
Understanding Coarsened Factors in cvam

Joseph L. Schafer∗

October 18, 2021

Abstract

Coarsened data permits values that convey intermediate amounts of informa-
tion between fully observed and fully missing (e.g., values that are censored,
truncated or top-coded). Categorical variables in R, known as factors, pro-
vide only one code for missing values, with no convenient way to express other
coarsened states. The cvam package extends R’s factor mechanism to allow cat-
egorical variables with arbitary types of coarsening. This document introduces
the coarsened factor and describes functions in cvam for creating and manip-
ulating them. The package’s modeling procedures are described in a separate
document Log-Linear Modeling with Missing and Coarsened Values Using the
cvam Package.

∗Office of the Associate Director for Research and Methodology, United States Census Bureau,
Washington, DC 20233, joseph.l.schafer@census.gov. This article is released to inform inter-
ested parties of ongoing research and to encourage discussion. The views expressed are those of the
author and not necessarily those of the U.S. Census Bureau.

1

This work was produced at the U.S. Census Bureau in the course of official duties and,
pursuant to Title 17 Section 105 of the United States Code, is not subject to copyright
protection within the United States. Therefore, there is no copyright to assign or
license and this work may be used, reproduced or distributed within the United States.
This work may be modified provided that any derivative works bear notice that they
are derived from it, and any modified versions bear some notice that they have been
modified, as required by Title 17, Section 403 of the United States Code. The U.S.
Census Bureau may assert copyright internationally. To this end, this work may
be reproduced and disseminated outside of the United States, provided that the work
distributed or published internationally provide the notice: “International copyright,
2016, U.S. Census Bureau, U.S. Government”. The author and the Census Bureau
assume no responsibility whatsoever for the use of this work by other parties, and
makes no guarantees, expressed or implied, about its quality, reliability, or any other
characteristic. The author and the Census Bureau are not obligated to assist users
or to fix reported problems with this work. For additional information, refer to GNU
General Public License Version 3 (GPLv3).

2

1 Review of categorical variables in R

1 Review of categorical variables in R

1.1 Factors and their uses

In the statistical programmming language R (R Core Team, 2018), a categorical vari-
able is called a factor. For example, consider the ChickWeight dataset distributed
with R as part of its datasets package. These data came from a randomized ex-
periment concerning the effects of diet on the growth of newly hatched chicks. The
variable Diet is a factor with four possible values (levels), which are unceremoniously
labeled "1", "2", "3", and "4".

> library(datasets) # attach the library, if needed

> data(ChickWeight) # load dataset into R workspace

> ChickWeight[1:3,] # look at first three rows

weight Time Chick Diet

1 42 0 1 1

2 51 2 1 1

3 59 4 1 1

> str(ChickWeight$Diet) # examine structure of the variable Diet

Factor w/ 4 levels "1","2","3","4": 1 1 1 1 1 1 1 1 1 1 ...

In exploratory data analyses, factors are used to define classification bins for gen-
erating tables and plots. Examples using the ChickWeight data are shown below,
and the resulting plot is shown in Figure 1.

> # compute mean final weight at day 21 by Diet

> aggregate(weight ~ Diet, data = subset(ChickWeight, Time==21),

+ FUN = mean)

Diet weight

1 1 177.7500

2 2 214.7000

3 3 270.3000

4 4 238.5556

> # side-by-side boxplots of final weight at day 21 by Diet

> plot(weight ~ Diet, data = subset(ChickWeight, Time==21))

Factors are often used as predictors in regression models. When a k-level factor
appears on the right-hand side of a model formula, R automatically expresses the
factor as a set of k−1 variables to contrast the effects of the different levels (Chambers
and Hastie, 1992). In the example below, Diet is expressed as dummy indicators for
levels "2", "3", and "4", so that 1 becomes the reference level.

> # regress final weight at day 21 on Diet

> result <- lm(weight ~ Diet, data = subset(ChickWeight, Time==21))

> summary(result)$coef

3 3

1 Review of categorical variables in R

1 2 3 4

10
0

15
0

20
0

25
0

30
0

35
0

Diet

w
ei

gh
t

Figure 1: Boxplots of chick final weight, classified by diet.

Estimate Std. Error t value Pr(>|t|)

(Intercept) 177.75000 15.99540 11.112571 6.068920e-14

Diet2 36.95000 25.79181 1.432626 1.595459e-01

Diet3 92.55000 25.79181 3.588349 8.796253e-04

Diet4 60.80556 26.65900 2.280864 2.782256e-02

A few R modeling functions will accept a factor on the left-hand side of a formula,
treating the variable as the outcome in a multinomial regression. For example, the
multinom function in the package nnet fits baseline-category logistic models (Venables
and Ripley, 2013).

> library(nnet)

> # regress Diet on initial weight to check for balance

> resultA <- multinom(Diet ~ weight,

+ data = subset(ChickWeight, Time==0), trace=FALSE)

> # compare fit to that of a null (intercept-only) model

> resultB <- multinom(Diet ~ 1,

4 4

1 Review of categorical variables in R

+ data = subset(ChickWeight, Time==0), trace=FALSE)

> resultB$deviance - resultA$deviance # df = 3

[1] 3.56337

Factors may serve as identifiers for grouping observations in longitudinal and clus-
tered analyses. In the example below, the lmer function from the package lme4 (Bates
et al., 2015) is used to fit a linear mixed-effects growth model with a random interecpt
and slope for each chick.

> library(lme4)

> # Linear growth model with random intercepts and slopes

> result <- lmer(weight ~ Time + (Time | Chick),

+ data = ChickWeight)

Data stored as factors are often rearranged into other forms for summarizing and
modeling, and many R functions are available for those manipulations. For example,
consider the HairEyeColor dataset from the datasets package, which classifies 592
statistics students by hair color, eye color and sex. The data are stored as a table,
a three-dimensional array that records the number of students in each cell of the
three-way classification.

> HairEyeColor

, , Sex = Male

Eye

Hair Brown Blue Hazel Green

Black 32 11 10 3

Brown 53 50 25 15

Red 10 10 7 7

Blond 3 30 5 8

, , Sex = Female

Eye

Hair Brown Blue Hazel Green

Black 36 9 5 2

Brown 66 34 29 14

Red 16 7 7 7

Blond 4 64 5 8

At an earlier stage, these data may have existed as a rectangular data frame with 592
rows (one per student) and factor variables named Hair, Eye and Sex. Those factor
variables may have been processed into HairEyeColor’s present form by the function
table or xtabs.

1.2 Creating a factor

The most common way to create a factor variable in R is by calling the function
factor. The primary argument to this function is a vector of data, typically numeric

5 5

1 Review of categorical variables in R

or character. By default, factor will return a factor variable with one level for
each distinct value found in the vector, and the levels will be arranged in ascending
alphanumeric order.

> weather <- c("clear", "rain", "clear", "cloudy", "snow", "clear", "rain")

> weather <- factor(weather)

> table(weather)

weather

clear cloudy rain snow

3 1 2 1

Another commonly used function for creating a factor is cut, which bins numeric
data into categories according to user-defined break points.

> # generate 1,000 U(0,1) random variates, then

> # classify them as low, medium, and high

> uniform <- runif(1000)

> lmh <- cut(uniform, breaks=c(0, .333, .667, 1),

+ labels=c("low", "medium", "high"))

> table(lmh)

lmh

low medium high

331 349 320

1.3 Factor levels

If x is a factor, then nlevels(x) returns its number of levels. Internally, the fac-
tor’s data values are stored as positive integers 1, 2, . . . , nlevels(x). For the most
part, however, those integers are hidden from the user. Instead, the user typically
sees character strings defined by the attribute levels, a character vector of length
nlevels(x). For example, let’s look at chickwts, another chick-related dataset from
the datasets package. This data frame has a factor variable feed with six descrip-
tively named levels.

> str(chickwts)

'data.frame': 71 obs. of 2 variables:

$ weight: num 179 160 136 227 217 168 108 124 143 140 ...

$ feed : Factor w/ 6 levels "casein","horsebean",..: 2 2 2 2 2 2 2 2 2 2 ...

> levels(chickwts$feed)

[1] "casein" "horsebean" "linseed" "meatmeal" "soybean" "sunflower"

This variable’s storage.mode is "integer".

6 6

1 Review of categorical variables in R

> storage.mode(chickwts$feed)

[1] "integer"

However, it is the character strings in levels that are seen when the variable is
displayed using the print function, and when it is tabulated using table or xtabs.

> chickwts$feed[1:5] # implicitly calling print

[1] horsebean horsebean horsebean horsebean horsebean

Levels: casein horsebean linseed meatmeal soybean sunflower

> table(chickwts$feed)

casein horsebean linseed meatmeal soybean sunflower

12 10 12 11 14 12

> xtabs(~ feed, data=chickwts)

feed

casein horsebean linseed meatmeal soybean sunflower

12 10 12 11 14 12

Moreover, the relational operators == and != compare the strings, not the integers.

> sum(chickwts$feed == "meatmeal")

[1] 11

> chickwts$weight[chickwts$feed == "horsebean"]

[1] 179 160 136 227 217 168 108 124 143 140

If you want to work with a factor’s integer codes rather than its character-string
levels, wrap the factor with unclass. This function strips away the object’s class

attribute, so that R no longer calls any of the special methods for factors, but treats
the variable as if it were a just a vector of integers.

> unclass(chickwts$feed)

[1] 2 2 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 3 3 3 3 5 5 5 5 5 5 5 5 5 5 5 5 5 5 6 6 6 6 6 6 6

[44] 6 6 6 6 6 4 4 4 4 4 4 4 4 4 4 4 1 1 1 1 1 1 1 1 1 1 1 1

attr(,"levels")

[1] "casein" "horsebean" "linseed" "meatmeal" "soybean" "sunflower"

1.4 Extracting and replacing portions of a factor

If you extract portions of a factor using the subsetting operator [, the result is another
factor. By default, the new factor has the same levels as the original, even if some
of those levels have no obervations in them.

7 7

1 Review of categorical variables in R

> chickwts$feed[1:22]

[1] horsebean horsebean horsebean horsebean horsebean horsebean horsebean horsebean

[9] horsebean horsebean linseed linseed linseed linseed linseed linseed

[17] linseed linseed linseed linseed linseed linseed

Levels: casein horsebean linseed meatmeal soybean sunflower

Empty levels can be eliminated by the droplevels function, or by supplying the
argument drop=TRUE when using [.

> droplevels(chickwts$feed[1:22])

[1] horsebean horsebean horsebean horsebean horsebean horsebean horsebean horsebean

[9] horsebean horsebean linseed linseed linseed linseed linseed linseed

[17] linseed linseed linseed linseed linseed linseed

Levels: horsebean linseed

> chickwts$feed[1:22, drop=TRUE] # does the same thing

[1] horsebean horsebean horsebean horsebean horsebean horsebean horsebean horsebean

[9] horsebean horsebean linseed linseed linseed linseed linseed linseed

[17] linseed linseed linseed linseed linseed linseed

Levels: horsebean linseed

The replacement version of [does not allow you to replace elements of a factor
with values that are not already present among its levels. To do that, you would need
to first modify the levels attribute.

> chickwts$feed[2] <- "HotDogs" # this produces a missing value

> chickwts$feed[1:5]

[1] horsebean <NA> horsebean horsebean horsebean

Levels: casein horsebean linseed meatmeal soybean sunflower

> levels(chickwts$feed) <- c(levels(chickwts$feed), "HotDogs")

> chickwts$feed[2] <- "HotDogs" # now it works

> chickwts$feed[1:5]

[1] horsebean HotDogs horsebean horsebean horsebean

Levels: casein horsebean linseed meatmeal soybean sunflower HotDogs

1.5 Other factor attributes

To determine whether or not an object is a factor, R examines its class attribute.
A factor’s class is either "factor" or c("ordered", "factor"), depending on
whether the variable is assumed to be nominal (whose categories have no intrinsic
ordering) or ordinal (having categories that are ordered). An ordered factor may be
created by the ordered function, or by calling factor or cut with the argument
ordered=TRUE.

8 8

1 Review of categorical variables in R

Some modeling functions will handle ordered and unordered factors differently.
If a k-level unordered factor appears on the right-hand side of a regression formula,
then by default R will create a set of k − 1 dummy indicators that contrast levels
2, 3, . . . , k against level 1. If the factor is ordered, then by default R will compute
orthogonal contrasts for fitting a polynomial function of degree k − 1. This behavior
is controlled by the factor’s attribute contrasts, a k× (k−1) matrix that shows how
the regressors are defined.

> # For an unordered factor, default contrasts use dummy indicators

> contrasts(chickwts$feed)

horsebean linseed meatmeal soybean sunflower HotDogs

casein 0 0 0 0 0 0

horsebean 1 0 0 0 0 0

linseed 0 1 0 0 0 0

meatmeal 0 0 1 0 0 0

soybean 0 0 0 1 0 0

sunflower 0 0 0 0 1 0

HotDogs 0 0 0 0 0 1

> # For an ordered factor, the default is orthogonal polynomials;

> # in the example below, they are linear and quadratic

> uniform <- runif(1000)

> lmh <- cut(uniform, breaks=c(0, .333, .667, 1),

+ labels=c("low", "medium", "high"), ordered=TRUE)

> contrasts(lmh)

.L .Q

[1,] -7.071068e-01 0.4082483

[2,] -7.850462e-17 -0.8164966

[3,] 7.071068e-01 0.4082483

Other types of contrasts are available; see ?contrasts for details.

1.6 Missing values in factors

1.6.1 The ordinary NA

A missing value in a factor variable is displayed as NA when the factor is summarized
or printed. Depending on the context, however, the NA can mean two very different
things, and it is crucial to understand the difference.

In the ordinary situation, NA is not an element of levels. An NA in a factor means
that the datum belongs to one of the levels, but we do not know which one. This
type of missing value is stored as the R constant NA_integer_ in the vector of integer
codes, and its presence is detectable by the function is.na.

> # create a factor with a missing value

> party <- factor(c("Dem", "Ind", "Rep", NA, "Rep", "Ind", "Dem"))

9 9

1 Review of categorical variables in R

> # Note that NA is not one of the levels

> party

[1] Dem Ind Rep <NA> Rep Ind Dem

Levels: Dem Ind Rep

> # The missing value appears in the integer codes

> unclass(party)

[1] 1 2 3 NA 3 2 1

attr(,"levels")

[1] "Dem" "Ind" "Rep"

> # is.na returns TRUE if the value is missing, FALSE otherwise

> is.na(party)

[1] FALSE FALSE FALSE TRUE FALSE FALSE FALSE

When NAs are represented in this fashion, most R functions understand them to be
missing in the conventional sense, and the system handles them in ways that depend
on the function being invoked. For example, with the table function, by default
NAs will not be reported in the resulting frequency table; to see them, supply the
argument exclude=NULL.

> table(party)

party

Dem Ind Rep

2 2 2

> table(party, exclude=NULL)

party

Dem Ind Rep <NA>

2 2 2 1

With the modeling functions lm and glm, if a factor with missing values appears
in a regression formula, R may attempt to remove the incomplete cases from the
analysis, or the model-fitting procedure may fail. Treatment of missing values in those
functions is determined by function arguments or by the global option na.action;
see ?options.

As already mentioned, the function droplevels will remove empty levels (i.e.,
levels with no obervations in them) from a factor. The optional argument exclude

can be used to remove additional levels even if they are non-empty. Any observation
within an excluded level becomes a missing value.

> party <- droplevels(party, exclude=c("Ind",NA))

> party

[1] Dem <NA> Rep <NA> Rep <NA> Dem

Levels: Dem Rep

Notice that NA was explicitly included among the values supplied to exclude. If it
were not, then droplevels would have put NAs into a level, as we now describe.

10 10

1 Review of categorical variables in R

1.6.2 NA as a factor level

As an alternative to the usual way of handling missing values, we can instruct R
to classify NAs into a level of their own. This will happen if we call factor with
exclude=NULL,

> party <- factor(c("Dem", "Ind", "Rep", NA, "Rep", "Ind", "Dem"),

+ exclude=NULL)

> party

[1] Dem Ind Rep <NA> Rep Ind Dem

Levels: Dem Ind Rep <NA>

or if we pass a factor to the function addNA.

> party <- factor(c("Dem", "Ind", "Rep", NA, "Rep", "Ind", "Dem"))

> party

[1] Dem Ind Rep <NA> Rep Ind Dem

Levels: Dem Ind Rep

> party <- addNA(party)

> party

[1] Dem Ind Rep <NA> Rep Ind Dem

Levels: Dem Ind Rep <NA>

The inverse operation to addNA is droplevels with exclude=NA.

> party <- droplevels(party, exclude=NA)

> party

[1] Dem Ind Rep <NA> Rep Ind Dem

Levels: Dem Ind Rep

When NA is a factor level, the factor contains no missing values in the traditional
sense. None of the integer codes are NA_integer_, and is.na always returns FALSE.

> party <- addNA(party)

> unclass(party)

[1] 1 2 3 4 3 2 1

attr(,"levels")

[1] "Dem" "Ind" "Rep" NA

> is.na(party)

[1] FALSE FALSE FALSE FALSE FALSE FALSE FALSE

When a factor with NA as a level appears on the right-hand side of a model formula,
the regression functions lm and glm will include the NA cases in the analysis, creating
a dummy code or other contrast term to distinguish NA from the other levels. That
approach may be sensible if the model is intended only for prediction, but it often leads
to unintended or undesirable consequences and should be used only with caution.

11 11

1 Review of categorical variables in R

1.7 Manipulating factor levels

The replacement version of the function levels, known to R as levels<-, can be
used to change a factor’s levels attribute. Often it will not affect the underlying
integer codes, but sometimes it will. If x is a factor, then replacing levels(x) with
another character vector of the same length simply renames the categories without
changing the integer codes.

> # draw 25 values of red, green, or blue with equal probabilities

> myFac <- cut(runif(25), breaks=c(0, .333, .667, 1),

+ labels=c("red", "green", "blue"))

> table(myFac)

myFac

red green blue

5 10 10

> # change three colors to Three Stooges

> levels(myFac) <- c("Larry", "Curly", "Moe")

> table(myFac)

myFac

Larry Curly Moe

5 10 10

It does not matter if the replacement levels happen to be a permutation of the existing
ones; the categories are merely renamed.

> # replace "Larry" with "Moe", "Curly with "Larry", "Moe" with "Curly"

> levels(myFac) <- c("Moe","Larry", "Curly")

> table(myFac)

myFac

Moe Larry Curly

5 10 10

Replacing levels by a longer vector will introduce empty levels.

> # add the mysterious fourth Stooge, creating an empty level

> levels(myFac) <- c("Moe","Larry", "Curly", "Shemp")

> table(myFac)

myFac

Moe Larry Curly Shemp

5 10 10 0

And replacing a single element of levels with another, existing level will change the
integer codes, collapsing the two categories into one.

12 12

2 Coarsened categorical variables

> # This will replace every occurrence of "Curly" with "Shemp"...

> levels(myFac)[3] <- "Shemp"

> # ...causing "Curly" to be dropped from the levels

> table(myFac)

myFac

Moe Larry Shemp

5 10 10

If we try to replace levels with a shorter vector, R will report an error, because it
has not been told how the existing levels relate to the new ones. When reducing the
number of levels, we can specify these relationships via a list. For example, suppose we
have a factor with three levels, and we want to combine two levels into one, producing
a new factor with two levels.

> party <- factor(c("Dem", "Ind", "Rep", "Dem", "Rep", "Ind", "Dem"))

> table(party)

party

Dem Ind Rep

3 2 2

> # leave "Rep" alone, but combine "Dem" and "Ind" into "notRep"

> levels(party) <- list(Rep = "Rep", notRep = c("Dem", "Ind"))

> table(party)

party

Rep notRep

2 5

The names of the provided list become the levels of the new factor.

Other useful functions for manipulating factor levels include relevel and re-

order, which may change the integer codes; see ?relevel and ?reorder for details.

2 Coarsened categorical variables

2.1 What are coarsened data?

Coarsened data is a general term for quantities that may be fully observed, entirely
missing, or somewhere in between. Instead of obtaining a random variable’s realized
value, we are told that the value lies in a subset of the random variable’s support.

Coarsened data are common in survival analysis. Suppose Vi ia a continuously
distributed positive outcome (e.g., survival time) for observational unit i. Ideally, the
analyst is told the actual value Vi = vi, in which case the datum is fully observed. In
lieu of that, the analyst may be told

13 13

2 Coarsened categorical variables

� Vi ∈ (0, ai) for some ai > 0, said to be left-censored ;

� Vi ∈ (bi,∞) for some bi > 0, said to be right-censored ;

� Vi ∈ (ai, bi) for ai < bi, said to be interval-censored ; or

� Vi ∈ (0,∞), which corresponds to a traditional missing value.

Procedures for survival analysis may accept any or all of these types, but special data
structures might be needed. A continuous variable with all these types of censoring
cannot be stored as a numeric vector with a single missing-value code. To analyze
such data, we need to extend the usual objects to hold extra information.

2.2 Theory of coarsened data

A general paradigm for describing and analyzing coarsened data was developed by
Heitjan and Rubin (1991) and Heitjan (1994). That framework built upon theory of
missing data begun by Rubin (1976), and key concepts from the literature on missing
data extend to coarsened data in natural ways.

In the missing-data literature, a missing-data mechanism is a process that operates
on a sample of complete data to determine which data values will be observed and
which ones will be missing. If we assume that the probabilities of missingness do
not depend on any missing quantities, the missing values are said to be missing at
random (MAR), and in those cases, explicit modeling of the missing-data mechanism
is (usually) not necessary. With coarsened data, there is a coarsening mechanism, a
process that operates on the realized data to determine if and how they are being
coarsened. The analogue of MAR is coarsened at random (CAR), which allows us
to forego building a model for the coarsening mechanism. For extended discussion of
these topics and more references, see Little and Rubin (2002).

Some areas of applied statistics have developed special terminology for coarsened
data, but the concepts are similar to those in the general theory of Heitjan and Rubin
(1991) and Heitjan (1994). A prime example is noninformative censoring in survival
analysis, which essentially means that the censored values are CAR.

2.3 Notation for coarsened categorical variables

Imagine a dataset with J categorical variables. Let Vij denote the jth categorical
variable for individual or observational unit i. Denote its set of possible values by

Vj = {1, 2, . . . ,#Vj}.

14 14

2 Coarsened categorical variables

(The symbol ‘#’ is the cardinality operator. When applied to a set, it returns the
number of elements in the set. We use this symbol to avoid adding unnecessary
letters to our notation.) The elements of Vj are called base-level codes ; these are all
the possible responses that would be seen if there were no nonresponse or coarsening.

Let V ∗
ij denote the observed, coarsened version of Vij. The possible values of V ∗

ij

lie in the expanded set

V∗
j = {1, 2, . . . ,#Vj, . . . ,#V∗

j},

where #V∗
j > #Vj. The extra codes not found in Vj,

V∗
j \ Vj = {#V + 1, . . . ,#V∗

j},

are called coarse-level codes. (The symbol ‘\’ is the set difference operator.)

If V ∗
ij happens to be one of the base-level codes, then Vij is fully known and is

equal to V ∗
ij ,

V ∗
ij = 1 ⇒ Vij = 1,

...

V ∗
ij = #Vj ⇒ Vij = #Vj.

However, if V ∗
ij happens to be one of the coarse-level codes, the exact value of Vij

cannot be deduced from it. In that case, Vij is known to lie within a given subset of
the base-level codes, a set denoted by Mj(V

∗
ij). That is,

V ∗
ij = v∗ ⇒ Vij ∈ Mj(v

∗),

where Mj is the mapping, a one-to-many relation that maps elements of V∗ onto
non-empty subsets of Vj. By convention, we will use the last coarse-level code to
denote a traditional missing value,

Mj(v
∗) = Vj when v∗ = #V∗

j .

For example, suppose that Vij denotes a trichotomous political party affiliation
with possible values 1=Democrat, 2=Republican, and 3=Independent. If individual
i provides her exact affiliation, then V ∗

ij will be 1, 2, or 3, and V ∗
ij will coincide with

Vij. For those responses, the mappings are one-to-one,

Mj(1) = {1},
Mj(2) = {2},
Mj(3) = {3}.

15 15

2 Coarsened categorical variables

Now suppose she indicates that she is not a Democrat, but declines to say whether
she is Republican or Independent. If we code that event as V ∗

ij = 4, then the mapping
is

Mj(4) = {2, 3}.

Similarly, if she only indicates that she is not a Republican, and we code the event as
V ∗
ij = 5, then

Mj(5) = {1, 3}.

If she indicates she is not an Independent, then V ∗
ij = 6, and

Mj(6) = {1, 2}.

Finally, if she declines to provide any information at all, then the coding is V ∗
ij = 7,

and the mapping is
Mj(7) = {1, 2, 3},

which corresponds to a traditional missing value.

As the number of base-level codes increases, the number of possible coarse-level
codes expands rapidly. If we were to include all possible coarsenings, #V∗

j would
be (two raised to the power of #Vj, minus one). In practice, we do not need to
create a coarse-level code for every possible subset of the base-level codes, but only
for groupings that actually happen. Continuing the previous example, suppose that
party affiliation is measured by two items on a questionnaire. The first item is, “Do
you consider yourself to be Independent?” If the response is “Yes,” then the sec-
ond item is skipped. If the response is “No,” then the participant is presented with
the second item, “Do you consider yourself to be Democrat or Republican?” Nonre-
sponse to the second item produces a coarsened value of {Democrat, Republican},
and nonresponse to both items gives {Democrat, Republican, Independent}, which
is a traditional missing value. The combinations {Democrat, Independent} and {Re-
publican, Independent} do not occur in this study and therefore do not need to be
represented in V∗

j .

2.4 Where do coarsened categorical variables come from?

In a trivial sense, every dataset with missing values has coarsened data, because
traditional missing values are a particular type of coarsening. As shown by in the
previous discussion, coarsened values can arise when variables are created from multi-
ple items on a questionnaire, if participants respond to some questions but not others.
Coarsening may also result from attempts to harmonize data from multiple sources,
when those sources attempt to measure similar constructs but with different levels of
granularity.

16 16

3 Working with coarsened factors

Apart from certain areas of statistics (e.g., survival analysis), however, methods for
coarsened variables are not widely used, lending the impression that coarsened values
ought to be eliminated by editing them out of a dataset or recoding them as missing.
As techniques and software become available, coarsened values can be incorporated
into analyses in more principled manner, leading to more efficient results, because
partial information is better than none.

3 Working with coarsened factors

3.1 How to create a coarsened factor

In the cvam package, coarsened factors are created by the function coarsened. Let
us begin with a trivial example.

> myFac <- factor(c("red", "green", NA, "yellow",

+ "notRed", "green", "notGreen"))

> table(myFac, exclude=NULL)

myFac

green notGreen notRed red yellow <NA>

2 1 1 1 1 1

This factor, which R does not yet understand to be a coarsened factor, has five levels.

> levels(myFac)

[1] "green" "notGreen" "notRed" "red" "yellow"

Based on their names, it appears to us that

� "green", "red" and "yellow" are base levels,

� "notGreen" is a coarse level that maps to c("red", "yellow"), and

� "notRed" is a coarse level that maps to c("green", "yellow").

Moreover, the missing value NA is a coarse level that maps to c("green", "red",

"yellow").

To turn this factor into a coarsened factor, we load the cvam package and call the
coarsened function.

17 17

3 Working with coarsened factors

> library(cvam)

> myCoarsenedFac <- coarsened(myFac, levelsList =

+ list(notGreen = c("red", "yellow"), notRed = c("green", "yellow")))

The result is a factor,

> is.factor(myCoarsenedFac)

[1] TRUE

with all the usual factor properties,

> storage.mode(myCoarsenedFac)

[1] "integer"

> nlevels(myCoarsenedFac)

[1] 6

> levels(myCoarsenedFac)

[1] "green" "red" "yellow" "notGreen" "notRed" NA

plus some new properties which are displayed by the print function.

> myCoarsenedFac

[1] red green <NA> yellow notRed green notGreen

Base levels: green red yellow

Coarse levels: notGreen notRed <NA>

Mapping:

green red yellow

notGreen 0 1 1

notRed 1 0 1

<NA> 1 1 1

The levelsList argument that we supplied to coarsened instructed the function to

� interpret "notGreen" as a combination of "red" and "yellow", and

� interpret "notRed" as a combination of "green" and "yellow".

Notice that we did not explicitly tell coarsened that "green", "red" and "yellow"

were base levels. The function discerned the base levels by looking at levels(myFac)
and eliminating everything in names(levelsList). Notice also that we did not ex-
plicitly say that NA was a combination of "green", "red" and "yellow". Once the
function identified the base levels, it automatically interpreted NA as a combination
of all of them.

The coarsened function has only three arguments.

18 18

3 Working with coarsened factors

coarsened(obj, levelsList = list(), warnIfCoarsened = TRUE)

obj : a factor to be turned into a coarsened factor. This factor may have missing
values, but it should not have NA as a level.

levelsList : a list that identifies each coarse level (except NA) and its mapping
to the base levels.

warnIfCoarsened : if TRUE, a warning will be provided if obj is already a coars-
ened factor

The default value of levelsList is an empty list, which tells coarsened to treat
every level in levels(obj) as a base level, and to create NA as the only coarse level.

3.2 Attributes of a coarsened factor

The coarsened factor that we created has the following attributes.

> attributes(myCoarsenedFac)

$levels

[1] "green" "red" "yellow" "notGreen" "notRed" NA

$class

[1] "coarsened" "factor"

$mapping

green red yellow

notGreen 0 1 1

notRed 1 0 1

<NA> 1 1 1

$baseLevels

[1] "green" "red" "yellow"

$coarseLevels

[1] "notGreen" "notRed" NA

$nBaseLevels

[1] 3

$nCoarseLevels

[1] 3

$baseLevelCodes

[1] 1 2 3

$coarseLevelCodes

[1] 4 5 6

$latent

[1] FALSE

$contrasts

19 19

3 Working with coarsened factors

[,1] [,2]

green 1 0

red 0 1

yellow -1 -1

notGreen 0 0

notRed 0 0

<NA> 0 0

� The class of coarsened factor is either c("coarsened", "factor") or c("coarsened",
"ordered", "factor"), depending on whether the main argument to coarsened
was ordered.

� The levels attribute includes the base levels and the coarse levels. The base
levels are listed first, and NA always comes last.

� The mapping attribute is an integer matrix with elements 0 and 1, showing the
combination of base levels for each coarse level.

� The contrasts attribute is designed to facilitate log-linear modeling, as ex-
plained in the document Log-Linear Modeling with Missing and Coarsened Val-
ues Using the cvam Package. It is not intended for use by functions outside
of the cvam package, e.g., regression analyses with lm or glm. Using a coars-
ened factor on the right-hand side of a model formula with those functions can
produce nonsensical results.

Some attributes can be retrieved by functions of the same name. For example,

> baseLevels(myCoarsenedFac)

[1] "green" "red" "yellow"

is a convenient shorthand for attr(myCoarsenedFac, "baseLevels").

Please note that, with very few exceptions, the attributes of a coarsened factor
should only be set by the coarsened function and should not be directly changed by
the user.

3.3 Example: Race and Hispanic origin

Over the last half century, it has become standard practice in the United States
for census and survey questionnaires to include separate items for race and Hispanic
origin. In the year 2000, the General Social Survey (GSS) (Smith et al., 2019) included
an item based on the race question from the U.S. Census. Participants could choose
from over a dozen race categories, or they could select “Some other race” and provide

20 20

3 Working with coarsened factors

their own. This item was given to a random half-sample, so it is missing for about
50% of participants. A separate question on Hispanic origin was given to the full
sample. These two items are provided in the data frame abortion2000 distributed
with the cvam package. A cross-tabulation for these two items is shown below.

> str(abortion2000)

'data.frame': 2817 obs. of 19 variables:

$ Age : Ord.factor w/ 4 levels "18-29"<"30-49"<..: 1 2 4 2 1 1 2 2 2 2 ...

$ Sex : Factor w/ 2 levels "Female","Male": 2 1 1 1 1 1 2 1 2 2 ...

$ Race : Factor w/ 3 levels "White","Black",..: 1 1 1 1 1 1 1 1 1 1 ...

$ CenRace : Factor w/ 4 levels "White","Black",..: NA NA NA 1 1 1 1 1 NA 1 ...

$ Hisp : Factor w/ 2 levels "nonHisp","Hisp": 1 2 1 1 1 1 1 1 1 1 ...

$ Degree : Ord.factor w/ 5 levels "<HS"<"HS"<"JunCol"<..: 4 2 2 2 3 2 2 3 5 4 ...

$ Relig : Factor w/ 5 levels "Prot","Cath",..: 1 1 1 5 4 1 5 1 1 1 ...

$ Party : Factor w/ 3 levels "Dem","Rep","Ind/Oth": 2 2 3 2 1 1 2 1 1 2 ...

$ PolViews: Ord.factor w/ 3 levels "Con"<"Mod"<"Lib": 1 1 1 1 3 3 2 3 3 1 ...

$ AbDefect: Factor w/ 3 levels "Yes","No","DK": 1 1 NA NA NA 1 1 1 NA NA ...

$ AbNoMore: Factor w/ 3 levels "Yes","No","DK": 2 2 NA NA NA 1 2 2 NA NA ...

$ AbHealth: Factor w/ 3 levels "Yes","No","DK": 1 2 NA NA NA 1 1 1 NA NA ...

$ AbPoor : Factor w/ 3 levels "Yes","No","DK": 2 2 NA NA NA 1 2 2 NA NA ...

$ AbRape : Factor w/ 3 levels "Yes","No","DK": 1 2 NA NA NA 1 1 1 NA NA ...

$ AbSingle: Factor w/ 3 levels "Yes","No","DK": 2 2 NA NA NA 1 2 2 NA NA ...

$ AbAny : Factor w/ 3 levels "Yes","No","DK": 2 2 NA NA NA 1 2 2 NA NA ...

$ WTSSALL : num 1.099 0.549 0.549 0.549 0.549 ...

$ VSTRAT : int 1687 1687 1687 1687 1687 1687 1687 1687 1687 1687 ...

$ VPSU : int 1 1 1 1 1 1 1 1 2 2 ...

> CenRace <- abortion2000$CenRace

> Hisp <- abortion2000$Hisp

> table(CenRace, Hisp, exclude=NULL)

Hisp

CenRace nonHisp Hisp <NA>

White 1042 50 1

Black 198 3 0

Hisp 0 41 0

Other 44 19 0

<NA> 1320 99 0

Notice that 41 persons (about 3% of the half-sample) have a value of "Hisp" for
CenRace. Hispanic ancestry is viewed by some to be both an ethnicity and a race.
These persons selected “Some other race” and described themselves as Hispanic,
Latina, Latino, or something similar.

Data analysts often combine race and Hispanic origin into a single variable. Con-
sider a classification into four levels,

1 = non-Hispanic White,

2 = non-Hispanic Black,

3 = non-Hispanic Other,

4 = Hispanic.

21 21

3 Working with coarsened factors

In R, the colon operator ‘:’ combines two factors into a single factor with a level for
every possible combination of the operands’ levels. Observe what happens if we apply
this operator to CenRace and Hisp, both of which have missing values.

> RH <- Hisp:CenRace

> table(RH, exclude=NULL)

RH

nonHisp:White nonHisp:Black nonHisp:Hisp nonHisp:Other Hisp:White Hisp:Black

1042 198 0 44 50 3

Hisp:Hisp Hisp:Other <NA>

41 19 1420

Every case with a missing value for either of the two variables received a missing
value in the result, and a large amount of useful information has been needlessly
discarded. Notice that 99 missing values came from Hispanic persons with missing
race; we may assume that they are Hispanic and manually assign them to level 4.
But 1,320 missing values came from non-Hispanic persons with missing race; these
are more problematic, because each of them could belong to any of the levels 1, 2, or
3. An ordinary factor in R cannot handle that partial information, but a coarsened
factor can.

To create our coarsened factor, we first apply addNA to each factor, combine them
with ‘:’, and drop the empty levels.

> CenRace <- addNA(CenRace)

> Hisp <- addNA(Hisp)

> RH <- Hisp:CenRace

> table(RH)

RH

nonHisp:White nonHisp:Black nonHisp:Hisp nonHisp:Other nonHisp:NA Hisp:White

1042 198 0 44 1320 50

Hisp:Black Hisp:Hisp Hisp:Other Hisp:NA NA:White NA:Black

3 41 19 99 1 0

NA:Hisp NA:Other NA:NA

0 0 0

> RH <- droplevels(RH)

> table(RH)

RH

nonHisp:White nonHisp:Black nonHisp:Other nonHisp:NA Hisp:White Hisp:Black

1042 198 44 1320 50 3

Hisp:Hisp Hisp:Other Hisp:NA NA:White

41 19 99 1

In this example, there happen to be no observations with missing values for both
CenRace and Hisp. If there were, they would belong to a level named "NA:NA", and
at this point we would want to set them to NA and drop the empty "NA:NA" level, like
this:

22 22

3 Working with coarsened factors

> RH[RH == "NA:NA"] <- NA

> RH <- droplevels(RH)

Before applying the coarsened function, we reorder and combine levels using the
levels<- function with a list, as described in Section 1.7.

> levels(RH) <- list(

+ nonHispWhite = "nonHisp:White",

+ nonHispBlack = "nonHisp:Black",

+ nonHispOther = "nonHisp:Other",

+ Hisp = c("Hisp:White", "Hisp:Black", "Hisp:Hisp", "Hisp:Other", "Hisp:NA"),

+ nonHispNA = "nonHisp:NA",

+ NAWhite = "NA:White")

> table(RH)

RH

nonHispWhite nonHispBlack nonHispOther Hisp nonHispNA NAWhite

1042 198 44 212 1320 1

The factor now has six levels. The first four will become base levels, and the last two
will become coarse levels. We are ready to create the coarsened factor.

> RH <- coarsened(RH, levelsList = list(

+ nonHispNA = c("nonHispWhite", "nonHispBlack", "nonHispOther"),

+ NAWhite = c("nonHispWhite", "Hisp")))

> table(RH)

RH

nonHispWhite nonHispBlack nonHispOther Hisp nonHispNA NAWhite

1042 198 44 212 1320 1

<NA>

0

It’s a good idea to examine the mapping matrix to make sure everything looks correct.

> mapping(RH)

nonHispWhite nonHispBlack nonHispOther Hisp

nonHispNA 1 1 1 0

NAWhite 1 0 0 1

<NA> 1 1 1 1

Notice that coarsened automatically added an extra coarse level called NA, which in
this example happens to be empty.

Because RH has the same length as the other variables in abortion2000, it may
be put into the data frame.

23 23

3 Working with coarsened factors

> abortion2000 <- data.frame(abortion2000, RH)

> abortion2000$RH <- RH # does the same thing

When a coarsened factor is put into a data frame, all of its attributes are preserved.

> identical(attributes(abortion2000$RH), attributes(RH))

[1] TRUE

These attributes are needed by cvam’s modeling functions, which are described in the
companion document Log-Linear Modeling with Missing and Coarsened Values Using
the cvam Package.

3.4 Tabulating coarsened factors

Because a coarsened factor inherits from class "factor", it can be passed to any R
function that accepts factors. If that function is not part of the cvam package, it will
treat coarse levels no differently from base levels. For example, the table function,
which is called by summary, displays frequencies for all base levels and all coarse levels,
including NA.

> summary(RH) # essentially the same as table(RH)

nonHispWhite nonHispBlack nonHispOther Hisp nonHispNA NAWhite

1042 198 44 212 1320 1

<NA>

0

When applied to ordinary factors, however, the table function omits ordinary NAs
by default. So if a coarsened and ordinary factor are cross-tabulated, the default
behavior is to treat NA as a level for the coarsened factor but omit NAs from the
ordinary factor.

> # from abortion2000, a three-level factor

> PolViews <- abortion2000$PolViews

> # there are some missing values

> table(is.na(PolViews))

FALSE TRUE

2644 173

> # but the NAs don't show up in a table

> table(RH, PolViews)

PolViews

RH Con Mod Lib

nonHispWhite 337 373 274

nonHispBlack 44 90 45

24 24

3 Working with coarsened factors

nonHispOther 9 21 11

Hisp 59 74 63

nonHispNA 440 496 307

NAWhite 1 0 0

<NA> 0 0 0

To display NAs for the ordinary factor, you can

� call table with the argument exclude=NULL,

� explicitly turn NA into a level of the ordinary factor by calling addNA, or

� turn the ordinary factor into a coarsened factor, which does essentially the same
thing as addNA.

> table(RH, PolViews, exclude=NULL)

PolViews

RH Con Mod Lib <NA>

nonHispWhite 337 373 274 58

nonHispBlack 44 90 45 19

nonHispOther 9 21 11 3

Hisp 59 74 63 16

nonHispNA 440 496 307 77

NAWhite 1 0 0 0

<NA> 0 0 0 0

> table(RH, PolViews = addNA(PolViews))

PolViews

RH Con Mod Lib <NA>

nonHispWhite 337 373 274 58

nonHispBlack 44 90 45 19

nonHispOther 9 21 11 3

Hisp 59 74 63 16

nonHispNA 440 496 307 77

NAWhite 1 0 0 0

<NA> 0 0 0 0

> table(RH, PolViews = coarsened(PolViews))

PolViews

RH Con Mod Lib <NA>

nonHispWhite 337 373 274 58

nonHispBlack 44 90 45 19

nonHispOther 9 21 11 3

Hisp 59 74 63 16

nonHispNA 440 496 307 77

NAWhite 1 0 0 0

<NA> 0 0 0 0

The xtabs function is similar to table, but the variables to be tabulated are specified
in a formula. To instruct xtabs to display NAs in an ordinary factor, use the argument
addNA=TRUE,

25 25

3 Working with coarsened factors

> xtabs(~ RH + PolViews, addNA=TRUE)

PolViews

RH Con Mod Lib <NA>

nonHispWhite 337 373 274 58

nonHispBlack 44 90 45 19

nonHispOther 9 21 11 3

Hisp 59 74 63 16

nonHispNA 440 496 307 77

NAWhite 1 0 0 0

<NA> 0 0 0 0

or wrap the ordinary factor with addNA or coarsened. Coarse levels are also displayed
in flat tables, which are two-dimensional displays of multiway frequency tables created
by the function ftable. To display NAs in an ordinary factor, wrap the factor with
addNA and call ftable with exclude=NULL.

> # display a flat version of a three-way table, with Sex:RH as

> # the row and PolViews as the column, showing the NAs in PolViews

> Sex <- abortion2000$Sex

> ftable(addNA(PolViews) ~ Sex + RH, exclude=NULL)

addNA(PolViews) Con Mod Lib NA

Sex RH

Female nonHispWhite 163 214 154 41

nonHispBlack 34 52 26 10

nonHispOther 4 15 6 1

Hisp 29 41 45 9

nonHispNA 214 299 177 53

NAWhite 1 0 0 0

NA 0 0 0 0

Male nonHispWhite 174 159 120 17

nonHispBlack 10 38 19 9

nonHispOther 5 6 5 2

Hisp 30 33 18 7

nonHispNA 226 197 130 24

NAWhite 0 0 0 0

NA 0 0 0 0

To tabulate a coarsened factor without displaying its coarse levels, use the cvam

function dropCoarseLevels. This function removes the coarse levels from a coarsened
factor, sets the coarsened values to NA, and returns an ordinary factor as its result.

> table(RH=dropCoarseLevels(RH), PolViews)

PolViews

RH Con Mod Lib

nonHispWhite 337 373 274

nonHispBlack 44 90 45

nonHispOther 9 21 11

Hisp 59 74 63

If the only coarse level is NA, then no information is lost when dropCoarseLevels is
applied. If other non-empty coarse levels are present, however, the partial information
carried by those observations is effectively discarded.

26 26

3 Working with coarsened factors

3.5 Creating coarsened factors from tabulated or grouped data

In Section 3.3, we created RH from a data frame with one row per individual in the
survey. Datasets with rows for individual units are called microdata. For the most
part, any procedure for creating coarsened factors from microdata can also be applied
to tabulated or grouped data, if those data exist in a data frame.

To illustrate, let’s create a grouped dataset from the demographic variables Age,
Sex, CenRace, and Hisp.

> groupedData = as.data.frame(xtabs(~ Age + Sex + CenRace + Hisp,

+ data=abortion2000, addNA=TRUE))

> dim(groupedData)

[1] 150 5

> head(groupedData)

Age Sex CenRace Hisp Freq

1 18-29 Female White nonHisp 96

2 30-49 Female White nonHisp 244

3 50-64 Female White nonHisp 114

4 65+ Female White nonHisp 115

5 <NA> Female White nonHisp 3

6 18-29 Male White nonHisp 91

> # eliminate rows with Freq == 0

> groupedData <- subset(groupedData, Freq > 0)

> dim(groupedData)

[1] 69 5

The xtabs function created a four-dimensional array of frequencies, and the option
addNA=TRUE ensured that missing values in the factors were retained. The number
of cells in that four-dimensional array is 5 × 2 × 5 × 3 = 150. Wrapping xtabs

with as.data.frame reshaped the array into a data frame with 150 rows and five
variables: one factor for each of the four dimensions, plus an integer-valued variable
Freq containing the cell counts. Many cells in the four-dimensional table were empty,
and removing rows of the data frame with frequencies of zero reduced its size to 69
by 5.

From this grouped dataset, we may now form the coarsened factor RH using exactly
the same procedure that we used with microdata.

> CenRace <- addNA(groupedData$CenRace)

> Hisp <- addNA(groupedData$Hisp)

> RH <- Hisp:CenRace

> RH <- droplevels(RH)

> levels(RH) <- list(

+ nonHispWhite = "nonHisp:White",

+ nonHispBlack = "nonHisp:Black",

27 27

3 Working with coarsened factors

+ nonHispOther = "nonHisp:Other",

+ Hisp = c("Hisp:White", "Hisp:Black", "Hisp:Hisp", "Hisp:Other", "Hisp:NA"),

+ nonHispNA = "nonHisp:NA",

+ NAWhite = "NA:White")

> RH <- coarsened(RH, levelsList = list(

+ nonHispNA = c("nonHispWhite", "nonHispBlack", "nonHispOther"),

+ NAWhite = c("nonHispWhite", "Hisp")))

> # copy the coarsened factor into the grouped data frame

> groupedData$RH <- RH

To produce a one-way classification by RH from this grouped dataset, we sum the
variable Freq within levels of RH using aggregate.

> aggregate(Freq ~ RH, FUN=sum, data=groupedData)

RH Freq

1 nonHispWhite 1042

2 nonHispBlack 198

3 nonHispOther 44

4 Hisp 212

5 nonHispNA 1320

6 NAWhite 1

3.6 Retaining coarsened factor attributes

Standard R functions for manipulating and reshaping data were not designed for
coarsened factors. The cvam package provides versions of the extraction functions [

and [[, and versions of the replacement functions [<- and [[<-, to preserve the special
attributes of coarsened factors through subsetting and replacement. For example,
consider what happens when we extract rows from a data frame using [or subset.

> # list the attributes of our coarsened factor RH

> names(attributes(abortion2000$RH))

[1] "levels" "class" "mapping" "baseLevels"

[5] "coarseLevels" "nBaseLevels" "nCoarseLevels" "baseLevelCodes"

[9] "coarseLevelCodes" "latent" "contrasts"

> # extract females using `[` and list the attributes

> femOnly <- abortion2000[abortion2000$Sex == "Female",]

> names(attributes(femOnly$RH))

[1] "levels" "class" "mapping" "baseLevels"

[5] "coarseLevels" "nBaseLevels" "nCoarseLevels" "baseLevelCodes"

[9] "coarseLevelCodes" "latent" "contrasts"

> # do the same thing with subset

> femOnly <- subset(abortion2000, Sex == "Female")

> names(attributes(femOnly$RH))

28 28

4 Looking ahead

[1] "levels" "class" "mapping" "baseLevels"

[5] "coarseLevels" "nBaseLevels" "nCoarseLevels" "baseLevelCodes"

[9] "coarseLevelCodes" "latent" "contrasts"

Unfortunately, when coarsened factors are subjected to other manipulations, their
special attributes are sometimes lost. For example, none of the special attributes
persist through an application of xtabs and as.data.frame:

> newGrouped <- as.data.frame(xtabs(~ Age + Sex + RH, data=abortion2000,

+ addNA = TRUE))

> newGrouped <- subset(newGrouped, Freq > 0)

> names(attributes(newGrouped$RH))

[1] "levels" "class"

In this case, the attributes can be restored manually:

> attributes(newGrouped$RH) <- attributes(abortion2000$RH)

An experimental R package named sticky (Brown, 2017) was created for this pur-
pose. If we apply the sticky function to a coarsened factor, its class is modified to
c("sticky", "coarsened", "factor"), and the sticky package works silently be-
hind the scenes to help retain the extra attributes. This package does not solve every
problem, however, and in certain cases you may still need to restore the attributes
yourself.

4 Looking ahead

At this point, we have introduced coarsened factors and explained how to create and
manipulate them, but readers may still be wondering why anyone should bother with
these new objects. Handling NAs is difficult enough, and coarsened values are yet
another inconvenience that analysts would rather avoid. In typical applications, the
base levels of variables are important, and observations at the coarse levels are worth
paying attention to only if they improve our understanding what is happening at the
base levels. That is precisely why cvam was created. This package allows us to fit
models that describe the base levels using the information in coarsened values.

Returning to the notation of Section 2.3, our goal is to describe the categorical
variables (Vi1, . . . , ViJ) and the relationships among them, but the available data are
coarsened versions (V ∗

i1, . . . , V
∗
iJ). The cvam package allows a user to model the joint

distribution of (Vi1, . . . , ViJ) from observations of (V ∗
i1, . . . , V

∗
iJ). To compute proper

answers, special procedures are needed; we cannot simply discard the coarsened val-
ues, even in the univariate (J = 1) case. The modeling functions in cvam provides
those answers an efficient and hassle-free manner.

29 29

References

To see why this matters, suppose we try to estimate proportions within the cate-
gories of race and Hispanic origin defined in Section 3.3,

1 = non-Hispanic White,

2 = non-Hispanic Black,

3 = non-Hispanic Other,

4 = Hispanic,

from the frequencies in our coarsened factor RH. Dropping the coarsened values, we
obtain these sample proportions.

> dropRH <- dropCoarseLevels(abortion2000$RH)

> round(table(dropRH) / sum(table(dropRH)), 4)

dropRH

nonHispWhite nonHispBlack nonHispOther Hisp

0.6965 0.1324 0.0294 0.1417

However, the maximum-likelihood (ML) estimates based on the full data are starkly
different:

nonHispWhite nonHispBlack nonHispOther Hisp

0.7506 0.1425 0.0317 0.0753

Using ML reduces the estimated proportion of Hispanics by nearly one half. We
explain how to obtain these results in the companion vignette Log-Linear Modeling
with Missing and Coarsened Values Using the cvam Package.

References

Bates, D., Mächler, M., Bolker, B., and Walker, S. (2015). Fitting linear mixed-effects
models using lme4. Journal of Statistical Software, 67(1):1–48.

Brown, C. (2017). sticky: Persist Attributes Across Data Operations. R package
version 0.5.2.

Chambers, J. M. and Hastie, T. J., editors (1992). Statistical Models in S, volume
251. Wadsworth & Brooks/Cole Advanced Books & Software Pacific Grove, CA.

Heitjan, D. F. (1994). Ignorability in general incomplete-data models. Biometrika,
81(4):701–708.

Heitjan, D. F. and Rubin, D. B. (1991). Ignorability and coarse data. The Annals of
Statistics, 19(4):2244–2253.

30 30

References

Little, R. J. and Rubin, D. B. (2002). Statistical Analysis with Missing Data, Second
Edition. John Wiley & Sons, New York.

R Core Team (2018). R: A Language and Environment for Statistical Computing. R
Foundation for Statistical Computing, Vienna, Austria.

Rubin, D. B. (1976). Inference and missing data. Biometrika, 63(3):581–592.

Smith, T. W., Davern, M., Freese, J., and Morgan, S. L. (2019). General Social
Surveys, 1972–2018. National Data Program for the Social Sciences, No. 25. NORC,
Chicago. 1 data file (64,814 logical records) + 1 codebook (3,758 pp.).

Venables, W. N. and Ripley, B. D. (2013). Modern Applied Statistics with S. Springer
Science & Business Media, New York, fourth edition.

31 31

