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Abstract

Log-linear models, when applied to frequencies in a multiway table, describe
associations among categorical variables (factors) that define the dimensions of
the table. The R package cvam fits log-linear models to factors that may have
missing and coarsened values, including latent-class models. This document
provides a quick review of log-linear models and explains cvam’s modeling func-
tions with examples. We assume the reader understands basic ideas of factors
and coarsened factors, as described in the separate document Understanding
Coarsened Factors in cvam.
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2 Storing and manipulating categorical data

1 Introduction

In the companion document Understanding Coarsened Factors in cvam, we introduced
a new class of R objects for storing categorical variables with coarsened values, but
said little about how or why they ought to be used. In this present document, we
show how to model relationships among categorical variables using functions in the
cvam package. These functions were designed with coarsened factors in mind, but
they also accept ordinary factors with or without missing values.

Before diving in to the specifics of cvam, we give some background material to
show how log-linear models work with complete data. In Section 2, we review four
different types of objects for storing categorical variables and show how to convert
data from one format to another. Section 3 gives a quick overview of log-linear
modeling in the complete-data case, establishing the notation and assumptions. The
remaining sections cover the special cvam functions and object classes, with examples
using datasets distributed with the package. Technical details of the computational
methods are provided in the appendices.

2 Storing and manipulating categorical data

2.1 Multidimensional contingency tables

Contingency tables are arrays of frequencies that result from classifying individuals
or sample units by one or more categorical factors. Each dimension of the array
corresponds to a factor. In R, a contingency table object has a class attribute of
"table" or c("xtabs", "table"), depending on which function (table or xtabs)
created it.

A well known example of a contingency table pertaining to gender bias in graduate
admissions was published by Bickel et al. (1975). The 2×2×6 table UCBAdmissions,
distributed with R as part of the datasets package, classifies 4,526 applicants to U.C.
Berkeley by admission status, sex, and department.

> # show the structure of the object

> str(UCBAdmissions)

'table' num [1:2, 1:2, 1:6] 512 313 89 19 353 207 17 8 120 205 ...

- attr(*, "dimnames")=List of 3

..$ Admit : chr [1:2] "Admitted" "Rejected"

..$ Gender: chr [1:2] "Male" "Female"

..$ Dept : chr [1:6] "A" "B" "C" "D" ...

> # display slices of the table corresponding to Dept "A" and "B"

> UCBAdmissions[,,1:2]
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2 Storing and manipulating categorical data

, , Dept = A

Gender

Admit Male Female

Admitted 512 89

Rejected 313 19

, , Dept = B

Gender

Admit Male Female

Admitted 353 17

Rejected 207 8

To collapse a contingency table over one or more of its dimensions and obtain marginal
frequencies, use the apply function with argument FUN=sum.

> # one-way table for Dept (dimension 3)

> apply( UCBAdmissions, 3, sum )

A B C D E F

933 585 918 792 584 714

> # two-way table for Gender x Admit (dimensions 2 and 1),

> # with chisquare test for independence

> GenderByAdmit <- apply( UCBAdmissions, c(2,1), sum )

> chisq.test( GenderByAdmit )

Pearson's Chi-squared test with Yates' continuity correction

data: GenderByAdmit

X-squared = 91.61, df = 1, p-value < 2.2e-16

Contingency tables offer compact storage when the number of factors is small, but the
number of factors grows, the size of these tables increases rapidly. High-dimensional
tables tend to be sparse, with many of the cells containing very few or no observations.

2.2 Data frame with microdata

Categorical variables may be kept as microdata, in a data frame with one row per
individual or sample unit and one column for each factor. To illustrate, we simulated
a microdata version of the U.C. Berkeley Admissions dataset with 4,526 rows and
three factors. The data frame, called microUCBAdmissions, is distributed with the
cvam package.

> library(cvam)

> # display the first few rows

> head(microUCBAdmissions)

Admit Gender Dept

1 Rejected Female C
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2 Storing and manipulating categorical data

2 Rejected Female F

3 Rejected Male D

4 Rejected Male D

5 Rejected Female E

6 Admitted Male B

Microdata can be transformed into frequency tables by the functions table or xtabs.

> dF <- microUCBAdmissions # to save typing

> # this reproduces the 3-way table UCBAdmissions

> result <- table( Admit = dF$Admit,

+ Gender = dF$Gender, Dept = dF$Dept )

> str(result)

'table' int [1:2, 1:2, 1:6] 512 313 89 19 353 207 17 8 120 205 ...

- attr(*, "dimnames")=List of 3

..$ Admit : chr [1:2] "Admitted" "Rejected"

..$ Gender: chr [1:2] "Male" "Female"

..$ Dept : chr [1:6] "A" "B" "C" "D" ...

> all.equal( result, UCBAdmissions )

[1] TRUE

> # do the same thing with xtabs, which accepts formula notation

> result <- xtabs( ~ Admit + Gender + Dept, data=microUCBAdmissions )

For this example, the microdata object is much larger than the contingency table,
but that is not always the case. Microdata may be more compact when the number
of factors is large, because combinations of factor levels that do not occur in the
sample are absent. Microdata files may also include variables that are continuously
distributed, which may be impractical for contingency-table storage unless they are
first binned into factors with a small number of levels.

2.3 Data frame with grouped data

In the grouped data frame format, units having identical values for all variables are
collapsed into a single row of the data frame, and another variable is added to record
frequencies. A grouped data frame can be produced from a table or xtabs object
using as.data.frame

> result <- as.data.frame(UCBAdmissions)

> head(result)

Admit Gender Dept Freq

1 Admitted Male A 512

2 Rejected Male A 313

3 Admitted Female A 89

4 Rejected Female A 19

5 Admitted Male B 353

6 Rejected Male B 207
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2 Storing and manipulating categorical data

The result from as.data.frame has one row for each cell in the table, including the
empty cells.

To convert microdata to grouped data, use the aggregate function.

> # create a Freq variable and fill it with ones

> microUCBAdmissions$Freq <- 1

> # use aggregate to sum the Freq variable within categories of

> # Admit, Gender, and Dept

> result <- aggregate( Freq ~ Admit + Gender + Dept,

+ data=microUCBAdmissions, FUN=sum )

> head(result)

Admit Gender Dept Freq

1 Admitted Male A 512

2 Rejected Male A 313

3 Admitted Female A 89

4 Rejected Female A 19

5 Admitted Male B 353

6 Rejected Male B 207

The grouped data frame has one row for each unique combination of the grouping
factors (i.e., the variables on the right-hand side of the formula) that appear in the
microdata.

When using aggregate, it is important to keep two behaviors in mind.

� The resulting data frame does not include empty cells. Conventional log-linear
modeling with glm, which we will demonstrate in Section 3, requires a data
frame that includes rows for the empty cells with frequencies of zero. To in-
clude the empty cells, process the microdata with table or xtabs followed by
as.data.frame.

� By default, rows of the microdata frame that contain missing values are dropped
from the result. A primary reason for using cvam is that it will allow us to
fit log-linear models to all records, including those with missing or coarsened
values.

2.4 Flat tables

Flat tables, produced by ftable, are two-dimensional representations of contingency
tables that are convenient for display and publication. They can be created from
contingency tables and from microdata. Some examples are shown below.

> # from a table, specifying the row and column variables

> ftable( UCBAdmissions, row.vars=c("Dept","Gender"), col.vars="Admit")
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2 Storing and manipulating categorical data

Admit Admitted Rejected

Dept Gender

A Male 512 313

Female 89 19

B Male 353 207

Female 17 8

C Male 120 205

Female 202 391

D Male 138 279

Female 131 244

E Male 53 138

Female 94 299

F Male 22 351

Female 24 317

> # from microdata, using a formula interface

> ftable( Admit ~ Dept + Gender, data=microUCBAdmissions )

Admit Admitted Rejected

Dept Gender

A Male 512 313

Female 89 19

B Male 353 207

Female 17 8

C Male 120 205

Female 202 391

D Male 138 279

Female 131 244

E Male 53 138

Female 94 299

F Male 22 351

Female 24 317

> # with one row variable and two column variables

> ftable( UCBAdmissions, row.vars=c("Dept"),

+ col.vars=c("Gender","Admit"))

Gender Male Female

Admit Admitted Rejected Admitted Rejected

Dept

A 512 313 89 19

B 353 207 17 8

C 120 205 202 391

D 138 279 131 244

E 53 138 94 299

F 22 351 24 317

> # omitted variables are summed over

> ftable( Admit ~ Gender, data=microUCBAdmissions )

Admit Admitted Rejected

Gender

Male 1198 1493

Female 557 1278

The ftable function was designed for visual displays, but not for rearranging categor-
ical data for subsequent analysis. Contributed packages for managing and reshaping
are be helpful in that regard, especially reshape2 (Wickham, 2007).
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3 Fitting log-linear models with complete data

3 Fitting log-linear models with complete data

3.1 What is a log-linear model?

Log-linear models describe relationships among the factors in a cross-classification.
Consider a pair of categorical variables A and B recorded for a sample of units. Let
a and b denote possible values for A and B, and let πab = P (A = a,B = b). If the
two variables are independent, then the relationship

πab = P (A = a) × P (B = b)

must hold for every combination of a and b. Assuming that none of the probabili-
ties are zero, independence is equivalent to saying that the log-probabilities have an
additive structure,

log πab = logP (A = a) + logP (B = b). (1)

In a manner similar to analysis of variance (ANOVA) for a two-way factorial designs,
we may decompose the log-cell probabilities as

log πab = λ + λAa + λBb + λABab , (2)

where the λ terms sum to zero over any subscript,∑
a

λAa =
∑
b

λBb =
∑
a

λABab =
∑
b

λABab = 0.

The decomposition (2) implies independence (1) if all the λABab terms are zero.

Despite the apparent similarity to ANOVA, there are some important differences.

� Two-way ANOVA involves a third variable, a response that is being predicted by
the two factors. In the log-linear model, the“response” is not a random variable,
but a set of log-probabilities defining the joint distribution of the factors. The
log-linear model is a joint model for A and B, not a model for some other
variable given A and B.

� In ANOVA, the parameter analogous to λ in Equation (2) is a grand mean, the
expected value of the response variable averaged over all cells of the design. In
the log-linear model, λ is not a parameter, but a normalizing constant chosen
to ensure that the cell probabilities πab sum to one.

� In ANOVA, the simplest model worth considering is the intercept-only model in
which all the main effects λAa and λBa and all the interactions λABab are zero. In log-
linear modeling, the simplest model worth considering includes λAa and λBa but
omits λABab . Dropping λAa and λABab would imply not only that A is independent
of B, but also that A is uniformly distributed with equal probabilities over its
levels, a model that is rarely of interest.

8 8



3 Fitting log-linear models with complete data

To avoid a proliferation of letters and subscripts, we now switch to notation that
can accommodate any number of variables. The full details of this notation are given
in Appendix A. Let V = (V1, . . . , VJ) denote a vector of J categorical variables to be
modeled, and let v = (v1, . . . , vJ) denote a possible value for V . (Throughout this
document, vectors, matrices and higher-dimensional arrays are written in boldface
type, and scalars are in lightface.) The probability that a randomly selected unit in
the population has V = v is

πv = P (V = v),

and the array of these probabilities for all possible v is denoted by π. The shape of
π depends on how the data are arranged. If the data are stored as a contingency
table, then π is a J-dimensional array whose dimensions correspond to the factors
V1, . . . , VJ . If the data are stored as a data frame with grouped observations, then π
is a vector with one element for each row of the data frame. Either way, π has the
same number of elements, assuming that the data frame includes rows for any empty
cells. Obviously, the sum of these elements over all cells, which we denote by π+,
must be equal to one.

If V1, . . . , VJ are fully observed in a random sample of N units, we can form the
contingency table of frequencies which we call f , with the same size and shape as π.
An element of f is fv. Regarding N and π as fixed, f has a multinomial distribution

f |N,π ∼ Mult(N,π). (3)

A log-linear model is an assumption that the vectorized π has the form

logπ = Xλ, (4)

where X is a known model matrix with p columns, λ = (λ1, . . . , λp) is a vector of
unknown coefficients, and ‘log π’ means taking the natural logarithm of each element
of π. In most cases, the first column of X is filled with ones, and the remaining
columns are terms for the main effects of the factors V1, . . . , VJ and the interactions
among them, the same kind of terms that would appear in a regression/ANOVA
model with V1, . . . , VJ as predictors. A more nuanced definition of a log-linear model
is given in Appendix C.

Under the multinomial distribution, the expected value of f is µ = Nπ. The
log-linear model can be written in terms of µ as

logµ = Xβ. (5)

If the first column of X is filled with ones, then β is identical to λ, except that the
first element has been shifted upward by logN . Just as the first element of λ is a
normalizing constant that ensures π+ = 1.0, the first element of β is a normalizing
constant that ensures µ+ = N .
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3 Fitting log-linear models with complete data

3.2 Fitting techniques

The most common way to fit a log-linear model is to treat it as a generalized linear
model with a Poisson response, regressing f on X with a log link (McCullagh and
Nelder, 1989; Agresti, 2013). The Poisson and multinomial models differ in certain
ways. Notably, the Poisson model regards N as a random variable, turning the first
element of β into a free parameter. Despite those differences, Poisson regression serves
as an appropriate surrogate for the multinomial model and does give correct answers,
for reasons explained in Appendix B.

In the special case where the number of columns of X and its number of rows are
equal, the model is said to be saturated. Under a saturated model, the ML estimate
is simply µ̂ = f , and (assuming there are no zeros) the coefficients can be obtained
by β̂ = X−1 log µ̂, because X is invertible. For non-saturated models, β̂ may be
computed by a Newton-Raphson (NR) procedure, also known as Fisher scoring or
iteratively reweighted least squares (McCullagh and Nelder, 1989). Details of NR are
given in Appendix D. The fitted values from the Poisson regression are µ̂ = Xβ̂. The
fitted values for the multinomial model are π̂ = N−1µ̂, and the estimated coefficients
for the multinomial model are

λ̂1 = β̂1 − logN,

λ̂k = β̂k for k = 2, . . . , p.

The estimated covariance matrix for β̂ supplied by the Poisson-regression software is
a appropriate for both β̂ and λ̂ under the Poisson model, except that the first row
and column should be ignored (i.e., set to zero), because the first element of β and λ
are normalizing constants.

An older method for fitting log-linear models, called iterative proportional fitting
(IPF), operates directly on margins of the contingency table (Bishop et al., 1975).
IPF does not use a model matrix X, so it does not provide estimated coefficients β̂
or λ̂, but the fitted values µ̂ and π̂ from IPF are identical to those that we would get
from NR, if the latter converges. IPF is more stable than NR and does not encounter
difficulty if the ML estimate is non-unique or lies on a boundary. (That stability is
not always desirable, however, because if a problem exists, many users would want to
be warned.) For some log-linear models, ML estimates are available in closed form;
these are said to be decomposable (Lauritzen, 1996). If a model is decomposable, IPF
converges after a single cycle, but NR does not. If a model is non-decomposable, IPF
tends to converge more slowly.

3.3 Model interpretation

In a log-linear model, the meaning of the coefficients in λ or β depends on the
coding scheme used to define the model matrix. These coefficients can be difficult
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3 Fitting log-linear models with complete data

to interpret, and instead of focusing on them, it is more important to understand
the model holistically in terms of the kinds of relationships among Vi1, . . . , ViJ that it
allows.

Most readers should be familiar with the formula notation used by the R functions
lm and glm. For example, Y ∼ V1 + V2 denotes a regression for predicting Y with
main effects for V1 and V2. A model with main effects and interaction terms is Y ∼
V1 + V2 + V1:V2 or, equivalently, Y ∼ V1*V2. Redundancy in a formula is not a
problem; for example, if you specify Y ∼ V1 + V2 + V1*V2, the main effects for V1

and V2 will not be included twice. Even Y ∼ V1 + V1 + V1 will not cause an error,
because R’s formula interpreter removes duplicate symbols automatically.

In this discussion, we will represent log-linear models by one-sided formulas, with
nothing on the left-hand side. By convention, we will only consider models that
are hierarchical, which means that, if an interaction among a group of variables is
present, then all main effects and lower-order interactions within the group must also
be present. For example, if we include V1:V2:V3, then we must also include V1, V2,
V3, V1:V2, V1:V3, and V2:V3. An easy way to ensure that a model is hierarchical
is to avoid ‘:’ and only use ‘*’. Using ‘*’ allows us to represent the model by
just its highest-order terms, because the lower-order terms will then be included
automatically.

Many hierarchical models can be described in terms of independence and condi-
tional independence. For example, with three variables, we may have:

� complete independence, as in ∼ V1 + V2 + V3.

� two variables independent of a third, as in ∼ V1*V2 + V3, which allows V1 and
V2 to be related, but requires them to be jointly independent of V3. Similarly
for ∼ V1*V3 + V2 and ∼ V2*V3 + V1.

� two variables conditionally independent given a third, such as∼ V1*V2 + V1*V3,
which means that V2 and V3 are unrelated at any fixed value of V1. Similarly
for ∼ V1*V2 + V2*V3 and ∼ V1*V3 + V2*V3.

� the saturated model, ∼ V1*V2*V3, which allows arbitrary relationships among
the three variables.

The only remaining hierarchical model with three variables is ∼ V1*V2 + V1*V3 +

V2*V3, the model of homogeneous association. This model requires the odds ratios
between any two variables, when conditioned on the third, to be constant across levels
of the third. For example, the odds ratios between V1 and V2 within any slice of the
table that holds V3 constant are identical across all such slices.

Multivariate models are sometimes represented graphically, with nodes corre-
sponding to variables and edges indicating relationships among them. The absence of
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3 Fitting log-linear models with complete data

edges conveys assumptions of independence and conditional independence (Lauritzen,
1996; Whittaker, 2009). Some log-linear models, e.g., the model of homogeneous as-
sociation, do not have a graphical representation. To be graphical, a model that has
all two-way associations among a group of variables must include all higher-way as-
sociations as well. For example, if a graphical model has V1*V2, V1*V3, and V2*V3,
then it must also have V1*V2*V3.

Log-linear models are also closely related to logistic regression. A logistic model
for predicting a categorical outcome from categorical covariates can be fit as a joint
log-linear model for the outcome and covariates, provided that the log-linear model
includes all possible associations among the covariates. For example, the log-linear
model represented by ∼ V1*V2*V3 + V1*V4 + V2*V3*V4 implies the logistic model
V4 ∼ V1 + V2*V3. Fitting the log-linear model can be computationally more de-
manding, because it requires estimating nuisance parameters (the associations among
the covariates) which do not appear in the logistic version. For more discussion on
the relationships between log-linear and logistic models, see Christensen (2006).

3.4 Fitting log-linear models with conventional R functions

3.4.1 Conditional odds ratios from the U.C. Berkeley admissions data

Returning to the dataset UCBAdmissions from Section 2, we now show how to fit
log-linear models using various R functions. Because these data have been analyzed
ad nauseum, we use them for demonstration purposes but will not belabor their
interpretation. To begin, we display the 2× 2 marginal table with Gender as the row
and Admit as the column and compute the marginal odds ratio.

> # display observed marginal table and odds ratio

> marg <- apply( UCBAdmissions, c(2,1), sum )

> marg

Admit

Gender Admitted Rejected

Male 1198 1493

Female 557 1278

> marg[1,1] * marg[2,2] / ( marg[2,1] * marg[1,2] )

[1] 1.84108

The value of 1.84 implies that, on the odds scale, male applicants were 84% more
likely than female applicants to gain admission to graduate school. Within levels of
Dept, however, the conditional odds ratios tell a different story.

> # display odds ratios for each department

> UCBAdmissions[1,1,] * UCBAdmissions[2,2,] /

+ ( UCBAdmissions[1,2,] * UCBAdmissions[2,1,] )

12 12



3 Fitting log-linear models with complete data

A B C D E F

0.3492120 0.8025007 1.1330596 0.9212838 1.2216312 0.8278727

Male applicants had lower odds of admission than females in departments A, B, D,
and F, and higher odds of admission than females in departments C and E. We will
examine the statistical significance of these conditional effects by comparing the fits
of three log-linear models,

M0: ∼ Dept*Gender + Dept*Admit,

M1: ∼ Dept*Gender + Dept*Admit + Gender*Admit,

M2: ∼ Dept*Gender*Admit.

Model M0 fixes the conditional odds ratio in every department at one; M1 forces the
conditional odds ratios to be equal, but does not constrain their common value; and
M2 allows the conditional odds ratios to vary. The models are nested in the sense
that M0 ⊂ M1 ⊂ M2, so we can compare them by likelihood-ratio (LR) chi-squared
tests based on their deviance statistics. The test of M0 against M1 has one degree of
freedom, because the models differ by one parameter, and the test of M1 against M2

has five degrees of freedom, because they differ by five parameters, The difference in
fit between M0 and M2 can be partitioned into six independent statistics corresponding
to tests for independence in the 2× 2 tables for each of the six departments.

3.4.2 Examples with glm

Using the Poisson trick, we regress the observed frequencies on the factors using glm

with the argument family=poisson(), which by default applies a log link. This
approach requires reshaping the contingency table into a grouped data frame.

> dF <- as.data.frame(UCBAdmissions)

> M0 <- glm( Freq ~ Dept*Gender + Dept*Admit, family=poisson(), data=dF )

> M1 <- glm( Freq ~ Dept*Gender + Dept*Admit + Gender*Admit,

+ family=poisson(), data=dF )

> M2 <- glm( Freq ~ Dept*Gender*Admit, family=poisson(), data=dF )

Instead of trying to interpret the coefficients of each model, we compute parameters
of interest from the fitted values µ̂ = Xβ̂. For each model, we put µ̂ into the data
frame, then reshape the µ̂ vector into a three-dimensional array with the factors as
its dimensions.

> dF$muHat0 <- predict(M0, type="response")

> dF$muHat1 <- predict(M1, type="response")

> dF$muHat2 <- predict(M2, type="response")

> fit0 <- xtabs( muHat0 ~ Admit + Gender + Dept, data=dF )

> fit1 <- xtabs( muHat1 ~ Admit + Gender + Dept, data=dF )

> fit2 <- xtabs( muHat2 ~ Admit + Gender + Dept, data=dF )
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3 Fitting log-linear models with complete data

Examining the fitted conditional odds ratios within departments, we see that each of
the models does what we expect.

> # under M0, the fitted conditional OR's should be 1.0:

> fit0[1,1,] * fit0[2,2,] / ( fit0[1,2,] * fit0[2,1,] )

A B C D E F

1 1 1 1 1 1

> # under M1, the fitted conditional OR's should be equal:

> fit1[1,1,] * fit1[2,2,] / ( fit1[1,2,] * fit1[2,1,] )

A B C D E F

0.904955 0.904955 0.904955 0.904955 0.904955 0.904955

> # under M2, the fitted conditional OR's should vary, and they

> # should agree with corresponding OR's based on the observed

> # frequencies, because M2 is saturated:

> fit2[1,1,] * fit2[2,2,] / ( fit2[1,2,] * fit2[2,1,] )

A B C D E F

0.3492120 0.8025007 1.1330596 0.9212838 1.2216312 0.8278727

Using anova, we display the deviance statistics for comparing M0, M1, and M2.

> anova(M0,M1,M2)

Analysis of Deviance Table

Model 1: Freq ~ Dept * Gender + Dept * Admit

Model 2: Freq ~ Dept * Gender + Dept * Admit + Gender * Admit

Model 3: Freq ~ Dept * Gender * Admit

Resid. Df Resid. Dev Df Deviance

1 6 21.735

2 5 20.204 1 1.5312

3 0 0.000 5 20.2043

The deviance statistic for testing M0 against M1 is 1.5312, which gives a p-value of
p = P (χ2

1 ≥ 1.5312) = 0.216; the common conditional odds ratio estimated across
departments is not significantly different from 1.0. The deviance for testing M1 against
M2 is 20.2043, which gives a p-value of p = P (χ2

5 ≥ 20.2043) = 0.001, so at least one
of the conditional odds ratios is significantly different from the others. To see what is
happening within the departments, we perform a separate test for independence for
each department.

> # make a list of 6 data frames, one per department

> list2x2 <- as.list(1:6)

> for( j in 1:6 ) list2x2[[j]] <- subset(dF, Dept==levels(dF$Dept)[j] )

> # function for computing deviance for LR test of independence

> # within a department

> myFunc <- function( dF ) {

+ M <- glm( Freq ~ Gender + Admit, family=poisson(), data=dF )
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3 Fitting log-linear models with complete data

+ deviance(M)

+ }

> # apply LR test to each department, returning a vector of deviances

> dev <- sapply( list2x2, myFunc )

> dev

[1] 19.0540099 0.2586429 0.7509844 0.2978665 0.9903864 0.3836167

> sum(dev)

[1] 21.73551

Notice that the sum of the deviance test statistics across departments exactly matches
the overall statistic for testing M0 against M2. The only department with a conditional
odds ratio that is significantly different from 1.0 is "A".

3.4.3 Examples with loglin

The function loglin fits log-linear models using IPF. The data are supplied as a con-
tingency table, and the model is specified not by a formula but by a list of integer vec-
tors denoting highest-order effects that the model is fitting. In the three-dimensional
table UCBAdmissions, the dimensions are

1 = Admit,

2 = Gender,

3 = Dept.

In the integer notation of loglin, the model

∼ Dept*Gender + Dept*Admit

is expressed as list( c(3,2), c(3,1) ); the model

∼ Dept*Gender + Dept*Admit + Gender*Admit

becomes list( c(3,2), c(3,1), c(2,1) ); and the model

∼ Dept*Gender*Admit

becomes list( c(3,2,1) ). The loglin function returns a list of results, and if the
argument fit=TRUE is supplied, that list will include a table of fitted values µ̂.

> # fit M0, M1, and M2 using loglin

> M0 <- loglin( UCBAdmissions, margin=list( c(3,2), c(3,1) ), fit=TRUE )

2 iterations: deviation 5.684342e-14
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> M1 <- loglin( UCBAdmissions, margin=list( c(3,2), c(3,1), c(2,1) ), fit=TRUE )

7 iterations: deviation 0.04308377

> M2 <- loglin( UCBAdmissions, margin=list( c(3,2,1)), fit=TRUE )

2 iterations: deviation 5.684342e-14

For models M0 and M2, the IPF procedure stopped at iteration 2; apart from rounding
error, the final solution was achieved at the end of the first cycle, because these
models are decomposable. Before proceeding. let’s make sure that the fitted values
from loglin match the results we obtained from glm.

> max( abs( fit0 - M0$fit ) )

[1] 1.128669e-09

> max( abs( fit1 - M1$fit ) )

[1] 0.01320492

> max( abs( fit2 - M2$fit ) )

[1] 1.818989e-12

For M0 and M2, the fitted values from loglin and glm are exceedingly close. For M1,
the largest discrepancy is about 0.0132, but this can be made smaller by tightening
the IPF convergence criterion through the argument eps.

> M1 <- loglin( UCBAdmissions, margin=list( c(3,2), c(3,1), c(2,1) ),

+ fit=TRUE, eps=1e-06 )

18 iterations: deviation 9.673679e-07

> max( abs( fit1 - M1$fit ) )

[1] 2.964787e-07

The likelihood-ratio fit statistics from loglin match the deviance values from glm.

> M0$lrt

[1] 21.73551

> M1$lrt

[1] 20.20428

> M2$lrt

[1] 0

The IPF procedure used by loglin can also be called indirectly, through the loglm
function in the package MASS (Venables and Ripley, 2013). With loglm, the data may
be provided either as a contingency table or as a grouped data frame, and the model
may be specified with a formula. For details, see help(loglm, package=MASS).
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3.5 Log-linear modeling with cvam

3.5.1 Fitting a model with complete data

In the cvam package, log-linear models are fit by the function cvam. For conventional
log-linear modeling with no missing or coarsened values, cvam works like glm, but
with a few notable differences. Like glm, the model is specified by a formula, and the
data are supplied through a data frame. Unlike glm, the formula is one-sided, and the
variable holding the frequencies is specified not in the formula but as an argument
named freq. For example, here is how we would fit and compare our three models
for the U.C. Berkeley admissions data.

> library(cvam)

> dF <- as.data.frame(UCBAdmissions)

> M0 <- cvam( ~ Dept*Gender + Dept*Admit, data=dF, freq=Freq )

> M1 <- cvam( ~ Dept*Gender + Dept*Admit + Gender*Admit, data=dF, freq=Freq )

> M2 <- cvam( ~ Dept*Gender*Admit, data=dF, freq=Freq )

> anova(M0,M1,M2)

Model 1: ~ Dept * Gender + Dept * Admit

Model 2: ~ Dept * Gender + Dept * Admit + Gender * Admit

Model 3: ~ Dept * Gender * Admit

resid.df -2*loglik df change

1 6 -41005

2 5 -41006 1 1.5312

3 0 -41026 5 20.2043

The results are equivalent to those from glm. One minor difference is that with
cvam, the anova table reports −2 times the loglikelihood value achieved under each
model, whereas with glm, it reports a deviance statistic. The two measures differ by
a constant that drops out whenever two models are compared.

3.5.2 Extracting information from a cvam object

The result from a call to cvam is a cvam object, a special kind of list that holds param-
eter estimates and other information from the model fit. To access this information,
we recommend that you use summary or the various get functions supplied with the
package. For example, the function get.coef returns the the vector of estimated
coefficients β̂. Calling get.coef with the argument withSE=TRUE produces a data
frame with estimated coefficients, standard errors, t-statistics and p-values.

> get.coef(M0, withSE=TRUE)

coef SE tstat pval

(Intercept) 4.805669565 0.02598938 184.91 0.0000

Dept1 0.156547492 0.04985439 3.14 0.0017

Dept2 -0.761804591 0.08789640 -8.67 0.0000

Dept3 0.539038941 0.03924728 13.73 0.0000
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Dept4 0.426921589 0.04020043 10.62 0.0000

Dept5 -0.027346137 0.04843304 -0.56 0.5723

Gender1 0.334605321 0.02289450 14.62 0.0000

Admit1 -0.325781804 0.01950248 -16.70 0.0000

Dept1:Gender1 0.682020758 0.04763810 14.32 0.0000

Dept2:Gender1 1.219925158 0.08653579 14.10 0.0000

Dept3:Gender1 -0.635289930 0.03630476 -17.50 0.0000

Dept4:Gender1 -0.281525223 0.03699031 -7.61 0.0000

Dept5:Gender1 -0.695373413 0.04267138 -16.30 0.0000

Dept1:Admit1 0.622511787 0.03405394 18.28 0.0000

Dept2:Admit1 0.597214293 0.04007482 14.90 0.0000

Dept3:Admit1 0.017937243 0.03431599 0.52 0.6012

Dept4:Admit1 -0.006653238 0.03631253 -0.18 0.8546

Dept5:Admit1 -0.218968500 0.04353759 -5.03 0.0000

The function get.fitted extracts the fitted values in the form of cell probabilities,
cell means, or log-cell means. By default, it returns a data frame with one row per cell.
The variables in this data frame include all of the factors in the model, a variable
named freq containing the frequencies, and a variable named fit containing the
fitted values.

> # display the fitted means for the first few cells

> head( get.fitted(M0, type="mean" ) )

Dept Gender Admit freq fit

1 A Male Admitted 512 531.43087

2 B Male Admitted 353 354.18803

3 C Male Admitted 120 113.99782

4 D Male Admitted 138 141.63258

5 E Male Admitted 53 48.07705

6 F Male Admitted 22 24.03081

The reason why get.fitted returns a data frame by default rather than a vector of
fitted values is that, unlike glm, the ordering of the cells in the model is determined
by the internal workings of cvam, not by the rows of the data frame supplied to cvam

through its data argument. This is an extremely important point, so let us say it
again in a slightly different way: With cvam, the number of fitted values and the order
in which they appear may not, and in most cases do not, correspond to the rows of
the user-supplied data. With cvam, the data frame supplied for model-fitting does not
need to have one row per cell. The cvam function automatically aggregates the data,
identifying the unique response patterns (i.e., the unique combinations of observed
values for all factors in the model) and adds up the frequencies within these response
patterns. It identifies cells that have no observations in them and assigns those cells
frequencies of zero even if they are absent from the data frame. The cvam function
also accepts microdata. If the argument freq is not given, then cvam assumes that
the data frame contains microdata, and it assigns each row a frequency of one. For
the Berkeley graduate admissions data, we get the same results whether we use the
aggregated frequencies in UCBAdmissions or the microdata in microUCBAdmissions.
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> # refit M0 with microdata to see that results are the same

> M0 <- cvam( ~ Dept*Gender + Dept*Admit, data=microUCBAdmissions )

> get.coef(M0, withSE=TRUE)

coef SE tstat pval

(Intercept) 4.805669565 0.02598938 184.91 0.0000

Dept1 0.156547492 0.04985439 3.14 0.0017

Dept2 -0.761804591 0.08789640 -8.67 0.0000

Dept3 0.539038941 0.03924728 13.73 0.0000

Dept4 0.426921589 0.04020043 10.62 0.0000

Dept5 -0.027346137 0.04843304 -0.56 0.5723

Gender1 0.334605321 0.02289450 14.62 0.0000

Admit1 -0.325781804 0.01950248 -16.70 0.0000

Dept1:Gender1 0.682020758 0.04763810 14.32 0.0000

Dept2:Gender1 1.219925158 0.08653579 14.10 0.0000

Dept3:Gender1 -0.635289930 0.03630476 -17.50 0.0000

Dept4:Gender1 -0.281525223 0.03699031 -7.61 0.0000

Dept5:Gender1 -0.695373413 0.04267138 -16.30 0.0000

Dept1:Admit1 0.622511787 0.03405394 18.28 0.0000

Dept2:Admit1 0.597214293 0.04007482 14.90 0.0000

Dept3:Admit1 0.017937243 0.03431599 0.52 0.6012

Dept4:Admit1 -0.006653238 0.03631253 -0.18 0.8546

Dept5:Admit1 -0.218968500 0.04353759 -5.03 0.0000

3.5.3 Getting Pearson residuals

The data frame returned by get.fitted is useful for model diagnostics. In the
example below, we compute the Pearson residuals

r̂v =
fv − µ̂v√

µ̂v

(6)

for all cells, plot them against the cell index, and use the identify function to
interactively label the outliers. Labels for the identified points are created with the
‘:’ operator, which combines multiple factors into a single factor.

> fit0 <- get.fitted(M0, type="mean")

> pearson <- ( fit0$freq - fit0$fit ) / sqrt( fit0$fit )

> labs <- as.character( fit0$Dept : fit0$Gender : fit0$Admit )

> plot( 1:NROW(fit0), pearson,

+ xlab="Cell index", ylab="Pearson residual" )

> identify( 1:NROW(fit0), pearson, labels=labs )

The resulting plot, which is shown in Figure 1, clearly reveals where this model does
not fit; Gender and Admit are conditionally related in Department "A".

3.5.4 Saturated and conditional models

By default, cvam fits a complete-data model by the same procedure as glm, using NR
to maximize the surrogate Poisson loglikelihood. If the model is saturated, an alterna-
tive procedure can be invoked by calling cvam with the argument saturated=TRUE.
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Figure 1: Pearson residuals from model M0 plotted against cell number, with two
outliers identified.
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Under this option, the model matrix X is never constructed, so the coefficients β
are undefined, and fitted values are obtained from the frequencies as µ̂ = f̂ and
π̂ = N−1f̂ . An advantage of using saturated=TRUE is that the computations are
faster and require less memory, especially when the number of cells in the table is
large. A disadvantage is that standard errors will not be reported. If you need
standard errors, you can fit the same model with saturated=FALSE.

Fitting a saturated model allows you to compute a deviance statistic. Deviance
is defined as −2 times the difference between the loglikelihood achieved under the
model of interest and the loglikelihood achieved under the saturated model. The
loglikelihood for any model can be obtained with get.loglik.

> # compute the deviance for model M0

> M0 <- cvam( ~ Dept*Gender + Dept*Admit, data=dF, freq=Freq )

> M2 <- cvam( ~ Dept*Gender*Admit, data=dF, freq=Freq, saturated=TRUE )

> dev.M0 <- -2 * ( get.loglik(M0) - get.loglik(M2) )

> dev.M0

[1] 21.73551

With cvam, you can also fit log-linear models that regard some variables as fixed.
With the Berkeley admissions data, it is natural to examine the conditional distribu-
tion of Admit given Dept and Gender. The model of homogeneous association

∼ Dept*Gender + Dept*Admit + Gender*Admit

implies a logistic model for Admit with main effects for Dept and Gender. To fit a
conditional model, use the same model formula as for the joint model, but include
the symbol ‘|’ followed by the variables to be conditioned on, separating them with
‘+’.

> # fit M1 as a conditional model

> M1 <- cvam( ~ Dept*Gender + Dept*Admit + Gender*Admit | Dept + Gender,

+ data=dF, freq=Freq )

Coefficients and standard errors from a conditional model are identical to those from
the joint model, because the parameters are estimated under the same surrogate
Poisson regression. The only major difference is that, for a conditional model, fitted
probabilities from get.fitted will be scaled to sum to one within every combination
of levels for the variables treated as fixed.

> # show the first few fitted probabilities

> head( get.fitted(M1, type="prob") )

Admit Dept Gender freq fit

1 Admitted A Male 512 0.6415393

2 Rejected A Male 313 0.3584607
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3 Admitted B Male 353 0.6314991

4 Rejected B Male 207 0.3685009

5 Admitted C Male 120 0.3361393

6 Rejected C Male 205 0.6638607

Conditional models are consistent with product-multinomial sampling, which is de-
scribed in Appendix B. Under a product-multinomial scheme, the surrogate Poisson
regression gives correct results only if the requested model (the part of the formula on
the left-hand side of ‘|’) includes all possible associations among the variables that
are held fixed (Venables and Ripley, 2013). If the requested model omits any of these
associations, the call to cvam produces an error.

4 Examples with missing and coarsened data

4.1 A 2 × 2 table with missing data

Thus far, we have shown that cvam gives results equivalent to those from glm and
loglin when the data are are complete. The main advantage in using cvam is that it
allows us to make full use of all the available data when some information is missing.

The crime dataset, previously analyzed by Kadane (1985) and Schafer (1997),
came from the National Crime Survey conducted by the U.S. Census Bureau. Occu-
pants of housing units were interviewed to determine whether they had been victim-
ized by crime in the preceding six-month period. Six months later, the same units
were visited again to determine whether the occupants had been victimized during
the intervening months. Missing values for various reasons occurred at both occa-
sions. Variables V1 and V2 are factors indicating whether victimization was reported
at occasion 1 and occasion 2, and n is the frequency.

> data(crime) # load the crime dataset distributed with cvam

> crime

V1 V2 n

1 no no 392

2 yes no 76

3 <NA> no 31

4 no yes 55

5 yes yes 38

6 <NA> yes 7

7 no <NA> 33

8 yes <NA> 9

9 <NA> <NA> 115

> sum(crime$n)

[1] 756
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If we try to explore the joint distribution of V1 and V2, we encounter a problem.
Conventional methods expect that each observation has been unambiguously assigned
to a single cell of the 2× 2 table indexed by

v ∈ { (1, 1), (2, 1), (1, 2), (2, 2) } .

Conceptually, each household represented in this dataset does have a true victimiza-
tion status for each time period and thus belongs to a single cell. The difficulty is that
cell membership is fully known only for the 561 households with non-missing values
for both time periods. For the 31 households with V1=NA and V2="no", we know that
a portion fall into cell (1, 1) and a portion fall into cell (2, 1), but we do not know
what those portions are. Similarly, the 33 households with V1="no" and V2=NA are
divided between cell (1, 1) and (2, 1), but we do not know how to divide them. It may
be reasonable to discard the 115 households with V1=NA and V2=NA, as they appear
to be noninformative. But the other households do provide partial information that
may be useful for assessing the joint distribution of V1 and V2.

If we had to analyze this dataset with conventional software, we would be forced
to choose between

� analyzing the 2× 2 table with only the 561 complete cases, producing answers
that are inefficient and possibly biased, or

� using all 756 cases, but treating NA as an additional level, leading to a 3 × 3
table that is difficult to interpret.

With cvam, however, we just specify a model that we would use if no data were
missing, supply the incomplete data, and fit the model.

> # fit the model of independence

> M0 <- cvam( ~ V1 + V2, freq=n, data=crime )

> # fit the model of non-independence

> M1 <- cvam( ~ V1 * V2, freq=n, data=crime )

> # compare them

> anova(M0,M1, pval=TRUE)

Model 1: ~ V1 + V2

Model 2: ~ V1 * V2

resid.df -2*loglik df change pval

1 1 -5853.2

2 0 -5878.6 1 25.382 0

The large improvement of fit when moving from the first model to the second provides
strong evidence that V1 and V2 are related.

To understand what cvam did, let’s examine the results from the independence
model using summary.
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> summary(M0)

~ V1 + V2

Prior:

Flattening frequency = 0

Total nuggets + flattening = 0

Ridge factor = 0

Intensity factor = 1

Sample size:

total N in supplied data = 756

N from supplied data used in model fit = 641

prior effective sample size = 0

Degrees of freedom:

patterns of coarsened data = 9

cells in complete-data table = 4

cells without latent variables = 4

structural zero cells = 0

parameters in Poisson model = 3

df = 1

Starting values:

default, center

jitter SD = 0.000000

EM algorithm:

Converged at iteration 9

Gradient length = 0.000000

Final logP = 2926.608

Final loglik = 2926.608

Estimates from EM, with Hessian-based SEs

coef SE tstat pval

(Intercept) 4.5677 0.06154 74.23 0

V11 0.6808 0.05053 13.47 0

V21 0.8037 0.05478 14.67 0

By default, cvam computes ML estimates by an EM algorithm. This procedure has
NR embedded within it and reduces to NR when there are no missing or coarsened
values. The standard errors displayed in the table of coefficients account for the
uncertainty due to missing or coarsened values. The EM algorithm and standard-
error computations are described in Appendix G and Appendix I.

4.2 Fitted values, predicted true frequencies, and residuals

Another interesting result is seen in the data frame that contains the fitted values.

> dF <- get.fitted(M0, type="mean")

> dF

V1 V2 freq fit

1 no no 520.42720 501.3251

2 yes no 109.36244 128.4646

3 no yes 81.36384 100.4660

4 yes yes 44.84651 25.7444
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The variable fit holds the estimated cell means µ̂. Because this model assumes
independence, the odds ratio among these fitted values is exactly one.

> ( dF$fit[1] * dF$fit[4] ) / ( dF$fit[2] * dF$fit[3] )

[1] 1

The variable freq holds the predicted true frequencies, a vector that we will call f̂ ,
and the odds ratio among these values is not one.

> ( dF$freq[1] * dF$freq[4] ) / ( dF$freq[2] * dF$freq[3] )

[1] 2.622944

The vector f̂ is called the predicted true frequencies. It represents our best guess as
to how the 756 cases in the crime dataset should be apportioned to the cells of the
2× 2 table, assuming that the model is correct. If there were no missing values, then
the cell membership of each case would be known; in that case, no prediction would
be needed, and f̂ would be identical to f regardless of the model. When some of the
data are missing, f̂ combines the observed data with parameter estimates from EM
to predict the unknown elements of f . From the results of the LR test, we know that
this model does not fit. The apportionment of incomplete cases in f̂ is based on the
implausible assumption of independence, so residuals that compare f̂ to û are likely
to understate the lack of fit.

A better strategy for assessing fit is to use quasi-Pearson residuals, which we define
as

r̃v =
f̂
(sat)
v − µ̂v√

µ̂v

, (7)

where f̂
(sat)
v is the predicted true frequency under a saturated model, and µ̂v is the es-

timated cell mean under the current model. With no missing data, the quasi-Pearson
residuals are equal to the Pearson residuals from Equation (6). With missing data, the
quasi-Pearson residuals behave differently from Pearson residuals, with distributional
properties that depend on the rates of missingness and the unmodeled missingness
mechanism. Nevertheless, they can help to reveal areas of the table where a model
does not fit, and they reduce to zero for all cells when the model is saturated.

To compute quasi-Pearson residuals, you need to fit two models: the model of
interest, which provides the fitted cell means, and the saturated model, which provides
the predicted true frequencies. Keep in mind that these two vectors may order their
observations differently. As we emphasized in Section 3.5.2, the ordering of cells in
a cvam model is defined by cvam, and is not directly controlled by the user. More
precisely, the cell ordering is determined by the order in which variables appear in the

model formula. To check whether µ̂ and f̂
(sat)

have the same ordering, you should
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examine the frames returned by get.fitted for both models and make sure that the
factors appear in the same columns. If not, you will need to revise one of the model
formulas so that the variables appear in the same order as in the other formula, and
then re-fit the model whose formula was revised.

> # examine the frames from get.fitted for M0 and M1

> # to make sure that they use the same cell ordering

> get.fitted(M0)

V1 V2 freq fit

1 no no 520.42720 0.66312843

2 yes no 109.36244 0.16992666

3 no yes 81.36384 0.13289147

4 yes yes 44.84651 0.03405344

> get.fitted(M1)

V1 V2 freq fit

1 no no 527.02525 0.69712335

2 yes no 102.65197 0.13578303

3 no yes 74.56461 0.09863044

4 yes yes 51.75817 0.06846318

> # compute the quasi-Pearson residuals

> muHat <- get.fitted(M0, type="mean")$fit

> fHatSat <- get.fitted(M1, type="mean")$freq

> quasiPearson <- ( fHatSat - muHat ) / sqrt( muHat )

> quasiPearson

[1] 1.147826 -2.277402 -2.584121 5.126983

Examining these residuals, we see that the independence model underpredicts mem-
bership in cells (1, 1) and (2, 2) and overpredicts membership in (1, 2) and (2, 1).

4.3 One variable with coarsened values

In the companion vignette Understanding Coarsened Factors in cvam, we described
our extension to R’s factor mechanism to store categorical variables with coarsened
values. Using the abortion2000 dataset distributed with cvam, we created a coars-
ened factor based on race and Hispanic origin. The code for creating this factor is
reproduced below.

> data(abortion2000)

> CenRace <- addNA(abortion2000$CenRace)

> Hisp <- addNA(abortion2000$Hisp)

> RH <- Hisp:CenRace

> RH <- droplevels(RH)

> levels(RH) <- list(

+ nonHispWhite = "nonHisp:White",

+ nonHispBlack = "nonHisp:Black",
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+ nonHispOther = "nonHisp:Other",

+ Hisp = c("Hisp:White", "Hisp:Black", "Hisp:Hisp", "Hisp:Other", "Hisp:NA"),

+ nonHispNA = "nonHisp:NA",

+ NAWhite = "NA:White" )

> RH <- coarsened( RH, levelsList = list(

+ nonHispNA = c("nonHispWhite", "nonHispBlack", "nonHispOther"),

+ NAWhite = c("nonHispWhite", "Hisp" ) ) )

> summary(RH)

nonHispWhite nonHispBlack nonHispOther Hisp nonHispNA NAWhite

1042 198 44 212 1320 1

<NA>

0

This coarsened factor has four base levels, which represent categories with no missing
information.

> baseLevels(RH)

[1] "nonHispWhite" "nonHispBlack" "nonHispOther" "Hisp"

The other three levels, which we call coarse levels, represent groupings of the base
levels. Relationships between the coarse and base levels are shown by the mapping
matrix.

> coarseLevels(RH)

[1] "nonHispNA" "NAWhite" NA

> mapping(RH)

nonHispWhite nonHispBlack nonHispOther Hisp

nonHispNA 1 1 1 0

NAWhite 1 0 0 1

<NA> 1 1 1 1

To estimate the proportions of the population that fall into the four base levels, we
use the cvam function to fit a one-variable model.

> result <- cvam( ~ RH )

> summary(result, showCoef=FALSE)

~ RH

Prior:

Flattening frequency = 0

Total nuggets + flattening = 0

Ridge factor = 0

Intensity factor = 1

Sample size:

total N in supplied data = 2817

N from supplied data used in model fit = 2817
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prior effective sample size = 0

Degrees of freedom:

patterns of coarsened data = 6

cells in complete-data table = 4

cells without latent variables = 4

structural zero cells = 0

parameters in Poisson model = 4

df = 0

Starting values:

default, center

jitter SD = 0.000000

EM algorithm:

Converged at iteration 31

Gradient length = 0.000001

Final logP = 18071.1

Final loglik = 18071.1

> # display the fitted proportions

> get.fitted(result)

RH freq fit

1 nonHispWhite 2114.29975 0.75055014

2 nonHispBlack 401.40743 0.14249465

3 nonHispOther 89.20165 0.03166548

4 Hisp 212.09117 0.07528973

4.4 Mixing complete, incomplete, and coarsened variables

A variable in a cvam modeling formula may be an ordinary factor with complete data,
an ordinary factor with missing values, or a coarsened factor created by the function
coarsened. It may even be a latent class, a categorical variable whose values are
entirely missing. Latent-class models will be discussed in Section 8.

The abortion2000 dataset is a frame of microdata with 2,817 records extracted
from the General Social Survey (GSS) (Smith et al., 2019). For illustration, we will
fit a model with four variables from this dataset.

� Sex, a factor with levels "Female" and "Male" and no missing values;

� RH, the coarsened factor that we created from CenRace and Hisp;

� PolViews, a factor that represents the respondent’s self-described political ori-
entation, with levels "Con" (Conservative), "Mod" (Moderate), and "Lib" (Lib-
eral), and 173 missing values; and

� AbAny, whether the respondent thinks it should be possible for a woman to
obtain a legal abortion if the woman wants it for any reason, with levels "Yes",
"No", "DK" (don’t know) and 962 missing values.
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To begin, we place these four variables in a data frame of their own. This step is
not required; we do this only to keep our visual displays tidy.

> # copy the four variables into a data frame

> dF <- data.frame( Sex = abortion2000$Sex, RH = RH,

+ PolViews = abortion2000$PolViews, AbAny = abortion2000$AbAny )

> # display the first few rows

> head(dF)

Sex RH PolViews AbAny

1 Male nonHispNA Con No

2 Female Hisp Con No

3 Female nonHispNA Con <NA>

4 Female nonHispWhite Con <NA>

5 Female nonHispWhite Lib <NA>

6 Female nonHispWhite Lib Yes

Next, we create a formula to specify the model that we want to fit. Thinking of AbAny
as a response and the other three variables as potential predictors, one model worth
considering is

> myFormula <- ~ Sex*RH*PolViews + AbAny*Sex + AbAny*RH + AbAny*PolViews

which implies a multinomial logistic regression for AbAny with main effects for Sex,
RH, and PolViews. If we tried to fit this logistic model directly, any record that has
a missing or coarsened value for any of the three predictors would be dropped. By
embedding this logistic regression into a log-linear model and calling cvam, we can fit
the joint model to all the records.

Let’s fit this model and compare it to the saturated model in two different ways:
with an LR test, and by Akaike’s information criterion (AIC). The latter is obtained
by calling anova with the argument method="AIC".

> myMod <- cvam( myFormula, data=dF )

> satMod <- cvam( ~ Sex*RH*PolViews*AbAny, data=dF, saturated=TRUE )

Note: Estimate at or near boundary

> anova( myMod, satMod, pval=TRUE )

Model 1: ~ Sex * RH * PolViews + AbAny * Sex + AbAny * RH + AbAny * PolViews

Model 2: ~ Sex * RH * PolViews * AbAny

resid.df -2*loglik df change pval

1 34 -23618

2 0 -23661 34 43.091 0.1364

> anova( myMod, satMod, method="AIC" )

Model 1: ~ Sex * RH * PolViews + AbAny * Sex + AbAny * RH + AbAny * PolViews

Model 2: ~ Sex * RH * PolViews * AbAny

resid.df -2*loglik AIC rank

1 34 -23618 -23542 1

2 0 -23661 -23517 2
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> # compute and summarize the fitted values

> muHat <- get.fitted(myMod, type="mean")$fit

> summary( muHat )

Min. 1st Qu. Median Mean 3rd Qu. Max.

0.8271 3.8323 11.8807 39.1250 27.9982 267.2953

The LR comparison reveals some lack of fit. The p-value is not especially accurate,
because many of the fitted values are small. AIC favors the smaller model. We can
also test the significance of each of the three predictors by omitting their associations
with AbAny, one a time, and performing the LR tests against the current model.

> noSex <- cvam( ~ Sex*RH*PolViews + AbAny*RH + AbAny*PolViews, data=dF)

> anova( noSex, myMod, pval=TRUE )

Model 1: ~ Sex * RH * PolViews + AbAny * RH + AbAny * PolViews

Model 2: ~ Sex * RH * PolViews + AbAny * Sex + AbAny * RH + AbAny * PolViews

resid.df -2*loglik df change pval

1 36 -23617

2 34 -23618 2 0.76848 0.681

> noRH <- cvam( ~ Sex*RH*PolViews + AbAny*Sex + AbAny*PolViews, data=dF)

> anova( noRH, myMod, pval=TRUE )

Model 1: ~ Sex * RH * PolViews + AbAny * Sex + AbAny * PolViews

Model 2: ~ Sex * RH * PolViews + AbAny * Sex + AbAny * RH + AbAny * PolViews

resid.df -2*loglik df change pval

1 40 -23601

2 34 -23618 6 16.56 0.011

> noPol <- cvam( ~ Sex*RH*PolViews + AbAny*Sex + AbAny*RH, data=dF)

> anova( noPol, myMod, pval=TRUE )

Model 1: ~ Sex * RH * PolViews + AbAny * Sex + AbAny * RH

Model 2: ~ Sex * RH * PolViews + AbAny * Sex + AbAny * RH + AbAny * PolViews

resid.df -2*loglik df change pval

1 38 -23533

2 34 -23618 4 84.486 0

Both RH and PolViews are strong predictors of AbAny, but Sex is clearly not.

4.5 Control parameters

Many aspects of the behavior of cvam are determined by control paramaters, the
internal settings for determining whether EM has converged, for deciding how many
iterations to take before stopping, and so on. Control parameters, which should not
be confused with model parameters, may be changed through the optional argument
control. This argument should be a named list. That list is processed by another
function, cvamControl, which sets the control parameters to the user-supplied values
and applies default values to any that were not supplied. Typing
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> cvamControl()

will display the names and default values for all control parameters. For example, the
control parameter that judges proximity to a boundary is called critBoundary, and
its default value 1e-08 means that the estimates are considered to be at or near a
boundary if the fitted probability for any cell is zero when rounded to eight decimal
places. To change critBoundary to something else, put the desired value into a
named list and supply it to cvam.

> # use a boundary criterion that is less strict

> satMod <- cvam( ~ Sex*RH*PolViews*AbAny, data=dF, saturated=TRUE,

+ control=list(critBoundary=1e+06 ) )

Note: Estimate at or near boundary

By extracting and rounding the fitted probabilities, we can see exactly which cells
have estimates close to zero.

> round( get.fitted(satMod, type="prob")$fit, 6)

[1] 0.029066 0.039228 0.007533 0.002446 0.001595 0.003044 0.002963 0.000505

[9] 0.064676 0.054623 0.016674 0.006016 0.004030 0.001907 0.003721 0.003368

[17] 0.066472 0.045043 0.009213 0.003694 0.001559 0.001708 0.007848 0.003118

[25] 0.095406 0.095293 0.018363 0.005178 0.001465 0.000000 0.007574 0.010448

[33] 0.095604 0.052458 0.022985 0.022680 0.007306 0.003615 0.010528 0.009189

[41] 0.042217 0.036816 0.010613 0.009881 0.002851 0.000000 0.009341 0.003602

[49] 0.005072 0.006238 0.001320 0.001171 0.000000 0.000981 0.000572 0.001010

[57] 0.008873 0.007538 0.001618 0.000905 0.000000 0.000000 0.001497 0.000000

[65] 0.005163 0.002090 0.000000 0.000832 0.000000 0.001656 0.000000 0.000000

4.6 Flattening constants and prior information

Estimates near a boundary may cause a variety of problems. If the model is fit
using saturated=FALSE, then, depending on the complexity of the model, some of
the estimated coefficients might run away toward ±∞. Standard errors computed by
cvam assume that the loglikelihood function is concave and approximately quadratic
in the vicinity of the ML solution; this may not be the case if the solution lies near a
boundary, making the reported standard errors unreliable or causing the procedure to
fail. Boundary estimates can also make it difficult to compare models by hypothesis
tests. Rules for counting degrees of freedom in boundary solutions are difficult to
implement, and many software packages give incorrect results (Bishop et al., 1975;
Clogg et al., 1991). The situation becomes even harder when missing data are involved
(Fuchs, 1982; Little and Rubin, 2002).

To address this problem, cvam allows you to introduce a flattening constant, a
small, positive number that is added to each cell of the complete-data table during
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the fitting procedure. Flattening constants are helpful in sparse, high-dimensional
tables where many cells have no observations in them. From a Bayesian standpoint,
they can be viewed as a certain kind of prior distribution called a data-augmentation
prior (DAP) (Bedrick et al., 1996). Using a DAP is functionally equivalent to adding
fictitious observations to a dataset that look like frequencies but are not necessarily
integers. DAPs are convenient when comparing the fit of alternative models, because
the same prior can be applied to any model regardless of how the parameters are
defined. From a non-Bayesian perspective, a flattening constant can be regarded as
adding a penalty function that penalizes the fit of estimates near the boundary. The
effect of a flattening constant is to smooth the estimate of π and µ toward a uniform
table, one in which all cells have equal probability, and to rein in the elements of
β to keep them from running away. If the flattening constant is small, the effect
on parameter estimates is barely noticeable, but the computations for saturated and
non-saturated models are effectively stabilized.

To apply a flattening constant, use the prior argument to cvam. This argument
must be a prior distribution created by the function cvamPrior. For example,

> myPrior <- cvamPrior( flatten=7.2 )

introduces information equivalent to 7.2 prior observations, distributed equally across
the cells of the complete-data table. There are 72 cells in the current example, so
each cell receives a prior count of 0.1.

> # re-fit and compare models using the flattening constant

> myMod <- cvam( myFormula, data=dF, prior=myPrior )

> satMod <- cvam( ~ Sex*RH*PolViews*AbAny, data=dF,

+ saturated=TRUE, prior=myPrior )

With prior information, the function being maximized is not the loglikelihood, but an
objective function called logP described in Appendix H. The solution is no longer an
ML estimate, but a penalized ML estimate or posterior mode. When comparing the
fit of alternative models, we recommend that you use the same prior for every model.
We also suggest that you test hypotheses not by an LR test but by comparing values
of −2 logP , which can be done by calling anova with the argument method="logP".

> anova( myMod, satMod, pval=TRUE, method="logP")

Model 1: ~ Sex * RH * PolViews + AbAny * Sex + AbAny * RH + AbAny * PolViews

Model 2: ~ Sex * RH * PolViews * AbAny

resid.df -2*logP df change pval

1 34 -23654

2 0 -23692 34 38.647 0.2677

With cvamPrior, you can also introduce more targeted prior information that
applies prior frequencies to subsets of cells in the complete-data table. These fre-
quencies are called nuggets. They resemble coarsened data, and we provide them to
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cvamPrior as a list. Prior nuggets should be used sparingly, but can be very helpful
for certain types of models, especially those involving latent classes, which we discuss
in Section 8.

4.7 Running cvam on a cvam object

Thus far, we have called the cvam function by supplying a model formula as its
first argument. We may also call cvam with the first argument being a cvam object.
Loosely speaking, running cvam on a cvam object means, “Carry on; do more of the
same, unless I specifically tell you otherwise.” For example, if the cvam object holds
the results from an EM run, running cvam on that object will restart EM from where
it stopped.

> # fit the saturated model to the crime data

> result <- cvam( ~ V1 * V2, data=crime, freq=n)

> # run it again, starting from the previous result

> result <- cvam(result)

> summary(result, showCoef=FALSE)

~ V1 * V2

Prior:

Flattening frequency = 0

Total nuggets + flattening = 0

Ridge factor = 0

Intensity factor = 1

Sample size:

total N in supplied data = 756

N from supplied data used in model fit = 641

prior effective sample size = 0

Degrees of freedom:

patterns of coarsened data = 9

cells in complete-data table = 4

cells without latent variables = 4

structural zero cells = 0

parameters in Poisson model = 4

df = 0

Starting values:

supplied by user

jitter SD = 0.000000

EM algorithm:

Converged at iteration 1

Gradient length = 0.000000

Final logP = 2939.299

Final loglik = 2939.299

In this example, when cvam was called the second time, EM started to run again, but
stopped after just one iteration because it had already converged.
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Running cvam on a cvam object is helpful in problems with high rates of missing
information, which causes EM to converge slowly. By default, cvam stops if EM has
not converged by 500 cycles. That limit is set by the control parameter iterMaxEM. If
EM fails to converge, we could increase that limit and start over, hoping that it will
converge by the new limit. A better option is to continue the EM run from where it
stopped, using the final parameter values from the first run as the starting values for
the next run.

Running cvam on a cvam object is also helpful for Markov chain Monte Carlo
(MCMC), which is discussed in Section 6. Results from EM can be good starting
values for MCMC, as can the results from another MCMC run. Simulated values
from MCMC can also serve as random starting values for EM, which can help us to
detect multiple modes.

5 Estimates, predictions, imputations, and likelihoods

5.1 Estimated marginal and conditional probabilities

Coefficients of a log-linear model can be difficult to interpret and depend on how the
X matrix is coded. For those who are brave enough to try, the model matrix used in a
cvam fit can be examined using get.modelMatrix. However, many analysts prefer to
work with probabilities, and after fitting a cvam model, you can request a wide variety
of estimated marginal and conditional probabilities with the function cvamEstimate.

This function has two required arguments. The first is a one-sided formula that
specifies the desired probabilities, and the second is a cvam object containing the
results from a model fit. In the example below, we request the estimated probabilities
for the 2× 3 marginal table that classifies persons by Sex and AbAny.

> cvamEstimate( ~ Sex + AbAny, myMod )

Estimates and SE's from EM, linearized

~ Sex + AbAny

Sex AbAny prob SE prob.lower prob.upper

1 Female Yes 0.2153 0.0091 0.1979 0.2337

2 Male Yes 0.1638 0.0081 0.1485 0.1803

3 Female No 0.3233 0.0101 0.3038 0.3434

4 Male No 0.2497 0.0092 0.2321 0.2681

5 Female DK 0.0250 0.0036 0.0188 0.0332

6 Male DK 0.0230 0.0034 0.0171 0.0308

The factors in the formula are separated by ‘+’, which does not imply any kind of
additive structure, but merely signals that we are adding more dimensions to the table
of requested probabilities. The result of a call to cvamEstimate is a data frame with
estimated probabilities and standard errors. The latter are computed by the delta
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method, a first-order Taylor approximation based on the estimated covariance matrix
for β̂, as described in Appendix J. A symmetric confidence interval for a probability
based on a normal approximation may work poorly, especially when the estimate
lies close to zero or one; the endpoints may even stray outside the parameter space.
The data frame from cvamEstimate also gives lower and upper limits for approximate
confidence intervals based on a logistic transformation. These alternative intervals are
asymmetric, and the limits stay between 0 and 1. By default, the level of confidence
is 95%, but this can be changed through the confidence argument.

For this example, it seems more natural to examine the conditional probabilities
for AbAny given Sex. To ask for conditional probabilities, put the symbol ‘|’ into the
formula.

> # estimated conditional probabilities for AbAny given Sex

> cvamEstimate( ~ AbAny | Sex, myMod )

Estimates and SE's from EM, linearized

~ AbAny | Sex

Sex AbAny prob SE prob.lower prob.upper

1 Female Yes 0.3820 0.0149 0.3532 0.4117

2 Female No 0.5736 0.0152 0.5436 0.6032

3 Female DK 0.0444 0.0064 0.0334 0.0587

4 Male Yes 0.3752 0.0168 0.3430 0.4086

5 Male No 0.5721 0.0171 0.5382 0.6053

6 Male DK 0.0527 0.0078 0.0394 0.0703

To condition on two or more variables, put them after ‘|’ and separate them with ‘+’.
Conditional probabilities may be easier to understand when displayed as a flat table.

> # conditional probabilities for AbAny given RH and PolViews

> est <- cvamEstimate( ~ AbAny | RH + PolViews, myMod )

> # reshape the probabilities into a three-dimensional array

> xtab <- xtabs( prob ~ AbAny + RH + PolViews, data = est )

> # display the array as a flat table

> ftable( xtab, row.vars=c("PolViews", "RH"), col.vars="AbAny" )

AbAny Yes No DK

PolViews RH

Con nonHispWhite 0.2722 0.6803 0.0475

nonHispBlack 0.1865 0.7744 0.0391

nonHispOther 0.2987 0.5693 0.1320

Hisp 0.1701 0.7848 0.0451

Mod nonHispWhite 0.4165 0.5337 0.0498

nonHispBlack 0.3067 0.6472 0.0461

nonHispOther 0.4394 0.4319 0.1287

Hisp 0.2821 0.6663 0.0516

Lib nonHispWhite 0.5495 0.4120 0.0385

nonHispBlack 0.4305 0.5316 0.0379

nonHispOther 0.5719 0.3275 0.1007

Hisp 0.4010 0.5573 0.0418
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5.2 Prediction

Predictions from a fitted model are computed by the function cvamPredict. In cvam,
prediction has a different meaning from the way it is used in regression analysis. In
regression, prediction is to compute the estimated mean response at specific values
for the covariates. In cvam, prediction is to compute the predictive distribution for
one or more variables, given specific values for the possibly incomplete and coarsened
data. Let

� V i = (Vi1, . . . , Vij) denote the vector of true (uncoarsened) variables for obser-
vational unit i, with possible value v = (v1, . . . , vJ); let

� Ai denote a subset of these variables, with possible value a; and let

� V ∗i = (V ∗i1, . . . , V
∗
iJ) denote the coarsened version of V i.

When calling cvamPredict, you supply a one-sided formula that specifies the variables
to be predicted (the variables in Ai) and a cvam object that contains a fitted model.
You must also supply a prediction frame, a data frame whose rows are the V ∗i ’s for
which predictions are desired. The prediction frame is not necessarily the dataset that
was used to fit the model. The result from cvamPredict is the set of probabilities
P (Ai = a |V ∗i ,µ = µ̂) for all possible a, where µ̂ is the set of estimated parameters
from the fitted model. These probabilities are returned as a matrix with the same
number of rows as the prediction frame, and one column for each of the possible a.
Each row of the result sums to one.

To see how this works, recall the crime dataset introduced in Section 4.1. In the
code below, we fit the non-independence model and generate predictions for V1 using
crime as the prediction frame.

> # display the crime data

> crime

V1 V2 n

1 no no 392

2 yes no 76

3 <NA> no 31

4 no yes 55

5 yes yes 38

6 <NA> yes 7

7 no <NA> 33

8 yes <NA> 9

9 <NA> <NA> 115

> # fit the model of non-independence

> fit <- cvam( ~ V1 * V2, data=crime, freq=n )

> # display predictions for V1

> cvamPredict( ~ V1, fit, data=crime )
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no yes

1 1.0000000 0.0000000

2 0.0000000 1.0000000

3 0.8369768 0.1630232

4 1.0000000 0.0000000

5 0.0000000 1.0000000

6 0.5902705 0.4097295

7 1.0000000 0.0000000

8 0.0000000 1.0000000

9 0.7957538 0.2042462

In the first row of the result, the predicted probabilities of V1="no" and "yes" are
1.0000000 and 0.0000000, because the first row of crime has V1 observed to be
"no". In the second row of the result, the predicted probabilities are 0.0000000 and
1.0000000, because the second row of crime has V1 observed to be "yes" In the third
row of the result, the predicted probabilities are 0.8369768 and 0.1630232. Notice
that that third row of crime has V1=NA and V2="no". To predict V1 for that row,
cvamPredict takes the estimated parameters from the fitted model and computes
from them the conditional probabilities for V1="no" and V1="yes" given V1=NA and
V2="no".

By default, cvamPredict interprets the prediction frame as microdata. If fre-
quencies are present, these can be supplied through the argument freq. In that case,
cvamPredict returns a matrix of frequencies, with each row of the result summing to
the corresponding frequency in the prediction frame.

> # display predicted frequencies for V1

> cvamPredict( ~ V1, fit, data=crime, freq=n )

no yes

1 392.000000 0.000000

2 0.000000 76.000000

3 25.946282 5.053718

4 55.000000 0.000000

5 0.000000 38.000000

6 4.131894 2.868106

7 33.000000 0.000000

8 0.000000 9.000000

9 91.511685 23.488315

If the cvamPredict formula has more than one variable, the result will have one
column for each possible combination of those variables.

> # display predicted frequencies for V1 and V2

> cvamPredict( ~ V1 + V2, fit, data=crime, freq=n )

no.no yes.no no.yes yes.yes

1 392.00000 0.000000 0.000000 0.000000

2 0.00000 76.000000 0.000000 0.000000

3 25.94628 5.053718 0.000000 0.000000

4 0.00000 0.000000 55.000000 0.000000

5 0.00000 0.000000 0.000000 38.000000

6 0.00000 0.000000 4.131894 2.868106
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7 28.90978 0.000000 4.090215 0.000000

8 0.00000 5.983207 0.000000 3.016793

9 80.16919 15.615049 11.342500 7.873266

Variables in the formula should be separated by ‘+’. The conditioning symbol ‘|’
should not appear in the formula, because cvamPredict automatically conditions on
all data supplied in the prediction frame. As variables are added to the formula,
the output from cvamPredict becomes wider and more unwieldly. An alternative to
prediction that avoids this problem is imputation.

5.3 Imputation

The function cvamImpute generates random imputations for all variables in a cvam

model. When calling this function, the user supplies a cvam object containing a
fitted model, and an imputation frame containing possibly incomplete or coarsened
data. For each row V ∗i of the imputation frame, the true variables V i are drawn
from their joint predictive distribution P (V i |V ∗i ,µ = µ̂), where µ̂ is the set of
estimated parameters from the fitted model. If the imputation frame has frequencies,
these should be declared through the argument freq. No formula is needed, because
cvamImpute automatically imputes all variables in the model given all the information
in the imputation frame.

The cvamImpute uses R’s internal random number generators. To make your
results reproducible, set the random generator seeds beforehand using set.seed.

> set.seed(69852)

> cvamImpute( fit, data=crime )

V1 V2

1 no no

2 yes no

3 no no

4 no yes

5 yes yes

6 no yes

7 no no

8 yes yes

9 no no

In this example, we did not supply frequencies, so cvamImpute interpreted the im-
putation frame as microdata and returned a dataset with one row for every row of
crime. If you supply frequencies, the result will have one row for every cell of the
complete-data table and a variable named freq that holds the imputed frequencies.

> cvamImpute( fit, data=crime, freq=n )
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V1 V2 freq

1 no no 527

2 yes no 100

3 no yes 76

4 yes yes 53

By repeatedly calling cvamImpute with the same imputation frame, you can generate
multiple versions of the true data, any of which is plausible under the fitted model.
If these repeated calls use the same cvam object, however, then they will not be
multiple imputations in the sense defined by Rubin (1987), because they will have
all been generated under the same set of estimated parameters µ̂. Proper multiple
imputations must reflect uncertainty in model parameters along with uncertainty due
to missing and coarsened values. Imputations that reflect parameter uncertainty can
be generated by Markov chain Monte Carlo, which we will discuss in Section 6.

5.4 Likelihood values

The function cvamLik computes likelihood values for rows of a user-supplied data
under a fitted model. These should not be confused with the value of the overall
loglikelihood function achieved by the model provided by get.loglik. Let V ∗i denote
coarsened data for a single observational unit i, and let V i denote the underlying true
data for tht unit. LetA∗i denote a subset of the variables in V ∗i for which the likelihood
is desired, and let Bi denote a subset of the variables in V i to be condition on and
treated as fixed. Variables in A∗i and Bi must not overlap. The likelihood computed
by cvamLik is

L(A∗i = a∗ |Bi = b,µ = µ̂) ∝ P (A∗i = a∗ |Bi = b,µ = µ̂), (8)

where a∗ and b are the specific values forA∗i andBi seen in a row of the user-supplied
data frame, and µ̂ are estimated parameters in a cvam object. The likelihoods are
computed as though they were probabilities, by summing the conditional probabili-
ties P (Ai |Bi = b,µ = µ̂) over all possible values of the true variables Ai that are
consistent with A∗i = a∗. They are not probabilities, however, because cvam does not
model the coarsened-data mechanism but regards it as ignorable. The probability of
A∗i = a∗ depends on the unmodeled mechanism and differs from the likelihood by
an unknown multiplicative constant. Likelihoods from cvamLik are useful for com-
puting the odds of observing A∗i = a∗ under alternative and possibly counterfactual
versions of b, because unknown proportionality constants cancel out in the the ratios.
Arguments to cvamLik include

� a one-sided formula that specifies the variables in A∗i and the variables in Bi,
with the two groups of variables separated by ‘|’, and variables within each
group separated by ‘+’;
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� a cvam object from a fitted model to provide parameter estimates; and

� a data frame whose rows contain the specific values A∗i = a∗ and Bi = b for
computing the likelihoods.

The result is a data frame identical to the one supplied by the user, with an additional
numeric variable likVal holding the likelihood values.

6 Bayesian methods and Markov chain Monte Carlo

6.1 Simulating draws from an approximate posterior distribution

When the number of sampled observations N is large relative to the number of pa-
rameters being estimated, the difference between the estimated coefficients β̂ from
EM and the true coefficients β is approximately normally distributed with a covari-
ance matrix V̂ (β̂). From a Bayesian perspective, we can treat N(β̂, V̂ (β̂) ) as an
approximate posterior distribution for β given the data used to fit the model. By
simulating random draws of β from this distribution, we can perform approximate
Bayesian inference for any parameter that can be expressed as a function of β or π.

To simulate random draws from this approximate posterior distribution, apply
the cvam function to a cvam object as described in Section 4.7, with the additional
argument method="approxBayes". The cvam object must hold the results from an
EM run, otherwise the software won’t have access to β̂ or V̂ (β̂). The simulation uses
R’s internal random number generators. To make your results reproducible, set the
random generator seeds beforehand with set.seed.

> # fit the non-independence model to the crime data

> fitML <- cvam( ~ V1 * V2, data=crime, freq=n )

> # display the ML estimate for beta and pi

> get.coef( fitML )

(Intercept) V11 V21 V11:V21

4.6241983 0.5002470 0.6600862 0.3177051

> get.fitted( fitML, type="prob" )$fit

[1] 0.69712335 0.13578303 0.09863044 0.06846318

> # draw from the approximate posterior, display new beta and pi

> set.seed(83425)

> obj <- cvam(fitML, method="approxBayes")

> get.coef( obj )

(Intercept) V11 V21 V11:V21

4.6401653 0.6145345 0.6493728 0.2478188

> get.fitted( obj, type="prob" )$fit
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[1] 0.70210490 0.12513288 0.11671087 0.05605134

By default, calling cvam with method="approxBayes" will draw one value of β. This
can be changed through the control parameter iterApproxBayes. In the example
below, we simulate 5, 000 values of β. These are stored in the cvam object and can be
retrieved with get.coefSeries. By setting the control parameter saveProbSeries

to TRUE, we instruct cvam to also store the 5, 000 simulated π vectors, which can then
be retrieved with get.probSeries.

> # produce 5,000 draws of beta, saving also the resulting pi vectors

> obj <- cvam(fitML, method="approxBayes",

+ control=list(iterApproxBayes=5000, saveProbSeries=TRUE) )

> # display the first few beta and pi vectors

> head( get.coefSeries(obj) )

(Intercept) V11 V21 V11:V21

[1,] 4.621281 0.4904044 0.6591652 0.3329766

[2,] 4.579132 0.5171364 0.6917306 0.3486476

[3,] 4.593146 0.4306763 0.6814657 0.3789800

[4,] 4.632846 0.5294656 0.6763896 0.3347828

[5,] 4.570942 0.5765167 0.6637533 0.2605799

[6,] 4.547775 0.4621952 0.6455106 0.4112865

> head( get.probSeries(obj) )

no.no yes.no no.yes yes.yes

[1,] 0.6990577 0.1346894 0.09610582 0.07014708

[2,] 0.7189250 0.1272545 0.08974754 0.06407299

[3,] 0.7012110 0.1388642 0.08409251 0.07583234

[4,] 0.7145115 0.1268623 0.09456186 0.06406439

[5,] 0.6999839 0.1312185 0.11021036 0.05858726

[6,] 0.7121421 0.1241281 0.08602891 0.07770083

One parameter of interest is the change in victimization rate from the first time
period to the second, δ = P (V2="yes") − P (V1="yes"), which is equivalent to the
off-diagonal difference, δ = P (V1="no", V2="yes")−P (V1="yes", V2="no"). From
the saved series, we can easily compute and summarize the 5, 000 values of δ.

> pi.series <- get.probSeries(obj)

> delta <- pi.series[,3] - pi.series[,2]

> summary(delta)

Min. 1st Qu. Median Mean 3rd Qu. Max.

-0.12002 -0.05050 -0.03760 -0.03727 -0.02382 0.03553

> sum( delta > 0 )

[1] 151

Most of the δ values are negative, suggesting that the victimization rate has dropped
over time. Only 151 are positive, so a simulated Bayesian p-value for testing the null
hypothesis δ = 0 against the two-sided alternative is 2× (151/5, 000) = 0.0604.
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6.2 Markov chain Monte Carlo

With Markov chain Monte Carlo (MCMC), we can put aside the normal approxima-
tion and obtain Bayesian answers that are approximately exact. The answers are exact
in the sense that, if the MCMC algorithm has run long enough to become independent
of the starting values, the simulated parameters are drawn from their actual posterior
distribution, with no large-sample approximations. The answers are approximate in
the sense that, because MCMC is a type of Monte Carlo simulation, summaries of a
posterior distribution from MCMC always contain random noise. That noise can be
reduced by performing more iterations, so at least in principle, the MCMC summaries
can be made arbitrarily precise. For general-purpose reviews of MCMC and its role
in Bayesian inference, see Gamerman and Lopes (2006) or Gelman et al. (2013).

To run MCMC on a cvam model, call cvam with method="MCMC". For log-linear
models fit with saturated=FALSE, two versions of MCMC are available. The de-
fault version is data augmentation (DA), a two-step procedure that bears a strong
resemblance to EM. Within each cycle of DA, any missing or coarsened values in the
dataset are imputed under the current value for β, and β is then updated by one step
of a Metropolis-Hastings procedure. The other version is a random-walk Metropolis
(RWM) algorithm that does not impute the missing or coarsened values at each cy-
cle. For saturated models fit with saturated=TRUE, MCMC is always implemented
as DA. The choice of algorithm, the number of iterations performed, and many other
options pertaining to MCMC can be selected through control parameters. Details of
these MCMC procedures and their control parameters are given in Appendix K.

In a moment, we will recreate our simulation of δ = π12 − π21 with the crime

dataset using MCMC. Before that, let’s simply invoke cvam with method="MCMC" and
see what happens.

> set.seed(4358)

> fit <- cvam( ~ V1 * V2, data=crime, freq=n, method="MCMC")

> summary(fit)

~ V1 * V2

Prior:

Flattening frequency = 0

Total nuggets + flattening = 0

Ridge factor = 0

Intensity factor = 1

Sample size:

total N in supplied data = 756

N from supplied data used in model fit = 641

prior effective sample size = 0

Degrees of freedom:

patterns of coarsened data = 9

cells in complete-data table = 4

cells without latent variables = 4

structural zero cells = 0
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parameters in Poisson model = 4

df = 0

Starting values:

default, center

jitter SD = 0.000000

MCMC: Data augumentation (DA) with Metropolis-Hastings

Tuning parameters:

proposal df = 10

step size = 0.8

scale factor = 0.8

Accept rate = 0.7936

Iterations performed = 5000

Iterations discarded as burn-in = 0

Iterations after burn-in = 5000

Thinning interval for saved series = 1

Samples in saved series = 5000

Imputation interval = 0

Number of imputations stored = 0

Direct estimates and SE's from 5000 successive MCMC samples

coef SE tstat pval

(Intercept) 4.6104 0.05779 79.77 0

V11 0.5015 0.06015 8.34 0

V21 0.6657 0.06018 11.06 0

V11:V21 0.3209 0.06277 5.11 0

The output from summary explains that cvam ran the DA algorithm for 5,000 it-
erations. The number of iterations can be changed through the control parameter
iterMCMC. The coefficients and standard errors displayed in the summary are “direct
estimates,” which means that they were computed from a running average and stan-
dard deviation of the simulated β values over the iterations of MCMC. The precision
of these Monte Carlo summaries depends on the number of iterations and on the
convergence behavior of the Markov chain. The series of β values was stored in the
cvam object and can be retrieved with get.coefSeries. By default, get.coefSeries
returns the series as an mcmc object from the package coda (Plummer et al., 2006),
which provides a variety of tools for assessing convergence and analyzing the out-
put from MCMC runs. For example, the summary method displays means, standard
deviations and quantiles.

> betaSeries <- get.coefSeries( fit )

> library(coda)

> summary( betaSeries )

Iterations = 1:5000

Thinning interval = 1

Number of chains = 1

Sample size per chain = 5000

1. Empirical mean and standard deviation for each variable,

plus standard error of the mean:
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Mean SD Naive SE Time-series SE

(Intercept) 4.6104 0.05780 0.0008174 0.001691

V11 0.5015 0.06016 0.0008507 0.001395

V21 0.6657 0.06019 0.0008512 0.001413

V11:V21 0.3209 0.06277 0.0008877 0.001531

2. Quantiles for each variable:

2.5% 25% 50% 75% 97.5%

(Intercept) 4.4974 4.5725 4.6105 4.6495 4.7202

V11 0.3807 0.4624 0.5018 0.5397 0.6213

V21 0.5516 0.6251 0.6645 0.7066 0.7865

V11:V21 0.1982 0.2792 0.3208 0.3657 0.4396

The plot method creates trace plots and density estimates,

> # display trace plots and density estimates

> plot( betaSeries )

with the result shown in Figure 2. The acfplot method creates autocorrelation plots,

> # display autocorrelation plots

> acfplot( betaSeries )

with the result shown in Figure 3.

By default, cvam does not store the series of simulated π vectors from an MCMC
run, but it does store the final value of π and the running average of π across the itera-
tions. This running average provides the fitted values in the result from get.fitted.
The result from get.fitted also includes predicted true frequencies, which are a
running average of the simulated true frequencies across the iterations.

> get.fitted(fit, type="prob")

V1 V2 freq fit

1 no no 527.3670 0.69829289

2 yes no 102.4814 0.13547757

3 no yes 74.4200 0.09780841

4 yes yes 51.7316 0.06842113

To access the series of π vectors, we will have to run the simulation again with the
control parameter saveProbSeries set to TRUE. In the example below, we repeat the
simulation with saveProbSeries=TRUE, then we compute and summarize the 5, 000
simulated values of δ.

> set.seed(4358)

> fit <- cvam( ~ V1 * V2, data=crime, freq=n, method="MCMC",

+ control=list( saveProbSeries=TRUE ) )

> piSeries <- get.probSeries(fit)

> delta <- piSeries[,3] - piSeries[,2]

> summary(delta)
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Figure 2: Trace plots and density estimates for log-linear coefficients from the crime

dataset, produced by coda.
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Figure 3: Plots of the autocorrelation function (ACF) for log-linear coefficients from
the crime dataset, produced by coda.
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Iterations = 1:5000

Thinning interval = 1

Number of chains = 1

Sample size per chain = 5000

1. Empirical mean and standard deviation for each variable,

plus standard error of the mean:

Mean SD Naive SE Time-series SE

-0.0376692 0.0197574 0.0002794 0.0004454

2. Quantiles for each variable:

2.5% 25% 50% 75% 97.5%

-0.077161 -0.050420 -0.038159 -0.024072 0.001025

> sum( delta > 0 )

[1] 138

The simulated Bayesian p-value of 2×(138/5, 000) = 0.0552 is very close to the result
we obtained from the approximate Bayesian method.

7 Multiple imputation

7.1 Multiple imputation with MCMC

Multiple imputation (MI) (Rubin, 1987, 1996) is an increasingly popular method for
analyzing datasets with missing values. With MI, we can perform the computations
that handle the missing values ahead of time, transforming the task into a series
of repeated complete-data analyses. In the notation that we have been using, f
denotes the true frequencies that we would want to analyze if there were no missing
or coarsened values, the frequencies for the table that cross-classifies sample units by
variables V = (V1, . . . , VJ). The information available to us is f ∗, the seen frequencies
for patterns of coarsened data. MI requires us to specify an imputation model, a model
that is rich enough to preserve the aspects of the joint distribution of V1, . . . , VJ that
are important for subsequent analyses. With MI, we simulate M independent random
draws of f from its posterior predictive distribution under the imputation model,

f (m) ∼ P (f |f ∗) independently for m = 1, . . . ,M. (9)

The variability among f (1), . . . ,f (M) should not only reflect uncertainty due to missing
and coarsened values, but also the uncertainty due to the fact that the parameters of
the imputation model are unknown. After creating the imputed datasets f(1), . . . , f(M),
we analyze each one as if it were the true f , saving the estimates and measures of
uncertainty, and then combine the results using procedures described by Rubin (1987),
Barnard and Rubin (1999), and others.
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With cvam, we can create the imputations in (9) by first drawing M independent
values of the imputation model parameters using an approximate Bayes or MCMC
procedure described in Section 6, and then, from each set of parameters, generating an
imputed dataset using cvamImpute. If the imputation frame supplied to cvamImpute

contains aggregated data and frequencies, the result will be M versions of a true
data frame, each having its own version of f . If the imputation frame supplied
to cvamImpute contains microdata, the result will be M different versions of the
microdata with no missing or coarsened values. In the example below, we use the
crime dataset to create M = 10 imputed versions of the 2× 2 table.

> impList <- as.list(1:10) # a list to store the imputed datasets

> set.seed(769090) # for reproducibility

> for(m in 1:10) {

+ # run MCMC under the non-independence model

+ tmp <- cvam( ~ V1 * V2, data=crime, freq=n, method="MCMC")

+ # impute under the simulated parameters

+ impList[[m]] <- cvamImpute( tmp, crime, freq=n)

+ }

> # display the first two imputations

> impList[1:2]

[[1]]

V1 V2 freq

1 no no 530

2 yes no 100

3 no yes 73

4 yes yes 53

[[2]]

V1 V2 freq

1 no no 534

2 yes no 99

3 no yes 69

4 yes yes 54

An easier way to generate multiple imputations is to perform a single run of
MCMC and save simulated values of f along the way, spacing them far enough apart
in the iteration sequence to be reasonably sure that they are independent. The number
of iterations between successive imputations, which we call the imputation interval, is
set by the control parameter imputeEvery. Setting imputeEvery and the number of
iterations iterMCMC will determine the number of imputations that are saved. After
the MCMC run, the imputed frequencies are retrieved with get.imputedFreq.

> # run MCMC for 5,000 iterations, saving an imputation at every 500th

> result <- cvam( ~ V1 * V2, data=crime, freq=n, method="MCMC",

+ control=list( iterMCMC=5000, imputeEvery=500 ) )

> get.imputedFreq(result)

V1 V2 imp.1 imp.2 imp.3 imp.4 imp.5 imp.6 imp.7 imp.8 imp.9 imp.10

1 no no 528 527 541 523 529 522 530 515 531 528

2 yes no 102 104 90 105 103 110 103 109 96 104
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3 no yes 72 71 70 70 69 73 73 77 73 67

4 yes yes 54 54 55 58 55 51 50 55 56 57

7.2 Multiple imputation with an approximate posterior

We can also perform MI by taking M draws of β from the approximate posterior
distribution using method="approxBayes" and generating an imputation for each
one. Draws from the approximate posterior are independent, so an imputation interval
greater than one is unnecessary. Setting the control parameter imputeApproxBayes

to TRUE will instruct cvam to create and store an imputation for every draw.

> # run EM, then create ten imputations with approxBayes

> fitML <- cvam( ~ V1 * V2, data=crime, freq=n )

> result <- cvam( fitML, method="approxBayes",

+ control=list( iterApproxBayes=10, imputeApproxBayes=TRUE ) )

> get.imputedFreq(result)

V1 V2 imp.1 imp.2 imp.3 imp.4 imp.5 imp.6 imp.7 imp.8 imp.9 imp.10

1 no no 522 522 529 534 528 528 529 525 530 530

2 yes no 105 112 107 101 93 101 104 104 104 99

3 no yes 78 72 70 68 80 75 72 72 73 80

4 yes yes 51 50 50 53 55 52 51 55 49 47

7.3 Combining results from repeated-imputation inferences

Rules for consolidating the results from a multiply-imputed data analysis are im-
plemented in the function miInference. This function has two required arguments:
est.list, a list of estimates to be combined, and std.err.list, a list of correspond-
ing standard errors. Each list should have M components, where M in the number of
imputations. Each component may be a scalar or a vector, and they should all have
the same length. For example, suppose that the imputed datasets are analyzed by
fitting a logistic regression model with 12 coefficients. Each component of est.list
will be a vector of 12 estimated coefficients, and each component of std.err.list

will be a vector of 12 standard errors.

For a very simple example, we will use the imputed versions of crime to create
an MI-based confidence interval for the odds ratio relating V1 to V2. Given the
frequencies for a 2× 2 table f = (f11, f12, f21, f22), the estimated odds ratio is

ω̂ =
f11 f22
f12 f21

.

In large samples, the estimated log-odds ratio θ̂ = log ω̂ is approximately normally
distributed around θ = logω, with estimated variance

V̂ (θ̂) =
1

f11
+

1

f12
+

1

f21
+

1

f22
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(Agresti, 2013). In the code below, we impute the crime dataset M = 10 times,
compute θ̂ and V̂ (θ̂) from each one, and combine the results.

> set.seed(54981)

> result <- cvam( fitML, method="MCMC",

+ control=list( iterMCMC=5000, imputeEvery=500 ) )

> impData <- get.imputedFreq(result)[-(1:2)] # just the frequencies

> est.list <- std.err.list <- as.list(1:10) # to hold the estimates and SEs

> for( m in 1:10 ) {

+ f <- impData[,m]

+ est.list[[m]] <- log( (f[1] * f[4]) / (f[2] * f[3]) )

+ std.err.list[[m]] <- sqrt( sum(1/f) )

+ }

> miInference( est.list, std.err.list )

Est SE Est/SE df p Pct.mis

[1,] 1.2773 0.26669 4.789 64.1 0 37.5

The combined estimate of the log-odds ratio is 1.28 with a standard error of 0.27.
The test of the null hypothesis θ = 0 against a two-sided alternative yields a p-value
that is essentially zero, and the estimated rate of missing information is 37.5%. For
more information on these quantities, see ?miInference.

7.4 A more detailed example of multiple imputation

For a more elaborate illustration, we return to the four-variable example of Section
4.4 and produce multiple imputations for the microdata. Our imputation model will
be saturated, which will preserve all possible associations among the variables and
avoid introducing bias into post-imputation analyses. To start, we fit the saturated
model using EM, then try a test run of MCMC starting from the EM estimate.

> # put the four variables into a data frame

> dF <- data.frame( Sex = abortion2000$Sex, RH = RH,

+ PolViews = abortion2000$PolViews, AbAny = abortion2000$AbAny )

> # fit the saturated model with EM, then do a test run of MCMC

> fitEM <- cvam( ~ Sex * RH * PolViews * AbAny, data=dF )

> set.seed(598902)

> fitMCMC <- cvam( fitEM, method="MCMC")

Note: Overflow; cell mean became too large

Cell 46

OCCURRED IN: compute_mu_from_beta in MOD cvam_engine

OCCURRED IN: run_mh_step_beta_da in MOD cvam_engine

MCMC procedure aborted

Iteration 1

OCCURRED IN: run_da_log_linear in MOD cvam_engine

To understand why MCMC failed, let’s examine some of the results from EM.
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> # display fitted cell probs, rounded to five decimal places

> round( get.fitted(fitEM, type="prob", mfTrue=FALSE ), 5)

[1] 0.02907 0.03923 0.00753 0.00245 0.00160 0.00304 0.00296 0.00050 0.06468

[10] 0.05462 0.01667 0.00602 0.00403 0.00191 0.00372 0.00337 0.06647 0.04504

[19] 0.00921 0.00369 0.00156 0.00171 0.00785 0.00312 0.09541 0.09529 0.01836

[28] 0.00518 0.00146 0.00000 0.00757 0.01045 0.09560 0.05246 0.02298 0.02268

[37] 0.00731 0.00361 0.01053 0.00919 0.04222 0.03682 0.01061 0.00988 0.00285

[46] 0.00000 0.00934 0.00360 0.00507 0.00624 0.00132 0.00117 0.00000 0.00098

[55] 0.00057 0.00101 0.00887 0.00754 0.00162 0.00090 0.00000 0.00000 0.00150

[64] 0.00000 0.00516 0.00209 0.00000 0.00083 0.00000 0.00166 0.00000 0.00000

> # display some of the coefs and SEs

> head( get.coef(fitEM, withSE=TRUE) )

coef SE tstat pval

(Intercept) 0.4681699 119.6099 0.00 0.9969

Sex1 0.1245196 119.6099 0.00 0.9992

RH1 3.8026873 119.6099 0.03 0.9746

RH2 1.1959860 159.5182 0.01 0.9940

RH3 -3.9601814 286.8639 -0.01 0.9890

PolViews.L -1.4433772 199.2738 -0.01 0.9942

Many of the fitted probabilities are close to zero. Standard errors for the coefficients
are huge, a telltale sign that the loglikelihood function is poorly shaped and almost
non-concave where EM stopped. This example has N = 2, 817 observations and 72
cells, but many of the cells are empty, causing some aspects of β to be poorly estimated
or inestimable. To address this problem, we could simplfy the model by omitting some
of the higher-way associations, or we could apply a flattening constant as described
in Section 4.6. We could also introduce a ridge factor, a term that penalizes the fit
for β values that are far from zero. A ridge factor shrinks the estimated coefficients
and moves the estimates away from the boundary, much as a flattening constant does,
and it reshapes the fitting function to become more concave. Let’s apply a mild ridge
factor of 0.5 and see what happens to the fitted probabilities and coefficients.

> # re-run EM with a ridge factor of 0.5

> fitEM.ridge <- cvam( ~ Sex * RH * PolViews * AbAny, data=dF,

+ prior=cvamPrior( ridge=.5 ) )

> round( get.fitted(fitEM.ridge, type="prob", mfTrue=FALSE ), 5)

[1] 0.02909 0.03937 0.00755 0.00252 0.00157 0.00280 0.00297 0.00053 0.06469

[10] 0.05455 0.01666 0.00601 0.00403 0.00202 0.00373 0.00336 0.06641 0.04503

[19] 0.00919 0.00374 0.00165 0.00166 0.00783 0.00310 0.09536 0.09503 0.01834

[28] 0.00515 0.00155 0.00045 0.00757 0.01043 0.09566 0.05265 0.02302 0.02269

[37] 0.00721 0.00324 0.01052 0.00917 0.04230 0.03674 0.01059 0.00979 0.00278

[46] 0.00025 0.00933 0.00361 0.00505 0.00622 0.00125 0.00118 0.00006 0.00096

[55] 0.00057 0.00096 0.00881 0.00744 0.00155 0.00089 0.00013 0.00012 0.00147

[64] 0.00004 0.00507 0.00213 0.00009 0.00085 0.00004 0.00159 0.00004 0.00003

> head( get.coef(fitEM.ridge, withSE=TRUE) )

coef SE tstat pval

(Intercept) 2.2664510 0.1590153 14.25 0.0000

Sex1 0.1349898 0.1590153 0.85 0.3959

RH1 2.0025760 0.1675005 11.96 0.0000
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RH2 0.1415260 0.2112464 0.67 0.5029

RH3 -1.3848754 0.3319072 -4.17 0.0000

PolViews.L -0.2525115 0.2610683 -0.97 0.3334

The fitted probabilities thet were close to zero are slightly larger, the standard er-
rors for the coefficients are dramatically smaller, and the coefficients have changed.
Whenever we use prior information to stabilize a model, it is worth asking whether
the results have changed too much, and whether the extra information is contradicted
by the data. To understand this, let’s compare the new and old estimates in terms of
−2 times the loglikelihood difference and the likelihood ratio.

> -2 * ( get.loglik(fitEM.ridge) - get.loglik(fitEM) )

[1] 1.666639

> exp( get.loglik(fitEM) - get.loglik(fitEM.ridge) )

[1] 2.300944

For rough guidance, we may compare −2 times the loglikelihood difference to a chi-
squared distribution with 72 degrees of freedom, because the saturated Poisson model
has 72 free parameters (one per cell). With P (χ2

72 ≥ 1.67) ≈ 1, there is essentially no
evidence to reject the new estimates in favor of the old. The likelihood ratio can be
viewed as a Bayes factor. By a widely used criterion, a Bayes factor between 1 and
3 means that the evidence to prefer the old estimates to the new is “not worth more
than a bare mention” (Jeffreys, 1961; Kass and Raftery, 1995).

Adding prior information effectively stabilized the estimates from EM, but the
MCMC algorithm still does not work.

> set.seed(87900)

> fitMCMC <- cvam( fitEM.ridge, method="MCMC" )

Note: Metropolis-Hastings got stuck

MCMC procedure aborted

Iteration 26

OCCURRED IN: run_da_log_linear in MOD cvam_engine

The procedure aborted after 25 iterations, because the Metropolis-Hastings jumping
rule failed to generate any plausible new values for β. The default settings for MCMC
do not always work, especially when some areas of the complete-data table are sparsely
populated. When this happens, we can address the problem by:

� using stronger prior information, either by increasing the ridge factor or intro-
ducing a flattening constant. There is a danger of adding too much, so this
should be done cautiously and sparingly.
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� changing the tuning constants for the proposal distribution through the control
parameters tuneDA, as described in Appendix K.

� changing the algorithm from data augmentation (DA) to random-walk Metropo-
lis (RWM), by setting the control parameter typeMCMC to "RWM" and fiddling
with the tuning constants tuneRWM.

Because this example involves a saturated model, we can also

� run the procedure with saturated=TRUE, which uses a different DA algorithm
that is more stable and never gets stuck.

Finally, if all else fails, we can still

� switch to the approximate Bayesian procedure described in Section 7.2.

For this example, we switched to RWM, which solved the problem of getting stuck.
With the default tuning constants, the acceptance rate was about 61%, which is
higher than optimal. In general, RWM performs best when the acceptance rate is
20–40%. Increasing the scale factor for the random-walk proposal will bring down
the acceptace rate, but if we raise the scale factor too much, the algorithm gets stuck.
With a little experimentation and a few more test runs, we found that a scale factor
of 0.17 struck a nice balance.

> set.seed(87900)

> fitMCMC <- cvam( fitEM.ridge, method="MCMC",

+ control=list( typeMCMC="RWM", tuneRWM=c(1000,.17) ) )

Plots of the coefficient series created with coda (not shown) revealed that this chain
mixes poorly, and it takes 500 or more iterations for the ACF functions to die down.
Collecting accurate posterior summaries from a parameter series would require ex-
tremely long runs of MCMC. In settings like these, multiple imputation has a pow-
erful advantage over direct simulation of the posterior summaries, because with MI,
we only need a small number of independent draws. In the example below, we run
MCMC for 2,500 cycles, impute the microdata with cvamImpute, then repeat the
process M = 25 times.

> M <- 25

> impList <- as.list(1:M) # dummy list to hold the imputed datasets

> set.seed(2343)

> for( m in 1:M ) {

+ # take 2,500 steps of MCMC, then impute

+ fitMCMC <- cvam( fitMCMC, control=list(iterMCMC=2500) )

+ impList[[m]] <- cvamImpute( fitMCMC, data=dF )
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+ }

> # display the first few rows of the original data and

> # the first imputed dataset

> head( dF )

Sex RH PolViews AbAny

1 Male nonHispNA Con No

2 Female Hisp Con No

3 Female nonHispNA Con <NA>

4 Female nonHispWhite Con <NA>

5 Female nonHispWhite Lib <NA>

6 Female nonHispWhite Lib Yes

> head( impList[[1]] )

Sex RH PolViews AbAny

1 Male nonHispWhite Con No

2 Female Hisp Con No

3 Female nonHispWhite Con No

4 Female nonHispWhite Con No

5 Female nonHispWhite Lib No

6 Female nonHispWhite Lib Yes

We finish this illustration by fitting a logistic regression model to each imputed
dataset and combining the results. The response is a binary indicator for AbAny="Yes",
and the predictors include main effects for Sex, RH and PolViews.

> est.list <- SE.list <- as.list(1:M)

> for( m in 1:M ) {

+ # extract the imputed dataset

+ impData <- impList[[m]]

+ # create the binary response and fit the logit model

+ impData$y <- 1 * ( impData$AbAny == "Yes" )

+ logitFit <- glm( y ~ Sex + RH + PolViews, data=impData,

+ family=binomial() )

+ # extract matrix of coefficients and SEs

+ coefMat <- summary(logitFit)$coef

+ est.list[[m]] <- coefMat[,1]

+ SE.list[[m]] <- coefMat[,2]

+ }

> # combine the results with Rubin's rules

> miInference( est.list, SE.list )

Est SE Est/SE df p Pct.mis

(Intercept) -0.3762900 0.076647 -4.909 138.6 0.000 41.6

SexMale 0.0038774 0.101040 0.038 187.1 0.969 35.8

RHnonHispBlack -0.3659200 0.248680 -1.471 40.5 0.149 77.0

RHnonHispOther 0.0729550 0.479760 0.152 39.9 0.880 77.6

RHHisp -0.5976000 0.205170 -2.913 172.5 0.004 37.3

PolViews.L 0.8583100 0.090432 9.491 237.3 0.000 31.8

PolViews.Q -0.0234460 0.078080 -0.300 316.2 0.764 27.6

The results are consistent with our log-linear analyses in Section 4.4: RH and PolViews

are strong predictors of AbAny, but Sex is not.
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7.5 Creating synthetic data

The function cvamImpute can also generate synthetic data, with applications to sta-
tistical disclosure limitation (Raghunathan et al., 2003; Reiter, 2004), parametric
bootstrapping (Efron, 2012), and Bayesian model criticism through posterior pre-
dictive checks (Rubin, 1984; Gelman et al., 2013). To generate synthetic data, call
cvamImpute with the argument synthetic=TRUE. This will cause the function to wipe
out all observed values in the imputation frame, replacing them with missing values
and then imputing them under the model and parameters in the supplied cvam object.
If the imputation frame contains microdata, the result will be a dataset of the same
size filled with synthetic data. If the imputation frame has grouped data and frequen-
cies, the result is a grouped data frame with one row per cell of the complete-data
table and synthetic integer frequencies that add up to the total sample size.

> # take 2,500 more steps of MCMC and draw a synthetic dataset

> fitMCMC <- cvam( fitMCMC )

> synthData <- cvamImpute( fitMCMC, data=dF)

> head( synthData )

Sex RH PolViews AbAny

1 Male nonHispWhite Con No

2 Female Hisp Con No

3 Female nonHispWhite Con No

4 Female nonHispWhite Con No

5 Female nonHispWhite Lib Yes

6 Female nonHispWhite Lib Yes

8 Latent-class analysis

8.1 Background

Latent-class (LC) analysis has a long history of use in the social sciences (Lazarsfeld
and Henry, 1968; Clogg and Goodman, 1984), medical and psychiatric diagnosis (For-
mann and Kohlmann, 1996; Bandeen-Roche et al., 1997), analysis of response errors
in censuses and surveys (Biemer et al., 2001) and elsewhere. Specialized routines for
LC modeling are available in SAS (Collins and Lanza, 2010; Lanza et al., 2015), R
(Linzer and Lewis, 2011) Mplus (Muthén and Muthén, 2017) and Latent GOLD (Ver-
munt and Magidson, 2016). Because LC models are an example of log-linear models
with incomplete data (Hagenaars, 1993), we can fit them with cvam. Special care is
needed, however, because LC models have unique features that cause them to behave
differently from other types of log-linear models.
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8.2 A simple example with two latent classes

An LC model posits a categorical variable that is completely missing and relies on
multiple observable variables to measure it. For example, Yang and Becker (1997)
examined the results from diagnostic tests for HIV infection. Four tests, which are
labeled A, B, C and D, were given to N = 428 high-risk patients. The report from
each test was either "neg" (negative) or "pos" (positive). The aggregated results are
distributed with cvam in a dataset called hivtest.

> hivtest

A B C D COUNT

1 neg neg neg neg 170

2 neg neg neg pos 15

3 neg pos neg neg 6

4 pos neg neg neg 4

5 pos neg neg pos 17

6 pos neg pos pos 83

7 pos pos neg neg 1

8 pos pos neg pos 4

9 pos pos pos pos 128

None of these tests is a gold standard; any of them can produce false positives or false
negatives. Suppose that each patient has a true infection status, a two-level factor
that we will call L. That factor is not found in the data frame, but we can create it
with the function latentFactor. This function accepts two arguments; the first is
the length of the latent factor, and the second is its number of levels.

> hivtest$L <- latentFactor( NROW(hivtest), 2 )

> hivtest

A B C D COUNT L

1 neg neg neg neg 170 <NA>

2 neg neg neg pos 15 <NA>

3 neg pos neg neg 6 <NA>

4 pos neg neg neg 4 <NA>

5 pos neg neg pos 17 <NA>

6 pos neg pos pos 83 <NA>

7 pos pos neg neg 1 <NA>

8 pos pos neg pos 4 <NA>

9 pos pos pos pos 128 <NA>

A traditional LC model assumes that the items measuring the latent variable are
conditionally independent given the latent variable. That assumption, known as local
independence, does not necessarily hold, but it provides a useful place to begin, and
we will evaluate the assumption later. For this example, the formula is:

∼ L*A + L*B + L*C + L*D

Before fitting this model, we need to make two important points. The first point is
that the default starting-value procedure should not be used with an LC model. By
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default, cvam starts by assigning equal probabilities to all cells of the complete-data
table. For an LC model, this happens to be a saddlepoint of the loglikelihood function,
a stationary value that is not a maximum, but where EM will stop changing from
one iteration to the next. To avoid getting stuck at this saddlepoint, we can set
the control parameter startValJitter to a small positive value, which adds random
Gaussian noise to the starting values.

A second important point about LC models is that their ML estimates are not
unique. For a model with C classes, there are C ! equivalent solutions corresponding
to all possible ways that the classes can be ordered from 1 to C. With randomly
jittered starting values, we can set the random number generator seed to ensure that,
if we need to run the procedure again, we will not converge to a different solution.

> # set the RNG seed and fit the model of local independence

> set.seed(125)

> fit <- cvam( ~ L*A + L*B + L*C + L*D, data=hivtest, freq=COUNT,

+ control = list( startValJitter=.1 ) )

Note: Estimate at or near boundary

Estimated variances may be unreliable

The ML estimates lie on a boundary, which is quite common for LC models.

8.3 Parameter estimates

Parameter estimates that are traditionally reported for an LC model include the
class prevalences, which are the marginal probabilities for the latent variable, and the
measurement parameters, which are the conditional probabilities for each item given
the latent variable, We can obtain these with a single call to cvamEstimate, putting
the formulas into a list.

> cvamEstimate( list( ~L, ~A|L, ~B|L, ~C|L, ~D|L ), fit )

Estimates and SE's from EM, linearized

~ L

L prob SE prob.lower prob.upper

1 1 0.5401 0.0242 0.4924 0.5870

2 2 0.4599 0.0242 0.4130 0.5076

~ A | L

L A prob SE prob.lower prob.upper

1 1 neg 0.0000 0.0000 0.0000 1.0000

2 1 pos 1.0000 0.0000 0.0000 1.0000

3 2 neg 0.9703 0.0131 0.9304 0.9876

4 2 pos 0.0297 0.0131 0.0124 0.0696

~ B | L

L B prob SE prob.lower prob.upper

1 1 neg 0.4290 0.0327 0.3665 0.4938

2 1 pos 0.5710 0.0327 0.5062 0.6335

3 2 neg 0.9644 0.0132 0.9272 0.9829

4 2 pos 0.0356 0.0132 0.0171 0.0728
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~ C | L

L C prob SE prob.lower prob.upper

1 1 neg 0.0871 0.019 0.0564 0.1323

2 1 pos 0.9129 0.019 0.8677 0.9436

3 2 neg 1.0000 0.000 0.0000 1.0000

4 2 pos 0.0000 0.000 0.0000 1.0000

~ D | L

L D prob SE prob.lower prob.upper

1 1 neg 0.0000 0.00 0.0000 1.0000

2 1 pos 1.0000 0.00 0.0000 1.0000

3 2 neg 0.9195 0.02 0.8706 0.9509

4 2 pos 0.0805 0.02 0.0491 0.1294

For the estimates on a boundary, the reported standard errors are zero, suggesting
that the estimates have no uncertainty. That is implausible, and it is one of the
reasons why cvam issued a warning. Adding even a small amount of prior information
through a flattening constant or ridge factor can address that problem. Examining
the pattern of conditional probabilities, we see that at this solution, latent class L=1

contains individuals who are likely to test positive, and class L=2 contains individuals
who are likely to test negative. With different random generator seeds, these class
labels could easily be reversed. Interpreting L=1 as actual HIV positive and L=2 as
actual HIV negative, the estimated sensitivities are

P (A="pos" | L=1) = 1.000,

P (B="pos" | L=1) = 0.571,

P (C="pos" | L=1) = 0.913,

P (D="pos" | L=1) = 1.000,

and the estimated specificities are

P (A="neg" | L=2) = 0.970,

P (B="neg" | L=2) = 0.964,

P (C="neg" | L=2) = 1.000,

P (D="neg" | L=2) = 0.919.

8.4 Lack-of-fit testing and residuals

The standard lack-of-fit test for LC model compares its loglikelihood to that of a
saturated model without the latent variable.

> # perform the lack-of-fit test

> fitSat <- cvam( ~ A*B*C*D, data=hivtest, freq=COUNT )

> anova( fit, fitSat, pval=TRUE )

Model 1: ~ L * A + L * B + L * C + L * D

Model 2: ~ A * B * C * D

resid.df -2*loglik df change pval

1 6 -3070.8

2 0 -3087.1 6 16.227 0.0126

58 58



8 Latent-class analysis

The accuracy of the reported p-value is dubious, because some of the fitted cell means
are at or near zero. With many LC models, the lack-of-fit test is at best a rough guide.
Nevertheless, the result suggests that this model could be improved.

When computing residuals for an LC model, we must address the fact that the
model of interest and the saturated model have different numbers of cells. First, we
extract from the saturated model the frame containing the predicted true frequencies.

> satFrame <- get.fitted( fitSat, type="mean" )

> # this frame has 16 rows; display the first few

> head(satFrame)

A B C D freq fit

1 neg neg neg neg 170 1.70000e+02

2 pos neg neg neg 4 4.00000e+00

3 neg pos neg neg 6 6.00000e+00

4 pos pos neg neg 1 1.00000e+00

5 neg neg pos neg 0 4.07402e-07

6 pos neg pos neg 0 4.07402e-07

> # get rid of the fitted values, because they are redundant

> satFrame$fit <- NULL

Next, we extract the fitted values from the LC model.

> LCFrame <- get.fitted( fit, type="mean" )

> # this frame has 32 rows; display the first few

> head(LCFrame)

L A B C D freq fit

1 1 neg neg neg neg 5.927605e-17 5.905489e-17

2 2 neg neg neg neg 1.700000e+02 1.693657e+02

3 1 pos neg neg neg 1.909359e-08 2.478698e-08

4 2 pos neg neg neg 4.000000e+00 5.192732e+00

5 1 neg pos neg neg 7.547378e-17 7.861742e-17

6 2 neg pos neg neg 6.000000e+00 6.249913e+00

To compare these fitted means to the predicted true frequencies, we must sum them
over the levels of the latent variable and arrange them in the same order as the cells
of the saturated model.

> muHatTable <- xtabs( fit ~ A + B + C + D, data=LCFrame )

> muHatFrame <- as.data.frame( muHatTable, responseName = "muHat" )

> # diplay the first few rows to make sure that the

> # cell order is correct

> head( muHatFrame)

A B C D muHat

1 neg neg neg neg 1.693657e+02

2 pos neg neg neg 5.192732e+00

3 neg pos neg neg 6.249913e+00

4 pos pos neg neg 1.916216e-01

5 neg neg pos neg 5.087254e-07

6 pos neg pos neg 2.752312e-07
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Finally, we compute the quasi-Pearson residuals, and put the fitted values and resid-
uals into the frame that holds the predicted true frequencies.

> muHat <- muHatFrame$muHat

> quasiPearson <- ( satFrame$freq - muHat ) / sqrt( muHat )

> satFrame$muHat <- round( muHat, 3 )

> satFrame$quasiPearson <- round( quasiPearson, 2 )

> satFrame

A B C D freq muHat quasiPearson

1 neg neg neg neg 170 169.366 0.05

2 pos neg neg neg 4 5.193 -0.52

3 neg pos neg neg 6 6.250 -0.10

4 pos pos neg neg 1 0.192 1.85

5 neg neg pos neg 0 0.000 0.00

6 pos neg pos neg 0 0.000 0.00

7 neg pos pos neg 0 0.000 0.00

8 pos pos pos neg 0 0.000 0.00

9 neg neg neg pos 15 14.837 0.04

10 pos neg neg pos 17 9.096 2.62

11 neg pos neg pos 0 0.548 -0.74

12 pos pos neg pos 4 11.520 -2.22

13 neg neg pos pos 0 0.000 0.00

14 pos neg pos pos 83 90.509 -0.79

15 neg pos pos pos 0 0.000 0.00

16 pos pos pos pos 128 120.491 0.68

The residuals in rows 10 and 12 are a bit large, suggesting again that the model can
be improved.

8.5 Departures from local independence

One way to improve the fit of an LC model is to increase the number of latent classes.
For this example, that is not really an option, because we believe HIV infection
status is a binary condition, and because the tests A, B, C and D were designed for
binary diagnosis. Fit may also be improved by relaxing the assumption of local
independence. This should be done cautiously and sparingly, because LC models use
up degrees of freedom very quickly. With binary items and a binary latent class,
a three-way association such as L:A:B adds two more parameters to the model. In
the code below, we add each of these three-way associations without the others and
compare the fit to local independence and the saturated model.

> set.seed(85657)

> fitLAB <- cvam( ~ L*A + L*B + L*C + L*D + L*A*B,

+ data=hivtest, freq=COUNT,

+ control = list(startValJitter=.1) )

Note: Estimate at or near boundary

Estimated variances may be unreliable

> anova(fit, fitLAB, fitSat, pval=TRUE)
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Model 1: ~ L * A + L * B + L * C + L * D

Model 2: ~ L * A + L * B + L * C + L * D + L * A * B

Model 3: ~ A * B * C * D

resid.df -2*loglik df change pval

1 6 -3070.8

2 4 -3072.7 2 1.8402 0.3985

3 0 -3087.1 4 14.3871 0.0062

> fitLAC <- cvam( ~ L*A + L*B + L*C + L*D + L*A*C,

+ data=hivtest, freq=COUNT,

+ control = list(startValJitter=.1) )

Note: Estimate at or near boundary

Estimated variances may be unreliable

> anova(fit, fitLAC, fitSat, pval=TRUE)

Model 1: ~ L * A + L * B + L * C + L * D

Model 2: ~ L * A + L * B + L * C + L * D + L * A * C

Model 3: ~ A * B * C * D

resid.df -2*loglik df change pval

1 6 -3070.8

2 4 -3070.8 2 0.000 1.0000

3 0 -3087.1 4 16.227 0.0027

> fitLAD <- cvam( ~ L*A + L*B + L*C + L*D + L*A*D,

+ data=hivtest, freq=COUNT,

+ control = list(startValJitter=.1) )

Note: Estimate at or near boundary

Estimated variances may be unreliable

> anova(fit, fitLAD, fitSat, pval=TRUE)

Model 1: ~ L * A + L * B + L * C + L * D

Model 2: ~ L * A + L * B + L * C + L * D + L * A * D

Model 3: ~ A * B * C * D

resid.df -2*loglik df change pval

1 6 -3070.8

2 4 -3084.0 2 13.171 0.0014

3 0 -3087.1 4 3.056 0.5485

> fitLBC <- cvam( ~ L*A + L*B + L*C + L*D + L*B*C,

+ data=hivtest, freq=COUNT,

+ control = list(startValJitter=.1) )

Note: Estimate at or near boundary

Estimated variances may be unreliable

> anova(fit, fitLBC, fitSat, pval=TRUE)

Model 1: ~ L * A + L * B + L * C + L * D

Model 2: ~ L * A + L * B + L * C + L * D + L * B * C

Model 3: ~ A * B * C * D

resid.df -2*loglik df change pval

1 6 -3070.8

2 4 -3084.0 2 13.171 0.0014

3 0 -3087.1 4 3.056 0.5485

> fitLBD <- cvam( ~ L*A + L*B + L*C + L*D + L*B*D,

+ data=hivtest, freq=COUNT,

+ control = list(startValJitter=.1) )
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Note: Estimate at or near boundary

Estimated variances may be unreliable

> anova(fit, fitLBD, fitSat, pval=TRUE)

Model 1: ~ L * A + L * B + L * C + L * D

Model 2: ~ L * A + L * B + L * C + L * D + L * B * D

Model 3: ~ A * B * C * D

resid.df -2*loglik df change pval

1 6 -3070.8

2 4 -3072.0 2 1.1872 0.5523

3 0 -3087.1 4 15.0400 0.0046

> fitLCD <- cvam( ~ L*A + L*B + L*C + L*D + L*C*D,

+ data=hivtest, freq=COUNT,

+ control = list(startValJitter=.1) )

Note: Estimate at or near boundary

Estimated variances may be unreliable

> anova(fit, fitLCD, fitSat, pval=TRUE)

Model 1: ~ L * A + L * B + L * C + L * D

Model 2: ~ L * A + L * B + L * C + L * D + L * C * D

Model 3: ~ A * B * C * D

resid.df -2*loglik df change pval

1 6 -3070.8

2 4 -3072.7 2 1.8402 0.3985

3 0 -3087.1 4 14.3871 0.0062

The associations L:A:D and L:B:C are both statistically significant. Adding either
of them without the other produces a model that fits well, but adding both of them
would be of no value.

> fitBoth <- cvam( ~ L*A + L*B + L*C + L*D + L*A*D + L*B*C,

+ data=hivtest, freq=COUNT,

+ control = list(startValJitter=.1) )

Note: Estimate at or near boundary

Estimated variances may be unreliable

> anova(fitLAD, fitBoth)

Model 1: ~ L * A + L * B + L * C + L * D + L * A * D

Model 2: ~ L * A + L * B + L * C + L * D + L * A * D + L * B * C

resid.df -2*loglik df change

1 4 -3084

2 2 -3084 2 -1.2725e-06

> anova(fitLBC, fitBoth)

Model 1: ~ L * A + L * B + L * C + L * D + L * B * C

Model 2: ~ L * A + L * B + L * C + L * D + L * A * D + L * B * C

resid.df -2*loglik df change

1 4 -3084

2 2 -3084 2 7.856e-07
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8.6 Posterior predictions

With two plausible models and no compelling reason to choose one over the other,
we arbitrarily pick the model with L:B:C and examine its implications. Using the
function cvamPredict, we can obtain the estimated posterior probabilities of L=1

and L=2 for each row of the original dataset.

> # get predicted probabilities and display them with the dataset

> pred <- cvamPredict( ~L, fitLBC, data=hivtest )

> cbind( hivtest, round(pred, 3) )

A B C D COUNT L 1 2

1 neg neg neg neg 170 <NA> 1.000 0.000

2 neg neg neg pos 15 <NA> 1.000 0.000

3 neg pos neg neg 6 <NA> 1.000 0.000

4 pos neg neg neg 4 <NA> 1.000 0.000

5 pos neg neg pos 17 <NA> 0.024 0.976

6 pos neg pos pos 83 <NA> 0.000 1.000

7 pos pos neg neg 1 <NA> 1.000 0.000

8 pos pos neg pos 4 <NA> 0.004 0.996

9 pos pos pos pos 128 <NA> 0.000 1.000

Notice that in this fitted model, the labels for the latent classes have switched, so
L=1 now represents HIV-negative and L=2 represents HIV-positive. These predictions
apply to the patients in this study, each of whom was given all four tests. In actual
medical practice, it is more likely for a patient to receive one of the four tests. In the
example below, we create a new prediction frame that shows the posterior probabilities
given a positive or negative result for each test apart from the others.

> predFrame <- hivtest[1:8,]

> predFrame$COUNT <- NULL

> predFrame[["A"]][] <- NA

> predFrame[["B"]][] <- NA

> predFrame[["C"]][] <- NA

> predFrame[["D"]][] <- NA

> predFrame[["A"]][1] <- "pos"; predFrame[["A"]][2] <- "neg"

> predFrame[["B"]][3] <- "pos"; predFrame[["B"]][4] <- "neg"

> predFrame[["C"]][5] <- "pos"; predFrame[["C"]][6] <- "neg"

> predFrame[["D"]][7] <- "pos"; predFrame[["D"]][8] <- "neg"

> predFrame[["A"]] <- coarsened( predFrame[["A"]] )

> predFrame[["B"]] <- coarsened( predFrame[["B"]] )

> predFrame[["C"]] <- coarsened( predFrame[["C"]] )

> predFrame[["D"]] <- coarsened( predFrame[["D"]] )

> pred <- cvamPredict( ~L, fitLBC, data=predFrame )

> cbind( predFrame, round(pred, 3) )

A B C D L 1 2

1 pos <NA> <NA> <NA> <NA> 0.023 0.977

2 neg <NA> <NA> <NA> <NA> 1.000 0.000

3 <NA> pos <NA> <NA> <NA> 0.050 0.950

4 <NA> neg <NA> <NA> <NA> 0.655 0.345

5 <NA> <NA> pos <NA> <NA> 0.000 1.000
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6 <NA> <NA> neg <NA> <NA> 0.905 0.095

7 <NA> <NA> <NA> pos <NA> 0.062 0.938

8 <NA> <NA> <NA> neg <NA> 1.000 0.000

And in the code below, we produce posterior predictions under the model of local
independence.

> pred <- cvamPredict( ~L, fit, data=predFrame )

> cbind( predFrame, round(pred, 3) )

A B C D L 1 2

1 pos <NA> <NA> <NA> <NA> 0.975 0.025

2 neg <NA> <NA> <NA> <NA> 0.000 1.000

3 <NA> pos <NA> <NA> <NA> 0.950 0.050

4 <NA> neg <NA> <NA> <NA> 0.343 0.657

5 <NA> <NA> pos <NA> <NA> 1.000 0.000

6 <NA> <NA> neg <NA> <NA> 0.093 0.907

7 <NA> <NA> <NA> pos <NA> 0.936 0.064

8 <NA> <NA> <NA> neg <NA> 0.000 1.000

Aside from the fact that the class labels are different, the predicted values from the
two models are essentially identical. Including the L:B:C association produces a better
fitting model but does not change the diagnostic implications.

8.7 MCMC for latent-class models

Running MCMC on an LC model is straightforward, but first we must address the
fact that the ML estimates lie on a boundary. Adding a small bit of prior information
through a ridge factor solves the problem.

> # re-fit the model with EM using a small ridge factor

> set.seed(7666)

> fitLBC <- cvam( ~ L*A + L*B + L*C + L*D + L*B*C,

+ data=hivtest, freq=COUNT, prior=cvamPrior( ridge=.1 ),

+ control = list(startValJitter=.1) )

The default DA procedure gets stuck, but with a little experimentation, we found
that RWM with tuning parameters c(1000,.5) works well for this problem.

> # do a long run of MCMC and save ten imputed datasets

> fitMCMC <- cvam(fitLBC, method="MCMC",

+ control=list( typeMCMC="RWM", tuneRWM=c(1000,.5),

+ iterMCMC=25000, imputeEvery=2500 ) )

It is possible for the latent-class labels to permute during an MCMC run, which com-
plicates the task of extracting posterior summaries of parameters from the output
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stream. Many solutions to the label-switching problem have been proposed (Richard-
son and Green, 1997; Celeux et al., 2000; Chung et al., 2004; Papastamoulis, 2014).
Here we suggest a pragmatic and simple method: instead of working with the param-
eter series, collect and analyze multiple imputations of the complete-data table. It is
easy to examine a few imputed datasets to see if label switching has occurred, and
if it has, the problem can be solved by a simple relabeling of the latent factor in the
affected datasets.

> # check to see if any label switching has occurred

> impData <- get.imputedFreq(fitMCMC)

> head(impData)

L A B C D imp.1 imp.2 imp.3 imp.4 imp.5 imp.6 imp.7 imp.8 imp.9

1 1 neg neg neg neg 0 0 0 0 0 0 0 0 0

2 2 neg neg neg neg 170 170 170 170 170 170 170 170 170

3 1 pos neg neg neg 0 0 0 0 0 0 0 0 0

4 2 pos neg neg neg 4 4 4 4 4 4 4 4 4

5 1 neg pos neg neg 0 0 0 0 0 0 0 0 0

6 2 neg pos neg neg 6 6 6 6 6 6 6 6 6

imp.10

1 0

2 170

3 0

4 4

5 0

6 6

In each of these imputed tables, the 170 patients with negative results on all four
tests were all assigned to class L=2. If label switching had occurred, we would have
occasionally seen them assigned to L=1.

With these imputed datasets, we can see why the model of local independence did
not fit. Taking the first imputation and collapsing it down to the B × C × L margins,
we examine the conditional B × C tables for L=1 and L=2.

> impData$freq <- impData[["imp.1"]] # first imputation

> BCL <- xtabs( freq ~ B + C + L, data=impData )

> BCL

, , L = 1

C

B neg pos

neg 17 83

pos 4 128

, , L = 2

C

B neg pos

neg 189 0

pos 7 0

The results from tests B and C are strongly correlated for the L=1 group, which now
represents patients who are HIV-positive. For the HIV-negative patients (L=2), the
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data are not sufficient to compute an odds ratio. Using the formulas from Section
7.3, we compute the conditional log-odds ratios and their standard errors from each
imputed dataset, then combine the results. To avoid problems due to zero cells, we
add 1/2 to each cell before computing the odds ratio.

> # use multiple imputations to examine the conditional

> # BC odds ratios given L=1 and L=2

> est.list <- SE.list <- as.list(1:10)

> for( m in 1:10 ) {

+ # get the imputed marginal table BxCxL

+ impName <- paste( "imp", format(m), sep="." )

+ impData$freq <- impData[[impName]]

+ BCL <- xtabs( freq ~ B + C + L, data=impData )

+ # add 1/2 to every cell to avoid problems

+ BCL <- BCL + .5

+ # get BC log-odds ratio and SE for L=1

+ BCL.1 <- BCL[,,"1"]

+ logOR.1 <- log( ( BCL.1[1,1] * BCL.1[2,2] ) /

+ ( BCL.1[1,2] * BCL.1[2,1] ) )

+ SE.1 <- sqrt( sum( 1/BCL.1 ) )

+ # get BC log-odds ratio and SE for L=2

+ BCL.2 <- BCL[,,"2"]

+ logOR.2 <- log( ( BCL.2[1,1] * BCL.2[2,2] ) /

+ ( BCL.2[1,2] * BCL.2[2,1] ) )

+ SE.2 <- sqrt( sum( 1/BCL.2 ) )

+ # save the estimates and SEs

+ est.list[[m]] <- c( logOR.1, logOR.2 )

+ SE.list[[m]] <- c( SE.1, SE.2 )

+ }

> miInference( est.list, SE.list )

Est SE Est/SE df p Pct.mis

[1,] 1.7849 0.55982 3.188 23011.2 0.001 2

[2,] 3.2196 2.03440 1.583 56542162.4 0.114 0
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Appendix A Notation for multivariate categorical data

Notation for describing multivariate categorical models can be complicated, because
the data can be expressed in so many different forms; here we strive for brevity and
generality. Scalars will be written in lightface, vectors and other arrays in boldface.
Let V i = (Vi1, . . . , ViJ) denote a vector of J categorical random variables for sample
unit i, where i = 1, . . . , N indexes units in the microdata sense, and N is the total
sample size. The vectors V 1, . . . ,V N are not necessarily seen, because data may
arrive in a tabulated or grouped formats, and even when microdata are given, some
of the Vij’s could be missing or coarsened. The set of possible values taken by Vij is

Vj = {1, 2, . . . ,#Vj}.

(The symbol ‘#’ is the cardinality operator. When applied to a set, it returns the
number of elements in the set.) Let v = (v1, . . . , vJ) denote a possible value of V i.
For now, we suppose that v lies within the set

V = V1 × V2 × · · · × VJ =
J∏
j=1

Vj,

where ‘×’ and ‘
∏

’ denote the Cartesian product. In Appendix C, we will discuss the
possibility of structural zeros, cells within V that are disallowed and whose probabil-
ities are fixed at zero. Denote the probability of the event V i = v by

πv = P (Vi1 = v1, . . . , ViJ = vJ),

and the vector of probabilities for all cells by

π = (πv : v ∈ V).

We assume that π vector lies within the (#V− 1)-dimensional open simplex

S =

{
π : 0 < πv < 1 ,v ∈ V ∩

∑
v∈V

πv = 1

}
.



Appendix B Alternative sampling distributions

Under multinomial sampling, in which units are independently drawn from a common
population, the loglikelihood function for π based on V 1, . . . ,V N is

lπ(π |V 1, . . . ,V N) = c +
N∑
i=1

logP (V i |π),

where c is an arbitrary constant. But

lπ(π |V 1, . . . ,V N) =
N∑
i=1

∑
v∈V

I(V i = v) log πv

=
∑
v∈V

fv log πv, (10)

where fv =
∑N

i=1 I(V i = v) is the frequency in cell v, and I(·) is the indicator
function equal to one if its argument is true and zero otherwise. Because this function
depends on V 1, . . . ,V N only through the sufficient statistic f = (fv : v ∈ V), we will
write it as lπ(π |f). We will also call it the complete-data multinomial loglikelihood,
because it is the function we would use to estimate π under multinomial sampling if
f were fully observed. Without further restrictions on π, and without any missing
or coarsened values, the maximum-likelihood (ML) estimate for π under multinomial
sampling given by the sample proportions

arg max
π ∈ S

lπ(π |f) = N−1f (11)

(Agresti, 2013).

Appendix B Alternative sampling distributions

Appendix B.1 Poisson sampling

Under multinomial sampling, N is regarded as fixed, f has a multinomial distribution

f |N,π ∼ Mult(N,π), (12)

and the elements of f are negatively intercorrelated because of the constraint f+ =∑
v∈V fv = N . (Whenever a vector subscript is replaced by ‘+’, it denotes summation

over the subscript.) Even when N is fixed by the study design, it may be convenient to
treat the elements of f as independent Poisson variates with means µ = (µv : v ∈ V),

fv |µ ∼ Poisson(µv) independently for v ∈ V, (13)

which makes N a random variable. Using a well known relationship between the
Poisson and multinomial distributions, the joint distribution function for f implied
by Equation (13) can be factored as
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� a Poisson distribution function forN , with mean φ = µ+ =
∑

v∈V µv, multiplied
by

� the multinomial distribution function implied by Equation (12), with π = φ−1µ

(Agresti, 2013). Consequently, the Poisson-induced loglikelihood function for µ,

lµ(µ |f) =
∑
v∈V

( fv log µv − µv ) , (14)

can be written as
lµ(φπ |f) = lφ(φ |N) + lπ(π |f), (15)

where lφ(φ |N) = N log φ − φ and lπ(π |f) is the multinomial loglikelihood. At any
fixed value of φ, lπ(π |f) and lµ(φπ |f) differ by an additive constant. It follows that
an ML estimate for π based on the multinomial model can be obtained by computing
the ML estimate for µ based on the Poisson model, fixing φ at its estimated value,
and projecting the estimated µ into S by π = φ−1µ (Richards, 1961; Baker, 1994).
The nuisance quantity φ is an expansion parameter which, after it has been used to
convert µ to π, carries no further information about π from a likelihood perspective.
Estimating multinomial probabilities by fitting a surrogate Poisson model, which
is sometimes called the Poisson trick, is often used in categorical data analysis to
circumvent the sum-to-one constraint on π (Venables and Ripley, 2013).

When using the Poisson trick, the parameter spaces for µ and π must conform in
the following sense: if we assume π ∈ S0 ⊂ S, then the surrogate Poisson model must
be fit over the augmented space

M0 = {µ : µ = φπ,π ∈ S0, φ ∈ (0,+∞)}.

This condition, which is automatically satisfied for log-linear models, ensures that
maximizing lµ is equivalent to separately maximizing lφ and lπ. In particular, when
no restrictions are placed on π other than π+ = 1, the ML estimate for µ is

arg max
µ∈M0

lµ(µ |f) = f , (16)

in agreement with Equation (11).

Although the Poisson trick is usually described in terms of ML estimation, the
equivalence between lπ(π |f) and lµ(φπ |f) holds at any fixed value for φ, not just
at the mode. In Bayesian analyses, inferences about π under Poisson and multi-
nomial models will be equivalent, provided that the prior distribution for µ, when
marginalized over φ, is the desired prior for π.

When using the Poisson trick, it is crucial to include empty cells, because they
are informative in the Poisson setting. A cell with fv = 0 contributes nothing to lπ,
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so when fitting a multinomial model to grouped data, rows of a data frame with zero
frequencies may be omitted. But an occurrence of fv = 0 does contribute to lµ, so
a surrogate Poisson model must be fit to the full contingency table, including any
empty cells.

Appendix B.2 Product-multinomial sampling

The Poisson trick can be extended to situations where some categorical variables
are regarded as fixed. Suppose we partition the variables as V i = (Ai,Bi), where
Ai = (Vi1, . . . , Vij) and Bi = (Vi,j+1, . . . , ViJ) for some j, and we are only interested in
describing the conditional distribution of Bi given Ai, treating Ai as unmodeled co-
variates. Partition the microdata as V = (A,B), where A = (Ai : i = 1, . . . , N) and
B = (Bi : i = 1, . . . , N). Denote possible values for Ai and Bi as a = (v1, . . . , vj) ∈
A and b = (vj+1, . . . , vJ) ∈ B, where A = V1 × · · · × Vj and B = Vj+1 × · · · × VJ , so
that πv = πa,b and fv = fa,b. Denote the marginal probability of Ai = a by

π
(A)
a =

∑
b∈B

fa,b ,

and the vector of all such marginal probabilities by π(A) = (π
(A)
a : a ∈ A). Similarly,

denote the marginal frequency of Ai = a by

f
(A)
a =

∑
b∈B

fa,b ,

and let f (A) = (f
(A)
a : a ∈ A). Finally, let

fa, : = (fa,b : b ∈ B)

denote the slice of the frequency table f corresponding to Ai = a. The multinomial
sampling model of Equation (12) implies that

f (A) |N,π ∼ Mult(N,π(A)), (17)

and that

fa, : |f (A),π ∼ Mult(f
(A)
a ,π

(B |A)
a, : ) independently for a ∈ A, (18)

where π
(B |A)
a,b

= πa,b / π
(A)
a denotes the conditional probability of Bi = b given

Ai = a, and
π

(B |A)
a, : = (π

(B |A)
a,b

: b ∈ B)

denotes the slice of all such probabilities corresponding to Ai = a. A set of in-
dependent multinomial distributions over slices of a contingency table is called a
product-multinomial model.

It follows that the Poisson loglikelihood in Equation (15) can be written as
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� a Poisson loglikelihood for φ based on N =, plus

� a multinomial loglikelihood for the marginal probabilities π(A) based on the
marginal frequencies f (A), plus

� a multinomial loglikelihood for each slice of conditional probabilities π
(B |A)
a, :

based on the corresponding slice of frequencies fa, :.

If we want to model only the conditional distribution of Bi given Ai, because the
marginal frequencies f (A) are fixed by design or are otherwise not of interest, we can
do so in three different ways.

� Fit separate multinomial models to each slice f
(A)
a to directly estimate each slice

of conditional probabilities π
(B |A)
a, : .

� Fit a surrogate multinomial model to f , compute the conditonal probabilities
π

(B |A)
a, : from the estimate of π, and ignore the expansion parameters π(A).

� Fit a surrogate Poisson model to f , compute the conditonal probabilities π
(B |A)
a, :

from the estimate of µ, and ignore the expansion parameters φ and π(A).

Answers from the three methods will be identical, provided that the surrogate models
impose no restrictions on φ other than φ ∈ (0,+∞), and no restrictions on π(A) other

than
∑
a∈A π

(A)
a = 1. In practice, this can be satisfied by fitting a surrogate model

that includes all possible associations among the variables inAi (Venables and Ripley,
2013).

Appendix C Defining a log-linear model

For our purposes, a log-linear model is a restriction on π of the form

logπ = o + Xλ, (19)

where X is a known #V × p model matrix, o = (o1, o2, . . .)
> is a known vector of

length #V, and λ = (λ1, . . . , λp)
> is a vector of unknown coefficients to be estimated

(the superscript ‘>’ denotes transpose). The o vector is called an offset, and it appears
in applications where the expected cell frequencies are thought to be proportional to
a given variable (called exposure) that varies across cells. Except in those settings, o
is usually set to 0 = (0, . . . , 0)>. We assume that X has full rank. We also require
C(X), the linear space spanned by the columns of X, to include 1 = (1, 1, . . . , )>.
If 1 were not in C(X), then it might be impossible to find a λ for which π+ = 1.
Following standard practice, we will usually satisfy this requirement by choosing an
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X with 1 as its first column. The remaining columns of X will correspond to terms
for main effects of Vi1, . . . , ViJ and interactions among them. The log-linear model for
µ = Nπ implied by Equation (19) is

logµ = o + Xβ. (20)

In the computations performed by cvam, the ordering of the cells in the log-linear
model is not specified directly by the user. Rather, it is determined by R’s formula
mechanism and the anti-lexicographical ordering of records in a data frame generated
by the aggregate function.

To make sure that the logarithms in (19) and (20) are defined, we require πv > 0
and µv > 0 for every cell. However, we do allow for the possibility of structural zeros,
particular values of v = (v1, . . . , vJ) that are deemed by the user to be impossible.
Structural zero cells are not removed from π or µ or from the rows of X, but they are
skipped over in all computations that iterate over the cells of the table. For example,
if structural zeros are present, then every sum over v ∈ V in any formula should be
understood as as summation over the cells that are not structural zeros.

Appendix D Newton-Raphson with complete data

Under the Poisson surrogate model defined by (13) and (20), we maximize the loglike-
lihood over the expanded parameter space β ∈ Rp using the Newton-Raphson (NR)
method. Writing the Poisson-induced loglikelihood as

l(β) =
∑
v∈V

(fv log µv − µv),

one iteration of NR updates the current estimate β̂
(t)

by

β̂
(t+1)

= β̂
(t)

+ =

[
−
(

∂2l

∂β∂β>

)]−1(
∂l

∂β

)
,

where the derivatives on the right-hand side are evaluated at β = β̂
(t)

. Letting
ηv = log µv and applying the chain rule

∂l

∂βj
=
∑
v∈V

(
∂l

∂µv

)(
∂µv

∂ηv

)(
∂ηv
∂βj

)
,

we obtain
∂l

∂βj
=
∑
v∈V

(fv − µv)xv,j,
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where xv,j denotes the jth element of the row of the model matrix corresponding to
cell v. Applying the chain rule again, we get

∂2l

∂βj∂βk
= −

∑
v∈V

µv xv,j xv,k.

In vector form, the score (first derivative) vector and Hessian (second derivative)
matrix are

∂l

∂β
= X>(f − µ) and

∂2l

∂β∂β>
= −X>WX,

where W = diag(µ) is the square matrix with elements µv, v ∈ V on the diagonal
and zeros elsewhere.

In well-behaved problems, NR converges reliably and quickly. Failure to converge
generally indicates that the ML estimate is not unique or that it lies on a boundary
of the parameter space where one or more cell probabilities are zero. If we judge
convergence by observing whether changes in the elements of the estimated β are
sufficiently small, then ML estimates on a boundary will cause some elements of β to
run away toward +∞ or −∞, depending on how X is coded, and the test will fail.
But if we examine changes in the elements of π or µ, an estimate on the boundary
may not be problematic, as the changes from one iteration to the next on that scale
will become smaller and smaller. In that case, there is a potential for numerical
overflow or underflow when exponentiating the elements of Xβ, and the estimated
covariance matrix for β may not be reliable.

Appendix E Notation for coarsened factors

Returning to the notation for categorical variables in Appendix A, we now expand
the notation to allow missing and coarsened values. As before, let Vij denote the jth
categorical variable for observational unit i. The possible values for Vij are

Vj = {1, 2, . . . ,#Vj}.

Members of Vj are called base-level codes; these are all the possible responses that
would be seen if there were no missing or coarsened data.

Let V ∗ij denote a coarsened version of Vij. The possible values of V ∗ij lie in the
expanded set

V∗j = {1, 2, . . . ,#Vj, . . . ,#V∗j},

where #V∗j > #Vj. The extra codes not found in Vj,

V∗j \ Vj = {#V + 1, . . . ,#V∗j},
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are called coarse-level codes.

If V ∗ij happens to be one of the base-level codes, then Vij is equal to V ∗ij ,

V ∗ij = 1 ⇒ Vij = 1,

...

V ∗ij = #Vj ⇒ Vij = #Vj.

However, if V ∗ij happens to be one of the coarse-level codes, the exact value of Vij
cannot be deduced from it. In that case, Vij is known to lie within a subset of the
base-level codes, a set denoted by Mj(V

∗
ij). That is,

V ∗ij = v∗ ⇒ Vij ∈ Mj(v
∗),

where Mj is the mapping, a one-to-many relation that maps elements of V∗ onto
non-empty subsets of Vj. We use the last coarse-level code to denote a traditional
missing value,

Mj(v
∗) = Vj when v∗ = #V∗j .

As the number of base-level codes increases, the number of possible coarse-level codes
expands rapidly. In practice, we do not need to create a coarse-level code for every
possible subset of the base-level codes, but only for groupings that arise in a given
application.

For examples of coarsened categorical variables and information on how the cvam

package creates and stores them, see the accompanying vignette Understanding Coars-
ened Factors in cvam.

Consider now a vector of J coarsened variables V ∗i = (V ∗i1, . . . , V
∗
iJ), a coarsened

version of V i = (V ∗i1, . . . , ViJ). Let v∗ = (v∗1, . . . , v
∗
J) denote a possible value for V ∗i .

The set of all possible values for V ∗i is

V∗ = V∗1 × V∗2 × · · · × V∗J =
J∏
j=1

V∗j .

This set can become very large, with #V∗ >> #V. The cvam function never enumer-
ates V∗ or creates any tables corresponding to V∗ but only work with the elements
of V∗ that are seen in the rows of the grouped or ungrouped data frame supplied to
cvam through its data argument. Observing V ∗i = v∗ implies that the uncoarsened
version V i lies within a known subset of V. Specifically,

V ∗i = v∗ ⇒ V i ∈ M(v∗),

where M is the one-to-many mapping function

M(v∗) = M1(v
∗
1) × M2(v

∗
2) × · · · × MJ(v∗J)
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Appendix F Seen, true, and augmented data

The data supplied to cvam, whether given as microdata or in a grouped data frame,
are aggregated into a vector of coarsened-data integer frequencies

f ∗ = (f ∗v∗ : v∗ ∈ V∗),

where f ∗v∗ is the number of sample units i = 1, . . . , N for which V ∗i = v∗. These
frequencies, and the their corresponding coarsened-data response patterns (i.e., the
unique values of v∗ appearing in the supplied dataset), are called the seen data and
are stored by cvam in an object called mfSeen. This model frame has #V∗ rows,
whose ordering is determined automatically by the ordering of the factor variables
appearing in the model formula. The columns of mfSeen include each of the variables
in the model as a coarsened factor, plus a variable named freq to store f ∗. The seen
data can be retrieved by calling cvam with the argument method="mfSeen".

Another model frame, called the true data or mfTrue, has #V rows. This frame
enumerates the full set of complete-data patterns v ∈ V, including any structural-
zero cells. The columns of mfTrue include each of the variables in the model as an
ordinary non-coarsened factor, plus a variable named freq to store f . If the data
supplied to cvam has missing or coarsened values, the elements of f are unknown and
must be predicted, which happens during a model-fitting procedure. Before a model
is fit, mfTrue can be retrieved by calling cvam with the argument method="mfTrue";
this returns a data frame in which freq is filled with NA values. After a model has
been fit, the true data can be retrieved from the resulting cvam object by calling
get.mfTrue; in that case, freq will be populated with predicted true frequencies.

The relationship between the seen data and the true data is determined by another
set of frequencies. Let Fv∗,v denote the unobserved portion of f ∗v∗ that belongs to cell
v of the complete-data table, and let

F = (Fv∗,v : v∗ ∈ V∗,v ∈ V)

be the array of frequencies in the table that cross-classifies the N sample units by
their values of V ∗i and V i. This array is called the augmented data. When summed
over its first subscript, it generates the true frequencies,∑

v∗∈V∗
Fv∗,v = fv,

and when summed over its second subscript, it reproduces the seen frequencies,∑
v∈V

Fv∗,v =
∑

v∈M(v∗)

Fv∗,v = fv∗ .
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With #V∗×#V cells, F is potentially huge. It is also very sparse, because Fv∗,v = 0
whenever v /∈ M(v∗). The array is never actually formed by cvam, but individual
nonzero elements are repeatedly predicted and discarded during a modeling run.

The augmented-data array was introduced by Baker (1994), who discussed apply-
ing product-multinomial and Poisson models to its elements. In cvam, we model f
rather than F . This strategy is appropriate if the coarsened data are coarsened at
random (CAR), and if the parameters of the unspecified coarsening mechanism and
the true-data model are distinct (Heitjan and Rubin, 1991).

Appendix G EM algorithm for coarsened categorical data

If there were no missing or coarsened values, we would fit log-linear models directly
to the true frequencies f . Omitting constants that do not involve µ, the surrogate-
Poisson loglikelihood function based on the true data is

lA(µ |f) = −µ+ +
∑
v∈V

fv log µv, (21)

where µ+ =
∑

v∈V. The superscipt ‘A’ stands for augmented. This function depends
on the augmented data F through its margin f , and we refer to it as the augmented-
data loglikelihood.

When f is not fully observed, inferences must be based on the seen frequencies
f ∗. Baker (1994) describes surrogate-Poisson likelihood functions for incomplete-data
problems based on a multinomial distribution over the non-structural zero cells of F .
Using results from Baker (1994), and assuming the coarsening mechanism is ignorable,
an appropriate surrogate-Poisson loglikelihood function based on f ∗ is

l(µ |f ∗) = −µ+ +
∑
v∗∈V∗

f ∗v∗ log τv∗ , (22)

where
τv∗ =

∑
v∈M(v∗)

µv.

We refer to l(µ |f ∗) as the observed-data loglikelihood.

The EM algorithm is an iterative procedure for maximizing l(µ |f ∗) by repeatedly
maximizing a function that looks like lA(µ |f). At each iteration, the current estimate

of the log-linear coefficients β̂
(t)

is updated in two steps. In the Expectation or E-step,
we obtain the function

Q(t)(β) = E [ lA(µ |f) |f ∗,β = β̂
(t)

], (23)
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and in the M-step, we maximize that function to obtain the new estimate,

β̂
(t+1)

= arg max
β

Q(t)(β) (24)

To perform the E-step, note that the augmented-data loglikelihood is a linear
function of the elements of f , so its expectation is obtained by replacing f with its
expected value given f ∗ under the assumed value for β or µ. Under a multinomial
model for the non-structural zero elements of F , the conditional distribution of F
given f ∗ becomes product-multinomial. That is, each slice

F v∗, : = (F v∗,v : v ∈M(v∗) )

is distributed as
F v∗, : |f ∗v∗ ,µ ∼ Mult(f ∗v∗ , ξv∗) (25)

independently for v∗ ∈ V∗, where ξv∗ is the vector with elements ξv∗,v = µv/τv∗ for
v ∈ M(v∗). The expected value of f under this product-multinomial distribution,
which we denote by f̂ = E(f |f ∗,µ), has elements f̂v =

∑
v∗∈V∗ F̂v∗,v, where

F̂v∗,v = I(v ∈M(v∗) ) f ∗v∗ξv∗,v. (26)

The E-step accumulates f̂ by cycling over the rows of the seen data, computing τv∗
for that row, then incrementing the each element f̂v for v ∈ M(v∗) by the amount
f ∗v∗µv/τv∗ . While performing this E-step, cvam also computes the observed-data log-
likelihood (22) under the current estimate of β or µ, which comes at essentially no
cost.

Once the E-step has been completed, the M-step fits the log-linear model by the
NR procedure described in Appendix D, with f replaced by f̂ , to obtain the new
estimate for β. If the model is saturated and cvam is called with saturated=TRUE,
the coefficients β are not defined, and the M-step sets the new estimate of µ to f̂ .

Observations that are entirely missing (i.e., rows of the seen data that have miss-
ing values for all modeled variables) contribute no information to the observed-data
loglikelihood function (22), except for driving up the estimate of µ+. Including these
observations can increase the rates of missing information and slow the convergence
of EM (Schafer, 1997). By default, cvam excludes these observations from the model-
fitting procedure but restores them afterward when reporting the predicted true fre-
quencies f̂ in the model frame mfTrue. To include these cases in the model fitting,
set the control parameter excludeAllNA to FALSE in the control argument.

Appendix H Prior information

Prior distributions implemented in cvamPrior allow the user to incorporate prior
information as
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� a flattening constant, a positive value that is divided equally among all non-
structural zero cells of the complete-data table, and

� prior nuggets, which take the form of coarsened-data frequencies and are as-
cribed to groups of cells (slices of the table).

The result is a kind of data-augmentation prior (DAP) in which the flattening constant
and nuggets contribute additively to the objective function in the same way that
seen frequencies f ∗ contribute to the observed-data loglikelihood. Including prior
information, the objective function becomes

logP (µ) =
∑
v∈V

k log µv +
∑
v∗∈P

f ∗v∗ log τv∗ + l(µ |f ∗), (27)

where k is the per-cell flattening constant, P is a set of coarsened-data cells over
which the prior nuggets are defined, and f ∗v∗ denotes a prior nugget if v∗ ∈ P or a
seen frequency if v∗ ∈ V∗. The indices for cells in P and their associated prior nuggets
are stored in a model frame called mfPrior, which can be accessed by calling cvam

with method="mfPrior".

For log-linear models fit with saturated=FALSE, the user can also specify a ridge
factor, which acts upon the coefficients in a manner similar to ridge regression, shrink-
ing the estimated β toward 0 = (0, . . . , 0)> and stabilizing its estimated covariance
matrix. A ridge factor r > 0 adds information equivalent to a multivariate normal
prior density for β centered at 0 with prior covariance matrix r−1I. With a ridge
factor, the objective function becomes

logP (β) = − r

2
β>β +

∑
v∈V

k log µv +
∑
v∗∈P

f ∗v∗ log τv∗ + l(µ |f ∗). (28)

If a saturated model if fit with the option saturated=TRUE, the coefficients β are not
defined, and the ridge factor is ignored.

In the EM algorithm, (27) and (28) are not treated as the logarithms of an actual
density, but as a scale-invariant objective function that takes the same value regardless
of whether the parameters are expressed as π, µ or β. The E-step treats the flattening
constant and prior nuggets as actual data, apportioning them to the cells of the
complete-data table and making the elements of f̂ larger. The ridge factor is applied
in the M-step, contributing a term −rβ to the score vector and −r I to the Hessian
matrix described in Appendix D. After the EM run, f̂ is recomputed under the final
parameter estimates without the flattening constant or nuggets and reported as the
variable freq in get.mfTrue.

81 81



Appendix I Standard errors for coefficients

Appendix I Standard errors for coefficients

After running the EM algorithm for a log-linear model, cvam computes an estimated
covariance matrix for β based on the observed second derivatives of logP ,

V̂ (β̂) =

(
− ∂

2 logP

∂β ∂β>

)−1
,

where the derivatives are evaluated at the final estimate for β. The inverse is com-
puted using a Cholesky factorization and fails if logP is not concave. To compute
the derivatives, we temporarily put aside the ridge factor and use a chain rule

∂ logP

∂β
=

(
∂µ

∂β>

)>(
∂ logP

∂µ>

)
.

But ∂µv/∂βj = µv xv,j, so ∂µ/∂β> = WX, where W = diag(µ). With some

algebra, we can show that ∂ logP/∂µv = (f̂v−µv)/µv, where f̂v is the predicted true
frequency for cell v from the E-step of EM, including the flattening constant and any
contributions from prior nuggets. It follows that ∂ logP/∂µ = W−1(f̂ − µ) and

∂ logP

∂β
= X>(f̂ − µ), (29)

which vanishes at the EM solution. Applying the chain rule again, the second deriva-
tive can be written as

∂2 logP

∂β ∂β>
=
∑
v∈V

(
∂ logP

∂µv

)(
∂2µv

∂β∂β>

)
+

(
∂µ

∂β>

)>(
∂2 logP

∂µ∂µ>

)(
∂µ

∂β>

)
. (30)

But ∂2 log µv/∂βj ∂βk = µv xv,j xv,k, so ∂2µv/∂β ∂β
> = µv xv x

>
v , and the first term

in (30) becomes ∑
v∈V

(
∂ logP

∂µv

)(
∂2µv

∂β∂β>

)
= X>diag(f̂ − µ)X.

With some algebra, the second term in (30) can be written as(
∂µ

∂β>

)>(
∂2 logP

∂µ∂µ>

)(
∂µ

∂β>

)
= X>MX,

where
M = − k I −

∑
v∗∈P

Mv∗ −
∑
v∗∈V∗

Mv∗ ,
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where I is the #V×#V identity matrix, and Mv∗ is the matrix with element

F̂v∗,v F̂v∗,v′/f
∗
v∗ (31)

in position (v,v′) and zeros elsewhere. The matrices Mv∗ are large and very sparse,
because (31) becomes zero whenever v /∈ M(v∗) or v′ /∈ M(v∗). In cvam, these
matrices are never formed; rather, we cycle over the cells of P and V∗ and accumulate
MX in a workspace of the same size as X.

These formulas do not account for a ridge factor. If a ridge factor r > 0 is present,
the term − rβ is added to the first derivative, and the term − r I is added to the
second derivative.

Appendix J Estimated probabilities and standard errors

The function cvamEstimate computes tables of marginal and conditional probabilities
from the estimated cell means µ̂. The formula given to cvamEstimate partitions
the model variables into V i = (Ai,Bi,Ci), where Ai denotes the variables to be
conditioned on, Bi denotes the variables for which probabilities are requested, and
Ci denotes variables to be marginalized over. With respect to the cvamEstimate

formula,

� Ai consists of all variables on the right-hand side of ‘|’,

� Bi consists of all variables on the left-hand side of ‘|’, and

� Ci consists of all variables from the model formula that are absent from the
cvamEstimate formula.

The set Bi must include any variables that the model regarded as fixed, otherwise
cvamEstimate reports an error. Writing a possible value for V i as v = (a, b, c), we
may identify cells of true data frame by this triple index, as in

πa,b,c = P (Ai = a,Bi = b,Ci = c).

The probabilities requested by cvamEstimate are P (Bi = b |Ai = a) for all a ∈ A
and b ∈ B, which can be written as

π
(B |A)
a,b,+ =

∑
c∈C

µa,b,c

µa,+,+

.

Using the delta method (Agresti, 2013), an estimated variance for π̂
(B |A)
a,b,+ is

V̂ (π̂
(B |A)
a,b,+ ) =

(
∂ π

(B |A)
a,b,+

∂β>

)>
V̂ (β̂)

(
∂ π

(B |A)
a,b,+

∂β>

)
, (32)
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where the derivatives are evaluated at β = β̂. We compute this as V̂ (π̂
(B |A)
a,b,+ ) =

‖D−1da,b ‖2, where D is the lower-triangular Cholesky factor of − ∂2 logP/∂β ∂β>,
and

da,b =

(
∂µ

∂β>

)>(∂ π(B |A)
a,b,+

∂µ

)
. (33)

The first term in (33) is ∂µ/∂β> = WX, where W = diag(µ). For the second term,
note that

∂ π
(B |A)
a,b,+

∂µa′,b′,c′
= 0 if a′ 6= a.

If a′ = a, the derivative is

∂ π
(B |A)
a,b,+

∂µa,b′,c′
=

1

µa,+,+

(
I(b′ = b) − π

(B |A)
a,b,+

)
,

which is the same for all c′. Putting these together, the elements of da,b become

da,b,j =
∑
b′∈B

∑
c′∈C

xa,b′,c′,j π
(B,C |A)
a,b′,c′

(
I(b′ = b) − π

(B |A)
a,b,+

)
for j = 1, . . . , p, where π

(B,C |A)
a,b,c = µa,b,c/µa,+,+.

Appendix K Markov chain Monte Carlo

Appendix K.1 Data augmentation

MCMC algorithms for incomplete multivariate categorical data were described by
Schafer (1997), including a stochastic version of iterative proportional fitting called
Bayesian IPF. For our purposes, it is more natural to use methods that are not related
to IPF but focus on the model matrix X and the log-linear coefficients β, except for
models that are specifically fit as saturated with the option saturated=TRUE.

By default, when the cvam function is called with method="MCMC", it runs a data-
augmentation (DA) procedure that resembles EM. Let β(t) denote the simulated value
of β at iteration t, and let µ(t) denote the corresponding value of µ. In DA, generating
the next iterate β(t+1) involves

� an Imputation or I-step, which draws a table of true frequencies from its predic-
tive distribution given the seen frequencies and the current simulated parame-
ters,

f (t) ∼ P (f |f ∗, µ = µ(t)), (34)

followed by
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� a Posterior or P-step, which draws a new set of parameters given the simulated
true frequencies,

β(t+1) ∼ P (β |f = f (t)). (35)

Choosing a starting value β(0) and repeating these two steps creates a Markov chain
β(1),β(2), . . . whose stationary distribution is the desired posterior P (β |f ∗). The
default β(0) depends on which S3 method is invoked. If the cvam function is called with
a model formula as its first argument, then cvam.formula chooses default starting
values in the center of the parameter space, consistent with cell means that are equal
across cells. If the cvam is applied to a cvam object, then cvam.cvam sets β(0) to the
final value of β held in the cvam object, regardless of whether that value came from
method="EM", "MCMC", or "approxBayes".

The I-step of DA is computationally similar to the E-step described in Appendix G
and Appendix H, except that the prior nuggets and seen frequencies are apportioned
to cells of the complete-data table in a random fashion. The true frequency in cell v,
including the contributions of the data-augmentation prior (DAP), is

fv = k +
∑
v∗∈P

Fv∗,v +
∑
v∗∈V∗

Fv∗,v, (36)

where k is the flattening constant, Fv∗,v is the portion of the coarsened-data frequency
f ∗v∗ that belongs to cell v, P is the set of coarsened-data cells in the frame mfPrior

of prior nuggets, and V∗ is the set of coarsened-data cells in the frame mfSeen of
aggregated user-supplied data. For each v∗ in P and V∗, the integer vector F v∗,: is
drawn from the multinomial distribution (25), and the contributions are accumulated
into fv.

For the P-step, we simulate a draw of β from the augmented-data posterior

P (β |f) ∝ exp

(
− r

2
β>β − µ+ +

∑
v∈V

fv log µv

)
, (37)

which is interpreted as a density for β with respect to Lebesgue measure over Rp.
Because P (β |f) is difficult to simulate directly, we replace an exact draw from this
distribution with one step of a Metropolis-Hastings (MH) algorithm that has P (β |f)
as its target, so that the DA algorithm becomes an example of Metropolis-Hastings
within Gibbs (Gamerman and Lopes, 2006). Our MH procedure draws a candidate
β∗ from the multivariate t proposal

β∗ ∼ tν( c(β
(t)), S(β(t)) ), (38)

where

c(β) = β + δ [−H(β) ]−1∇ logP (β |f),

S(β) = ε2
(
ν + p

ν

)
[−H(β) ]−1 ,
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where ∇ denotes the gradient, and H is the second derivative or Hessian matrix
of logP (β |f) with respect to β. In this notation, tν(c,S) denotes a multivariate t
distribution centered at c with scale matrix S and ν degrees of freedom, The proposal
density is is

q(β∗ |β(t)) ∝
[
1 +

1

ν
(β∗ − c)>S−1(β∗ − c)

]−( ν+p2 )

with c = c(β(t)) and S = S(β(t)).

The quantities ν, δ, and ε are tuning constants. When δ = 1, the proposal is
centered at the estimate of β obtained by taking one step of Newton-Raphson from
β(t), and when ε = 1, we are matching the curvature of the log-proposal density
to that of logP (β(t) |f). A version of this procedure with (ν, δ, ε) = (∞, 1, 1) was
applied by Gamerman (1997) for simulating coefficients in generalized linear mixed
models; that method achieves an optimal acceptance rate of 100% when the target is
multivariate normal. A similar procedure was also used by Pitt et al. (2006), who used
a normal proposal centered at the target’s mode, which in general requires multiple
steps of Newton-Raphson, whereas ours needs only one step. The tuning constants
should be chosen to produce low correlations between successive iterates of β. In
our experience, (ν, δ, ε) = (10, 0.8, 0.8) often performs well in problems where p is
small, and these values the current cvam default. The tuning constants are set by the
control parameter tuneDA. The integer control parameter stuckLimit instructs DA
to abort if MH gets stuck, i.e., if the candidates are rejected more than stuckLimit

times in a row, which can happen in higher-dimensional problems. If MH gets stuck,
the problem can usually be solved by increasing the degrees of freedom and reducing
the step size and scale factor, setting tuneDA to, say (100, 0.4, 0.4), (1000, 0.2, 0.2),
(1000, 0.1, 0.1), or even (1000, 0, 0.1). Increasing ν and reducing δ and ε causes MH
to take smaller steps, which decreases the chance of getting stuck but increases the
correlation between successive values of β.

When a saturated model is fit with the option saturated=TRUE, a different P-step
is required, because the log-linear coefficients β are not defined. For that case, we
omit the ridging term involving β from the right-hand side of (37) and interpret it as
a non-normalized density for µ with respect to Lebesgue measure over R#V, which
implies that

µv |f ∼ Gamma(fv + 1, 1)

independently for v ∈ V, where Gamma(a, b) denotes a gamma distribution with
shape a and rate b. This P-step does not rely on tuning parameters and has an
acceptance rate of 100%. Results for a saturated model may be slightly different
when run under saturated=FALSE and saturated=TRUE, because the target posterior
distributions differ. These differences will become less noticeable as the sample size
N grows.
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Appendix K.2 Random-walk Metropolis

When saturated=FALSE, an alternative to DA is available that does not impute f
at each cycle. That alternative is a random-walk Metropolis (RWM) algorithm with
a non-normalized target density obtained by exponentiating the right-hand side of
Equation (27). The proposal distribution is

β∗ ∼ tν(β
(t), ε2 V̂ (β̂) ),

where V̂ (β̂) is the asymptotic covariance matrix computed at the end of EM. To
use this alternative procedure, set the control parameter typeMCMC to "RWM". The
tuning constants (ν, ε), which default to (1000, 0.1), are set by the control parameter
tuneRWM. If the algorithm gets stuck, the problem can usually be solved by decreasing
ε, which will increase the acceptance rate. With RWM, an acceptance rate between
20% and 40% is desirable.

Appendix K.3 More details of MCMC

Four additional control parameters apply regardless of which MCMC algorithm is
used. They are:

� iterMCMC, which sets the number of iterations to be performed after the burn-in
period;

� burnMCMC, which sets the number of iterations to be treated as a burn-in period
and discarded;

� thinMCMC, which sets the thinning interval; and

� imputeEvery, which sets the imputation interval.

After the burn-in period, cvam accumulates and saves:

� a running average and a running covariance matrix from the output stream of
β. These become the default source for the estimated coefficients and standard
errors extracted by summary and get.coef and the estimated covariance matrix
extracted by get.covMat.

� a running average of the cell probabilities π, which become the source of fitted
values extracted by get.fitted.

� a running average of the imputed true frequencies f , without the flattening
constant or any contributions from prior nuggets. These are reported as the
variable freq in the data frame mfTrue.
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� a series containing every kth value of −2 times the objective function in Equa-
tion (27), where k is the thinning interval set by thinMCMC. This series can be
extracted with get.minus2logPSeries.

� a series containing every kth simulated value of β(t), which can be extracted
with get.coefSeries.

� if saveProbSeries=TRUE, a series containing every kth value of π(t), which can
be extracted with get.probSeries.

� every mth value of the imputed true frequencies f , without the flattening con-
stant or any contributions from prior nuggets, wherem is the imputation interval
set by imputeEvery. These can be extracted with get.imputedFreq. If m is
sufficiently large, these can be regarded as proper Bayesian multiple imputations
of f under the model.
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