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Abstract

Package cvar is a small package with, essentially, two functions — ES() for computing the
expected shortfall and VaR() for Value at Risk. The user specifies the distribution by supplying
one of the functions that define a continuous distribution—currently this can be a quantile function
(qf), cumulative distribution function (cdf) or probability density function (pdf). Virtually any
continuous distribution can be specified.

This vignette is part of package cvar, version 0.4-0.
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1. Introduction

There is a huge number of functions for computations with distributions in core R and in contributed
packages. Pdf’s, cdf’s, quantile functions and random number generators are covered comprehensively.
The coverage of expected shortfall is more patchy but a large collection of distributions, including
functions for expected shortfall, is provided by Nadarajah, Chan, and Afuecheta (2013). Peterson
and Carl (2018) and Dutang, Goulet, and Pigeon (2008) provide packages covering comprehensively
various aspects of risk measurement, including some functions for expected shortfall.

Package cvar is a small package with, essentially two functions — ES for computing the expected
shortfall and VaR for Value at Risk. The user specifies the distribution by supplying one of the func-
tions that define a continuous distribution—currently this can be a quantile function (qf), cumulative
distribution function (cdf) or probability density function (pdf). Virtually any continuous distribution
can be specified. The computations are done directly from the definitions, see e.g. Acerbi and Tasche
(2002).

The functions are vectorised over the parameters of the distributions, making bulk computations more
convenient, for example for forecasting or model evaluation.

The name of this package, ”cvar”, comes from Conditional Value at Risk (CVaR), which is an alter-
native term for expected shortfall.

We chose to use the standard names ES and VaR, despite the possibility for name clashes with same
named functions in other packages, rather than invent possibly difficult to remember alternatives. Just
call the functions as cvar::ES and cvar::VaR if necessary.

Locations-scale transformations can be specified separately from the other distribution parameters.
This is useful when such parameters are not provided directly by the distribution at hand. The use of
these parameters often leads to more efficient computations and better numerical accuracy even if the
distribution has its own parameters for this purpose. Some of the examples for VaR and ES illustrate
this for the Gaussian distribution.

Since VaR is a quantile, functions computing it for a given distribution are convenience functions. VaR
exported by cvar could be attractive in certain workflows because of its vectorised distribution pa-
rameters, the location-scale transformation and the possibility to compute it from cdf’s when quantile
functions are not available.
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2. Value at Risk and Expected Shortfall

We use the traditional definition of VaR as the negated lower quantile. More specifically, let Y be
the variable of interes, such as return on a financial asset. Suppose that it is modelled as a random
variable with distribution function F Y (y). Then VaR is defined as1

VaRα(Y ) = −qYα .

where qYα is the lower α-quantile of Y , i.e. we have

α = F (qYα ) = P (Y ≤ qYα ).

Typical values for α are 0.05 and 0.01. Equivalently, we could write2

VaRα(Y ) = q−Y1−α.

The expected shortfall is the (partial) expectation of VaRα(Y ):

ESα(Y ) =
1

α

∫ α

0
VaRγ(Y )dγ.

Suppose now that Y is obtained from another random variable, X, by a linear transformation:

Y = a+ bX

When this is the case, there is a simple relation between the VaR’s and ES’s of Y and X:

VaRα(Y ) = −a+ bVaRα(X)

ESα(Y ) = −a+ bESα(X)

In practice, X is often chosen to be standardised but this is not necessary. Note also that if a bunch of
VaR’s and ES’s are needed, say for normally distributed variables, this can be computed very efficiently
using this property.

3. VaR

Here we compute the VaR associated with a standard normal r.v. The three variants are equivalent
since 0.5 and "qf" are default for the last two arguments.

> cvar::VaR(qnorm, x = 0.05, dist.type = "qf")

[1] 1.644854

> cvar::VaR(qnorm, x = 0.05)

[1] 1.644854

> cvar::VaR(qnorm)

[1] 1.644854

x can be a vector:
1Beware that a definition without negation is also used in both the literature and in the R packages.
2This equation shows why some authors use the “big numbers”, e.g. 0.95 and 0.99, in the notation for the VaR.
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> cvar::VaR(qnorm, x = c(0.01, 0.05))

[1] 2.326348 1.644854

Let’s set some more realistic values for the parameters of the normal distribution:

> muA <- 0.006408553

> sigma2A <- 0.0004018977

This demonstrates the use of intercept and slope. These arguments use the linear transformation
property discussed in the theoretical section. For the normal disribution the parameters are precisely
the intercept and the slope:

> res1 <- cvar::VaR(qnorm, x = 0.05, mean = muA, sd = sqrt(sigma2A))

> res2 <- cvar::VaR(qnorm, x = 0.05, intercept = muA, slope = sqrt(sigma2A))

> abs((res2 - res1)) # 0, intercept/slope equivalent to mean/sd

[1] 0

If we compute VaR using the cdf, the intercept slope method has some numerical advantage:

> ## with cdf the precision depends on solving an equation

> res1a <- cvar::VaR(pnorm, x = 0.05, dist.type = "cdf",

+ mean = muA, sd = sqrt(sigma2A))

> res2a <- cvar::VaR(pnorm, x = 0.05, dist.type = "cdf",

+ intercept = muA, slope = sqrt(sigma2A))

> abs((res1a - res2)) # 3.287939e-09

[1] 3.287939e-09

> abs((res2a - res2)) # 5.331195e-11, intercept/slope better numerically

[1] 5.331195e-11

We can use smaller tollerance to improve the precision (the value .Machine$double.eps^0.75 =
1.81898940354586e-12 is probably excessive):

> ## as above, but increase the precision, this is probably excessive

> res1b <- cvar::VaR(pnorm, x = 0.05, dist.type = "cdf",

+ mean = muA, sd = sqrt(sigma2A), tol = .Machine$double.eps^0.75)

> res2b <- cvar::VaR(pnorm, x = 0.05, dist.type = "cdf",

+ intercept = muA, slope = sqrt(sigma2A), tol = .Machine$double.eps^0.75)

> abs((res1b - res2)) # 6.938894e-18 # both within machine precision

[1] 6.938894e-18

> abs((res2b - res2)) # 1.040834e-16

[1] 1.040834e-16

The relative precision is also good.
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> abs((res1b - res2)/res2) # 2.6119e-16 # both within machine precision

[1] 2.6119e-16

> abs((res2b - res2)/res2) # 3.91785e-15

[1] 3.91785e-15

For examples with vectorised distribution parameters we use data from PerformanceAnalytics.

Compute means and variances of the variables in a data frame and store them in vectors:

> ## if(require("PerformanceAnalytics")){

> data(edhec, package = "PerformanceAnalytics")

> mu <- apply(edhec, 2, mean)

> sigma2 <- apply(edhec, 2, var)

> musigma2 <- cbind(mu, sigma2)

We compute VaR using PerformanceAnalytics::VaR:

> ## analogous calc. with PerformanceAnalytics::VaR

> vPA <- apply(musigma2, 1, function(x)

+ PerformanceAnalytics::VaR(p = .95, method = "gaussian", invert = FALSE,

+ mu = x[1], sigma = x[2], weights = 1))

The results below compare to the value, VPA, obtained here.

The computations below are similar to the previous example but the distribution parameters are
vectors. The first pair of results are numerically the same:

> vAz1 <- cvar::VaR(qnorm, x = 0.05, mean = mu, sd = sqrt(sigma2))

> vAz2 <- cvar::VaR(qnorm, x = 0.05, intercept = mu, slope = sqrt(sigma2))

> max(abs((vPA - vAz1))) # 5.551115e-17

[1] 5.551115e-17

> max(abs((vPA - vAz2))) # ""

[1] 5.551115e-17

Computing VaR from cdf shows some advantage for the location-scale method:

> vAz1a <- cvar::VaR(pnorm, x = 0.05, dist.type = "cdf",

+ mean = mu, sd = sqrt(sigma2))

> vAz2a <- cvar::VaR(pnorm, x = 0.05, dist.type = "cdf",

+ intercept = mu, slope = sqrt(sigma2))

> max(abs((vPA - vAz1a))) # 3.287941e-09

[1] 3.287941e-09

> max(abs((vPA - vAz2a))) # 1.465251e-10, intercept/slope better

[1] 1.465251e-10
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The advantage remains for smaller tolerance:

> vAz1b <- cvar::VaR(pnorm, x = 0.05, dist.type = "cdf",

+ mean = mu, sd = sqrt(sigma2),

+ tol = .Machine$double.eps^0.75)

> vAz2b <- cvar::VaR(pnorm, x = 0.05, dist.type = "cdf",

+ intercept = mu, slope = sqrt(sigma2),

+ tol = .Machine$double.eps^0.75)

> max(abs((vPA - vAz1b))) # 4.374869e-13

[1] 4.374869e-13

> max(abs((vPA - vAz2b))) # 3.330669e-16

[1] 3.330669e-16

4. Expected shortfall

ES has essentially the same arguments as VaR. The examples below are obtained almost literally by
replacing the calls to VaR with ES() ones.

Here we compute the VaR associated with a standard normal r.v. The three variants are equivalent
since 0.5 and "qf" are default for the last two arguments.

> cvar::ES(qnorm, x = 0.05, dist.type = "qf")

[1] 2.062713

> cvar::ES(qnorm, x = 0.05)

[1] 2.062713

> cvar::ES(qnorm)

[1] 2.062713

x can be a vector:

> cvar::ES(qnorm, x = c(0.01, 0.05))

[1] 2.665214 2.062713

Let’s set some more realistic values for the parameters of the normal distribution:

> muA <- 0.006408553

> sigma2A <- 0.0004018977

This demonstrates the use of intercept and slope. These arguments use the linear transformation
property discussed in the theoretical section. For the normal disribution the parameters are precisely
the intercept and the slope:
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> res1 <- cvar::ES(qnorm, x = 0.05, mean = muA, sd = sqrt(sigma2A))

> res2 <- cvar::ES(qnorm, x = 0.05, intercept = muA, slope = sqrt(sigma2A))

> abs((res2 - res1))

[1] 9.714451e-17

If we compute ES using the cdf, the intercept slope method has some numerical advantage:

> ## with cdf the precision depends on solving an equation

> res1a <- cvar::ES(pnorm, x = 0.05, dist.type = "cdf",

+ mean = muA, sd = sqrt(sigma2A))

> res2a <- cvar::ES(pnorm, x = 0.05, dist.type = "cdf",

+ intercept = muA, slope = sqrt(sigma2A))

> abs((res1a - res2)) #

[1] 1.933215e-10

> abs((res2a - res2)) # intercept/slope better numerically

[1] 2.385314e-13

We can use smaller tollerance to improve the precision (the value .Machine$double.eps^0.75 =
1.81898940354586e-12 is probably excessive):

> ## as above, but increase the precision, this is probably excessive

> res1b <- cvar::ES(pnorm, x = 0.05, dist.type = "cdf",

+ mean = muA, sd = sqrt(sigma2A), tol = .Machine$double.eps^0.75)

> res2b <- cvar::ES(pnorm, x = 0.05, dist.type = "cdf",

+ intercept = muA, slope = sqrt(sigma2A), tol = .Machine$double.eps^0.75)

> abs((res1b - res2))

[1] 3.958639e-14

> abs((res2b - res2))

[1] 6.938894e-16

The relative precision is also good.

> abs((res1b - res2)/res2)

[1] 1.13287e-12

> abs((res2b - res2)/res2)

[1] 1.98575e-14
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