Package 'cta'

August 23, 2021
Title Contingency Table Analysis Based on ML Fitting of MPH Models
Version 1.3.0
Date 2021-8-21
Author Joseph B. Lang [aut],
Qiansheng Zhu [aut, cre]
Maintainer Qiansheng Zhu qiansheng-zhu@uiowa.edu
Imports intervals, numDeriv, limSolve, methods
Suggests vcd, MASS
Description Contingency table analysis is performed based on maximum likelihood (ML) fitting of multinomial-Poisson homogeneous (MPH) and homogeneous linear predictor (HLP) models. See Lang (2004) doi:10.1214/aos/1079120140 and Lang (2005) doi:10.1198/016214504000001042 for MPH and HLP models. Objects computed include model goodness-of-fit statistics; likelihoodbased (cell- and link-specific) residuals; and cell probability and expected count estimates along with standard errors. This package can also compute test-inversion--e.g. Wald, profile likelihood, score, power-divergence--confidence intervals for contingency table estimands, when table probabilities are potentially subject to equality constraints. For test-inversion intervals, see Lang (2008) doi:10.1002/sim.3391 and Zhu (2020) doi:10.17077/etd.005331.
License GPL (>=2)
Repository CRAN
NeedsCompilation no
Date/Publication 2021-08-23 18:20:10 UTC

R topics documented:

cta-package 2
block.fct 3
check.HLP 4
check.homog 6
check.zero.order.homog 7
ci.table 8
compute_cons_MLE_ase 23
create.U 24
create.Z.ZF 25
diff_Gsq_nr 26
diff_Gsq_robust 27
diff_PD_nr 29
diff_PD_robust 30
diff_Xsq_nr 32
diff_Xsq_robust 33
f.psi 34
M.fct 37
mph.fit 38
mph.summary 56
nested_Gsq_nr 57
nested_Gsq_robust 58
nested_PD_nr 60
nested_PD_robust 61
nested_Xsq_nr 63
nested_Xsq_robust 64
num.deriv.fct 65
quadratic.fit 66
solve_quadratic 67
Wald_trans.Wald_nr 68
Wald_trans.Wald_robust 69
Index 72
cta-package

Description

Contingency table analysis is performed based on maximum likelihood (ML) fitting of multinomialPoisson homogeneous (MPH) models (Lang, 2004) and homogeneous linear predictor (HLP) models (Lang, 2005). Objects computed include model goodness-of-fit statistics; likelihood-based (celland link-specific) residuals; and cell probability and expected count estimates along with standard errors. This package can also compute test-inversion-e.g. Wald, profile likelihood, score, power-divergence-confidence intervals for contingency table estimands, when table probabilities are potentially subject to equality constraints. See Lang (2008) and Zhu (2020) for test-inversion intervals.

Details

Please call the following two R functions in this cta package.
mph.fit: Computes maximum likelihood estimates and fit statistics for MPH and HLP models for contingency tables.
ci.table: Constructs test-inversion approximate confidence intervals for estimands in contingency tables with or without equality constraints.

Author(s)

Joseph B. Lang, Qiansheng Zhu

References

Lang, J. B. (2004) Multinomial-Poisson homogeneous models for contingency tables, Annals of Statistics, 32, 340-383.

Lang, J. B. (2005) Homogeneous linear predictor models for contingency tables, Journal of the American Statistical Association, 100, 121-134.
Lang, J. B. (2008) Score and profile likelihood confidence intervals for contingency table parameters, Statistics in Medicine, 27, 5975-5990.
Zhu, Q. (2020) "On improved confidence intervals for parameters of discrete distributions." PhD dissertation, University of Iowa.
block.fct Matrix Direct Sum

Description

Matrix direct sum function. Creates a block diagonal matrix.

Usage

block.fct(...)

Arguments

$$
\ldots \quad R \text { matrices (matrix). }
$$

Value

block. fct returns a block diagonal matrix, where the direct sum is in the order of the input matrices (matrix).

Author(s)

Joseph B. Lang

Examples

```
A <- matrix(c(1, 2, 3, 4), nrow = 2, byrow = TRUE)
B <- matrix(c(5, 6, 7, 8, 9, 10), nrow = 2, byrow = TRUE)
C <- matrix(c(11, 12, 13, 14), nrow = 1, byrow = TRUE)
block.fct(A, B, C)
```


HLP Link Status Check

Description

Checks whether the link function $L(\cdot)$ is a candidate HLP link function.
Specifically, this program checks whether $L(\cdot)$ satisfies certain necessary conditions that follow from a sufficient condition for HLP link status.

If the necessary conditions are satisfied then there is corroborating evidence that $L(\cdot)$ has HLP link status. If the necessary conditions are not satisfied, then the sufficient condition for HLP link status is not satisfied, so $L(\cdot)$ may or may not have HLP link status.

Usage

check.HLP(L.fct, Z, tol = NULL)

Arguments

L.fct

Z tol

An R function object, indicating the link $L(\cdot)$ for HLP link status check.
Population (aka strata) matrix Z.

Details
The main idea:
The model $L(m)=X \beta$ is an HLP model if $L(\cdot)$ is a smooth link function that satisfies the HLP conditions with respect to Z (i.e. strata s) and X. That is,

- (1) $L(\cdot)$ has HLP link status with respect to Z, and
- (2) The implied constraint function $h(m)=U^{\prime} L(m)$ is Z homogeneous. Here, null $\left(U^{\prime}\right)=$ $\operatorname{span}(X)$.

Here, (1) $L(\cdot)$ has HLP link status with respect to Z if, for $m=\operatorname{Diag}(Z \gamma) p$, equivalently, for $\gamma=Z^{\prime} m$ and $p=\operatorname{Diag}^{-1}\left(Z Z^{\prime} m\right) m$,

- (1)(a) $L(m)=a(\gamma)+L(p)$, where $a\left(\gamma_{1} / \gamma_{2}\right)-a(1)=a\left(\gamma_{1}\right)-a\left(\gamma_{2}\right)$, i.e. $a(\gamma)$ has the form $C \log \gamma+$ constant; or
- (1)(b) $L(m)=G(\gamma) L(p)$, where $G(\gamma)$ is a diagonal matrix with diagonal elements that are powers of the γ elements, i.e. $L(\cdot)$ is Z homogeneous (see Lang (2004)); or
- (1)(c) The components of $L(\cdot)$ are a mixture of types (a) and (b): $L_{j}(m)=a_{j}(\gamma)+L_{j}(p)$ or $L_{j}(m)=G_{j}(\gamma) L_{j}(p), j=1, \ldots, l$.
N.B. Lang (2005) defined HLP models as those satisfying (1)(a) and (2). mph. fit uses a broader definition of HLP model. Specifically, models satisfying (1)(b) and (2) or (1)(c) and (2) are also considered HLP models.

Conditions (1)(b) and (2) can be checked using the check. homog function. Condition (1)(c) is not checked.
This function, check. HLP, is concerned with sufficient condition (1)(a) only. If $L(\cdot)$ satisfies (1)(a) then

- (i) diff1 $=\left[L\left(\operatorname{Diag}\left(Z \gamma_{1}\right) p_{1}\right)-L\left(\operatorname{Diag}\left(Z \gamma_{2}\right) p_{1}\right)\right]-\left[L\left(\operatorname{Diag}\left(Z \gamma_{1} / \gamma_{2}\right) p_{1}\right)-L\left(p_{1}\right)\right]=0$, and
- (ii) diff2 $=\left[L\left(\operatorname{Diag}\left(Z \gamma_{1}\right) p_{1}\right)-L\left(\operatorname{Diag}\left(Z \gamma_{1}\right) p_{2}\right)\right]-\left[L\left(p_{1}\right)-L\left(p_{2}\right)\right]=0$.

Here $p_{i}=\operatorname{Diag}^{-1}\left(Z Z^{\prime} m_{i}\right) m_{i}$, where $m_{i}=\operatorname{Diag}\left(Z \gamma_{i}\right) p_{i}, i=1,2$.
This program randomly generates $\mathrm{g} 1\left(\gamma_{1}\right), \mathrm{g} 2\left(\gamma_{2}\right), \mathrm{p} 1, \mathrm{p} 2$, and computes norm(diff) $=\operatorname{sqrt}\left(\right.$ norm (diff1) ${ }^{\wedge} 2$ + norm(diff2) ${ }^{\wedge} 2$). It returns a warning if norm(diff) is too far from 0 .

Value

check. HLP returns a character string chk. If chk $="$ ", then there is corroborating evidence that $L(\cdot)$ has HLP link status. If chk = paste ("L(m) may not be an HLP link [based on tol=", tol, "]!"), then the sufficient condition for HLP link status is not satisfied, so $L(\cdot)$ may or may not have HLP link status.

Author(s)

Joseph B. Lang

References

Lang, J. B. (2004) Multinomial-Poisson homogeneous models for contingency tables, Annals of Statistics, 32, 340-383.
Lang, J. B. (2005) Homogeneous linear predictor models for contingency tables, Journal of the American Statistical Association, 100, 121-134.

See Also

mph.fit, check. homog, check.zero.order. homog

Examples

```
# 3-by-3-by-3 Table.
# For a description of the model, see Michael Haber's Example 2,
# p. 433, in Biometrics (in Shorter Communications), Vol. 42,
# No. 2. (Jun., 1986), pp. 429-435.
A <- gl(3, 9, 27)
B <- gl(3, 3, 27)
C <- gl(3, 1, 27)
MAB <- kronecker(diag(9), matrix(1, 1, 3))
MAC <- kronecker(diag(3), kronecker(matrix(1, 1, 3), diag(3)))
MBC <- kronecker(matrix(1, 1, 3), diag(9))
M <- rbind(MAB, MAC, MBC)
Mr <- M[-c(3, 6, 7, 8, 9, 12, 15, 16, 17, 18, 21, 24,
    25, 26, 27), ]
```

```
    c<-c(1, -1, -1, 1, 0, 0, 0, 0, 0, 0, 0, 0,
            0, 0, 0, 0, 1, -1, -1, 1, 0, 0, 0, 0,
            0, 0, 0, 0, 0, 0, 0, 0, 1, -1, -1, 1)
    C <- matrix(C, 3, 12, byrow = TRUE)
    L.fct <- function(m) {
        p <- m / sum(m)
        C %*% log(Mr %*% p)
    }
    Z <- matrix(rep(1, 27), ncol = 1)
    check.HLP(L.fct, Z)
```

check.homog Z Homogeneity Check

Description

Checks whether the constraint function $h(\cdot)$ satisfies a necessary condition for Z homogeneity.

Usage

check.homog(h.fct, Z, tol = NULL)

Arguments

h.fct An R function object, indicating the constraint function $h(\cdot)$ for Z homogeneity check.
Z Population (aka strata) matrix Z.
tol The pre-set tolerance with which norm(diff) is to be compared with.

Details

The main idea:
$h(\cdot)$ is Z homogeneous if $h(\operatorname{Diag}(Z \gamma) x)=G(\gamma) h(x)$, where G is a diagonal matrix with γ elements raised to some power.
As a check, if $h(\cdot)$ is homogeneous then

$$
h\left(\operatorname{Diag}(Z \gamma) x_{1}\right) / h\left(\operatorname{Diag}(Z \gamma) x_{2}\right)=h\left(x_{1}\right) / h\left(x_{2}\right)
$$

That is,

$$
\operatorname{diff}=h\left(\operatorname{Diag}(Z \gamma) x_{1}\right) h\left(x_{2}\right)-h\left(\operatorname{Diag}(Z \gamma) x_{2}\right) h\left(x_{1}\right)=0
$$

Here, the division and multiplication are taken element-wise.
This program randomly generates gamma, $x 1$, and $\times 2$, and computes norm(diff). It returns a warning if norm(diff) is too far from 0 .

Value

check. homog returns a character string chk that states whether $h(\cdot)$ is Z homogeneous. If chk $=$ "", it means that based on the necessary condition, we cannot state that $h(\cdot)$ is not Z homogeneous.

Author(s)

Joseph B. Lang

References

Lang, J. B. (2004) Multinomial-Poisson homogeneous models for contingency tables, Annals of Statistics, 32, 340-383.

See Also

check.zero.order.homog, mph.fit, check. HLP

Examples

```
# EXAMPLE 1
h.fct <- function(m) {m[1] - m[2]}
Z <- matrix(c(1, 1), nrow = 2)
check.homog(h.fct, Z)
# EXAMPLE 2
h.fct.2 <- function(m) {m[1]^2 - m[2]}
Z <- matrix(c(1, 1), nrow = 2)
check.homog(h.fct.2, Z)
```

check.zero.order. homog Zero-Order Z Homogeneity Check

Description

Checks whether the estimand function $S(\cdot)$ is zero-order Z homogeneous.

Usage

check.zero.order. homog (S.fct, Z, tol = 1e-9)

Arguments

S.fct An R function object, indicating the estimand function $S(\cdot)$ for zero-order Z homogeneity check.

Z
Population (aka strata) matrix Z.
tol The pre-set tolerance with which norm(diff.LRHS) is to be compared with.

Details

The main idea:
$S(\cdot)$ is zero-order Z homogeneous if $S(\operatorname{Diag}(Z \gamma) x)=S(x)$, for all $\gamma>0$, and for all x within its domain. This program randomly generates gam (γ) and $\mathrm{x}(x)$, and computes

$$
\operatorname{diff} . \mathrm{LRHS}=S(\operatorname{Diag}(Z \gamma) x)-S(x)
$$

It returns a warning if norm(diff. LRHS) is too far from 0 .

Value

check.zero.order. homog returns a character string check. result that states whether $S(\cdot)$ is zero-order Z homogeneous. If check. result $=" "$, it means that we cannot state that $S(\cdot)$ is not zero-order Z homogeneous based on the result of the check.

Author(s)

Qiansheng Zhu

References

Lang, J. B. (2004) Multinomial-Poisson homogeneous models for contingency tables, Annals of Statistics, 32, 340-383.

See Also

check. homog, check. HLP

Examples

```
# EXAMPLE 1
S.fct <- function(m) {(m[1] - m[2]) / (m[1] + m[2])}
Z <- matrix(c(1, 1, 1, 1), nrow = 4)
check.zero.order.homog(S.fct, Z)
# EXAMPLE 2
S.fct.2 <- function(m) {m[1] - m[2]}
Z <- matrix(c(1, 1, 1, 1), nrow = 4)
check.zero.order.homog(S.fct.2, Z)
```

ci.table Test-Inversion CIs for Estimands in Contingency Tables

Description

Constructs test-inversion approximate confidence intervals (CIs) for estimands in contingency tables subject to equality constraints. Test statistics include Wald-type statistics, and difference and nested versions of power-divergence statistics. This program can also compute test-inversion approximate confidence intervals for estimands in contingency tables without additionally imposed equality constraints, by setting the constraint function $\mathrm{h} . \mathrm{fct}=0$.

Usage

```
ci.table(y, h.fct = 0, h.mean = FALSE, S.fct, S.mean = FALSE, S.P = FALSE,
    S.space. H0 = NULL, method = "all", cc = 0.95, pdlambda = 2/3,
    trans.g \(=\) NULL, trans.g.epsilon \(=0\), trans.g.inv \(=\) NULL,
    strata \(=\) rep(1, length(y)), fixed.strata = "all", delta = 0.5,
    max.iter \(=50\), tol \(=1 \mathrm{e}-2\), tol.psi \(=1 \mathrm{e}-4\), adj.epsilon \(=0.03\),
    iter.robust.max \(=30\), iter.robust.eff \(=10\), check.homog.tol \(=1 \mathrm{e}-9\),
    check.zero.order.homog.tol \(=1 \mathrm{e}-9\), max.mph.iter \(=1000\), step \(=1\),
    change.step.after \(=0.25 *\) max.mph.iter, y.eps \(=0\), iter.orig \(=5\),
    norm.diff.conv \(=1 \mathrm{e}-6\), norm. score.conv \(=1 \mathrm{e}-6\),
    max.score.diff.iter \(=10\), h0.fct.deriv \(=\) NULL,
    S0.fct.deriv = NULL, trans.g.deriv = NULL, plot.CIs = TRUE)
```


Arguments

$y \quad$ Observed table counts in the contingency table(s), in vector form.
h.fct The imposed equality constraint(s). Note that sampling constraints are not included in $\mathrm{h} . \mathrm{fct}$, and the imposed equality constraints should be non-redundant. If h . mean $=$ FALSE (default), $h(p)$ should be the input, where p is the vector of data model probabilities, or it can be called the vector of table probabilities; If h. mean $=$ TRUE, $h(m)$ should be the input, where m is the vector of expected table counts, i.e. $m=E(Y)$. In the case of $h(m)$ being the input, the function $h(\cdot)$ should be Z homogeneous, where Z is the population matrix. For the definition of Z homogeneity and the population matrix, see Lang (2004). Note that if there is no imposed equality constraint, we should input h.fct $=0$ (real number 0). Please do not specify h.fct as a zero function in this case. On the contrary, if there is (are) imposed equality constraint(s), please specify h.fct as an R function. Another important note is that if there are multiple imposed equality constraints, please use rbind(), not $c()$, to concatenate the imposed equality constraints into a column vector.
By default, h.fct $=0$.
h.mean Logical argument, TRUE or FALSE. If h.mean = FALSE (default), the input $\mathrm{h} . \mathrm{fct}$ is treated as a function of p; If h . mean = TRUE, the input $\mathrm{h} . \mathrm{fct}$ is treated as a function of m.
S.fct Parameter or estimand of interest. It should be an R function, which returns a real number. i.e. $S(\cdot)$ is a real-valued function. If S.mean = FALSE and $S . P=$ FALSE (default), $S(p)$ should be the input; If S .mean = TRUE, $S(\mathrm{~m})$ should be the input; If S.P = TRUE, $S(P)$ should be the input, where P is the vector of joint probabilities, or it can be called the vector of pre-data probabilities. In the case of $S(m)$ or $S(P)$ being the input, the function $S(\cdot)$ should be zero-order Z homogeneous, then $S(P)$ is Z estimable with $S(P)=S(m)$. In addition, when we are in the process of computing test-inversion confidence intervals other than Wald intervals, we have to fit several models and obtain constrained MLEs of expected table counts. These models have equality constraints $h_{0}^{*}(m)=0$, where $h_{0}^{*}(m)=\left(h_{0}^{\prime}(m), S_{0}(m)-\psi, s a m p_{0}^{\prime}(m)\right)^{\prime}$. Here $h_{0}(m)=0$ is (are) the imposed equality constraint(s), written in terms of $m ; S_{0}(m)-\psi=0$ means that the estimand of interest is equal to $\psi ; \operatorname{samp}_{0}(m)=0$ is (are) the sampling

	constraint(s), written in terms of m. Restriction of $S(m)$ [or $S(P)$] to zero-order Z homogeneity guarantees the Z homogeneity of $h_{0}^{*}(m)$.
S.mean, S.P	Logical argument, TRUE or FALSE. If S.mean $=$ FALSE and S.P $=$ FALSE (default), the input $\mathrm{S} . \mathrm{fct}$ is treated as a function of p; If S. mean $=$ TRUE, the input $\mathrm{S} . \mathrm{fct}$ is treated as a function of m; If S.P $=$ TRUE, the input $\mathrm{S} . \mathrm{fct}$ is treated as a function of P.
S.space.H0	Restricted estimand space of $S(\cdot)$ under H_{0}, i.e. subject to the imposed equality constraints along with sampling constraints. If S.space.H0 is not specified or the input S.space. $\mathrm{H} 0=\mathrm{NULL}$, the restricted estimand space is treated as $(-\infty, \infty)$, i.e. the whole real number line. If S. space. H 0 is specified, it can either be input as a vector of length of an even number, or be input in class Intervals_full \{intervals\}. As an example, if the restricted estimand space is $(-\infty,-1] \cup[1, \infty)$, then the input S. space. H0 could be $c(-\operatorname{Inf},-1,1$, Inf $)$, or Intervals_full(matrix (c(-Inf, $-1,1$, Inf) , ncol $=2$, byrow $=$ TRUE), closed $=$ matrix $(c(F A L S E, T R U E, T R U E, F A L S E)$, ncol = 2, byrow = TRUE) , type = "R"). It is strongly recommended that S.space. H0 be specified, as it will improve the accuracy and (possibly) speed in interval estimation. However, it is often difficult to have an idea of the restricted estimand space exactly. In this scenario, specification of one (or several) possibly larger interval(s) that cover(s) the exact restricted estimand space is also helpful.
method	The test statistic(s) in constructing the test-inversion approximate confidence interval(s). There are eight different test statistics, and the user is allowed to choose any number of the test statistics out of the eight. The eight test statistics are listed as follows: "Wald", "trans.Wald" (need specification of the transformation g), "diff.Xsq", "nested.Xsq", "diff.Gsq" (same as "PL" or "LR"), "nested.Gsq", "diff.PD", "nested.PD" (need specification of the power-divergence index parameter λ). If the input method = "all" (default), all test statistics will be employed to compute confidence intervals.
cc	Confidence coefficient, or the nominal level of the confidence interval.
pdlambda	The index parameter λ in the power-divergence statistic.
trans.g	The transformation g used in the transformed Wald confidence interval. First, we construct a confidence interval for $g(S(\cdot))$, then we back-transform, i.e. apply g^{-1} to the endpoints in order to obtain a confidence interval for $S(\cdot)$. There are several built-in options for the transformation: "Fisher's z", "log", "-log" (same as "negative log"), and " $[A, B]$ ". " $[A, B]$ " refers to the reparameterization trick as stated in the Discussion part of Lang (2008). The user is also allowed to input their own choice of trans.g. Ordinarily, the transformation g should be a bijection. Ideally, g should be smooth, strictly monotonically increasing, and "to parameterize away the boundary" (Lang, 2008).

trans.g.epsilon
The small ϵ adjustment included in the transformation g. For example, the " $[\mathrm{A}, \mathrm{B}]$ " transformation g with the small ϵ is

$$
g(x)=\log (x-A+\epsilon)-\log (B+\epsilon-x)
$$

By default, trans.g.epsilon $=0$.
trans.g.inv $\quad g^{-1}$ function used in back-transformation step in construction of the transformed Wald confidence interval. If trans.g is any one of the built-in options, then trans.g.inv is automatically specified accordingly.
strata Vector of the same length as y that gives the stratum membership identifier. By default, strata $=\operatorname{rep}(1$, length $(y))$ refers to the single stratum (non-stratified) setting. As another example, strata $=c(1,1,2,2)$ means that the first and second table cells belong to the first stratum, and the third and fourth table cells belong to the second stratum.
fixed.strata The object that gives information on which stratum (strata) has (have) fixed sample sizes. It can equal one of the keywords, fixed.strata = "all" or fixed.strata $=$ "none", or it can be a vector of stratum membership identifiers, e.g. fixed.strata $=c(1,3)$ or fixed.strata $=c(" p o p 1 ", " p o p 5 ")$.
delta The constant δ that is in expressions of the moving critical values within each sliding quadratic step. By default, delta $=0.5$.
max.iter One of the stopping criteria. It is the maximum number of iterations in the sliding quadratic root-finding algorithm for searching the two roots to the testinversion equation.
tol One of the stopping criteria. In solving for the roots to the test-inversion equation, if the test statistic for testing $H_{0}(\psi): S_{0}(m)=\psi$ vs. not $H_{0}(\psi)$ under the general hypothesis $H_{0}:\left(h_{0}^{\prime}(m), \operatorname{samp}_{0}^{\prime}(m)\right)^{\prime}=0$, for a certain ψ, is within tol of the critical value, then we stop the iterations, and this current ψ is treated as one root. Note that since we are constructing approximate (contrary to exact) confidence intervals based on the asymptotic distribution under the null hypothesis, tol need not be too small.
tol.psi One of the stopping criteria. In solving for the roots to the test-inversion equation, if the two ψ 's that are in nearby iterates in the corresponding tests $H_{0}(\psi)$ vs. not $H_{0}(\psi)$ under the general hypothesis H_{0}, are less than tol.psi apart in distance, then we stop the iterations, and the current ψ is treated as one root. Note that we should specify tol.psi to be sufficiently small (compared with the size of the restricted estimand space) so that the iterations are to be terminated mainly because of closeness of the test statistic to the critical value.
adj.epsilon, iter.robust.max, iter.robust.eff
The parameters used in the robustifying procedure. First, we attempt to construct confidence intervals based on the original data y, but an error might occur during this process. The reason for occurrence of the error might be the nonexistence of the constrained MLE subject to H_{0}, or it might be because of the fact that the ψ in the hypothesis test $H_{0}(\psi)$ vs. not $H_{0}(\psi)$ is, on some scale, too far away from $\widehat{\psi}$ which is the constrained MLE of the estimand subject to H_{0}, although this ψ is still within the restricted estimand space. If an error, or non-convergence issue occurs, then the program will go through the robustifying procedure, with the goal of reporting a confidence interval anyway, even in the most extreme configuration and/or with the most "extreme" data.
In the robustifying procedure, we adjust the original data y by adding $1 *$ adj. epsilon to each original table count, and compute the confidence interval based on the adjusted data $y+1 *$ adj.epsilon. Note, however, that even the adjusted data may lead to non-convergence issue sometimes. We also adjust the original data
by adding 2 * adj.epsilon, ..., iter. robust.max * adj.epsilon, and compute confidence intervals based on these adjusted data, respectively. For computing purposes, as soon as iter. robust.eff confidence intervals based on the adjusted data have been successfully computed, we will not proceed further into adjustment and interval estimation based on adjusted data. Now, by exploiting the property that

$$
\lim _{\text {adj.epsilon } \rightarrow 0+} C I\left(y+\text { adj.epsilon; } H_{0}\right)=C I\left(y ; H_{0}\right),
$$

we extrapolate using a polynomial fit of degree at most three based on lower and upper endpoints of the confidence intervals on adjusted data. It is advised that adj. epsilon should not exceed 0.1, but it should not be too small. By default, adj. epsilon $=0.03$.
check.homog.tol
Round-off tolerance for Z homogeneity check. If the function $h(\cdot)$ with respect to m is not Z homogeneous, the algorithm will stop immediately and report an error.
check.zero.order. homog.tol
Round-off tolerance for zero-order Z homogeneity check. If the function $S(\cdot)$ with respect to m or P is not zero-order Z homogeneous, the algorithm will stop immediately and report an error.
max.mph.iter, step, change.step.after, y.eps, iter.orig, norm.diff.conv, norm.score.conv, max.score.dif
The parameters used in mph.fit.
h0.fct.deriv The R function object that computes analytic derivative of the transpose of the constraint function $h_{0}(\cdot)$ with respect to m. In this algorithm, if the input function $\mathrm{h} . \mathrm{fct}$ is a function of p, then the algorithm automatically rewrites it into another function of $m: h(p)=h\left(\operatorname{Diag}^{-1}\left(Z Z^{\prime} m\right) m\right)=h_{0}(m)$. If the input function h .fct is a function of m, then we let $h_{0}(m)=h(m)$. h0.fct.deriv, if it is specified, equals $\partial h_{0}^{\prime}(m) / \partial m$. Note that if $h_{0}(\cdot)$ maps from R^{p} to R^{q}, i.e. there are q constraints, then h $0 . \mathrm{fct}$. deriv returns a p-by- q matrix of partial derivatives. If h0.fct. deriv is not specified or h0.fct. deriv $=$ NULL, numerical derivatives will be used.
S0.fct.deriv The R function object that computes analytic derivative of the estimand function $S_{0}(\cdot)$ with respect to m. In this algorithm, if the input function S.fct is a function of p, then the algorithm automatically rewrites it into another function of $m: S(p)=S\left(\operatorname{Diag}^{-1}\left(Z Z^{\prime} m\right) m\right)=S_{0}(m)$. If the input function S.fct is a function of m, then we let $S_{0}(m)=S(m)$. If the input function S.fct is a function of P, since $S(\cdot)$ is required to be zero-order Z homogeneous, in which case $S(P)=S(m)$, we let $S_{0}(m)=S(P)$. S0.fct.deriv, if it is specified, equals $\partial S_{0}(m) / \partial m$. It is a column vector, whose length is the same as the length of m. If S0.fct.deriv is not specified or S0.fct.deriv = NULL, numerical derivatives will be used.
trans.g.deriv The derivative function of the transformation g, i.e. $d g(w) / d w$. If it is specified, it should be an R function, even if the derivative function is a constant function.
plot.CIs Logical argument, TRUE or FALSE. If plot.CIs = TRUE (default), a visual display of the computed confidence interval(s) will be created. If plot.CIs = FALSE, no plots will be created.

Value

ci. table returns a list, which includes the following objects:
result.table A table that displays lower and upper endpoints of the computed confidence interval(s). The length(s) of the confidence interval(s) is (are) reported in the last column.
CIs An object of class Intervals_full \{intervals\} that includes all of the computed confidence interval(s).
Shat The constrained MLE of $S(\cdot)$ subject to H_{0}. If there is an error or non-convergence issue during the process of fitting the model subject to H_{0} by mph. fit, Shat is set to be NA; or if the constrained MLE does not exist, Shat is also set to be NA.
ase. Shat The asymptotic standard error, i.e. ase, of the constrained MLE of $S(\cdot)$ subject to H_{0}. If there is an error or non-convergence issue during the process of fitting the model subject to H_{0} by mph. fit, ase. Shat is set to be NA; or if the constrained MLE does not exist, ase. Shat is also set to be NA.
S.space.H0 Restricted estimand space of $S(\cdot)$ under H_{0}. It might be different from the input S.space. H0. If the input S.space. H 0 is the union of at least two disjoint intervals, then the output S. space. H0 displays the particular interval in which Shat, the constrained MLE of $S(\cdot)$ subject to H_{0}, lies. If the input S. space. H0 is an interval, then the output S.space. H 0 is the same as the input. If S.space. H 0 is unspecified or S.space. $\mathrm{H} 0=$ NULL in the input, then the output S.space. $\mathrm{H} 0=$ NULL.
cc Confidence coefficient, or the nominal level of the confidence interval. It is the same as the cc in the input.
method The test statistic(s) that is (are) actually used to construct the test-inversion approximate confidence interval(s).
pdlambda The index parameter λ in the power-divergence statistic. It is the same as the pdlambda in the input.
warnings.collection
Includes all of the warning messages that occur during construction of the confidence interval(s). They might be on evoking of the robustifying procedure: "xxx.CI: Adjustment used. Not on original data. $\backslash n$ ", or they might be on unsuccessful construction of the confidence interval(s): "xxx.CI: NA. $\ n "$

Author(s)

Qiansheng Zhu

References

Lang, J. B. (2004) Multinomial-Poisson homogeneous models for contingency tables, Annals of Statistics, 32, 340-383.
Lang, J. B. (2008) Score and profile likelihood confidence intervals for contingency table parameters, Statistics in Medicine, 27, 5975-5990.
Zhu, Q. (2020) "On improved confidence intervals for parameters of discrete distributions." PhD dissertation, University of Iowa.

See Also

```
mph.fit, mph.summary
```


Examples

\#\#\# Construct test-inversion CIs subject to equality constraints.
\# I. Mice-Fungicide data: Innes et al. (1969) conducted an experiment \# to test the possible carcinogenic effect of a fungicide Avadex on \# four subgroups of mice. The data is reproduced as a 2-by-2-by-4 \# three-way contingency table. Within each of the four 2-by-2 two-way \# sub-tables, there is one fixed stratum for the treated group, and \# there is also one fixed stratum for the control group. Overall, \# the data was collected under the product-multinomial sampling scheme. \# We assume that the relative risks that correspond to the four 2-by-2 \# two-way sub-tables are the same, and we construct 95% test-inversion \# confidence intervals for this common relative risk.
\#
\# For a detailed description of the Mice-Fungicide data set, see \# Gart (1971):
\# Gart, J. J. (1971) The comparison of proportions: a review of \# significance tests, confidence intervals and adjustments for \# stratification. Revue de l'Institut International de Statistique, \# 39(2), pp. 148-169.
obs.y <- c(4, 12, 5, 74, 2, 14, 3, 84, 4, 14, 10, 80, 1, 14, 3, 79)
h.fct <- function(p) \{

RR_1 <- p[1] / p[3]
RR_2 <- p[5] / p[7]
RR_3 <- p[9] / p[11]
RR_4 <- p[13] / p[15]
rbind(RR_1 - RR_2, RR_1 - RR_3, RR_1 - RR_4)
\}
S.fct <- function(p) \{
$\mathrm{p}[1] / \mathrm{p}[3]$
\}
mice_result <- ci.table(obs.y, h.fct = h.fct, S.fct = S.fct, S.space. $\mathrm{H} 0=\mathrm{c}(0$, Inf), trans.g $=$ "log", strata $=\operatorname{rep}(\operatorname{seq}(1,8)$, each $=2)$)
\# II. Suppose there is a 3-by-4-by-2 three-way contingency table which \# cross-classifies three variables: X, Y, and Z. We assign scores \# $\{1,2,3\},\{1,2,3,4\}$, and $\{1,2\}$ to the variables X, Y, and Z, \# respectively. At each level of Z, there is a 3-by-4 two-way sub-table \# for variables X and Y, and the 3-by-4 sub-table forms a fixed \# stratum. We assume that the Pearson's correlation coefficient between \# $\quad X$ and Y when $Z=1$ is the same as that when $Z=2$. The observed table \# counts are ($1,2,3,4,5,6,7,8,9,10,11,12$) for the 3 -by-4 sub-table when

```
# Z = 1, and ( 13,14,15,16,17,18,19,20,21,22,23,24) for the 3-by-4 sub-
# table when Z = 2. We construct a 95% profile likelihood confidence
# interval for this common Pearson's correlation coefficient.
corr_freq_prob <- function(freq, score.X, score.Y) {
    # Compute the Pearson's correlation coefficient based on the vector
    # of table (frequency) counts or the vector of underlying table
    # probabilities.
    # Note that the input freq is a vector.
    c <- length(score.X)
    d <- length(score.Y)
    freq <- matrix(freq, nrow = c, ncol = d, byrow = TRUE)
    P <- freq / sum(freq)
    P.row.sum <- apply(P, 1, sum)
    P.column.sum <- apply(P, 2, sum)
    EX <- crossprod(score.X, P.row.sum)
    EY <- crossprod(score.Y, P.column.sum)
    EXsq <- crossprod(score.X^2, P.row.sum)
    EYsq <- crossprod(score.Y^2, P.column.sum)
    sdX <- sqrt(EXsq - EX^2)
    sdY <- sqrt(EYsq - EY^2)
    EXY <- 0
    for (i in seq(1, c)) {
        for (j in seq(1, d)) {
            EXY <- EXY + score.X[i] * score.Y[j] * P[i, j]
        }
    }
    Cov.X.Y <- EXY - EX * EY
    if (Cov.X.Y == 0) {
        corr <- 0
    }
    else {
        corr <- as.numeric(Cov.X.Y / (sdX * sdY))
    }
    corr
}
h.fct <- function(p) {
    corr_1 <- corr_freq_prob(p[seq(1, 12)], c(1, 2, 3), c(1, 2, 3, 4))
    corr_2 <- corr_freq_prob(p[seq(13, 24)], c(1, 2, 3), c(1, 2, 3, 4))
    corr_1 - corr_2
}
S.fct <- function(p) {
    corr_freq_prob(p[seq(1, 12)], c(1, 2, 3), c(1, 2, 3, 4))
}
corr_result <- ci.table(y = seq(1, 24), h.fct = h.fct, S.fct = S.fct,
                        S.space.H0 = c(-1, 1), method = "LR",
                        trans.g = "Fisher's z", strata = rep(c(1, 2), each = 12),
                        plot.CIs = FALSE)
```

```
# III. Crying Baby data: Gordon and Foss (1966) conducted an experiment to
# investigate the effect of rocking on the crying of full term babies.
# The data set can be reproduced as a 2-by-2-by-18 three-way contingency
# table. Within each of the eighteen 2-by-2 two-way sub-tables, there is
# one fixed stratum for the experimental group and one fixed stratum for
# the control group. Overall, the data was collected under the product-
# multinomial sampling scheme. We assume common odds ratios among the
# eighteen two-way sub-tables, and we construct 95% test-inversion
# confidence intervals for this common odds ratio.
#
# For a detailed description of the Crying Baby data set, see Cox (1966):
# Cox, D. R. (1966) A simple example of a comparison involving quantal
# data. Biometrika, 53(1-2), pp. 213-220.
```

```
obs.y<- c(0,1,5,3,0,1,4,2,0,1,4,1,1,0,5,1,0,1,1,4,0,1,5,4,0,1,3,5,0,1,
```

obs.y<- c(0,1,5,3,0,1,4,2,0,1,4,1,1,0,5,1,0,1,1,4,0,1,5,4,0,1,3,5,0,1,
4,4,0,1,2,3,1,0,1,8,0,1,1,5,0,1,1,8,0,1,3,5,0,1,1,4,0,1,2,4,
4,4,0,1,2,3,1,0,1,8,0,1,1,5,0,1,1,8,0,1,3,5,0,1,1,4,0,1,2,4,
0,1,1,7,1,0,2,4,0,1,3,5)
0,1,1,7,1,0,2,4,0,1,3,5)
strata <- rep(seq(1, 36), each = 2)
h.fct <- function(p) {
OR_1 <- p[1] * p[4] / (p[2] * p[3])
OR_2 <- p[5] * p[8] / (p[6] * p[7])
OR_3 <- p[9] * p[12] / (p[10] * p[11])
OR_4 <- p[13] * p[16] / (p[14] * p[15])
OR_5 <- p[17] * p[20] / (p[18] * p[19])
OR_6 <- p[21] * p[24] / (p[22] * p[23])
OR_7 <- p[25] * p[28] / (p[26] * p[27])
OR_8 <- p[29] * p[32] / (p[30] * p[31])
OR_9 <- p[33] * p[36] / (p[34] * p[35])
OR_10 <- p[37] * p[40] / (p[38] * p[39])
OR_11 <- p[41] * p[44] / (p[42] * p[43])
OR_12 <- p[45] * p[48] / (p[46] * p[47])
OR_13 <- p[49] * p[52] / (p[50] * p[51])
OR_14 <- p[53] * p[56] / (p[54] * p[55])
OR_15 <- p[57] * p[60] / (p[58] * p[59])
OR_16 <- p[61] * p[64] / (p[62] * p[63])
OR_17 <- p[65] * p[68] / (p[66] * p[67])
OR_18 <- p[69] * p[72] / (p[70] * p[71])
rbind(OR_1 - OR_2, OR_1 - OR_3, OR_1 - OR_4, OR_1 - OR_5, OR_1 - OR_6,
OR_1 - OR_7, OR_1 - OR_8, OR_1 - OR_9, OR_1 - OR_10, OR_1 - OR_11,
OR_1 - OR_12, OR_1 - OR_13, OR_1 - OR_14, OR_1 - OR_15,
OR_1 - OR_16, OR_1 - OR_17, OR_1 - OR_18)
}
S.fct <- function(p) {
p[1] * p[4] / (p[2] * p[3])
}

```
crying_baby_result <- ci.table(obs.y, h.fct = h.fct, S.fct = S.fct,
                S.space. H0 = c(0, Inf), trans.g = "log",
                strata \(=\) strata, fixed.strata = "all",
                    y.eps \(=0.4\) )
```

IV. Homicide data: Radelet \& Pierce (1985) examined cases of 1017 homicide
defendants in Florida between 1973 and 1977. Both the police department
and prosecutors classified these cases into three mutually exclusive
categories: 1 = "No Felony", 2 = "Possible Felony", 3 = "Felony".
Three variables: police classification (P), court (i.e. prosecutors')
classification (C), and race of defendant/victim (R) are cross-
classified in a 3-by-3-by-4 three-way contingency table. The data
was collected based on independent Poisson sampling, and the strata
correspond to levels of the race combination (R).
For a detailed description of the Homicide data set, see Agresti (1984)
and Radelet \& Pierce (1985):
Agresti, A. (1984). Analysis of Ordinal Categorical Data. John Wiley \&
Sons.
Radelet, M. L., \& Pierce, G. L. (1985). Race and prosecutorial
discretion in homicide cases. Law \& Society Review, 19(4), pp. 587-622.
To measure agreement between police and court classifications, the four
estimands of interest are Cohen's unweighted kappa coefficients at four
levels of R, respectively. We construct 95% test-inversion confidence
intervals for the estimands subject to two sets of equality constraints,
respectively.
(1) WkW and BkB have the same unweighted kappa, and BkW and WkB have
the same unweighted kappa.
(2) A "row effects" model for the conditional R-C association:
log mu_{ijk} = lambda + lambda_{i}^{R} + lambda_{j}^{P} + lambda_{k}^{C} +
lambda_{ij}^{RP} + lambda_{jk}^{PC} + tau_{i}^{RC}(w_{k} - bar{w}),
where race effects {tau_{i}^{RC}} that sum to zero are introduced for an
R-C association. The variable C is viewed as being ordinal with integer
monotonic scores {w_{k}}={1,2,3}.
BkW_v <- c(7, 1, 3, 0, 2, 6, 5, 5, 109)
WkW_v <- c(236, 11, 26, 7, 2, 21, 25, 4, 101)
BkB_v <- c(328, 6, 13, 7, 2, 3, 21, 1, 36)
WkB_v <- c(14, 1, 0, 6, 1, 1, 1, 0, 5)
obs.y <- c(BkW_v, WkW_v, BkB_v, WkB_v)
Unweighted.Kappa.BkW <- function(p) {
mat.p <- matrix(p[seq(1,9)], nrow = 3, byrow = TRUE)
Kappa(mat.p)$Unweighted[1]
}
Unweighted.Kappa.WkW <- function(p) {
 mat.p <- matrix(p[seq(10,18)], nrow = 3, byrow = TRUE)
 Kappa(mat.p)$Unweighted[1]
}
Unweighted.Kappa.BkB <- function(p) {
mat.p <- matrix(p[seq(19,27)], nrow = 3, byrow = TRUE)
Kappa(mat.p)$Unweighted[1]
}
Unweighted.Kappa.WkB <- function(p) {
 mat.p <- matrix(p[seq(28,36)], nrow = 3, byrow = TRUE)
 Kappa(mat.p)$Unweighted[1]

```
```

}

Constraints (1)

library(vcd)
WkW.BkB_BkW.WkB_cons <- function(p) {
mat.BkW <- matrix(p[seq(1,9)], nrow = 3, byrow = TRUE)
mat.WkW <- matrix(p[seq(10,18)], nrow = 3, byrow = TRUE)
mat. BkB <- matrix(p[seq(19,27)], nrow = 3, byrow = TRUE)
mat.WkB <- matrix(p[seq(28,36)], nrow = 3, byrow = TRUE)
rbind(Kappa(mat.BkW)$Unweighted[1] - Kappa(mat.WkB)$Unweighted[1],
Kappa(mat.WkW)$Unweighted[1] - Kappa(mat.BkB)$Unweighted[1])
}
homicide_kappa_same_fit <- mph.fit(obs.y, h.fct = WkW.BkB_BkW.WkB_cons,
strata = rep (c(1,2,3,4), each = 9),
fixed.strata = "none")
homicide_kappa_same_fit$Gsq
pchisq(homicide_kappa_same_fit$Gsq, 2, lower.tail = FALSE) \# p-value
BkW_kappa_same <- ci.table(obs.y, h.fct = WkW.BkB_BkW.WkB_cons,
S.fct = Unweighted.Kappa.BkW, S.space.H0 = c(0,1),
strata = rep(c(1,2,3,4), each = 9),
fixed.strata = "none", trans.g = "[A,B]")
WkW_kappa_same <- ci.table(obs.y, h.fct = WkW.BkB_BkW.WkB_cons,
S.fct = Unweighted.Kappa.WkW, S.space.H0 = c(0,1),
strata = rep(c(1,2,3,4), each = 9),
fixed.strata = "none", trans.g = "[A,B]")

Constraints (2)

X_cond_RC_v <- c(1,1,0,0,1,0,1,0,1,0,0,0,0,0,1,0,0,0,-1,0,0,
1,1,0,0,1,0,0,1,1,0,0,0,0,0,0,1,0,0,0,0,0,
1,1,0,0,1,0,0,0,1,0,0,0,0,0,0,0,0,0,1,0,0,
1,1,0,0,0,1,1,0,0,1,0,0,0,0,0,0,1,0,-1,0,0,
1,1,0,0,0,1,0,1,0,1,0,0,0,0,0,0,0,1,0,0,0,
1,1,0,0,0,1,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,
1,1,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,
1,1,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,
1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,
1,0,1,0,1,0,1,0,0,0,1,0,0,0,1,0,0,0,0,-1,0,
1,0,1,0,1,0,0,1,0,0,1,0,0,0,0,1,0,0,0,0,0,
1,0,1,0,1,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,
1,0,1,0,0,1,1,0,0,0,0,1,0,0,0,0,1,0,0,-1,0,
1,0,1,0,0,1,0,1,0,0,0,1,0,0,0,0,0,1,0,0,0,
1,0,1,0,0,1,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,
1,0,1,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,
1,0,1,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,
1,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,
1,0,0,1,1,0,1,0,0,0,0,0,1,0,1,0,0,0,0,0,-1,
1,0,0,1,1,0,0,1,0,0,0,0,1,0,0,1,0,0,0,0,0,
1,0,0,1,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,
1,0,0,1,0,1,1,0,0,0,0,0,0,1,0,0,1,0,0,0,-1,
1,0,0,1,0,1,0,1,0,0,0,0,0,1,0,0,0,1,0,0,0,
1,0,0,1,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,
1,0,0,1,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,

```
```

 1,0,0,1,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,
 1,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,
 1,0,0,0,1,0,1,0,0,0,0,0,0,0,1,0,0,0,1,1,1,
 1,0,0,0,1,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,
 1,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,-1,-1,
 1,0,0,0,0,1,1,0,0,0,0,0,0,0,0,0,1,0,1,1,1,
 1,0,0,0,0,1,0,1,0,0,0,0,0,0,0,0,0,1,0,0,0,
 1,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,-1,-1,-1,
 1,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,1,1,1,
 1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,
 1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,-1,-1)
 X_cond_RC_mat <- matrix(X_cond_RC_v, ncol = 21, byrow = TRUE)
cond_RC_HLP_fit <- mph.fit(obs.y, L.fct = "logm", L.mean = TRUE,
X = X_cond_RC_mat,
strata = rep(c(1,2,3,4), each = 9),
fixed.strata = "none")
mph.summary(cond_RC_HLP_fit)
library(MASS)
X_cond_RC_U <- Null(X_cond_RC_mat)
cond_RC_MPH_fit <- mph.fit(obs.y, h.fct = function(m) {t(X_cond_RC_U) %*% log(m)},
h.mean = TRUE, strata = rep(c(1,2,3,4), each = 9),
fixed.strata = "none")
mph.summary(cond_RC_MPH_fit)
BkW_cond_RC <- ci.table(obs.y, h.fct = function(m) {t(X_cond_RC_U) %*% log(m)},
h.mean = TRUE, S.fct = Unweighted.Kappa.BkW,
S.space.H0 = c(0,1), trans.g = "[A,B]",
strata = rep(c(1,2,3,4), each = 9), fixed.strata = "none")
WkW_cond_RC <- ci.table(obs.y, h.fct = function(m) {t(X_cond_RC_U) %*% log(m)},
h.mean = TRUE, S.fct = Unweighted.Kappa.WkW,
S.space.H0 = c(0,1), trans.g = "[A,B]",
strata = rep(c(1,2,3,4), each = 9), fixed.strata = "none")
BkB_cond_RC <- ci.table(obs.y, h.fct = function(m) {t(X_cond_RC_U) %*% log(m)},
h.mean = TRUE, S.fct = Unweighted.Kappa.BkB,
S.space.H0 = c(0,1), trans.g = "[A,B]",
strata = rep(c(1,2,3,4), each = 9), fixed.strata = "none")
WkB_cond_RC <- ci.table(obs.y, h.fct = function(m) {t(X_cond_RC_U) %*% log(m)},
h.mean = TRUE, S.fct = Unweighted.Kappa.WkB,
S.space.H0 = c(0,1), trans.g = "[A,B]",
strata = rep(c(1, 2,3,4), each = 9), fixed.strata = "none")

```
\#\#\# Construct test-inversion CIs, without additionally imposed constraints.
\# V. Binomial success rate parameter \(p\).
Model: \(0=x<-x \mid p \sim \operatorname{Bin}(n=5, p)\).
\# Goal: Compute approximate \(90 \%\) CIs for the success probability p .
bin_p_result <- ci.table(c(0, 5), h.fct \(=0\), S.fct \(=\) function \((p)\{p[1]\}\), S.space. \(\mathrm{H} 0=\mathrm{c}(0,1), \mathrm{cc}=0.9, \mathrm{y} . \mathrm{eps}=0.1)\)
```


Example 2.1 in Lang (2008).

Model: y = (39, 1) <- Y ~ mult(40, p1, p2).

Goal: Compute approximate 95% CIs for the success probability p1.

bin_p_eg21_result <- ci.table(c(39,1), h.fct = 0, S.fct = function(p) {p[1]},
S.space.H0 = c(0,1), trans.g = "[A,B]")
\# VI. Conditional probability.
Model: y = (0, 39, 18, 11) <- Y ~ mult(68, p1, p2, p3, p4)
Goal: Compute approximate 95% CIs for the conditional probability
p1 / (p1 + p2).
cond_prob_result <- ci.table(c(0, 39, 18, 11), h.fct = 0,
S.fct = function(p) {p[1] / (p[1] + p[2])},
S.space.H0 = c(0, 1), y.eps = 0.1)

Model: y = (0, 39 // 18, 11) <- Y ~ prod mult(39, p1, p2 // 29, p3, p4).

That is,

y <- Y ~ MP(gamma, p | strata = c(1, 1, 2, 2), fixed = "all"),

 where gamma = (39, 29)'.

Goal: Compute approximate 95% CIs for p1.

cond_prob_SS_result <- ci.table(c(0, 39, 18, 11), h.fct = 0,
S.fct = function(p) {p[1]}, S.space.H0 = c(0, 1),
strata = c(1, 1, 2, 2), y.eps = 0.1)

VII. Difference between conditional probabilities.

Model: y = (0, 39, 18, 11) <- Y ~ mult(68, p1, p2, p3, p4)

Goal: Compute approximate 95% CIs for the difference between conditional

probabilities, p1 / (p1 + p2) - p3 / (p3 + p4).

diff_cond_prob_result <- ci.table(c(0, 39, 18, 11), h.fct = 0,
S.fct = function(p) {p[1]/(p[1]+p[2]) - p[3]/(p[3]+p[4])},
S.space.H0 = c(-1, 1), trans.g = "[A,B]")

```
```


VIII. Gamma variant.

```
# VIII. Gamma variant.
    Example 2.3 in Lang (2008).
    Example 2.3 in Lang (2008).
    Model: y = (25, 25, 12 // 0, 1, 3)
    Model: y = (25, 25, 12 // 0, 1, 3)
                ~ prod mult(62, p11, p12, p13 // 4, p21, p22, p23).
                ~ prod mult(62, p11, p12, p13 // 4, p21, p22, p23).
    Goal: Compute approximate 95% CIs for the Gamma* parameter as
    Goal: Compute approximate 95% CIs for the Gamma* parameter as
            described in Lang (2008).
            described in Lang (2008).
Gamma_variant_23 <- function(p) {
Gamma_variant_23 <- function(p) {
    p <- matrix(p, 2, 3, byrow = TRUE)
    p <- matrix(p, 2, 3, byrow = TRUE)
    P.case.gt.control <- (p[2, 2] + p[2, 3]) * p[1, 1] + p[2, 3] * p[1, 2]
    P.case.gt.control <- (p[2, 2] + p[2, 3]) * p[1, 1] + p[2, 3] * p[1, 2]
    P.case.lt.control <- p[1, 2] * p[2, 1] + p[1, 3] * (p[2, 1] + p[2, 2])
    P.case.lt.control <- p[1, 2] * p[2, 1] + p[1, 3] * (p[2, 1] + p[2, 2])
    P.case.neq.control <- P.case.gt.control + P.case.lt.control
    P.case.neq.control <- P.case.gt.control + P.case.lt.control
    P.case.gt.control / P.case.neq.control
    P.case.gt.control / P.case.neq.control
}
```

}

```
```

Gamma_variant_result <- ci.table(c(25, 25, 12, 0, 1, 3), h.fct = 0,
S.fct = Gamma_variant_23, S.space.H0 = c(0, 1),
trans.g = "[A,B]", strata = c(1, 1, 1, 2, 2, 2))

Alternative code...

gammastar.fct <- function(p) {
nr <- nrow(p)
nc <- ncol(p)
probC <- 0
probD <- 0
for (i in 1:(nr-1)) {
for (j in 1:(nc-1)) {
Aij <- 0
for (h in (i+1):nr) {
for (k in (j+1):nc) {
Aij <- Aij + p[h, k]
}
}
probC <- probC + p[i, j] * Aij
}
}
for (i in 1:(nr-1)) {
for (j in 2:nc) {
Aij <- 0
for (h in (i+1):nr) {
for (k in 1:(j-1)) {
Aij <- Aij + p[h, k]
}
}
probD <- probD + p[i, j] * Aij
}
}
probC / (probC + probD)
}
Gamma_variant_23_a <- function(p) {
p <- matrix(p, 2, 3, byrow = TRUE)
gammastar.fct(p)
}
Gamma_variant_a_result <- ci.table(c(25, 25, 12, 0, 1, 3), h.fct = 0,
S.fct = Gamma_variant_23_a,
S.space.H0 = c(0, 1), trans.g = "[A,B]",
strata = c(1, 1, 1, 2, 2, 2))

IX. Global odds ratio.

Model: y = (25, 25, 12 // 0, 1, 3)

 ~ prod mult(62, p11, p12, p13 // 4, p21, p22, p23).

Goal: Compute approximate 95% CIs for the first global odds ratio.

global_odds_ratio_23_11 <- function(p) {
p <- matrix(p, 2, 3, byrow = TRUE)
p[1, 1] * (p[2, 2] + p[2, 3]) / (p[2, 1] * (p[1, 2] + p[1, 3]))

```
\}
global_odds_ratio_result <- ci.table(c(25, 25, 12, 0, 1, 3), h.fct = 0,
    S.fct = global_odds_ratio_23_11,
    S.space. H0 = c(0, Inf), trans.g = "log",
    strata \(=c(1,1,1,2,2,2))\)
    \# X Difference between product-multinomial probabilities.
    Example 2.2 in Lang (2008).
    Source (secondary): Agresti 2002:65
    Early study of the death penalty in Florida (Radelet)
    Victim Black...
    White Defendant 0/9 received Death Penalty
    Black Defendant 6/103 received Death Penalty
    Model: \(y=(0,9 / / 6,97)<-Y \sim \operatorname{prod} \operatorname{mult}(9, p 1, p 2 / / 103, p 3, p 4)\).
    Goal: Compute approximate \(95 \%\) CIs for the difference between
        product-multinomial probabilities, p1-p3.
diff_prod_mult_prob_result <- ci.table(c(0, 9, 6, 97), h.fct = 0,
    S.fct \(=\) function \((p)\{p[1]-p[3]\}\),
    S.space. H0 \(=c(-1,1)\),
    trans.g = "Fisher's z",
    strata \(=c(1,1,2,2)\) )
\#\#\# Alternative (artificial) data that is even more sparse...
diff_prod_mult_prob_a_result <- ci.table(c(0, 9, 0, 97), h.fct = 0,
    S.fct = function(p) \(\{p[1]-p[3]\}\),
    S.space. H0 \(=c(-1,1)\),
    trans.g = "Fisher's z",
    strata \(=c(1,1,2,2)\), y.eps \(=0.4)\)
\# XI. Kappa coefficient.
\# Example 2.4 in Lang (2008).
\# Model: y \(=(4,0,0,0,1,0,0,0,15)\)
        \(\begin{aligned} \text { Model: } y & =(4,0,0,0,1,0,0,0,15) \\ & <-Y \sim \operatorname{mult}(20, p 11, p 12, \ldots, p 33) .\end{aligned}\)
        Goal: Compute approximate \(95 \%\) CIs for the unweighted kappa coefficient.
Kappa_coeff_33 <- function(p) \{
    p <- matrix \((\mathrm{p}, 3,3\), byrow \(=\) TRUE \()\)
    \(s 1<-p[1,1]+p[2,2]+p[3,3]\)
    prow <- apply(p, 1, sum)
    pcol <- apply(p, 2, sum)
    s2 <- prow[1] * pcol[1] + prow[2] * pcol[2] + prow[3] * pcol[3]
    (s1 - s2) / (1 - s2)
\}
kappa_coeff_result <- ci.table(c(4, 0, 0, 0, 1, 0, 0, 0, 15), h.fct = 0,
                S.fct \(=\) Kappa_coeff_33, S.space. \(\mathrm{H} 0=\mathrm{c}(-1,1))\)

\section*{Description}

Computes the constrained MLE of \(S_{0}(m)\) subject to equality constraints \(h_{0}(m)=0\) under the specified strata and fixed.strata configuration, and its associated asymptotic standard error. Here \(m\) is the vector of expected table counts, i.e. \(m=E(Y)\).

\section*{Usage}
compute_cons_MLE_ase(y, strata, fixed.strata, h0.fct, h0.fct.deriv, S0.fct, S0.fct.deriv, max.mph.iter, step, change.step.after, y.eps, iter.orig, norm.diff.conv, norm.score.conv, max.score.diff.iter)

\section*{Arguments}
y
Observed table counts in the contingency table(s), in vector form.
strata Vector of the same length as y that gives the stratum membership identifier.
fixed.strata The object that gives information on which stratum (strata) has (have) fixed sample sizes.
h0.fct The constraint function \(h_{0}(\cdot)\) with respect to \(m\), where \(m=E(Y)\), the vector of expected table counts.
h0.fct.deriv The \(R\) function object that computes analytic derivative of the transpose of the constraint function \(h_{0}(\cdot)\) with respect to \(m\). If h0.fct. deriv is not specified or h0.fct. deriv \(=\) NULL, numerical derivatives will be used.
S0.fct The estimand function \(S_{0}(\cdot)\) with respect to \(m\).
S0.fct.deriv The R function object that computes analytic derivative of the estimand function \(S_{0}(\cdot)\) with respect to \(m\). If S0.fct. deriv is not specified or S0.fct. deriv= NULL, numerical derivatives will be used.
max.mph.iter, step, change.step.after, y.eps, iter.orig, norm.diff.conv, norm.score.conv, max.score.dif The parameters used in mph.fit.

\section*{Value}
compute_cons_MLE_ase returns a vector of length two. The first element S0.fct.m_H0 is the constrained MLE of \(S_{0}(m)\) subject to equality constraints \(h_{0}(m)=0\), and the second element ase.S0.fct.m_H0 is the associated asymptotic standard error.

\section*{Author(s)}

Qiansheng Zhu

\section*{References}

Lang, J. B. (2004) Multinomial-Poisson homogeneous models for contingency tables, Annals of Statistics, 32, 340-383.
Zhu, Q. (2020) "On improved confidence intervals for parameters of discrete distributions." PhD dissertation, University of Iowa.

\section*{See Also}
ci.table
```

create.U

```

\section*{Description}

Creates a full column rank matrix, \(U\), with column space equal to the orthogonal complement of the column space of \(X\). That is, \(U\) has column space equal to the null space of \(X^{\prime}\).

\section*{Usage}
create. U(X)

\section*{Arguments}
\(X \quad\) A full column rank matrix.

\section*{Value}
create. \(U\) returns a full column rank matrix \(U\), with column space equal to the orthogonal complement of the column space of \(X\).

\section*{Author(s)}

Joseph B. Lang

\section*{See Also}
```

mph.fit

```

\section*{Examples}
```

X <- matrix(seq(1, 12), ncol = 2, byrow = TRUE)
create.U(X)

```

\section*{Description}

Creates the population (aka strata) matrix \(Z\) and the sampling constraint matrix \(Z_{F}\) using strata and sampling constraint information found in input variables strata and fixed.strata.

\section*{Usage}
create.Z.ZF(strata, nrowZ = length(strata), fixed.strata = "all")

\section*{Arguments}
strata The vector that gives the stratum membership identifier.
nrowZ \(\quad\) Number of rows of the to-be-created population (aka strata) matrix \(Z\).
fixed.strata The object that gives information on which stratum have fixed sample sizes. It can equal one of the keywords, fixed.strata = "all" or fixed.strata = "none", or it can be a vector of stratum membership identifiers, e.g. fixed. strata \(=c(1,3)\). Default: fixed.strata = "all"

\section*{Value}
create.Z.ZF returns a list, which includes the following two objects:
\[
\begin{array}{ll}
\mathrm{Z} & \text { Population (aka strata) matrix. } \\
\mathrm{ZF} & \text { Sampling constraint matrix. }
\end{array}
\]

\section*{Author(s)}

Joseph B. Lang

\section*{References}

Lang, J. B. (2004) Multinomial-Poisson homogeneous models for contingency tables, Annals of Statistics, 32, 340-383.

\section*{See Also}
mph.fit

\section*{Examples}
```

create.Z.ZF(c(1, 1, 2, 3, 3), fixed.strata = "all")
create.Z.ZF(c(1, 1, 2, 3, 3), fixed.strata = "none")
create.Z.ZF(c(1, 1, 2, 3, 3), fixed.strata = c(1, 2))

```

\section*{Description}

Constructs confidence intervals (CIs), based on the difference in \(G^{2}\) statistic, for estimands in contingency tables subject to equality constraints.
These confidence intervals are also referred to as likelihood ratio confidence intervals or profile likelihood confidence intervals.
The program may stop because of a non-convergence issue.

\section*{Usage}
```

diff_Gsq_nr(y, strata, fixed.strata, h0.fct, h0.fct.deriv, S0.fct,
S0.fct.deriv, max.mph.iter, step, change.step.after,
y.eps, iter.orig, norm.diff.conv, norm.score.conv,
max.score.diff.iter, S.space.H0, tol.psi, tol,
max.iter, cut.off, delta)

```

\section*{Arguments}
\begin{tabular}{|c|c|}
\hline y & Observed table counts in the contingency table(s), in vector form. \\
\hline strata & Vector of the same length as y that gives the stratum membership identifier. \\
\hline fixed.strata & The object that gives information on which stratum (strata) has (have) fixed sample sizes. \\
\hline h0.fct & The constraint function \(h_{0}(\cdot)\) with respect to \(m\), where \(m=E(Y)\), the vector of expected table counts. \\
\hline h0.fct.deriv & The \(R\) function object that computes analytic derivative of the transpose of the constraint function \(h_{0}(\cdot)\) with respect to \(m\). If h0.fct. deriv is not specified or h0. fct. deriv = NULL, numerical derivatives will be used. \\
\hline S0.fct & The estimand function \(S_{0}(\cdot)\) with respect to \(m\). \\
\hline S0.fct.deriv & The R function object that computes analytic derivative of the estimand function \(S_{0}(\cdot)\) with respect to \(m\). If S0.fct. deriv is not specified or S0.fct. deriv = NULL, numerical derivatives will be used. \\
\hline \multicolumn{2}{|l|}{max.mph.iter, step, change.step.after, y.eps, iter.orig, norm.diff.conv, norm.score.conv, max.score.di The parameters used in mph.fit.} \\
\hline S.space.H0 & Restricted estimand space of \(S(\cdot)\) under \(H_{0}\), i.e. subject to the imposed equality constraints along with sampling constraints. \\
\hline \multicolumn{2}{|l|}{tol.psi, tol, max.iter} \\
\hline & The parameters used in the three stopping criteria in solving for the roots to the test-inversion equation. \\
\hline cut.off & qchisq( \(c c, 1\) ). i.e. The chi-square cutoff, with 1 df , based on the significance level 1-cc. \\
\hline delta & The constant \(\delta\) that is in expressions of the moving critical values within each sliding quadratic step. \\
\hline
\end{tabular}

\section*{Value}

Provided that diff_Gsq_nr does not stop, it returns a 1-by-2 matrix which displays two endpoints of the confidence interval based on the difference in \(G^{2}\) statistic.

\section*{Author(s)}

Qiansheng Zhu

\section*{References}

Zhu, Q. (2020) "On improved confidence intervals for parameters of discrete distributions." PhD dissertation, University of Iowa.

\section*{See Also}
diff_Gsq_robust, f.psi, ci.table
```

diff_Gsq_robust Difference in G-Squared Statistic Based CIs (Robust)

```

\section*{Description}

Constructs confidence intervals (CIs), based on the difference in \(G^{2}\) statistic, for estimands in contingency tables subject to equality constraints.

These confidence intervals are also referred to as likelihood ratio confidence intervals or profile likelihood confidence intervals.

\section*{Usage}
diff_Gsq_robust(y, strata, fixed.strata, h0.fct, h0.fct.deriv, S0.fct, S0.fct.deriv, max.mph.iter, step, change.step.after, y.eps, iter.orig, norm.diff.conv, norm.score.conv, max.score.diff.iter, S.space.H0, tol.psi, tol, max.iter, cut.off, delta, adj.epsilon, iter.robust.max, iter.robust.eff)

\section*{Arguments}
y
strata
fixed.strata
h0.fct The constraint function \(h_{0}(\cdot)\) with respect to \(m\), where \(m=E(Y)\), the vector of expected table counts.
```

h0.fct.deriv The R function object that computes analytic derivative of the transpose of the
constraint function }\mp@subsup{h}{0}{}(\cdot)\mathrm{ with respect to m. If h0.fct.deriv is not specified or
h0.fct.deriv = NULL, numerical derivatives will be used.
S0.fct The estimand function S S () with respect to m.
S0.fct.deriv The R function object that computes analytic derivative of the estimand function
S0}(\cdot)\mathrm{ with respect to m. If S0.fct.deriv is not specified or S0.fct.deriv=
NULL, numerical derivatives will be used.
max.mph.iter, step, change.step.after, y.eps, iter.orig, norm.diff.conv, norm.score.conv, max.score.dif
The parameters used in mph.fit.
S.space.H0 Restricted estimand space of S(\cdot) under H0}\mp@subsup{H}{0}{}\mathrm{ , i.e. subject to the imposed equality
constraints along with sampling constraints.
tol.psi, tol, max.iter
The parameters used in the three stopping criteria in solving for the roots to the
test-inversion equation.
cut.off qchisq(cc,1). i.e. The chi-square cutoff, with 1 df, based on the significance
level 1-cc.
delta The constant }\delta\mathrm{ that is in expressions of the moving critical values within each
sliding quadratic step.
adj.epsilon, iter.robust.max, iter.robust.eff
The parameters used in the robustifying procedure.

```

\section*{Value}
diff_Gsq_robust returns a list, which includes two objects. The first object is a 1-by-2 matrix which displays two endpoints of the confidence interval based on the difference in \(G^{2}\) statistic. For the second object, it includes the warning message that occurs during construction of the confidence interval if the robustifying procedure is evoked: "diff. Gsq. CI: Adjustment used. Not on original data. \(\backslash n "\). If the robustifying procedure is not evoked, the second object is NULL.

\section*{Author(s)}

Qiansheng Zhu

\section*{References}

Zhu, Q. (2020) "On improved confidence intervals for parameters of discrete distributions." PhD dissertation, University of Iowa.

\section*{See Also}
diff_Gsq_nr, f.psi, ci.table
```

diff_PD_nr Difference in Power-Divergence Statistic Based CIs (Non-Robust)

```

\section*{Description}

Constructs confidence intervals (CIs), based on the difference in power-divergence statistic, for estimands in contingency tables subject to equality constraints.
The program may stop because of a non-convergence issue.

\section*{Usage}
```

diff_PD_nr(y, strata, fixed.strata, h0.fct, h0.fct.deriv, S0.fct,
S0.fct.deriv, max.mph.iter, step, change.step.after,
y.eps, iter.orig, norm.diff.conv, norm.score.conv,
max.score.diff.iter, S.space.H0, tol.psi, tol,
max.iter, cut.off, delta, pdlambda)

```

\section*{Arguments}
\(y \quad\) Observed table counts in the contingency table(s), in vector form.
strata Vector of the same length as \(y\) that gives the stratum membership identifier.
fixed.strata The object that gives information on which stratum (strata) has (have) fixed sample sizes.
h0.fct The constraint function \(h_{0}(\cdot)\) with respect to \(m\), where \(m=E(Y)\), the vector of expected table counts.
h0.fct.deriv The \(R\) function object that computes analytic derivative of the transpose of the constraint function \(h_{0}(\cdot)\) with respect to \(m\). If h 0 .fct. deriv is not specified or h0. fct. deriv \(=\) NULL, numerical derivatives will be used.
S0.fct The estimand function \(S_{0}(\cdot)\) with respect to \(m\).
S0.fct.deriv The R function object that computes analytic derivative of the estimand function \(S_{0}(\cdot)\) with respect to \(m\). If S0.fct. deriv is not specified or S0.fct. deriv= NULL, numerical derivatives will be used.
max.mph.iter, step, change.step.after, y.eps, iter.orig, norm.diff.conv, norm.score.conv, max.score.dif The parameters used in mph.fit.
S.space.H0 Restricted estimand space of \(S(\cdot)\) under \(H_{0}\), i.e. subject to the imposed equality constraints along with sampling constraints.
tol.psi, tol, max.iter
The parameters used in the three stopping criteria in solving for the roots to the test-inversion equation.
cut.off qchisq(cc,1). i.e. The chi-square cutoff, with 1 df , based on the significance level 1-cc.
delta The constant \(\delta\) that is in expressions of the moving critical values within each sliding quadratic step.
pdlambda The index parameter \(\lambda\) in the power-divergence statistic.

\section*{Value}

Provided that diff_PD_nr does not stop, it returns a 1-by-2 matrix which displays two endpoints of the confidence interval based on the difference in power-divergence statistic.

\section*{Author(s)}

Qiansheng Zhu

\section*{References}

Zhu, Q. (2020) "On improved confidence intervals for parameters of discrete distributions." PhD dissertation, University of Iowa.

\section*{See Also}
diff_PD_robust, f.psi, ci.table
```

diff_PD_robust Difference in Power-Divergence Statistic Based CIs (Robust)

```

\section*{Description}

Constructs confidence intervals (CIs), based on the difference in power-divergence statistic, for estimands in contingency tables subject to equality constraints.

\section*{Usage}
diff_PD_robust(y, strata, fixed.strata, h0.fct, h0.fct.deriv, S0.fct, S0.fct.deriv, max.mph.iter, step, change.step.after, y.eps, iter.orig, norm.diff.conv, norm. score.conv, max.score.diff.iter, S.space.H0, tol.psi, tol, max.iter, cut.off, delta, pdlambda, adj.epsilon, iter.robust.max, iter.robust.eff)

\section*{Arguments}
y Observed table counts in the contingency table(s), in vector form.
strata Vector of the same length as \(y\) that gives the stratum membership identifier.
fixed.strata The object that gives information on which stratum (strata) has (have) fixed sample sizes.
h0.fct The constraint function \(h_{0}(\cdot)\) with respect to \(m\), where \(m=E(Y)\), the vector of expected table counts.
h0.fct.deriv The R function object that computes analytic derivative of the transpose of the constraint function \(h_{0}(\cdot)\) with respect to \(m\). If h0.fct. deriv is not specified or h0. fct. deriv \(=\) NULL, numerical derivatives will be used.
S0.fct The estimand function \(S_{0}(\cdot)\) with respect to \(m\).
```

S0.fct.deriv The R function object that computes analytic derivative of the estimand function
S0}(\cdot)\mathrm{ with respect to m. If S0.fct.deriv is not specified or S0.fct.deriv=
NULL, numerical derivatives will be used.
max.mph.iter, step, change.step.after, y.eps, iter.orig, norm.diff.conv, norm.score.conv, max.score.dif
The parameters used in mph.fit.
S.space.H0 Restricted estimand space of S(\cdot) under H0, i.e. subject to the imposed equality
constraints along with sampling constraints.
tol.psi, tol, max.iter
The parameters used in the three stopping criteria in solving for the roots to the
test-inversion equation.
cut.off qchisq(cc,1). i.e. The chi-square cutoff, with 1 df, based on the significance
level 1-cc.
delta The constant }\delta\mathrm{ that is in expressions of the moving critical values within each
sliding quadratic step.
pdlambda The index parameter }\lambda\mathrm{ in the power-divergence statistic.
adj.epsilon, iter.robust.max, iter.robust.eff
The parameters used in the robustifying procedure.

```

\section*{Value}
diff_PD_robust returns a list, which includes two objects. The first object is a 1-by-2 matrix which displays two endpoints of the confidence interval based on the difference in power-divergence statistic. For the second object, it includes the warning message that occurs during construction of the confidence interval if the robustifying procedure is evoked: "diff.PD.CI: Adjustment used. Not on original data. \(\backslash n "\). If the robustifying procedure is not evoked, the second object is NULL.

\section*{Author(s)}

Qiansheng Zhu

\section*{References}

Zhu, Q. (2020) "On improved confidence intervals for parameters of discrete distributions." PhD dissertation, University of Iowa.

\section*{See Also}
diff_PD_nr, f.psi, ci.table

\section*{Description}

Constructs confidence intervals (CIs), based on the difference in \(X^{2}\) statistic, for estimands in contingency tables subject to equality constraints.
The program may stop because of a non-convergence issue.

\section*{Usage}
```

diff_Xsq_nr(y, strata, fixed.strata, h0.fct, h0.fct.deriv,
S0.fct, S0.fct.deriv, max.mph.iter, step,
change.step.after, y.eps, iter.orig, norm.diff.conv,
norm.score.conv, max.score.diff.iter, S.space.H0,
tol.psi, tol, max.iter, cut.off, delta)

```

\section*{Arguments}
y Observed table counts in the contingency table(s), in vector form.
strata Vector of the same length as y that gives the stratum membership identifier.
fixed.strata The object that gives information on which stratum (strata) has (have) fixed sample sizes.
h0.fct The constraint function \(h_{0}(\cdot)\) with respect to \(m\), where \(m=E(Y)\), the vector of expected table counts.
h0.fct.deriv The R function object that computes analytic derivative of the transpose of the constraint function \(h_{0}(\cdot)\) with respect to \(m\). If h 0 .fct. deriv is not specified or h0.fct. deriv \(=\) NULL, numerical derivatives will be used.
S0.fct The estimand function \(S_{0}(\cdot)\) with respect to \(m\).
S0.fct.deriv The R function object that computes analytic derivative of the estimand function \(S_{0}(\cdot)\) with respect to \(m\). If S0.fct. deriv is not specified or S0.fct. deriv= NULL, numerical derivatives will be used.
max.mph.iter, step, change.step.after, y.eps, iter.orig, norm.diff.conv, norm.score.conv, max.score.dif The parameters used in mph.fit.
S. space.H0 Restricted estimand space of \(S(\cdot)\) under \(H_{0}\), i.e. subject to the imposed equality constraints along with sampling constraints.
tol.psi, tol, max.iter
The parameters used in the three stopping criteria in solving for the roots to the test-inversion equation.
cut.off \(\quad\) qchisq \((c c, 1)\). i.e. The chi-square cutoff, with 1 df , based on the significance level 1-cc.
delta The constant \(\delta\) that is in expressions of the moving critical values within each sliding quadratic step.

\section*{Value}

Provided that diff_Xsq_nr does not stop, it returns a 1-by-2 matrix which displays two endpoints of the confidence interval based on the difference in \(X^{2}\) statistic.

\section*{Author(s)}

Qiansheng Zhu

\section*{References}

Zhu, Q. (2020) "On improved confidence intervals for parameters of discrete distributions." PhD dissertation, University of Iowa.

\section*{See Also}
diff_Xsq_robust, f.psi, ci.table
```

diff_Xsq_robust Difference in X-Squared Statistic Based CIs (Robust)

```

\section*{Description}

Constructs confidence intervals (CIs), based on the difference in \(X^{2}\) statistic, for estimands in contingency tables subject to equality constraints.

\section*{Usage}
\[
\begin{aligned}
& \text { diff_Xsq_robust(y, strata, fixed.strata, h0.fct, h0.fct.deriv, } \\
& \text { S0.fct, S0.fct.deriv, max.mph.iter, step, } \\
& \text { change.step.after, y.eps, iter.orig, norm.diff.conv, } \\
& \\
& \text { norm.score.conv, max.score.diff.iter, S.space.H0, } \\
& \\
& \text { tol.psi, tol, max.iter, cut.off, delta, adj.epsilon, } \\
& \\
& \text { iter. robust.max, iter.robust.eff) }
\end{aligned}
\]

\section*{Arguments}
\begin{tabular}{ll} 
y & Observed table counts in the contingency table(s), in vector form. \\
strata & Vector of the same length as y that gives the stratum membership identifier. \\
fixed.strata & \begin{tabular}{l} 
The object that gives information on which stratum (strata) has (have) fixed \\
sample sizes.
\end{tabular} \\
h0.fct & \begin{tabular}{l} 
The constraint function \(h_{0}(\cdot)\) with respect to \(m\), where \(m=E(Y)\), the vector \\
of expected table counts.
\end{tabular} \\
h0.fct.deriv & \begin{tabular}{l} 
The R function object that computes analytic derivative of the transpose of the \\
constraint function \(h_{0}(\cdot)\) with respect to \(m\). If h0. fct. deriv is not specified or \\
h0.fct.deriv \(=\) NULL, numerical derivatives will be used.
\end{tabular} \\
s0.fct & \begin{tabular}{l} 
The estimand function \(S_{0}(\cdot)\) with respect to \(m\).
\end{tabular}
\end{tabular}
```

S0.fct.deriv The R function object that computes analytic derivative of the estimand function
S0}(\cdot)\mathrm{ with respect to m. If S0.fct.deriv is not specified or S0.fct.deriv =
NULL, numerical derivatives will be used.
max.mph.iter, step, change.step.after, y.eps, iter.orig, norm.diff.conv, norm.score.conv, max.score.dif
The parameters used in mph.fit.
S.space.H0 Restricted estimand space of S(\cdot) under }\mp@subsup{H}{0}{}\mathrm{ , i.e. subject to the imposed equality
constraints along with sampling constraints.
tol.psi, tol, max.iter
The parameters used in the three stopping criteria in solving for the roots to the
test-inversion equation.
cut.off qchisq(cc,1). i.e. The chi-square cutoff, with 1 df, based on the significance
level 1-cc.
delta The constant }\delta\mathrm{ that is in expressions of the moving critical values within each
sliding quadratic step.
adj.epsilon, iter.robust.max, iter.robust.eff
The parameters used in the robustifying procedure.

```

\section*{Value}
diff_Xsq_robust returns a list, which includes two objects. The first object is a 1-by-2 matrix which displays two endpoints of the confidence interval based on the difference in \(X^{2}\) statistic. For the second object, it includes the warning message that occurs during construction of the confidence interval if the robustifying procedure is evoked: "diff. Xsq. CI: Adjustment used. Not on original data. \(\backslash n "\). If the robustifying procedure is not evoked, the second object is NULL.

\section*{Author(s)}

Qiansheng Zhu

\section*{References}

Zhu, Q. (2020) "On improved confidence intervals for parameters of discrete distributions." PhD dissertation, University of Iowa.
```

See Also
diff_Xsq_nr,f.psi, ci.table

```

\section*{Description}

Computes one of the model comparison statistics.
The model comparison statistics include:
- "diff.Gsq": The difference in \(G^{2}\) statistic,
\[
G^{2}(\psi)-G^{2}=G^{2}\left(y ; H_{0}(\psi)\right)-G^{2}\left(y ; H_{0}\right)
\]
- "diff.Xsq": The difference in \(X^{2}\) statistic,
\[
X^{2}(\psi)-X^{2}=X^{2}\left(y ; H_{0}(\psi)\right)-X^{2}\left(y ; H_{0}\right)
\]
- "diff.PD": The difference in power-divergence statistic, with index parameter \(\lambda\),
\[
P D_{\lambda}(\psi)-P D_{\lambda}=P D_{\lambda}\left(y ; H_{0}(\psi)\right)-P D_{\lambda}\left(y ; H_{0}\right)
\]
- "nested.Gsq": The nested \(G^{2}\) statistic,
\[
G^{2}\left(y ; H_{0}(\psi) \mid H_{0}\right)
\]
- "nested.Xsq": The nested \(X^{2}\) statistic,
\[
X^{2}\left(y ; H_{0}(\psi) \mid H_{0}\right)
\]
- "nested.PD": The nested power-divergence statistic, with index parameter \(\lambda\),
\[
P D_{\lambda}\left(y ; H_{0}(\psi) \mid H_{0}\right)
\]

\section*{Usage}
\[
\begin{aligned}
& \text { f.psi(y, strata, fixed.strata, h0.fct, h0.fct.deriv = NULL, } \\
& \text { S0.fct, S0.fct.deriv = NULL, method_specific, psi, } \\
& \text { max.mph.iter, step, change.step.after, y.eps, iter.orig, } \\
& \text { norm.diff.conv, norm.score.conv, max.score.diff.iter, } \\
& \text { pdlambda = NULL, Gsq_H0, Xsq_H0, PD_H0, cons.MLE.m_H0) }
\end{aligned}
\]

\section*{Arguments}
y
strata
fixed.strata The object that gives information on which stratum (strata) has (have) fixed sample sizes.
h0.fct The constraint function \(h_{0}(\cdot)\) with respect to \(m\), where \(m=E(Y)\), the vector of expected table counts.
h0.fct.deriv The R function object that computes analytic derivative of the transpose of the constraint function \(h_{0}(\cdot)\) with respect to \(m\). If h0.fct. deriv is not specified or h0. fct. deriv = NULL, numerical derivatives will be used.
S0.fct The estimand function \(S_{0}(\cdot)\) with respect to \(m\).


\section*{Value}
f.psi returns a numeric value, which is the computed model comparison statistic.

\section*{Note}

Among the four inputs: Gsq_H0, Xsq_H0, PD_H0, and cons.MLE.m_H0, only one of them needs to be specified.

\section*{Author(s)}

Qiansheng Zhu

\section*{References}

Zhu, Q. (2020) "On improved confidence intervals for parameters of discrete distributions." PhD dissertation, University of Iowa.

\section*{See Also}
```

diff_Xsq_nr, nested_Xsq_nr, diff_Gsq_nr, nested_Gsq_nr, diff_PD_nr, nested_PD_nr, diff_Xsq_robust,
nested_Xsq_robust, diff_Gsq_robust, nested_Gsq_robust, diff_PD_robust, nested_PD_robust,
ci.table

```

\section*{M.fct}

Marginalizing Matrix Based on Strata Information

\section*{Description}

Creates the marginalizing matrix \(M\) using strata information found in input variable strata. That is, \(M p\) gives the marginal probabilities corresponding to the levels of factor strata.

\section*{Usage}
M.fct(strata, ncells = length(strata))

\section*{Arguments}
strata The vector that gives the stratum membership identifier.
ncells Number of contingency table cells. Default: ncells = length (strata).

\section*{Value}
M. fct returns the marginalizing matrix \(M\).

\section*{Note}

Marginals are ordered according to the levels of factor strata.
Examples:
\begin{tabular}{rrr} 
V1 & V2 & y \\
b & yes & 15 \\
a & no & 12 \\
a & yes & 13 \\
b & yes & 5 \\
b & no & 1
\end{tabular}

M1 <-M.fct(V1)
M1 \% *\% y
\[
[, 1]
\]
a \(\quad 25\)
b 21

M2 <-M.fct (V2)
M2 \%*\% y
\begin{tabular}{|c|c|c|c|}
\hline \multirow[t]{3}{*}{} & \multicolumn{3}{|r|}{[, 1]} \\
\hline & \multicolumn{2}{|r|}{\multirow[t]{2}{*}{\[
\begin{array}{r}
\text { no } \\
\text { yes }
\end{array}
\]}} & 13 \\
\hline & & & 33 \\
\hline \multicolumn{4}{|l|}{M12 <-M.fct(paste(V1, V2))} \\
\hline \multicolumn{4}{|l|}{M12 \%*\% y} \\
\hline & & & [,1] \\
\hline & a & no & 12 \\
\hline & a & yes & 13 \\
\hline & b & no & 1 \\
\hline & b & yes & 20 \\
\hline
\end{tabular}

\section*{Author(s)}

Joseph B. Lang

\section*{References}

Lang, J. B. (2004) Multinomial-Poisson homogeneous models for contingency tables, Annals of Statistics, 32, 340-383.

\section*{Examples}
M.fct(rep(1, 9))
M.fct(seq(1, 9))
M.fct (c(1, 1, 2, 3, 3))
mph.fit
Fitting MPH and HLP Models

\section*{Description}

Computes maximum likelihood estimates and fit statistics for multinomial-Poisson homogeneous (MPH) and homogeneous linear predictor (HLP) models for contingency tables.

More detailed DOCUMENTATION and EXAMPLES of mph.fit are online.

\section*{Usage}
mph.fit(y, h.fct \(=\) constraint, constraint \(=\) NULL, h.mean \(=\) FALSE, L.fct = link, link = NULL, L.mean = FALSE, X = NULL, strata \(=\) rep(1, length(y)), fixed.strata = "all", check.homog.tol \(=1 \mathrm{e}-9\), check. HLP.tol \(=1 \mathrm{e}-9\), maxiter \(=100\), step \(=1\), change.step.after \(=0.25 *\) maxiter, y.eps \(=0\), iter.orig = 5, m.initial = y, norm.diff.conv = 1e-6,
```

norm.score.conv = 1e-6, max.score.diff.iter = 10,
derht.fct = NULL, derLt.fct = NULL, pdlambda = 2/3,
verbose = FALSE)

```

\section*{Arguments}
\(y\)
```

h.fct

```
constraint
h.mean Logical argument. If h.mean = FALSE (the default), h.fct is treated as a function of \(p\). If h.mean = TRUE, then h. fct is treated as a function of \(m\).
L.fct Function object that defines the link \(L(\cdot)\) in the HLP model; it must return a column vector. Or ... L.fct = keyword, where candidate keywords include "logp" and "logm".
Entering L.fct \(=\) "logp" tells the program to create the function object as L.fct <-function \((p)\{\log (p)\}\). L.fct \(=\) "logm" tells the program to (i) create the function object as \(L . f c t<-\) function \((m)\{\log (m)\}\) and (ii) set \(L\). mean \(=\) TRUE.
By default, L.fct is treated as a function of the table probabilities \(p\) (even if the argument in the \(L . f c t\) function object is \(m\) ). If \(L\). mean is set to \(L\). mean \(=T R U E\), then L.fct is treated as a function of the expected counts \(m\). Default: \(\mathrm{L} . \mathrm{fct}=\) NULL means no constraints of the form \(L(p)=X \beta\) are imposed.
link Alias for the argument L.fct. Argument link is secondary to the primary argument L.fct in the following senses: If link and L.fct are not equal, L.fct is used.
L.mean Logical argument. If L.mean = FALSE (the default), L.fct is treated as a function of \(p\). If L. mean \(=\) TRUE, \(\mathrm{L} . \mathrm{fct}\) is treated as a function of \(m\).
\(X \quad\) HLP model design matrix, assumed to be full rank. Default: \(X=\) NULL; i.e., it is left unspecified and unused.
strata Vector of the same length as \(y\) that gives the stratum membership identifier. Default: strata \(=\operatorname{rep}(1\), length \((y))\); i.e. the default is the single stratum (nonstratified) setting. Examples: strata \(=A\), or strata \(=c(1,1,1,2,2,2,3,3,3)\), or strata \(=\) paste \((\operatorname{sep}=" ", " A=", A, ", B=", B)\).
fixed.strata The object that gives information on which stratum have fixed sample sizes. It can equal one of the keywords, fixed.strata = "all" or fixed. strata = "none", or it can be a vector of stratum membership identifiers, e.g. fixed. strata
```

 =c(1,3) or fixed.strata = c("pop1","pop5"). Default: fixed.strata =
 "all".
 check.homog.tol
Round-off tolerance for Z homogeneity check. Default: check.homog.tol=
1e-9.
check.HLP.tol Round-off tolerance for HLP link status check. Default: check.HLP.tol =
1e-9.
maxiter Maximum number of iterations. Default: maxiter = 100.
step Step-size value. Default: step = 1.
change.step.after
If the score value increases for more than change.step.after iterations in a
row, then the initial step size is halved. Default: change.step.after = 0.25*
maxiter.
y.eps Non-negative constant to be temporarily added to the original counts in y. De-
fault: y.eps = 0.
iter.orig Iteration at which the original counts will be used. Default: iter.orig=5.
m.initial Initial estimate of m. Default: m.initial = y. See Input Note 6 below.
norm.diff.conv Convergence criteria value; see norm.diff in the Value section. Default: norm.diff.conv
=1e-6.
norm.score.conv
Convergence criteria value; see norm.score in the Value section. Default:
norm.score.conv = 1e-6.
max.score.diff.iter
The variable score.diff.iter keeps track of how long norm. score is smaller than norm. score. conv, but norm. diff is greater than norm. diff.conv. If this is the case too long (i.e. score.diff.iter >= max.score.diff.iter), then stop the iterations because the solution likely includes at least one ML fitted value of 0 . Default: max. score.diff.iter $=10$.
derht.fct Function object that computes analytic derivative of the transpose of the constraint function $h(\cdot)$ with respect to m. If $h(\cdot)$ maps from R^{p} to R^{q} (i.e. there are q constraints), then derht. fct returns a p-by- q matrix of partial derivatives. Default: derht. fct = NULL. This means that the derivative is calculated numerically.
derLt.fct Function object that computes analytic derivative of the transpose of the link function $L(\cdot)$ with respect to m. If $L(\cdot)$ maps from R^{p} to R^{q} (i.e. there are q link components), then derLt.fct returns a p-by- q matrix of partial derivatives. Default: derLt.fct $=$ NULL, i.e. by default this derivative is calculated numerically.
pdlambda The index parameter λ in the power-divergence statistic.
verbose Logical argument. If verbose = FALSE, do not print out iteration information. If verbose $=$ TRUE, then iteration information is printed out. Default: verbose = FALSE.

```

\section*{Details}

In the following, let \(y\) be the vector of contingency table counts, \(p\) be the unknown vector of contingency table probabilities, \(s\) be a vector of strata identifiers, and \(F\) be the set of strata with a priori fixed sample sizes.

Although mph.fit can fit more general models (see below), two important special cases include:
- MPH (Special-Case): \(y\) is a realization of random vector \(Y\), where \(Y \sim M P(\gamma, p \mid\) strata \(=\) \(s\), fixed \(=F), h(p)=0\).
- HLP (Special-Case): \(y\) is a realization of random vector \(Y\), where \(Y \sim M P(\gamma, p \mid\) strata \(=\) \(s\), fixed \(=F), L(p)=X \beta\).

Here, \(h(\cdot)\) is a smooth constraint function and \(L(\cdot)\) is a smooth link function. It is assumed that the constraints in \(h(p)=0\) are non-redundant so that the Jacobian, \(\partial h^{\prime}(p) / \partial p\), is full column rank.
The link \(L(\cdot)\) is allowed to be many-to-one and row-rank deficient, so this HLP model is quite general. It is only required that the implied constraints, \(U^{\prime} L(p)=0\), where \(\operatorname{null}\left(U^{\prime}\right)=\operatorname{span}(X)\), are non-redundant.

Here, MP stands for the multinomial-Poisson distribution. The parameters are \(\gamma\), the vector of expected sample sizes, and \(p\), the vector of table probabilities.

The notation
\[
Y \sim M P(\gamma, p \mid \text { strata }=s, \text { fixed }=F)
\]
means that the random vector \(Y\) is composed of independent blocks of multinomial and/or Poisson random variables. The strata vector \(s\) determines the blocks and \(F\) determines which blocks are multinomial and which blocks comprise independent Poisson random variables. More specifically, suppose there are \(K\) strata, so \(s\) contains \(K\) distinct strata identifiers. The components in \(Y\) corresponding to \(s=\) identifier[k] make up a block. If identifier[k] is included in \(F\), then this block has a multinomial distribution and \(\gamma_{k}\) is the a priori known, i.e. fixed, sample size. If identifier[k] is not in \(F\), then this block comprises independent Poisson random variables and \(\gamma_{k}\) is an unknown expected sample size.
Note: Given the observed counts \(y\), the pair (strata, fixed) \(=(s, F)\) contains the same information as the sampling plan triple \(\left(Z, Z_{F}, n_{F}\right)\) described in Lang (2004, 2005). Specifically, \(Z=Z(s)\), the strata/population matrix, is determined by \(s . Z_{F}=Z_{F}(s, F)\), the sampling constraint matrix, is determined by \(s\) and \(F . n_{F}=Z_{F}^{\prime} y\) is the vector of a priori fixed sample sizes.
Special case MP distributions include...
- Full Multinomial: \(M P(\gamma, p \mid\) strata \(=1\), fixed \(=\) "all" \()\). A simple random sample of fixed size \(\gamma\) is taken from a single strata (population).
- Product Multinomial: \(M P(\gamma, p \mid\) strata \(=\mathrm{s}\), fixed = "all" \()\). A stratified random sample of fixed sample sizes \(\gamma=\left(\gamma_{1}, \ldots, \gamma_{K}\right)^{\prime}\) is taken from the \(K\) strata determined by \(s\).
- Full Poisson: \(M P(\gamma, p \mid\) strata \(=1\), fixed \(=\) "none" \()\). A simple random sample is taken from a single strata (population). The sample size is random and follows a Poisson distribution with unknown mean \(\gamma\).
- Product Poisson: \(M P(\gamma, p \mid\) strata \(=\mathrm{s}\), fixed \(=\) "none" \()\). A stratified random sample is taken from \(K\) strata. The sample sizes are all random and distributed as Poissons with unknown means in \(\gamma=\left(\gamma_{1}, \ldots, \gamma_{K}\right)^{\prime}\).

Specifying the MP distribution in mph.fit...
The user need only enter (strata, fixed.strata), the input variables corresponding to \((s, F)\). Keywords, fixed.strata = "all" ["none"] means that all [none] of the strata have a priori fixed sample sizes.
To fit MPH (Special Case), the user must enter the counts \(y\), the constraint function h.fct (alias constraint), and the sampling plan variables, strata and fixed. strata. Note: The user can omit the sampling plan variables if the default, multinomial sampling (strata = 1, fixed="all"), can be assumed.
To fit HLP (Special Case), the user must enter the counts \(y\), the link function L.fct (alias link), the model matrix \(X\), and the sampling plan variables, strata and fixed.strata. Note: The user can omit the sampling plan variables if the default, multinomial sampling, can be assumed.

IMPORTANT: When specifying the model and creating the input objects for mph. fit, keep in mind that the interpretation of the table probabilities \(p\) depends on the sampling plan!
Specifically, if the \(i^{t h}\) count \(y_{i}\) is in block \(k\) (i.e. corresponds with strata identifier[k]), then the \(i^{\text {th }}\) table probability \(p_{i}\) is the conditional probability defined as \(p_{i}=\) probability of a Type \(i\) outcome GIVEN that the outcome is one of the types in stratum \(k\).

For example, in an \(I\)-by- \(J\) table with row variable \(A\) and column variable \(B\), if row-stratified sampling is used, the table probabilities have the interpretation, \(p_{i j}=\) prob of a Type \((i, j)\) outcome GIVEN that the outcome is one of the types in stratum \(i\) (i.e. one of \((i, 1), \ldots,(i, J))=P(A=\) \(i, B=j \mid A=i)=P(B=j \mid A=i)\). For column-stratified sampling, \(p_{i j}=P(A=i \mid B=j)\). And for non-stratified sampling, \(p_{i j}=P(A=i, B=j)\).
Log-Linear Models: Log-linear models specified as \(\log (p)=X \beta\), are HLP models.
As with any HLP model, \(\log (p)=X \beta\) can be restated as a collection of constraints; specifically, \(\log (p)=X \beta\) is equivalent to \(h(p)=U^{\prime} \log (p)=0\), where \(\operatorname{null}\left(U^{\prime}\right)=\operatorname{span}(X)\). Noting that \(Z^{\prime} p=1\), we see that to avoid redundant constraints, \(\operatorname{span}(X)\) should contain \(\operatorname{span}(Z)\). Loosely, fixed-by-sampling-design parameters should be included.
Log-linear models of the form \(\log (p)=X \beta\) are simple to fit using mph.fit. For example, \(>\operatorname{mph} . f i t(y, l i n k=" \log p ", X=\) model.matrix \((\sim A+B))\),
or, equivalently,
\(>\operatorname{mph}\). fit \((y, \operatorname{link}=\) function \((p)\{\log (p)\}, X=\) model.matrix \((\sim A+B))\).

\section*{MORE GENERAL MPH and HLP MODELS...}

Instead of \((\gamma, p)\), the MP distribution can alternatively be parameterized in terms of the vector of expected table counts, \(m=E(Y)\). Formally, \((\gamma, p)\) and \(m\) are in one-to-one correspondence and satisfy:
\[
m=\operatorname{Diag}(Z \gamma) p
\]
and
\[
\gamma=Z^{\prime} m, p=\operatorname{Diag}^{-1}\left(Z Z^{\prime} m\right) m
\]

Here, \(Z=Z(s)\) is the \(c\)-by- \(K\) strata/population matrix determined by strata vector \(s\). Specifically, \(Z_{i k}=I\left\{s_{i}=\right.\) identifier \(\left.[\mathrm{k}]\right\}\).

The MPH (Special-Case) Model given above is a special case because it constrains the expected counts \(m\) only through the table probabilities \(p\). Similarly, the HLP (Special-Case) Model given above is a special case because it uses a link function that depends on \(m\) only through the table probabilities \(p\).

More generally, mph.fit computes maximum likelihood estimates and fit statistics for MPH and HLP models of the form...
- MPH: \(y\) is a realization of random vector \(Y\), where \(Y \sim M P(\gamma, p \mid\) strata \(=s\), fixed \(=\) \(F), h(m)=0\).
- HLP: \(y\) is a realization of random vector \(Y\), where \(Y \sim M P(\gamma, p \mid\) strata \(=s\), fixed \(=\) \(F), L(m)=X \beta\).

Here, \(h(\cdot)\) is a smooth constraint function that must also be \(Z\) (i.e. strata \(s\) ) homogeneous. \(L(\cdot)\) is a smooth link function that must also satisfy the HLP conditions with respect to \(Z\) (i.e. strata \(s\) ) and \(X\). That is,
- (1) \(L(\cdot)\) has HLP link status with respect to \(Z\), and
- (2) The implied constraint function \(h(m)=U^{\prime} L(m)\) is \(Z\) homogeneous. Here, \(\operatorname{null}\left(U^{\prime}\right)=\) \(\operatorname{span}(X)\).

Here, (1) \(L(\cdot)\) has HLP link status with respect to \(Z\) if, for \(m=\operatorname{Diag}(Z \gamma) p\),
- (1)(a) \(L(m)=a(\gamma)+L(p)\), where \(a\left(\gamma_{1} / \gamma_{2}\right)-a(1)=a\left(\gamma_{1}\right)-a\left(\gamma_{2}\right)\), i.e. \(a(\gamma)\) has the form \(C \log \gamma+\) constant; or
- (1)(b) \(L(m)=G(\gamma) L(p)\), where \(G(\gamma)\) is a diagonal matrix with diagonal elements that are powers of the \(\gamma\) elements, i.e. \(L(\cdot)\) is \(Z\) homogeneous (see Lang (2004)); or
- (1)(c) The components of \(L(\cdot)\) are a mixture of types (a) and (b): \(L_{j}(m)=a_{j}(\gamma)+L_{j}(p)\) or \(L_{j}(m)=G_{j}(\gamma) L_{j}(p), j=1, \ldots, l\).

Lang (2005) described HLP models that satisfied (1)(a) and (2), but the definition of HLP models can be broadened to include those models satisfying (1) and (2). That is, HLP models can be defined so they also include models that satisfy (1)(b) and (2) or (1)(c) and (2). mph. fit uses this broader definition of HLP Model.

Note: The input variable \(h\). mean must be set to TRUE to fit this more general MPH model. Similarly, the input variable L. mean must be set to TRUE to fit this more general HLP model. (An exception: If the link function is specified using the keyword "logm" then L. mean is automatically set to TRUE.)

Note: mph.fit carries out "necessary-condition" checks of \(Z\) homogeneity of \(h(\cdot)\) and HLP link status of \(L(\cdot)\) for these general models.
Log-Linear Models: Log-linear models of the form \(\log (m)=X \beta\) are HLP models provided the \(\operatorname{span}(X)\) contains the \(\operatorname{span}(Z)\). Loosely, provided fixed-by-design parameters are included, the log-linear model is a special case HLP model.
Log-linear models of the form \(\log (m)=X \beta\) are simple to fit using mph.fit. For example,
\(>\) mph.fit \((y\), link \(=" \operatorname{logm} ", X=\) model.matrix \((\sim A+B))\),
or, equivalently,
\(>\) mph.fit \((y, l i n k=\) function \((m)\{\log (m)\}, L\). mean \(=\) TRUE,\(X=\) model. matrix \((\sim A+B))\).
Note: Most reasonable generalized log-linear models, which have the form \(L(m)=C \log M m=\) \(X \beta\), are also HLP models. See Lang (2005).

\section*{Value}
mph. fit returns a list, which includes the following objects:
y
m
covm
p
covp
lambda
covlambda
resid
presid
adjresid
covresid
Gsq
Xsq

Wsq
PD.stat
df Degrees of freedom associated with Gsq, Xsq, and PD. stat. \(d f=\operatorname{dim}(h)\).
beta Vector of HLP model parameter ML estimates.
covbeta
L
Lobs
covL
Lresid
iter Number of update iterations performed.
norm. diff Distance between last and second last theta iterates (theta is the vector of log fitted values and Lagrange multipliers).
norm.score Distance between the score vector and zero.
h.fct
h.input.fct
h.mean Logical variable. If h.mean \(=\) FALSE, \(h . f c t\) is treated as a function of \(p\). If h. mean = TRUE, h.fct is treated as a function of \(m\).
derht.fct Analytic function used in algorithm that computes derivative of transpose of constraint function \(h\).
L.fct Link function used in algorithm.
L.input.fct

Vector of counts used in the algorithm for ML estimation. Usually, this vector is identical to the observed table counts.
Vector of ML fitted values.
Approximate covariance matrix of fitted values.
Vector of cell probability ML estimates.
Approximate covariance matrix of cell probability estimators.
Vector of Lagrange multiplier ML estimates.
Approximate covariance matrix of multiplier estimators.
Vector of raw residuals (i.e. observed minus fitted counts).
Vector of Pearson residuals.
Vector of adjusted residuals.
Approximate covariance matrix of raw residuals.
Likelihood ratio statistic for testing \(H_{0}: h(m)=0\) vs. \(H_{1}:\) not \(H_{0}\).
Pearson's score statistic (same as Lagrange multiplier statistic) for testing \(H_{0}\) : \(h(m)=0\) vs. \(H_{1}:\) not \(H_{0}\).
Generalized Wald statistic for testing \(H_{0}: h(m)=0\) vs. \(H_{1}:\) not \(H_{0}\).
Power-divergence statistic (with index parameter pdlambda) for testing \(H_{0}\) : \(h(m)=0\) vs. \(H_{1}: \operatorname{not} H_{0}\).

Approximate covariance matrix of HLP model parameter estimators.
Vector of HLP model link ML estimates.
Vector of HLP model observed link values, \(L(y)\).
Approximate covariance matrix of HLP model link estimators.
Vector of adjusted link residuals of the form
\[
(L(\mathrm{obs})-L(\text { fitted })) / \operatorname{ase}(L(\mathrm{obs})-L(\text { fitted }))
\]

Constraint function used in algorithm.

Link function as originally input.
\begin{tabular}{|c|c|}
\hline L.mean & Logical variable. If L.mean =FALSE, L.fct is treated as a function of \(p\). If L. mean \(=\) TRUE, \(\mathrm{L} . \mathrm{fct}\) is treated as a function of \(m\). \\
\hline derLt.fct & Analytic function used in algorithm that computes derivative of transpose of link function \(L\). \\
\hline X & HLP model design matrix used in algorithm. \\
\hline U & Orthogonal complement of design matrix \(X\). \\
\hline triple & A list object containing the sampling plan triple \(\left(Z, Z_{F}, n\right)\), where \(Z\) is the population (or strata) matrix, \(Z_{F}\) is the sampling constraint matrix, and \(n\) is the collection of fixed sample sizes. \\
\hline strata & strata variable used as input. \\
\hline fixed.strata & The strata corresponding to fixed sample sizes. \\
\hline warn.message warn.message & Message stating whether or not the original counts were used. ore \\
\hline
\end{tabular}

Message stating whether or not the norm score convergence criterion was met.
warn.message.diff
Message stating whether or not the norm diff convergence criterion was met.

\section*{Note}

Input Notes:

\section*{1. CONSTRAINT FUNCTION.}
constraint is an alias for \(h\). fct. If \(h\).fct is a function object, it must return a column vector. By default, h.fct is treated as a function of the table probabilities \(p\). To treat h.fct as a function of the expected counts \(m\), you must set \(h\). mean \(=\) TRUE (by default, h. mean = FALSE). The fitting algorithm will fail if the constraints in \(h . f c t=0\) are redundant.

\section*{2. MODEL WITH NO CONSTRAINTS.}

The model with no constraints can be specified using h.fct \(=0\). The no-constraint model is the default when neither h.fct nor L.fct are input (i.e. when h.fct \(=\) NULL and L.fct \(=\) NULL).

\section*{3. HLP MODEL SPECIFICATION.}
link is an alias for L.fct. For HLP models, both L.fct and X must be specified. The design matrix \(X\) must be of full column rank. mph.fit recognizes two keywords for link specification, "logp" and "logm". These are convenient for log-linear modeling. If L.fct is a function object, it must return a column vector.
By default, L.fct is treated as a function of the table probabilities \(p\). To treat L.fct as a function of the expected counts \(m\), you must set \(L\). mean \(=\) TRUE (by default, L. mean \(=\) FALSE). The constraint function \(h\).fct is typically left unspecified for HLP models, but it need not be. If \(h . f c t\) is left unspecified, it is created within the program as h.fct(m)<-function(m) \(\{t(U) \% * \% \mathrm{~L} . f \mathrm{ft}(\mathrm{m})\}\), where matrix \(U\) is an orthogonal complement of \(X\). If h.fct is specified, the constraints implied by \(\mathrm{L} . \mathrm{fct}(p)=X \beta\), or \(\mathrm{L} . \mathrm{fct}(m)=X \beta\), are ignored.
Note: Although the HLP constraints are ignored when h.fct is specified, estimates of \(\beta\) and the link are computed under the model with constraints \(\mathrm{h} . \mathrm{fct}(p)=0\) or \(\mathrm{h} . \mathrm{fct}(m)=0\).
The fitting algorithm will fail to converge if the implied constraints, \(U^{\prime} \mathrm{L} . \mathrm{fct}=0\), include redundancies.

\section*{4. EXTENDED ML ESTIMATES.}

When ML estimates are non-existent owing to zero counts, norm. diff will not converge to zero, instead it tends to level off at some constant positive value. This is because at least one ML fitted value is 0 , which on the \(\log\) scale is \(\log (0)=-\infty\), and the \(\log\)-scale iterates slowly move toward \(-\infty\). One solution to this problem is to set the convergence value norm. diff.conv to some large number so only the score convergence criterion is used. In this case, the algorithm often converges to a solution that can be viewed as an extended ML estimate, for which 0 estimates are allowed. mph.fit automates the detection of such problems. See the description of the input variable max. score.diff.iter above and the MISC COMPUTATIONAL NOTES in mph. fit online documentation.

\section*{5. CONVERGENCE PROBLEMS / FINE TUNING ITERATIONS.}

First check to make sure that the model is correctly specified and redundant constraints are avoided.
When ML estimates exist, but there are non-convergence problems (perhaps caused by zero counts), a modification to the tuning parameters step, change.step.after, y.eps, and/or iter.orig will often lead to convergence.
With zero counts, it might help to set \(y . e p s=0.1\) (or some other positive number) and iter.orig \(=5\) (the default). This tells the program to initially use \(y+y . e p s\) rather than the original counts \(y\). At iteration \(5=\) iter. orig, after the algorithm has had time to move toward a non-boundary solution, the original counts are again used.
To further mitigate non-convergence problems, the parameter step can be set to a smaller value (default: step \(=1\) ) so the iterates do not change as much.
6. The initial estimate of \(m\) is actually \(m\). initial \(+y . e p s+0.01 *((m . i n i t i a l+y . e p s)==\) 0 ). The program defaults are m.initial \(=y\) and \(y . e p s=0\). Note: If m.initial \(>0\) and \(y . e p s=0\), then the initial estimate of \(m\) is simply \(m\). initial.

\section*{Output Notes:}

\section*{1. ITERATION HISTORY.}

An iteration history is printed out when verbose is set equal to TRUE. A single line of the history looks like the following:
"iter=18[0] norm. diff= \(3.574936 e-08\) norm. score= \(1.901705 \mathrm{e}-15\) ".
Here, iter is the number of update iterations performed. The number in [] gives the number of step size searches required within each iteration. norm. diff and norm. score are defined above. Finally, the time elapsed is output. Note: For the model with no restrictions (h.fct = 0 ), there are no step size changes.

\section*{2. STORING and VIEWING RESULTS.}

To store the results of mph.fit, issue a command like the following example
> results <-mph.fit(y,h.fct = h.fct)
Use program mph.summary to view the results of mph.fit. Specifically, if the results of mph.fit are saved in object results, submit the command mph.summary (results) [or mph.summary (results,TRUE) or mph.summary (results,TRUE,TRUE) depending on how much of the output you need to see.]
3. The output objects beta, covbeta, L, covL, and Lresid will be set to NA unless an HLP model is specified (i.e. L.fct and \(X\) are input).

\section*{Author(s)}

Joseph B. Lang

\section*{References}

Lang, J. B. (2004) Multinomial-Poisson homogeneous models for contingency tables, Annals of Statistics, 32, 340-383.

Lang, J. B. (2005) Homogeneous linear predictor models for contingency tables, Journal of the American Statistical Association, 100, 121-134.

\section*{See Also}
mph. summary, create.Z.ZF, create.U, num. deriv.fct

\section*{Examples}
```


Listed below is a collection of Basic Examples:

https://homepage.divms.uiowa.edu/~jblang/mph.fitting/mph.basic.numerical.examples.htm

Another collection of Less Basic Examples is online:

https://homepage.divms.uiowa.edu/~jblang/mph.fitting/mph.numerical.examples.htm

EXAMPLE 1. Test whether a binomial probability equals 0.5.

y = (15, 22) <- Y ~ MP(gamma, p | strata = 1, fixed = "all");

i.e. Y ~ multinomial.

In other symbols,

y = (15, 22) <- Y = (Y[1], Y[2]) ~ multinomial(37, p = (p[1], p[2])).

GOAL: Test H0: p[1] = 0.5 vs. H1: not H0.

a1 <- mph.fit(y = c(15, 22), constraint = function(p) {p[1] - 0.5})

Alternative specifications...

a2 <- mph.fit(y = c(15, 22), constraint = function(p) {p[1] - p[2]})
a3 <- mph.fit(y = c(15, 22), constraint = function(p) {log(p[1] / p[2])})
a4 <- mph.fit(y = c(15, 22), constraint = function(m) {m[1] - m[2]},
h.mean = TRUE)
a5 <- mph.fit(y = c(15, 22), link = function(p) {p}, X = matrix(1, 2, 1))
a6 <- mph.fit(y = c(15, 22), link = "logm", X = matrix(1, 2, 1))

Alternatively, assume that

y = (15, 22) <- Y ~ MP(gamma, p | strata = 1, fixed = "none");

i.e. Y ~ indep Poisson.

In other symbols,


```
```


y = (15, 22) <- Y = (Y[1], Y[2]), where

Y[i] indep ~ Poisson(gamma * p[i]), i = 1, 2.

GOAL: Test H0: p[1] = 0.5 vs. H1: not H0.

b1 <- mph.fit(y = c(15, 22), constraint = function(p) {p[1] - 0.5},
fixed.strata = "none")
mph.summary(a1, TRUE)
mph.summary(b1, TRUE)

EXAMPLE 2. Test whether a multinomial probability vector is uniform.

Test whether a multinomial probability vector equals a

specific value.

y <- Y = (Y[1], ..., Y[6]) ~ MP(gamma, p | strata = 1, fixed = "all");

i.e. Y ~ multinomial.

In other symbols,

y <- Y ~ multinomial(15, p = (p[1], ..., p[6]))

GOAL: Test H0: p[1] = p[2] = ... = p[6] vs. H1: not H0.

y <- rmultinom(1, 15, rep(1, 6))
a1 <- mph.fit(y, L.fct = function(p) {p}, X = matrix(1, 6, 1),
y.eps = 0.1)

Alternative specification...

a2 <- mph.fit(y, h.fct = function(p) {as.matrix(p[-6] - 1/6)},
y.eps = 0.1)
mph.summary(a1, TRUE)
mph.summary(a2, TRUE)

Test whether p = (1, 2, 3, 1, 2, 3) / 12.

p0 <- c(1, 2, 3, 1, 2, 3) / 12
b <- mph.fit(y, h.fct = function(p) {as.matrix(p[-6] - p0[-6])},
y.eps = 0.1)
mph.summary(b, TRUE)
\# EXAMPLE 3. Test whether a multinomial probability vector satisfies a

particular constraint.

Data Source: Agresti 25:2002.

y = (30, 63, 63) <- Y ~ MP(gamma, p | strata = 1, fixed = "all");

i.e. Y ~ multinomial.

In other symbols,

```
```


y = (30, 63, 63) <- Y ~ multinomial(156, p = (p[1], p[2], p[3]))

GOAL: Test H0: p[1] + p[2] = p[1] / (p[1] + p[2]) vs. H1: not H0.

y <- c(30, 63, 63)
h.fct <- function(p) {
(p[1] + p[2]) - p[1] / (p[1] + p[2])
}
a <- mph.fit(y, h.fct = h.fct)
mph.summary(a, TRUE)

EXAMPLE 4. Test of Independence in a 2-by-2 Table.

y = (y[1, 1], y[1, 2], y[2, 1], y[2, 2]) = (25, 18, 13, 21)

<- Y ~ MP(gamma, p | strata = 1, fixed = "all");

i.e. Y ~ multinomial.

In other symbols,

y = (y[1, 1], y[1, 2], y[2, 1], y[2, 2])

<- Y ~ multinomial(77, p = (p[1, 1], p[1, 2], p[2, 1], p[2, 2]))

GOAL: Test H0: p[1, 1] * p[2, 2] / p[1, 2] / p[2, 1] = 1

vs. H1: not H0.

d <- data.frame(A = c(1, 1, 2, 2), B = c(1, 2, 1, 2),
count = c(25, 18, 13, 21))
a1 <- mph.fit(y = d\$count, h.fct = function(p)
{log(p[1] * p[4] / p[2] / p[3])})

Alternative specifications of independence....

a2 <- mph.fit(y = d$count, h.fct = function(p)
 {p <- matrix(p, 2, 2, byrow = TRUE);
 log(p[1, 1] * p[2, 2] / p[1, 2] / p[2, 1])})
a3 <- mph.fit(y = d$count, h.fct = function(p)
{p[1] * p[4] / p[2] / p[3] - 1})
a4 <- mph.fit(y = d$count, h.fct = function(p)
 {p[1] / (p[1] + p[2]) - p[3] / (p[3] + p[4])})
a5 <- mph.fit(y = d$count, L.fct = "logm",
X = model.matrix(~ A + B, data = d))

Suppose we wished to output observed and fitted values of

log OR,OR, and P(B=1|A=1) - P(B=1 | A = 2)...

L.fct <- function(p) {
L <- as.matrix(c(
log(p[1] * p[4] / p[2] / p[3]),
p[1] * p[4] / p[2] / p[3],
p[1] / (p[1] + p[2]) - p[3] / (p[3] + p[4])
))
rownames(L) <- c("log OR", "OR",

```
```

 "P(B=1 | A = 1) - P(B=1 | A = 2)")
 L
 }
a6 <- mph.fit(y = d\$count, h.fct = function(p)
{log(p[1] * p[4] / p[2] / p[3])},
L.fct = L.fct, X = diag(3))

Unrestricted Model...

b <- mph.fit(y = d\$count, L.fct = L.fct, X = diag(3))
mph.summary(a6, TRUE)
mph.summary(b, TRUE)

EXAMPLE 5. Test of Independence in a 4-by-4 Table.

(Using Log-Linear Model.)

Data Source: Table 2.8, Agresti, 57:2002.

y <- Y ~ MP(gamma, p | strata = 1, fixed = "all");

i.e. Y ~ multinomial.

In other symbols,

y <- Y ~ multinomial(96, p = (p[1, 1], p[1, 2], p[2, 1], p[2, 2]))

GOAL: Test H0: p[1, 1] * p[2, 2] / p[1, 2] / p[2, 1] = 1 vs. H1: not H0.

d <- data.frame(Income = c("<15", "<15", "<15", "<15", "15-25", "15-25",
"15-25", "15-25", "25-40", "25-40", "25-40",
"25-40", ">40", ">40", ">40", ">40"),
JobSatisf = c("VD", "LD", "MS", "VS", "VD", "LD", "MS", "VS",
"VD", "LD", "MS", "VS", "VD", "LD", "MS", "VS"),
count = c(1, 3, 10, 6, 2, 3, 10, 7, 1, 6, 14, 12, 0, 1, 9, 11))
a <- mph.fit(y = d\$count, link = "logp",
X = model.matrix(~ Income + JobSatisf, data = d))
mph.summary (a)

Alternatively,

b <- mph.fit(y = d\$count, link = "logm",
X = model.matrix(~ Income + JobSatisf, data = d))
mph.summary(b)

EXAMPLE 6. Test Marginal Homogeneity in a 3-by-3 Table.

Data Source: Table 10.16, Agresti, 445:2002.

y <- Y ~ MP(gamma, p | strata = 1, fixed = "all");

i.e. Y ~ multinomial.

Specifically,

```
```


y <- Y ~ multinomial(160, p = (p[1, 1], ..., p[3, 3]))

GOAL: Test H0: p[1, +] = p[+, 1], p[2, +] = p[+, 2], p[3, +] = p[+, 3]

vs. H1: not H0.

d <- data.frame(Siskel = c("Pro", "Pro", "Pro", "Mixed", "Mixed",
"Mixed", "Con", "Con", "Con"),
Ebert = c("Pro", "Mixed", "Con", "Pro", "Mixed",
"Con", "Pro", "Mixed", "Con"),
count = c(64, 9, 10, 11, 13, 8, 13, 8, 24))
h.fct <- function(p){
p.Siskel <- M.fct(d$Siskel) %*% p
 p.Ebert <- M.fct(d$Ebert) %*% p
as.matrix(c(p.Siskel[-3] - p.Ebert[-3]))
}
a1 <- mph.fit(y = d\$count, h.fct = h.fct)
mph.summary(a1, TRUE)

Suppose that we wish to report on the observed and fitted

marginal probabilities.

L.fct <- function(p) {
p.Siskel <- M.fct(d$Siskel) %*% p
 p.Ebert <- M.fct(d$Ebert) %*% p
L <- as.matrix(c(p.Siskel, p.Ebert))
rownames(L) <- c(paste(sep = "", "P(Siskel=", levels(as.factor(d$Siskel)), ")"),
 paste(sep = "", "P(Ebert=", levels(as.factor(d$Ebert)), ")"))
L
}
a2 <- mph.fit(y = d\$count, h.fct = h.fct, L.fct = L.fct, X = diag(6))
mph.summary(a2, TRUE)

M.fct(factor) %*% p gives the marginal probabilities corresponding to

the levels of 'factor'. The marginal probabilities are ordered by the

levels of 'factor'.

Alternatively, in this rectangular table setting, we can find the

marginal probabilities using the apply(...) function. In this case,

the marginal probabilities are ordered as they are entered in the

data set.

h.fct <- function(p) {
p <- matrix(p, 3, 3, byrow = TRUE)
p.Siskel <- apply(p, 1, sum)
p.Ebert <- apply(p, 2, sum)
as.matrix(c(p.Siskel[-3] - p.Ebert[-3]))
}
L.fct <- function(p) {
p <- matrix(p, 3, 3, byrow = TRUE)
p.Siskel <- apply(p, 1, sum)
p.Ebert <- apply(p, 2, sum)

```
```

 L <- as.matrix(c(p.Siskel, p.Ebert))
 rownames(L) <- c("P(Siskel=Pro)", "P(Siskel=Mixed)",
 "P(Siskel=Con)", "P(Ebert=Pro)",
 "P(Ebert=Mixed)", "P(Ebert=Con)")
 L
 }
b <- mph.fit(y = d\$count, h.fct = h.fct, L.fct = L.fct, X = diag(6))

EXAMPLE 7. Log-Linear Model for 2-by-2-by-2 Table.

Data Source: Table 8.16, Agresti 347:2002

y <- Y ~ MP(gamma, p | strata = 1, fixed = "all");

i.e. Y ~ multinomial.

Specifically,

y <- Y ~ multinomial(621, p).

The counts in y are cross-classification counts for variables

G = Gender, I = Information Opinion, H = Health Opinion.

GOAL: Fit the loglinear models [GI, GH, IH] and [G, IH].

d <- data.frame(G = c("Male", "Male", "Male", "Male",
"Female", "Female", "Female", "Female"),
I = c("Support", "Support", "Oppose", "Oppose",
"Support", "Support", "Oppose", "Oppose"),
H = c("Support", "Oppose", "Support", "Oppose",
"Support", "Oppose", "Support", "Oppose"),
count = c(76, 160, 6, 25, 114, 181, 11, 48))

Fit loglinear model [GI, GH, IH]...

a1 <- mph.fit(y = d\$count, link = "logm",
X = model.matrix(~ G + I + H + G:I + G:H + I:H, data = d))

Fit loglinear model [G, IH]...

a2 <- mph.fit(y = d\$count, link = "logm",
X = model.matrix(~ G + I + H + I:H, data = d))

Different Sampling Distribution Assumptions:

Alternatively, assume

y <- Y ~ MP(gamma, p | strata = 1, fixed = "none");

that is, Y ~ indep Poisson.

In other symbols,

y <- Y, where Y[i] indep ~ Poisson(m[i] = gamma * p[i]).

Here, gamma is the unknown expected sample size.

```
```

b2 <- mph.fit(y = d\$count, link = "logm",
X = model.matrix(~ G + I + H + I:H, data = d),
fixed = "none")

Alternatively, assume

y <- Y ~ MP(gamma, p | strata = Gender, fixed = "all");

that is, Y ~ prod multinomial.

In other symbols,

y <- Y = (Y[1, 1, 1], Y[1, 1, 2], ..., Y[2, 2, 2]),

where (Y[i, 1, 1], ..., Y[i, 2, 2]) indep ~ multinomial(n[i], p[i, ,]).

Here, p[i, j, k] = P(I = j, H = k | G = i) and n[1] = 267 and

n[2] = 354 are the a priori fixed sample sizes for males and females.

c2 <- mph.fit(y = d$count, link = "logm",
 X = model.matrix(~ G + I + H + I:H, data = d),
 strata = d$G)

Alternatively, assume

y <- Y ~ MP(gamma, p | strata = Gender, fixed = "none");

that is, Y ~ prod Poisson.

In other symbols,

y <- Y = (Y[1, 1, 1], Y[1, 1, 2], ..., Y[2, 2, 2]),

where Y[i, j, k] indep ~ Poisson(m[i, j, k] = gamma[i] * p[i, j, k]).

Here, p[i, j, k] = P(I = j, H = k | G = i) and gamma[1] and gamma[2] are the

unknown expected sample sizes for males and for females.

d2 <- mph.fit(y = d$count, link = "logm",
 X = model.matrix(~ G + I + H + I:H, data = d),
 strata = d$G, fixed = "none")
cbind(a2$m, b2$m, c2$m, d2$m, sqrt(diag(a2$covm)), sqrt(diag(b2$covm)),
sqrt(diag(c2$covm)), sqrt(diag(d2$covm)))
cbind(a2$p, b2$p, c2$p, d2$p, sqrt(diag(a2$covp)), sqrt(diag(b2$covp)),
sqrt(diag(c2$covp)), sqrt(diag(d2$covp)))

EXAMPLE 8. Fit Linear-by-Linear Log-Linear Model

Data Source: Table 8.15, Agresti, 345:2002

y <- Y ~ MP(gamma, p | strata = 1, fixed = "all");

i.e. Y ~ multinomial.

Specifically,

<- Y ~ multinomial(1425, p)

GOAL: Assess the fit of the linear-by-linear log-linear model.

d <- list(Schooling = c("<HS", "<HS", "<HS", "HS", "HS", "HS", ">HS", ">HS", ">HS"),
Abortion = c("Disapprove", "Middle", "Approve", "Disapprove", "Middle",
"Approve", "Disapprove", "Middle", "Approve"),

```
```

 count = c(209, 101, 237, 151, 126, 426, 16, 21, 138))
 Schooling.score <- -1 * (d$Schooling == "<HS") +
 0 * (d$Schooling == "HS") +
1 * (d$Schooling == ">HS")
Abortion.score <- -1 * (d$Abortion == "Disapprove") +
0 * (d$Abortion == "Middle") +
 1 * (d$Abortion == "Approve")
d <- data.frame(d, Schooling.score, Abortion.score)
a <- mph.fit(y = d\$count, link = "logm",
X = model.matrix(~ Schooling + Abortion +
Schooling.score : Abortion.score, data = d))
mph.summary(a, TRUE)
\# EXAMPLE 9. Marginal Standardization of a Contingency Table.

 # Data Source: Table 8.15, Agresti 345:2002.

GOAL: For a two-way table, find the standardized values of y, say y*,

that satisfy (i) y* has the same odds ratios as y, and

(ii) y* has row and column totals equal to 100.

Note: This is equivalent to the problem of finding the fitted values

for the following model...

x <- Y ~ multinomial(n, p = (p[1, 1], ..., p[3, 3]))

 p[1, +] = p[2, +] = p[3, +] = p[+, 1] = p[+, 2] = p[+, 3] = 1/3
 p[1, 1] * p[2, 2] / p[2, 1] / p[1, 2] = or[1, 1]
 p[1, 2] * p[2, 3] / p[2, 2] / p[1, 3] = or[1, 2]
 p[2, 1] * p[3, 2] / p[3, 1] / p[2, 2] = or[2, 1]
 p[2, 2] * p[3, 3] / p[3, 2] / p[2, 3] = or[2, 2],
 # where or[i, j] = y[i, j] * y[i + 1, j + 1] / y[i + 1, j] / y[i, j + 1]
 # are the observed (y) odds ratios.
 # If m is the vector of fitted values, then y* = m * 300 / sum(m)

are the standardized values of y.

Here x can be any vector of 9 counts.

Choosing x so that the sum is 300 leads to sum(m) = 300, so that

y* = m in this case.

d <- data.frame(Schooling = c("<HS", "<HS", "<HS", "HS", "HS", "HS", ">HS", ">HS", ">HS"),
Abortion = c("Disapprove", "Middle", "Approve", "Disapprove", "Middle",
"Approve", "Disapprove", "Middle", "Approve"),
count = c(209, 101, 237, 151, 126, 426, 16, 21, 138))
h.fct <- function(p) {
p.Schooling <- M.fct(d$Schooling) %*% p
 p.Abortion <- M.fct(d$Abortion) %*% p
p <- matrix(p, 3, 3, byrow = TRUE)
as.matrix(c(
p.Schooling[-3] - 1/3, p.Abortion[-3] - 1/3,
p[1, 1] * p[2, 2] / p[2, 1] / p[1, 2] - 209 * 126 / 151 / 101,

```
```

 p[1, 2] * p[2, 3] / p[2, 2] / p[1, 3] - 101 * 426 / 126 / 237,
 p[2, 1] * p[3, 2] / p[3, 1] / p[2, 2] - 151 * 21 / 16 / 126,
 p[2, 2] * p[3, 3] / p[3, 2] / p[2, 3] - 126 * 138 / 21 / 426
))
 }
b <- mph.fit(y = d$count, h.fct = h.fct)
ystar <- b$m * 300 / sum(b$m)
matrix(round(ystar, 1), 3, 3, byrow = TRUE)
x <- c(rep(33, 8), 36)
b <- mph.fit(y = x, h.fct = h.fct)
ystar <- b$m
matrix(round(ystar, 1), 3, 3, byrow = TRUE)

EXAMPLE 10. Cumulative Logit Model.

Data Source: Table 7.19, Agresti, 306:2002.

y <- Y ~ MP(gamma, p | strata = Therapy * Gender, fixed = "all");

i.e. Y ~ prod multinomial.

Here, y[i, j, k] is the cross-classification count corresponding to

Therapy = i, Gender = j, Response = k.

The table probabilities are defined as

p[i, j, k] = P(Response = k | Therapy = i, Gender = j).

Goal: Fit the cumulative logit proportional odds model that includes

the main effect of Therapy and Gender.

d <- data.frame(Therapy = c("Sequential", "Sequential", "Sequential", "Sequential",
"Sequential", "Sequential", "Sequential", "Sequential",
"Alternating", "Alternating", "Alternating", "Alternating",
"Alternating", "Alternating", "Alternating", "Alternating"),
Gender = c("Male", "Male", "Male", "Male", "Female", "Female",
"Female", "Female", "Male", "Male", "Male", "Male",
"Female", "Female", "Female", "Female"),
Response = c("Progressive", "NoChange", "Partial", "Complete",
"Progressive", "NoChange", "Partial", "Complete",
"Progressive", "NoChange", "Partial", "Complete",
"Progressive", "NoChange", "Partial", "Complete"),
count = c(28, 45, 29, 26, 4, 12, 5, 2, 41, 44, 20, 20, 12, 7, 3, 1))
strata <- paste(sep = "", d$Therapy, ".", d$Gender)
d <- data.frame(d, strata)
d3 <- subset(d, Response != "Complete")
levels(d3\$Response) <- c(NA, "NoChange", "Partial", "Progressive")
L.fct <- function(p) {
p <- matrix(p, 4, 4, byrow = TRUE)

```
```

 clogit <- c()
 for (s in 1:4) {
 clogit <- c(clogit,
 log(sum(p[s, 1]) / sum(p[s, 2:4])),
 log(sum(p[s, 1:2]) / sum(p[s, 3:4])),
 log(sum(p[s, 1:3]) / sum(p[s, 4]))
)
 }
 L <- as.matrix(clogit)
 rownames(L) <- c(paste(sep = "", "log odds(R < ", 2:4, "|",
 d3$strata, ")"))
 L
 }
a <- mph.fit(d\$count, link = L.fct,
X = model.matrix(~ -1 + Response + Therapy + Gender,
data = d3),
strata = strata)

Fit the related non-proportional odds cumulative logit model

b <- mph.fit(d\$count, link = L.fct,
X = model.matrix(~ Response + Response * Therapy +
Response * Gender - 1 - Therapy - Gender,
data = d3),
strata = strata)
mph.summary(a, TRUE)
mph.summary(b, TRUE)

```
mph. summary Summary Statistics of the Fitted MPH Model

\section*{Description}

Computes and prints a collection of summary statistics of the fitted MPH model.
This function is used in conjunction with the ML fitting function mph.fit.

\section*{Usage}
mph.summary(mph.out, cell.stats = FALSE, model.info = FALSE, digits = 4)

\section*{Arguments}
\begin{tabular}{ll} 
mph.out & Result of mph.fit. \\
cell.stats & \begin{tabular}{l} 
Logical variable indicating whether cell specific statistics are to be output. De- \\
fault: cell.stats = FALSE.
\end{tabular} \\
model.info & \begin{tabular}{l} 
Logical variable indicating whether model information is to be output. Default: \\
model.info = FALSE.
\end{tabular} \\
digits & \begin{tabular}{l} 
Integer giving output precision; used in the round() function.
\end{tabular}
\end{tabular}

\section*{Value}

NULL

\section*{Author(s)}

Joseph B. Lang

\section*{References}

Lang, J. B. (2004) Multinomial-Poisson homogeneous models for contingency tables, Annals of Statistics, 32, 340-383.
Lang, J. B. (2005) Homogeneous linear predictor models for contingency tables, Journal of the American Statistical Association, 100, 121-134.

\section*{See Also}
mph.fit
nested_Gsq_nr \(\quad\) Nested G-Squared Statistic Based CIs (Non-Robust)

\section*{Description}

Constructs confidence intervals (CIs), based on the nested \(G^{2}\) statistic, for estimands in contingency tables subject to equality constraints.
The program may stop because of a non-convergence issue.

\section*{Usage}
nested_Gsq_nr(y, strata, fixed.strata, h0.fct, h0.fct.deriv, S0.fct, S0.fct.deriv, max.mph.iter, step, change.step.after, y.eps, iter.orig, norm.diff.conv, norm.score.conv, max.score.diff.iter, S.space.H0, tol.psi, tol, max.iter, cut.off, delta)

\section*{Arguments}
y Observed table counts in the contingency table(s), in vector form.
strata Vector of the same length as y that gives the stratum membership identifier.
fixed.strata The object that gives information on which stratum (strata) has (have) fixed sample sizes.
h0.fct The constraint function \(h_{0}(\cdot)\) with respect to \(m\), where \(m=E(Y)\), the vector of expected table counts.
h0.fct.deriv The \(R\) function object that computes analytic derivative of the transpose of the constraint function \(h_{0}(\cdot)\) with respect to \(m\). If h 0 .fct. deriv is not specified or h0.fct. deriv = NULL, numerical derivatives will be used.
```

S0.fct The estimand function S S () with respect to m.
S0.fct.deriv The R function object that computes analytic derivative of the estimand function
S0}(\cdot)\mathrm{ with respect to m. If S0.fct.deriv is not specified or S0.fct.deriv =
NULL, numerical derivatives will be used.
max.mph.iter, step, change.step.after, y.eps, iter.orig, norm.diff.conv, norm.score.conv, max.score.dif
The parameters used in mph.fit.
S.space.H0 Restricted estimand space of S(\cdot) under H0, i.e. subject to the imposed equality
constraints along with sampling constraints.
tol.psi, tol, max.iter
The parameters used in the three stopping criteria in solving for the roots to the
test-inversion equation.
cut.off qchisq(cc,1). i.e. The chi-square cutoff, with 1 df, based on the significance
level 1-cc.
delta The constant }\delta\mathrm{ that is in expressions of the moving critical values within each
sliding quadratic step.

```

\section*{Value}

Provided that nested_Gsq_nr does not stop, it returns a 1-by-2 matrix which displays two endpoints of the confidence interval based on the nested \(G^{2}\) statistic.

\section*{Author(s)}

Qiansheng Zhu

\section*{References}

Zhu, Q. (2020) "On improved confidence intervals for parameters of discrete distributions." PhD dissertation, University of Iowa.

\section*{See Also}
```

nested_Gsq_nr, f.psi, ci.table

```
nested_Gsq_robust \(\quad\) Nested G-Squared Statistic Based CIs (Robust)

\section*{Description}

Constructs confidence intervals (CIs), based on the nested \(G^{2}\) statistic, for estimands in contingency tables subject to equality constraints.

\section*{Usage}
```

nested_Gsq_robust(y, strata, fixed.strata, h0.fct, h0.fct.deriv,
S0.fct, S0.fct.deriv, max.mph.iter, step,
change.step.after, y.eps, iter.orig, norm.diff.conv,
norm.score.conv, max.score.diff.iter, S.space.H0,
tol.psi, tol, max.iter, cut.off, delta, adj.epsilon,
iter.robust.max, iter.robust.eff)

```

\section*{Arguments}
\begin{tabular}{|c|c|}
\hline y & Observed table counts in the contingency table(s), in vector form. \\
\hline strata & Vector of the same length as y that gives the stratum membership identifier. \\
\hline fixed.strata & The object that gives information on which stratum (strata) has (have) fixed sample sizes. \\
\hline h0.fct & The constraint function \(h_{0}(\cdot)\) with respect to \(m\), where \(m=E(Y)\), the vector of expected table counts. \\
\hline h0.fct.deriv & The \(R\) function object that computes analytic derivative of the transpose of the constraint function \(h_{0}(\cdot)\) with respect to \(m\). If h0.fct. deriv is not specified or h0.fct. deriv = NULL, numerical derivatives will be used. \\
\hline S0.fct & The estimand function \(S_{0}(\cdot)\) with respect to \(m\). \\
\hline s0.fct.deriv & The \(R\) function object that computes analytic derivative of the estimand function \(S_{0}(\cdot)\) with respect to \(m\). If S0.fct. deriv is not specified or S0.fct. deriv= NULL, numerical derivatives will be used. \\
\hline max.mph.iter, & tep, change.step.after, y.eps, iter.orig, norm.diff.conv, norm.score The parameters used in mph.fit. \\
\hline S.space.H0 & Restricted estimand space of \(S(\cdot)\) under \(H_{0}\), i.e. subject to the imposed equality constraints along with sampling constraints. \\
\hline \multicolumn{2}{|l|}{tol.psi, tol, max.iter} \\
\hline & The parameters used in the three stopping criteria in solving for the roots to the test-inversion equation. \\
\hline cut.off & qchisq( \(c c, 1\) ). i.e. The chi-square cutoff, with 1 df , based on the significance level 1-cc. \\
\hline delta & The constant \(\delta\) that is in expressions of the moving critical values within each sliding quadratic step. \\
\hline \multicolumn{2}{|l|}{adj.epsilon, iter.robust.max, iter.robust.eff} \\
\hline
\end{tabular}

The parameters used in the robustifying procedure.

\section*{Value}
nested_Gsq_robust returns a list, which includes two objects. The first object is a 1-by-2 matrix which displays two endpoints of the confidence interval based on the nested \(G^{2}\) statistic. For the second object, it includes the warning message that occurs during construction of the confidence interval if the robustifying procedure is evoked: "nested.Gsq.CI: Adjustment used. Not on original data. \(\backslash n\) ". If the robustifying procedure is not evoked, the second object is NULL.

\section*{Author(s)}

Qiansheng Zhu

\section*{References}

Zhu, Q. (2020) "On improved confidence intervals for parameters of discrete distributions." PhD dissertation, University of Iowa.

\section*{See Also}
```

nested_Gsq_nr, f.psi, ci.table

```
```

nested_PD_nr
Nested Power-Divergence Statistic Based CIs (Non-Robust)

```

\section*{Description}

Constructs confidence intervals (CIs), based on the nested power-divergence statistic, for estimands in contingency tables subject to equality constraints.
The program may stop because of a non-convergence issue.

\section*{Usage}
nested_PD_nr(y, strata, fixed.strata, h0.fct, h0.fct.deriv, S0.fct, S0.fct.deriv, max.mph.iter, step, change.step.after, y.eps, iter.orig, norm.diff.conv, norm.score.conv, max.score.diff.iter, S.space.H0, tol.psi, tol, max.iter, cut.off, delta, pdlambda)

\section*{Arguments}
\(y \quad\) Observed table counts in the contingency table(s), in vector form.
strata Vector of the same length as y that gives the stratum membership identifier.
fixed.strata The object that gives information on which stratum (strata) has (have) fixed sample sizes.
h0.fct The constraint function \(h_{0}(\cdot)\) with respect to \(m\), where \(m=E(Y)\), the vector of expected table counts.
h0.fct.deriv The \(R\) function object that computes analytic derivative of the transpose of the constraint function \(h_{0}(\cdot)\) with respect to \(m\). If h 0 . fct. deriv is not specified or h0.fct. deriv = NULL, numerical derivatives will be used.
S0.fct The estimand function \(S_{0}(\cdot)\) with respect to \(m\).
S0.fct.deriv The R function object that computes analytic derivative of the estimand function \(S_{0}(\cdot)\) with respect to \(m\). If S0.fct. deriv is not specified or S0.fct. deriv= NULL, numerical derivatives will be used.
```

max.mph.iter, step, change.step.after, y.eps, iter.orig, norm.diff.conv, norm.score.conv, max.score.dif The parameters used in mph.fit.
S.space.H0 Restricted estimand space of $S(\cdot)$ under H_{0}, i.e. subject to the imposed equality constraints along with sampling constraints.
tol.psi, tol, max.iter
The parameters used in the three stopping criteria in solving for the roots to the test-inversion equation.
cut.off qchisq(cc,1). i.e. The chi-square cutoff, with 1 df , based on the significance level 1-cc.
delta The constant δ that is in expressions of the moving critical values within each sliding quadratic step.
pdlambda The index parameter λ in the power-divergence statistic.

```

\section*{Value}

Provided that nested_PD_nr does not stop, it returns a 1-by-2 matrix which displays two endpoints of the confidence interval based on the nested power-divergence statistic.

\section*{Author(s)}

Qiansheng Zhu

\section*{References}

Zhu, Q. (2020) "On improved confidence intervals for parameters of discrete distributions." PhD dissertation, University of Iowa.
```

See Also
nested_PD_robust, f.psi, ci.table

```
nested_PD_robust Nested Power-Divergence Statistic Based CIs (Robust)

\section*{Description}

Constructs confidence intervals (CIs), based on the nested power-divergence statistic, for estimands in contingency tables subject to equality constraints.

\section*{Usage}
nested_PD_robust(y, strata, fixed.strata, h0.fct, h0.fct.deriv, S0.fct, S0.fct.deriv, max.mph.iter, step, change.step.after, y.eps, iter.orig, norm.diff.conv, norm.score.conv, max.score.diff.iter, S.space.H0, tol.psi, tol, max.iter, cut.off, delta, pdlambda, adj.epsilon, iter.robust.max, iter.robust.eff)

\section*{Arguments}

\section*{Value}
nested_PD_robust returns a list, which includes two objects. The first object is a 1-by-2 matrix which displays two endpoints of the confidence interval based on the nested power-divergence statistic. For the second object, it includes the warning message that occurs during construction of the confidence interval if the robustifying procedure is evoked: "nested.PD.CI: Adjustment used. Not on original data. \n". If the robustifying procedure is not evoked, the second object is NULL.

\section*{Author(s)}

Qiansheng Zhu

\section*{References}

Zhu, Q. (2020) "On improved confidence intervals for parameters of discrete distributions." PhD dissertation, University of Iowa.

\section*{See Also}
```

 nested_PD_nr,f.psi,ci.table
    ```
```

nested_Xsq_nr Nested X-Squared Statistic Based CIs (Non-Robust)

```

\section*{Description}

Constructs confidence intervals (CIs), based on the nested \(X^{2}\) statistic, for estimands in contingency tables subject to equality constraints.
The program may stop because of a non-convergence issue.

\section*{Usage}
nested_Xsq_nr(y, strata, fixed.strata, h0.fct, h0.fct.deriv, S0.fct, S0.fct.deriv, max.mph.iter, step, change.step.after, y.eps, iter.orig, norm.diff.conv, norm.score.conv, max.score.diff.iter, S.space.H0, tol.psi, tol, max.iter, cut.off, delta)

\section*{Arguments}
\(y \quad\) Observed table counts in the contingency table(s), in vector form.
strata Vector of the same length as y that gives the stratum membership identifier.
fixed.strata The object that gives information on which stratum (strata) has (have) fixed sample sizes.
h0.fct The constraint function \(h_{0}(\cdot)\) with respect to \(m\), where \(m=E(Y)\), the vector of expected table counts.
h0.fct.deriv The \(R\) function object that computes analytic derivative of the transpose of the constraint function \(h_{0}(\cdot)\) with respect to \(m\). If h0.fct. deriv is not specified or h0.fct. deriv \(=\) NULL, numerical derivatives will be used.
S0.fct The estimand function \(S_{0}(\cdot)\) with respect to \(m\).
S0.fct.deriv The R function object that computes analytic derivative of the estimand function \(S_{0}(\cdot)\) with respect to \(m\). If S0.fct. deriv is not specified or S0.fct. deriv= NULL, numerical derivatives will be used.
max.mph.iter, step, change.step.after, y.eps, iter.orig, norm.diff.conv, norm.score.conv, max.score.dif The parameters used in mph.fit.
S. space. H0 Restricted estimand space of \(S(\cdot)\) under \(H_{0}\), i.e. subject to the imposed equality constraints along with sampling constraints.
tol.psi, tol, max.iter
The parameters used in the three stopping criteria in solving for the roots to the test-inversion equation.
cut.off qchisq(cc,1). i.e. The chi-square cutoff, with 1 df , based on the significance level 1-cc.
delta The constant \(\delta\) that is in expressions of the moving critical values within each sliding quadratic step.

Value
Provided that nested_Xsq_nr does not stop, it returns a 1-by-2 matrix which displays two endpoints of the confidence interval based on the nested \(X^{2}\) statistic.

\section*{Author(s)}

Qiansheng Zhu

\section*{References}

Zhu, Q. (2020) "On improved confidence intervals for parameters of discrete distributions." PhD dissertation, University of Iowa.

\section*{See Also}
nested_Xsq_nr, f.psi, ci.table
```

nested_Xsq_robust Nested X-Squared Statistic Based CIs (Robust)

```

\section*{Description}

Constructs confidence intervals (CIs), based on the nested \(X^{2}\) statistic, for estimands in contingency tables subject to equality constraints.

\section*{Usage}
\[
\begin{aligned}
& \text { nested_Xsq_robust(y, strata, fixed.strata, h0.fct, h0.fct.deriv, } \\
& \\
& \text { S0.fct, S0.fct.deriv, max.mph.iter, step, } \\
& \\
& \text { change.step.after, y.eps, iter.orig, norm.diff.conv, } \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \text { tol.psi.score.conv, max.score.diff.iter, S.space.H0, max.iter, cut.off, delta, adj.epsilon, } \\
& \text { iter. }
\end{aligned}
\]

\section*{Arguments}
\(y \quad\) Observed table counts in the contingency table(s), in vector form.
strata Vector of the same length as y that gives the stratum membership identifier.
fixed.strata The object that gives information on which stratum (strata) has (have) fixed sample sizes.
h0.fct The constraint function \(h_{0}(\cdot)\) with respect to \(m\), where \(m=E(Y)\), the vector of expected table counts.
h0.fct.deriv The R function object that computes analytic derivative of the transpose of the constraint function \(h_{0}(\cdot)\) with respect to \(m\). If h0.fct. deriv is not specified or h0. fct. deriv = NULL, numerical derivatives will be used.
S0.fct The estimand function \(S_{0}(\cdot)\) with respect to \(m\).
```

S0.fct.deriv The R function object that computes analytic derivative of the estimand function
S0}(\cdot)\mathrm{ with respect to m. If S0.fct.deriv is not specified or S0.fct.deriv =
NULL, numerical derivatives will be used.
max.mph.iter, step, change.step.after, y.eps, iter.orig, norm.diff.conv, norm.score.conv, max.score.dif
The parameters used in mph.fit.
S.space.H0 Restricted estimand space of S(\cdot) under H0, i.e. subject to the imposed equality
constraints along with sampling constraints.
tol.psi, tol, max.iter
The parameters used in the three stopping criteria in solving for the roots to the
test-inversion equation.
cut.off qchisq(cc,1). i.e. The chi-square cutoff, with 1 df, based on the significance
level 1-cc.
delta The constant }\delta\mathrm{ that is in expressions of the moving critical values within each
sliding quadratic step.
adj.epsilon, iter.robust.max, iter.robust.eff
The parameters used in the robustifying procedure.

```

\section*{Value}
nested_Xsq_robust returns a list, which includes two objects. The first object is a 1-by-2 matrix which displays two endpoints of the confidence interval based on the nested \(X^{2}\) statistic. For the second object, it includes the warning message that occurs during construction of the confidence interval if the robustifying procedure is evoked: "nested.Xsq.CI: Adjustment used. Not on original data. \(\backslash n "\). If the robustifying procedure is not evoked, the second object is NULL.

\section*{Author(s)}

Qiansheng Zhu

\section*{References}

Zhu, Q. (2020) "On improved confidence intervals for parameters of discrete distributions." PhD dissertation, University of Iowa.

\author{
See Also \\ nested_Xsq_nr, f.psi, ci.table
}
```

num.deriv.fct Numerical Derivatives Based on Central Difference Formula

```

\section*{Description}

Computes the numerical derivative of the transpose of the vector-valued function \(f\) evaluated at the point \(m\), based on the central difference formula.
If \(f\) is a mapping from \(R^{p}\) to \(R^{q}\), then the result is a \(p\)-by- \(q\) matrix. i.e. The result is an approximation to \(\partial f^{\prime}(m) / \partial m\).

\section*{Usage}
num.deriv.fct(f.fct, m)

\section*{Arguments}
f. fct An R function object that defines a vector-valued function \(f\).
m
A vector, indicating the point \(m\) at which the numerical derivative is to be computed.

\section*{Value}
num. deriv.fct returns a matrix, which is the numerical derivative of the transpose of the function \(f\) evaluated at \(m\).

\section*{Author(s)}

Joseph B. Lang

\section*{Examples}
```


Let x = (x[1], x[2], x[3])', and

f(x) = (x[1]^3 - 2 * x[2] + 1, sin(x[1] * x[3]), log(x[2] + x[3]))'.

Approximate d f^{T}(x) / d x at x = (1, 2, 3)'.

The true value of the derivative is

[3 3cos(3) 0

-2 0 0.2

0 cos(3) 0.2].

f.fct <- function(x) {
c(x[1]^3 - 2 * x[2] + 1,
sin(x[1] * x[3]),
log(x[2] + x[3]))
}
num.deriv.fct(f.fct, c(1, 2, 3))

```
```

quadratic.fit Quadratic Fit

```

\section*{Description}

Fits a quadratic curve that passes all three points on the two-dimensional Euclidean space \(R^{2}\).
If the design matrix \(X\) of the quadratic fit has a condition number which is greater than \(10^{8}\), a linear regression line is fitted to the three points instead.

\section*{Usage}
quadratic.fit(x, y)

\section*{Arguments}
\(\mathrm{x} \quad\) A vector of length three, which represents the \(x\)-values of the three points.
\(\mathrm{y} \quad\) A vector of length three, which represents the \(y\)-values of the three points.

\section*{Value}
quadratic. fit returns a vector of length three. The first, second, and third elements of the returned vector are the second degree, first degree, and zero-th degree coefficients, respectively, of the fitted quadratic curve, or of the fitted linear regression line.

\section*{Author(s)}

Qiansheng Zhu

\section*{See Also}
solve_quadratic

\section*{Examples}
```


Three points: (0, 1), (1, 0), (3, 4).

quadratic.fit(c(0, 1, 3), c(1, 0, 4))

```
solve_quadratic Solve for Real Root(s) to the Quadratic Equation

\section*{Description}

Solves for real-valued roots to the quadratic equation \(a x^{2}+b x+c=0\).

\section*{Usage}
solve_quadratic(a, b, c)

\section*{Arguments}
\(\mathrm{a}, \mathrm{b}, \mathrm{c} \quad\) Coefficients in the quadratic equation \(a x^{2}+b x+c=0\).

\section*{Value}
solve_quadratic returns a list, which includes the following two objects:
flag Indicates the number of distinct real roots to the quadratic equation. It can be one of "infinite", "none", "one", or "two".

X
Real root(s) to the quadratic equation. If flag = "infinite", we simply write \(x=0\); If flag = "none", we write \(x=\) NA.

\section*{Author(s)}

Qiansheng Zhu

\section*{See Also}
quadratic.fit

\section*{Examples}
```

solve_quadratic(1, 2, 1)
solve_quadratic(1, 2, 2)
solve_quadratic(0, 2, 1)

```
```

Wald_trans.Wald_nr Wald-Type CIs (Non-Robust)

```

\section*{Description}

Constructs non-transformed and transformed (if the transformation \(g\) is specified) Wald confidence intervals (CIs) for estimands in contingency tables subject to equality constraints.
The program may stop because of a non-convergence issue.

\section*{Usage}
```

Wald_trans.Wald_nr(y, strata, fixed.strata, h0.fct, h0.fct.deriv,
S0.fct, S0.fct.deriv, max.mph.iter, step,
change.step.after, y.eps, iter.orig, norm.diff.conv,
norm.score.conv, max.score.diff.iter, cut.off,
S.space.H0, trans.g, trans.g.deriv, trans.g.inv)

```

\section*{Arguments}
\begin{tabular}{ll} 
y & Observed table counts in the contingency table(s), in vector form. \\
strata & \begin{tabular}{l} 
Vector of the same length as y that gives the stratum membership identifier. \\
fixed.strata
\end{tabular} \\
h0.fct & \begin{tabular}{l} 
The object that gives information on which stratum (strata) has (have) fixed \\
sample sizes.
\end{tabular} \\
h0.fct.deriv & \begin{tabular}{l} 
The constraint function \(h_{0}(\cdot)\) with respect to \(m\), where \(m=E(Y)\), the vector \\
of expected table counts.
\end{tabular} \\
The R function object that computes analytic derivative of the transpose of the \\
constraint function \(h_{0}(\cdot)\) with respect to \(m\). If h0.fct. deriv is not specified or \\
h0.fct. deriv = NULL, numerical derivatives will be used.
\end{tabular}
```

max.mph.iter, step, change.step.after, y.eps, iter.orig, norm.diff.conv, norm.score.conv, max.score.dif
The parameters used in mph.fit.
cut.off qchisq(cc,1). i.e. The chi-square cutoff, with 1 df, based on the significance
level 1-cc.
S.space.H0 Restricted estimand space of S(\cdot) under H0, i.e. subject to the imposed equality
constraints along with sampling constraints.
trans.g The transformation g}\mathrm{ used in the transformed Wald confidence interval.
trans.g.deriv The derivative function of the transformation g, i.e. }dg(w)/dw. If it is specified
it should be an R function, even if the derivative function is a constant function.
trans.g.inv g g
Wald confidence interval.

```

\section*{Value}

Provided that Wald_trans. Wald_nr does not stop,
- either it returns a 1-by-2 matrix which displays two endpoints of the non-transformed Wald confidence interval, if the transformation \(g\) is not specified;
- or it returns a 2-by-2 matrix, whose first row displays two endpoints of the non-transformed Wald confidence interval, and whose second row displays two endpoints of the transformed Wald confidence interval, if the transformation \(g\) is specified.

\section*{Author(s)}

Qiansheng Zhu

\section*{References}

Zhu, Q. (2020) "On improved confidence intervals for parameters of discrete distributions." PhD dissertation, University of Iowa.

\section*{See Also}

Wald_trans.Wald_robust, f.psi, ci.table
```

Wald_trans.Wald_robust

```

\section*{Description}

Constructs non-transformed and transformed (if the transformation \(g\) is specified) Wald confidence intervals (CIs) for estimands in contingency tables subject to equality constraints.
```

Usage
Wald_trans.Wald_robust(y, strata, fixed.strata, h0.fct, h0.fct.deriv, S0.fct, S0.fct.deriv, max.mph.iter, step, change.step.after, y.eps, iter.orig, norm.diff.conv, norm.score.conv, max.score.diff.iter, cut.off, S.space.H0, trans.g, trans.g.deriv, trans.g.inv, adj.epsilon, iter.robust.max, iter.robust.eff)

```

\section*{Arguments}
\(y \quad\) Observed table counts in the contingency table(s), in vector form.
strata Vector of the same length as \(y\) that gives the stratum membership identifier.
fixed.strata The object that gives information on which stratum (strata) has (have) fixed
sample sizes.
h0.fct The constraint function \(h_{0}(\cdot)\) with respect to \(m\), where \(m=E(Y)\), the vector
of expected table counts.
h0.fct.deriv The \(R\) function object that computes analytic derivative of the transpose of the
constraint function \(h_{0}(\cdot)\) with respect to \(m\). If h0.fct. deriv is not specified or
h0. fct. deriv \(=\) NULL, numerical derivatives will be used.
S0.fct The estimand function \(S_{0}(\cdot)\) with respect to \(m\).
S0.fct.deriv The R function object that computes analytic derivative of the estimand function
\(S_{0}(\cdot)\) with respect to \(m\). If S0.fct. deriv is not specified or S0.fct. deriv=
NULL, numerical derivatives will be used.
max.mph.iter, step, change.step.after, y.eps, iter.orig, norm.diff.conv, norm.score.conv, max.score.dif
The parameters used in mph.fit.
cut.off qchisq(cc,1). i.e. The chi-square cutoff, with 1 df , based on the significance
level 1-cc.
S.space.H0 Restricted estimand space of \(S(\cdot)\) under \(H_{0}\), i.e. subject to the imposed equality
constraints along with sampling constraints.
trans.g The transformation \(g\) used in the transformed Wald confidence interval.
trans.g.deriv The derivative function of the transformation \(g\), i.e. \(d g(w) / d w\). If it is specified,
it should be an \(R\) function, even if the derivative function is a constant function.
trans.g.inv \(\quad g^{-1}\) function used in back-transformation step in construction of the transformed
Wald confidence interval.
adj.epsilon, iter. robust.max, iter. robust.eff
The parameters used in the robustifying procedure.

\section*{Value}

Wald_trans. Wald_robust returns a list, which includes two objects. The first object is
- either a 1-by-2 matrix which displays two endpoints of the non-transformed Wald confidence interval, if the transformation \(g\) is not specified;
- or a 2-by-2 matrix, whose first row displays two endpoints of the non-transformed Wald confidence interval, and whose second row displays two endpoints of the transformed Wald confidence interval, if the transformation \(g\) is specified.

For the second object, it includes the warning message that occurs during construction of the confidence interval(s) if the robustifying procedure is evoked: "Wald. CI: Adjustment used. Not on original data. \(\backslash n\) ", or "Wald.CI and trans.Wald.CI: Adjustment used. Not on original data. \(\backslash n "\). If the robustifying procedure is not evoked, the second object is NULL.

\section*{Author(s)}

Qiansheng Zhu

\section*{References}

Zhu, Q. (2020) "On improved confidence intervals for parameters of discrete distributions." PhD dissertation, University of Iowa.

\section*{See Also}

Wald_trans.Wald_nr, f.psi, ci.table

\section*{Index}
```

* algebra
block.fct, 3
* array
block.fct, 3
* htest
ci.table, }
compute_cons_MLE_ase, 23
diff_Gsq_nr, 26
diff_Gsq_robust, 27
diff_PD_nr, 29
diff_PD_robust, 30
diff_Xsq_nr, 32
diff_Xsq_robust,33
f.psi, }3
mph.fit, 38
mph.summary, 56
nested_Gsq_nr, 57
nested_Gsq_robust,58
nested_PD_nr,60
nested_PD_robust,61
nested_Xsq_nr,63
nested_Xsq_robust,64
Wald_trans.Wald_nr, 68
Wald_trans.Wald_robust, }6
* math
create.U,24
num.deriv.fct,65
quadratic.fit,66
solve_quadratic,67
block.fct, 3
check.HLP, 4, 7, 8
check.homog, 5, 6, 8
check.zero.order.homog, 5, 7, 7
ci.table, 2, 8, 24, 27, 28, 30, 31, 33, 34, 36,
58, 60, 61, 63-65, 69, 71
compute_cons_MLE_ase, 23
create.U, 24,47
create.Z.ZF, 25,47

```
cta-package, 2
diff_Gsq_nr, 26, 28, 36
diff_Gsq_robust, 27, 27, 36
diff_PD_nr, 29, 31, 36
diff_PD_robust, 30, 30, 36
diff_Xsq_nr, 32, 34, 36
diff_Xsq_robust, 33, 33, 36
f.psi, 27, 28, 30, 31, 33, 34, 34, 58, 60, 61, 63-65, 69, 71
M.fct, 37
mph.fit, 2, 5, 7, 14, 24, 25, 38, 57
mph. summary, 14, 47, 56
nested_Gsq_nr, 36, 57, 58, 60
nested_Gsq_robust, 36,58
nested_PD_nr, 36, 60, 63
nested_PD_robust, 36, 61, 61
nested_Xsq_nr, 36, 63, 64, 65
nested_Xsq_robust, 36, 64
num.deriv.fct, 47, 65
quadratic.fit, 66, 68
solve_quadratic, 67,67
Wald_trans.Wald_nr, 68, 71
Wald_trans.Wald_robust, 69, 69```

