.summary(mph.out, cell.stats = FALSE, model.info = FALSE, digits = 4)

Arguments

mph.out Result of mph.fit.
cell.stats Logical variable indicating whether cell specific statistics are to be output. De-

fault: cell.stats = FALSE.
model.info Logical variable indicating whether model information is to be output. Default:

model.info = FALSE.
digits Integer giving output precision; used in the round() function.
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Value

NULL

Author(s)

Joseph B. Lang

References

Lang, J. B. (2004) Multinomial-Poisson homogeneous models for contingency tables, Annals of
Statistics, 32, 340–383.

Lang, J. B. (2005) Homogeneous linear predictor models for contingency tables, Journal of the
American Statistical Association, 100, 121–134.

See Also

mph.fit

nested_Gsq_nr Nested G-Squared Statistic Based CIs (Non-Robust)

Description

Constructs confidence intervals (CIs), based on the nestedG2 statistic, for estimands in contingency
tables subject to equality constraints.

The program may stop because of a non-convergence issue.

Usage

nested_Gsq_nr(y, strata, fixed.strata, h0.fct, h0.fct.deriv, S0.fct,
S0.fct.deriv, max.mph.iter, step, change.step.after,
y.eps, iter.orig, norm.diff.conv, norm.score.conv,
max.score.diff.iter, S.space.H0, tol.psi, tol,
max.iter, cut.off, delta)

Arguments

y Observed table counts in the contingency table(s), in vector form.

strata Vector of the same length as y that gives the stratum membership identifier.

fixed.strata The object that gives information on which stratum (strata) has (have) fixed
sample sizes.

h0.fct The constraint function h0(·) with respect to m, where m = E(Y ), the vector
of expected table counts.

h0.fct.deriv The R function object that computes analytic derivative of the transpose of the
constraint function h0(·) with respect to m. If h0.fct.deriv is not specified or
h0.fct.deriv = NULL, numerical derivatives will be used.
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S0.fct The estimand function S0(·) with respect to m.

S0.fct.deriv The R function object that computes analytic derivative of the estimand function
S0(·) with respect to m. If S0.fct.deriv is not specified or S0.fct.deriv =
NULL, numerical derivatives will be used.

max.mph.iter, step, change.step.after, y.eps, iter.orig, norm.diff.conv, norm.score.conv, max.score.diff.iter

The parameters used in mph.fit.

S.space.H0 Restricted estimand space of S(·) under H0, i.e. subject to the imposed equality
constraints along with sampling constraints.

tol.psi, tol, max.iter

The parameters used in the three stopping criteria in solving for the roots to the
test-inversion equation.

cut.off qchisq(cc,1). i.e. The chi-square cutoff, with 1 df, based on the significance
level 1-cc.

delta The constant δ that is in expressions of the moving critical values within each
sliding quadratic step.

Value

Provided that nested_Gsq_nr does not stop, it returns a 1-by-2 matrix which displays two endpoints
of the confidence interval based on the nested G2 statistic.

Author(s)

Qiansheng Zhu

References

Zhu, Q. (2020) "On improved confidence intervals for parameters of discrete distributions." PhD
dissertation, University of Iowa.

See Also

nested_Gsq_nr, f.psi, ci.table

nested_Gsq_robust Nested G-Squared Statistic Based CIs (Robust)

Description

Constructs confidence intervals (CIs), based on the nestedG2 statistic, for estimands in contingency
tables subject to equality constraints.
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Usage

nested_Gsq_robust(y, strata, fixed.strata, h0.fct, h0.fct.deriv,
S0.fct, S0.fct.deriv, max.mph.iter, step,
change.step.after, y.eps, iter.orig, norm.diff.conv,
norm.score.conv, max.score.diff.iter, S.space.H0,
tol.psi, tol, max.iter, cut.off, delta, adj.epsilon,
iter.robust.max, iter.robust.eff)

Arguments

y Observed table counts in the contingency table(s), in vector form.

strata Vector of the same length as y that gives the stratum membership identifier.

fixed.strata The object that gives information on which stratum (strata) has (have) fixed
sample sizes.

h0.fct The constraint function h0(·) with respect to m, where m = E(Y ), the vector
of expected table counts.

h0.fct.deriv The R function object that computes analytic derivative of the transpose of the
constraint function h0(·) with respect to m. If h0.fct.deriv is not specified or
h0.fct.deriv = NULL, numerical derivatives will be used.

S0.fct The estimand function S0(·) with respect to m.

S0.fct.deriv The R function object that computes analytic derivative of the estimand function
S0(·) with respect to m. If S0.fct.deriv is not specified or S0.fct.deriv =
NULL, numerical derivatives will be used.

max.mph.iter, step, change.step.after, y.eps, iter.orig, norm.diff.conv, norm.score.conv, max.score.diff.iter

The parameters used in mph.fit.

S.space.H0 Restricted estimand space of S(·) under H0, i.e. subject to the imposed equality
constraints along with sampling constraints.

tol.psi, tol, max.iter

The parameters used in the three stopping criteria in solving for the roots to the
test-inversion equation.

cut.off qchisq(cc,1). i.e. The chi-square cutoff, with 1 df, based on the significance
level 1-cc.

delta The constant δ that is in expressions of the moving critical values within each
sliding quadratic step.

adj.epsilon, iter.robust.max, iter.robust.eff

The parameters used in the robustifying procedure.

Value

nested_Gsq_robust returns a list, which includes two objects. The first object is a 1-by-2 ma-
trix which displays two endpoints of the confidence interval based on the nested G2 statistic. For
the second object, it includes the warning message that occurs during construction of the confi-
dence interval if the robustifying procedure is evoked: "nested.Gsq.CI: Adjustment used. Not
on original data.\n". If the robustifying procedure is not evoked, the second object is NULL.
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Author(s)

Qiansheng Zhu

References

Zhu, Q. (2020) "On improved confidence intervals for parameters of discrete distributions." PhD
dissertation, University of Iowa.

See Also

nested_Gsq_nr, f.psi, ci.table

nested_PD_nr Nested Power-Divergence Statistic Based CIs (Non-Robust)

Description

Constructs confidence intervals (CIs), based on the nested power-divergence statistic, for estimands
in contingency tables subject to equality constraints.

The program may stop because of a non-convergence issue.

Usage

nested_PD_nr(y, strata, fixed.strata, h0.fct, h0.fct.deriv, S0.fct,
S0.fct.deriv, max.mph.iter, step, change.step.after,
y.eps, iter.orig, norm.diff.conv, norm.score.conv,
max.score.diff.iter, S.space.H0, tol.psi, tol,
max.iter, cut.off, delta, pdlambda)

Arguments

y Observed table counts in the contingency table(s), in vector form.

strata Vector of the same length as y that gives the stratum membership identifier.

fixed.strata The object that gives information on which stratum (strata) has (have) fixed
sample sizes.

h0.fct The constraint function h0(·) with respect to m, where m = E(Y ), the vector
of expected table counts.

h0.fct.deriv The R function object that computes analytic derivative of the transpose of the
constraint function h0(·) with respect to m. If h0.fct.deriv is not specified or
h0.fct.deriv = NULL, numerical derivatives will be used.

S0.fct The estimand function S0(·) with respect to m.

S0.fct.deriv The R function object that computes analytic derivative of the estimand function
S0(·) with respect to m. If S0.fct.deriv is not specified or S0.fct.deriv =
NULL, numerical derivatives will be used.



nested_PD_robust 61

max.mph.iter, step, change.step.after, y.eps, iter.orig, norm.diff.conv, norm.score.conv, max.score.diff.iter

The parameters used in mph.fit.

S.space.H0 Restricted estimand space of S(·) under H0, i.e. subject to the imposed equality
constraints along with sampling constraints.

tol.psi, tol, max.iter

The parameters used in the three stopping criteria in solving for the roots to the
test-inversion equation.

cut.off qchisq(cc,1). i.e. The chi-square cutoff, with 1 df, based on the significance
level 1-cc.

delta The constant δ that is in expressions of the moving critical values within each
sliding quadratic step.

pdlambda The index parameter λ in the power-divergence statistic.

Value

Provided that nested_PD_nr does not stop, it returns a 1-by-2 matrix which displays two endpoints
of the confidence interval based on the nested power-divergence statistic.

Author(s)

Qiansheng Zhu

References

Zhu, Q. (2020) "On improved confidence intervals for parameters of discrete distributions." PhD
dissertation, University of Iowa.

See Also

nested_PD_robust, f.psi, ci.table

nested_PD_robust Nested Power-Divergence Statistic Based CIs (Robust)

Description

Constructs confidence intervals (CIs), based on the nested power-divergence statistic, for estimands
in contingency tables subject to equality constraints.

Usage

nested_PD_robust(y, strata, fixed.strata, h0.fct, h0.fct.deriv,
S0.fct, S0.fct.deriv, max.mph.iter, step,
change.step.after, y.eps, iter.orig, norm.diff.conv,
norm.score.conv, max.score.diff.iter, S.space.H0,
tol.psi, tol, max.iter, cut.off, delta, pdlambda,
adj.epsilon, iter.robust.max, iter.robust.eff)
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Arguments

y Observed table counts in the contingency table(s), in vector form.

strata Vector of the same length as y that gives the stratum membership identifier.

fixed.strata The object that gives information on which stratum (strata) has (have) fixed
sample sizes.

h0.fct The constraint function h0(·) with respect to m, where m = E(Y ), the vector
of expected table counts.

h0.fct.deriv The R function object that computes analytic derivative of the transpose of the
constraint function h0(·) with respect to m. If h0.fct.deriv is not specified or
h0.fct.deriv = NULL, numerical derivatives will be used.

S0.fct The estimand function S0(·) with respect to m.

S0.fct.deriv The R function object that computes analytic derivative of the estimand function
S0(·) with respect to m. If S0.fct.deriv is not specified or S0.fct.deriv =
NULL, numerical derivatives will be used.

max.mph.iter, step, change.step.after, y.eps, iter.orig, norm.diff.conv, norm.score.conv, max.score.diff.iter

The parameters used in mph.fit.

S.space.H0 Restricted estimand space of S(·) under H0, i.e. subject to the imposed equality
constraints along with sampling constraints.

tol.psi, tol, max.iter

The parameters used in the three stopping criteria in solving for the roots to the
test-inversion equation.

cut.off qchisq(cc,1). i.e. The chi-square cutoff, with 1 df, based on the significance
level 1-cc.

delta The constant δ that is in expressions of the moving critical values within each
sliding quadratic step.

pdlambda The index parameter λ in the power-divergence statistic.
adj.epsilon, iter.robust.max, iter.robust.eff

The parameters used in the robustifying procedure.

Value

nested_PD_robust returns a list, which includes two objects. The first object is a 1-by-2 ma-
trix which displays two endpoints of the confidence interval based on the nested power-divergence
statistic. For the second object, it includes the warning message that occurs during construction
of the confidence interval if the robustifying procedure is evoked: "nested.PD.CI: Adjustment
used. Not on original data.\n". If the robustifying procedure is not evoked, the second object
is NULL.

Author(s)

Qiansheng Zhu

References

Zhu, Q. (2020) "On improved confidence intervals for parameters of discrete distributions." PhD
dissertation, University of Iowa.
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See Also

nested_PD_nr, f.psi, ci.table

nested_Xsq_nr Nested X-Squared Statistic Based CIs (Non-Robust)

Description

Constructs confidence intervals (CIs), based on the nestedX2 statistic, for estimands in contingency
tables subject to equality constraints.

The program may stop because of a non-convergence issue.

Usage

nested_Xsq_nr(y, strata, fixed.strata, h0.fct, h0.fct.deriv, S0.fct,
S0.fct.deriv, max.mph.iter, step, change.step.after,
y.eps, iter.orig, norm.diff.conv, norm.score.conv,
max.score.diff.iter, S.space.H0, tol.psi, tol,
max.iter, cut.off, delta)

Arguments

y Observed table counts in the contingency table(s), in vector form.
strata Vector of the same length as y that gives the stratum membership identifier.
fixed.strata The object that gives information on which stratum (strata) has (have) fixed

sample sizes.
h0.fct The constraint function h0(·) with respect to m, where m = E(Y ), the vector

of expected table counts.
h0.fct.deriv The R function object that computes analytic derivative of the transpose of the

constraint function h0(·) with respect to m. If h0.fct.deriv is not specified or
h0.fct.deriv = NULL, numerical derivatives will be used.

S0.fct The estimand function S0(·) with respect to m.
S0.fct.deriv The R function object that computes analytic derivative of the estimand function

S0(·) with respect to m. If S0.fct.deriv is not specified or S0.fct.deriv =
NULL, numerical derivatives will be used.

max.mph.iter, step, change.step.after, y.eps, iter.orig, norm.diff.conv, norm.score.conv, max.score.diff.iter

The parameters used in mph.fit.
S.space.H0 Restricted estimand space of S(·) under H0, i.e. subject to the imposed equality

constraints along with sampling constraints.
tol.psi, tol, max.iter

The parameters used in the three stopping criteria in solving for the roots to the
test-inversion equation.

cut.off qchisq(cc,1). i.e. The chi-square cutoff, with 1 df, based on the significance
level 1-cc.

delta The constant δ that is in expressions of the moving critical values within each
sliding quadratic step.
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Value

Provided that nested_Xsq_nr does not stop, it returns a 1-by-2 matrix which displays two endpoints
of the confidence interval based on the nested X2 statistic.

Author(s)

Qiansheng Zhu

References

Zhu, Q. (2020) "On improved confidence intervals for parameters of discrete distributions." PhD
dissertation, University of Iowa.

See Also

nested_Xsq_nr, f.psi, ci.table

nested_Xsq_robust Nested X-Squared Statistic Based CIs (Robust)

Description

Constructs confidence intervals (CIs), based on the nestedX2 statistic, for estimands in contingency
tables subject to equality constraints.

Usage

nested_Xsq_robust(y, strata, fixed.strata, h0.fct, h0.fct.deriv,
S0.fct, S0.fct.deriv, max.mph.iter, step,
change.step.after, y.eps, iter.orig, norm.diff.conv,
norm.score.conv, max.score.diff.iter, S.space.H0,
tol.psi, tol, max.iter, cut.off, delta, adj.epsilon,
iter.robust.max, iter.robust.eff)

Arguments

y Observed table counts in the contingency table(s), in vector form.

strata Vector of the same length as y that gives the stratum membership identifier.

fixed.strata The object that gives information on which stratum (strata) has (have) fixed
sample sizes.

h0.fct The constraint function h0(·) with respect to m, where m = E(Y ), the vector
of expected table counts.

h0.fct.deriv The R function object that computes analytic derivative of the transpose of the
constraint function h0(·) with respect to m. If h0.fct.deriv is not specified or
h0.fct.deriv = NULL, numerical derivatives will be used.

S0.fct The estimand function S0(·) with respect to m.
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S0.fct.deriv The R function object that computes analytic derivative of the estimand function
S0(·) with respect to m. If S0.fct.deriv is not specified or S0.fct.deriv =
NULL, numerical derivatives will be used.

max.mph.iter, step, change.step.after, y.eps, iter.orig, norm.diff.conv, norm.score.conv, max.score.diff.iter

The parameters used in mph.fit.

S.space.H0 Restricted estimand space of S(·) under H0, i.e. subject to the imposed equality
constraints along with sampling constraints.

tol.psi, tol, max.iter

The parameters used in the three stopping criteria in solving for the roots to the
test-inversion equation.

cut.off qchisq(cc,1). i.e. The chi-square cutoff, with 1 df, based on the significance
level 1-cc.

delta The constant δ that is in expressions of the moving critical values within each
sliding quadratic step.

adj.epsilon, iter.robust.max, iter.robust.eff

The parameters used in the robustifying procedure.

Value

nested_Xsq_robust returns a list, which includes two objects. The first object is a 1-by-2 ma-
trix which displays two endpoints of the confidence interval based on the nested X2 statistic. For
the second object, it includes the warning message that occurs during construction of the confi-
dence interval if the robustifying procedure is evoked: "nested.Xsq.CI: Adjustment used. Not
on original data.\n". If the robustifying procedure is not evoked, the second object is NULL.

Author(s)

Qiansheng Zhu

References

Zhu, Q. (2020) "On improved confidence intervals for parameters of discrete distributions." PhD
dissertation, University of Iowa.

See Also

nested_Xsq_nr, f.psi, ci.table

num.deriv.fct Numerical Derivatives Based on Central Difference Formula

Description

Computes the numerical derivative of the transpose of the vector-valued function f evaluated at the
point m, based on the central difference formula.

If f is a mapping from Rp to Rq , then the result is a p-by-q matrix. i.e. The result is an approxima-
tion to ∂f ′(m)/∂m.
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Usage

num.deriv.fct(f.fct, m)

Arguments

f.fct An R function object that defines a vector-valued function f .

m A vector, indicating the point m at which the numerical derivative is to be com-
puted.

Value

num.deriv.fct returns a matrix, which is the numerical derivative of the transpose of the function
f evaluated at m.

Author(s)

Joseph B. Lang

Examples

# Let x = (x[1], x[2], x[3])', and
# f(x) = (x[1]^3 - 2 * x[2] + 1, sin(x[1] * x[3]), log(x[2] + x[3]))'.
# Approximate d f^{T}(x) / d x at x = (1, 2, 3)'.
# The true value of the derivative is
# [ 3 3cos(3) 0
# -2 0 0.2
# 0 cos(3) 0.2] .

f.fct <- function(x) {
c(x[1]^3 - 2 * x[2] + 1,
sin(x[1] * x[3]),
log(x[2] + x[3]))

}
num.deriv.fct(f.fct, c(1, 2, 3))

quadratic.fit Quadratic Fit

Description

Fits a quadratic curve that passes all three points on the two-dimensional Euclidean space R2.

If the design matrixX of the quadratic fit has a condition number which is greater than 108, a linear
regression line is fitted to the three points instead.

Usage

quadratic.fit(x, y)
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Arguments

x A vector of length three, which represents the x-values of the three points.

y A vector of length three, which represents the y-values of the three points.

Value

quadratic.fit returns a vector of length three. The first, second, and third elements of the returned
vector are the second degree, first degree, and zero-th degree coefficients, respectively, of the fitted
quadratic curve, or of the fitted linear regression line.

Author(s)

Qiansheng Zhu

See Also

solve_quadratic

Examples

# Three points: (0, 1), (1, 0), (3, 4).
quadratic.fit(c(0, 1, 3), c(1, 0, 4))

solve_quadratic Solve for Real Root(s) to the Quadratic Equation

Description

Solves for real-valued roots to the quadratic equation ax2 + bx+ c = 0.

Usage

solve_quadratic(a, b, c)

Arguments

a, b, c Coefficients in the quadratic equation ax2 + bx+ c = 0.

Value

solve_quadratic returns a list, which includes the following two objects:

flag Indicates the number of distinct real roots to the quadratic equation. It can be
one of "infinite", "none", "one", or "two".

x Real root(s) to the quadratic equation. If flag = "infinite", we simply write
x = 0; If flag = "none", we write x = NA.
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Author(s)

Qiansheng Zhu

See Also

quadratic.fit

Examples

solve_quadratic(1, 2, 1)
solve_quadratic(1, 2, 2)
solve_quadratic(0, 2, 1)

Wald_trans.Wald_nr Wald-Type CIs (Non-Robust)

Description

Constructs non-transformed and transformed (if the transformation g is specified) Wald confidence
intervals (CIs) for estimands in contingency tables subject to equality constraints.

The program may stop because of a non-convergence issue.

Usage

Wald_trans.Wald_nr(y, strata, fixed.strata, h0.fct, h0.fct.deriv,
S0.fct, S0.fct.deriv, max.mph.iter, step,
change.step.after, y.eps, iter.orig, norm.diff.conv,
norm.score.conv, max.score.diff.iter, cut.off,
S.space.H0, trans.g, trans.g.deriv, trans.g.inv)

Arguments

y Observed table counts in the contingency table(s), in vector form.

strata Vector of the same length as y that gives the stratum membership identifier.

fixed.strata The object that gives information on which stratum (strata) has (have) fixed
sample sizes.

h0.fct The constraint function h0(·) with respect to m, where m = E(Y ), the vector
of expected table counts.

h0.fct.deriv The R function object that computes analytic derivative of the transpose of the
constraint function h0(·) with respect to m. If h0.fct.deriv is not specified or
h0.fct.deriv = NULL, numerical derivatives will be used.

S0.fct The estimand function S0(·) with respect to m.

S0.fct.deriv The R function object that computes analytic derivative of the estimand function
S0(·) with respect to m. If S0.fct.deriv is not specified or S0.fct.deriv =
NULL, numerical derivatives will be used.
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max.mph.iter, step, change.step.after, y.eps, iter.orig, norm.diff.conv, norm.score.conv, max.score.diff.iter

The parameters used in mph.fit.

cut.off qchisq(cc,1). i.e. The chi-square cutoff, with 1 df, based on the significance
level 1-cc.

S.space.H0 Restricted estimand space of S(·) under H0, i.e. subject to the imposed equality
constraints along with sampling constraints.

trans.g The transformation g used in the transformed Wald confidence interval.

trans.g.deriv The derivative function of the transformation g, i.e. dg(w)/dw. If it is specified,
it should be an R function, even if the derivative function is a constant function.

trans.g.inv g−1 function used in back-transformation step in construction of the transformed
Wald confidence interval.

Value

Provided that Wald_trans.Wald_nr does not stop,

• either it returns a 1-by-2 matrix which displays two endpoints of the non-transformed Wald
confidence interval, if the transformation g is not specified;

• or it returns a 2-by-2 matrix, whose first row displays two endpoints of the non-transformed
Wald confidence interval, and whose second row displays two endpoints of the transformed
Wald confidence interval, if the transformation g is specified.

Author(s)

Qiansheng Zhu

References

Zhu, Q. (2020) "On improved confidence intervals for parameters of discrete distributions." PhD
dissertation, University of Iowa.

See Also

Wald_trans.Wald_robust, f.psi, ci.table

Wald_trans.Wald_robust

Wald-Type CIs (Robust)

Description

Constructs non-transformed and transformed (if the transformation g is specified) Wald confidence
intervals (CIs) for estimands in contingency tables subject to equality constraints.
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Usage

Wald_trans.Wald_robust(y, strata, fixed.strata, h0.fct, h0.fct.deriv,
S0.fct, S0.fct.deriv, max.mph.iter, step,
change.step.after, y.eps, iter.orig, norm.diff.conv,
norm.score.conv, max.score.diff.iter, cut.off,
S.space.H0, trans.g, trans.g.deriv, trans.g.inv,
adj.epsilon, iter.robust.max, iter.robust.eff)

Arguments

y Observed table counts in the contingency table(s), in vector form.

strata Vector of the same length as y that gives the stratum membership identifier.

fixed.strata The object that gives information on which stratum (strata) has (have) fixed
sample sizes.

h0.fct The constraint function h0(·) with respect to m, where m = E(Y ), the vector
of expected table counts.

h0.fct.deriv The R function object that computes analytic derivative of the transpose of the
constraint function h0(·) with respect to m. If h0.fct.deriv is not specified or
h0.fct.deriv = NULL, numerical derivatives will be used.

S0.fct The estimand function S0(·) with respect to m.

S0.fct.deriv The R function object that computes analytic derivative of the estimand function
S0(·) with respect to m. If S0.fct.deriv is not specified or S0.fct.deriv =
NULL, numerical derivatives will be used.

max.mph.iter, step, change.step.after, y.eps, iter.orig, norm.diff.conv, norm.score.conv, max.score.diff.iter

The parameters used in mph.fit.

cut.off qchisq(cc,1). i.e. The chi-square cutoff, with 1 df, based on the significance
level 1-cc.

S.space.H0 Restricted estimand space of S(·) under H0, i.e. subject to the imposed equality
constraints along with sampling constraints.

trans.g The transformation g used in the transformed Wald confidence interval.

trans.g.deriv The derivative function of the transformation g, i.e. dg(w)/dw. If it is specified,
it should be an R function, even if the derivative function is a constant function.

trans.g.inv g−1 function used in back-transformation step in construction of the transformed
Wald confidence interval.

adj.epsilon, iter.robust.max, iter.robust.eff

The parameters used in the robustifying procedure.

Value

Wald_trans.Wald_robust returns a list, which includes two objects. The first object is

• either a 1-by-2 matrix which displays two endpoints of the non-transformed Wald confidence
interval, if the transformation g is not specified;

• or a 2-by-2 matrix, whose first row displays two endpoints of the non-transformed Wald con-
fidence interval, and whose second row displays two endpoints of the transformed Wald con-
fidence interval, if the transformation g is specified.
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For the second object, it includes the warning message that occurs during construction of the
confidence interval(s) if the robustifying procedure is evoked: "Wald.CI: Adjustment used. Not
on original data.\n", or "Wald.CI and trans.Wald.CI: Adjustment used. Not on original
data.\n". If the robustifying procedure is not evoked, the second object is NULL.

Author(s)

Qiansheng Zhu
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