
Model Robust Designs and Analysis with daewr

Abstract
Placket-Burman and other two-level and three-level designs with complex aliasing are useful for determining
the subset of important factors and interactions in screening experiments. Complex aliasing means that
main effects and quadratic effects (for three-level designs) are only partially confounded with two-factor
interactions. The number of runs required by designs with complex aliasing is similar to the minimal number
of runs required by resolution III fractional factorial designs. However, in resolution III fractional factorial
designs, main effects are completely confounded with two-factor interactions and cannot be separated without
further experiments.

On the other hand, models fit to designs with complex aliasing can contain some main effects and some
interactions since they are not completely confounded. Therefore, an appropriate subset of main effects
and interactions can be found using forward stepwise regression. Hamada and Wu(1992) and Jones and
Nachtsheim(2011) suggested using a forward stepwise regression that enforces model hierarchy. In other
words, when an interaction or quadratic term is the next term to enter the model, the parent linear main
effect(s) are automatically included.

The R package daewr(Lawson(2020)) contains functions for retrieving designs with complex aliasing such as
Placket-Burman designs(1946), Definitive Screening designs(Jones and Nachtsheim(2011)), Model Robust
designs(Li and Nachtsheim(2000)), and Alternative Screening designs in 16 runs(Jones and Montgomery(2010)).
The package also contains functions for forward stepwise regression that preserves model hierarchy. This
vignette illustrates the use of these functions, and the example analyses include data from previously published
sources.

Introduction
Discovered during World War II, Placket-Burman designs, include only two-levels of each factor and are
available in run sizes that are multiples of four (i.e., k=4, 8, 12, . . . etc.), and they are very efficient and
orthogonal in k-1 factors. Until recently, these designs were considered main-effect plans that were useful
for screening main effects but not for entertaining interaction effects. However, Lin and Draper(1992) and
Wang and Wu(1995) showed that two-factor interactions are only partially confounded with main effects in
Plackett-Burman and similar designs. Therefore, a subset of main effects and some two-factor interactions
could be entertained in a regression model using data obtained from an experiment using one of these designs.
Designs related to the Plackett-Burman designs such as the 8, 12 and 16 run Model Robust designs(Li and
Nachtsheim 2000), and the 16 run Alternative Screening designs(Jones and Montgomery 2010) have similar
partial confounding between two-level main effects and two-factor interactions. The partial confounding of
main effects with two-factor interactions allows fitting models with a variety of subsets of the main effects
and two-factor interactions. For this reason, all of these designs are called model robust since they do not
restrict the model that can be fit to the data.

Jones and Nachtsheim(2011) proposed a new class of designs they called Definitive Screening designs. These
designs include three-level factors that would be useful in detecting curvilinear relationships, and they require
only 2k+1 runs for k factors. The linear main effects are completely orthogonal to the quadratic effects,
and linear-by-linear interactions. Linear-by-linear two-factor interactions are partially confounded with
quadratic effects and other two-factor interactions. Jones and Nachtsheim(2013) also proposed column-
augmented Definitive Screening designs that include both three-level quantitative factors and additional
two-level categorical factors. The linear main effects in these designs are completely uncorrelated with
linear-by-linear two-factor interactions. Two-factor interactions are partially confounded with other two-factor
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interactions. Thus, Definitive Screening designs and column-augmented Definitive Screening designs can also
can be classified as model robust.

Lin(1999) proposed analyzing the data collected from a Placket-Burman design by forward stepwise regression
with the candidate variables being all main effects and two-factor interactions. This simple method of analysis
is also useful for other two-level designs with complex aliasing and for the analysis of data from Definitive
Screening designs. However, the obvious objection to a model derived from forward stepwise regression is
that it may contain an interaction without either parent main effect involved in the interaction. Usually
significant interactions occur between factors where at least one of the main effects is significant. This has
been described as the effect heredity principle by Hamada and Wu(1992), and it was found to be violated less
that 1% of the time in Li et. al.(2006)’s study of 113 published factorial experiments. With this fact in mind,
Hamada and Wu(1992) and Jones and Nachtsheim(2011) both proposed forward selection procedures that
ensures model hierarchy. Jones and Nachtsheim’s implementation is available in the commercial software
JMP (JMP®, Version 14 Pro, SAS Institute, Cary, NC 1989-2019) with the COMBINE feature in the forward
stepwise regression.

R Packages for Design and Analysis of Model Robust Designs
Plackett-Burman designs do not have a generator or defining relation like regular fractional factorial designs.
The 12, 20, and 24 run Plackett-Burman designs can be created by cyclically rotating the factor levels in the
first run to create the factor levels for the next n-2 runs and including a nth run with constant levels for all
factors. In that way, the factor levels for the first run become the generator for the Plackett-Burman Design.
The first run factor levels shown in the book Design and Analysis of Experiments with R(Lawson 2015) are
used by the pbDesign() function in the R package qualityTools(Roth 2016), the pb() function in the R
package FrF2(Groemping 2020), and the PBDes() function in the R package daewr(Lawson 2020) to create
Placket-Burman designs. The OptPB function in the R package daewr also uses the same set of first run factor
levels but selects the columns to be used in the design to minimize the absolute correlation between main
effects and two-factor interactions in order to make the design more model robust.

The PBDes() and OptPB() functions in the R package daewr return a data frame with numerical columns
that are appropriate for regression analysis of the resulting data. Alternatively the pbDesign() function in
the R package qualityTools, and the pb() function in the R package FrF2 package return a data frames
containing factor variables. Factor variables are more appropriate for an ANOVA of main effects.

Although different generators (or sets of factor levels for the first run) can be used to create a Plackett-Burman
design, the choice cannot be arbitrary, and the functions in the R packages named above should be used
whenever generating Plackett-Burman designs with R.

The Altscreen() function in the R package daewr package can be used to recall 16 run Alternative Screening
designs from Jones and Montgomery(2010). The ModelRobust() function in the R package daewr can be
used to recall the 8, 12 and 16 run Model Robust designs described by Li and Nachtsheim(2000). The
DefScreen() function in the R package daewr can be used to recall both the Definitive Screening designs
defined by Jones and Nachtsheim(2011) and the column-augmented Definitive Screening designs defined
by Jones and Nachtsheim(2013). All of these functions return a data frame of numerical values that are
appropriate for regression analysis of the data.

The HierAFS() function in the R package daewr package performs a forward stepwise regression enforcing
model hierarchy. This function calls the ihstep() and fhstep() functions in the same package. They can
be called individually to see the detailed output of the lm() function at each step of the forward selection.

Illustrations
Example 1:

Seven factors were studied using a Plackett-Burman design to reduce the variability of the thickness in the
copperplating of the drill holes used to connect various layers of a multi-layered printed circuit board(Lawson
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and Erjavec 2017). The holes were copperplated by electrolysis, and the factors and their levels are shown in
Table 1.

This was an existing plating process that was experiencing a problem. The copperplate thickness was not
uniform, since it was thicker at top and bottom of the drilled holes than in the middle. Engineers were hoping
to increase the uniformity of the copperplate thickness by experimentation. The response was the average of
the natural log of the variance of the thickness of the copperplate measured at three places: top, middle and
bottom.

Five of the factors had quantitative levels, and the low and high were chosen to span the range of what was
normally used in practice. The last two factors shown in Table 1 had discrete levels. The high levels for these
factors represented the normal, and the low represented experimental conditions.

Table 1: Factors and Levels for Copper Plating Experiment

Levels
Factor − +
A.Copper concentration 16 gm/L 19 gm/L
B.Chloride concentration 65 PPM 85 PPM
C.Acid (H+) concentration 198 gm/L 225 gm/L
D.Temperature 72 78
E.Total current 180 amp-hrs 192.5 amp-hrs
F.Position in cell right left
G.Surface condition smooth slightly rough

In the following code the 12-run Plackett-Burman design was created using the PBDes() function in the
R package daewr. The default for the randomize=FALSE option was used, and it produced the design in
standard order, although the actual experiments were run in random order to prevent biases from unknown
factors. The third line gives the response (natural log variance) from the experiments in standard order.

library(daewr)
R> Design<-PBDes(nruns=12,nfactors=7)
R> lnVar<-c(-2.18,-2.24,-3.08,-3.63,-3.72,

-2.04,-3.66,-2.55,-2.54,-2.85,-1.94,-3.21)

In the code below, the the HierAFS() function in the R package daewr package was used to fit a model
using the forward stepwise regression that enforces model hierarchy. The arguments m=0 and c=7 in the call
statement indicate the number of three-level and two-level factors respectively. The last argument step=2
indicates the number of forward steps to perform. This number is usually determined by the number of
steps just before the increase in R2 becomes negligible or just before the last term to enter the model is not
significant.

R> HierAFS(lnVar,Design,m=0,c=7,step=2)
formula R2

1 y~C+F+C:F 0.615
2 y~F+G+F:G+C+C:F 0.776

In the output below the code, it can be seen that the the first variable to enter the equation was the C:F
(Chloride concentration × Position in cell) interaction. The HierAFS() function also included the main effect
C (Chloride concentration) and main effect F (Position in cell) to insure model hierarchy. In the second step
the F:G (Position in cell × Surface condition) interaction entered the model along with the main effect for G
to insure model hierarchy.
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To see the details of the model fits at each step, the functions ihstep() and fhstep() can be used. These
subroutine functions are called by HierAFS() when it is used. In the code below the ihstep() function
is used to fit the initial model. The arguments m=0 and c=7 have the same meaning as they had in the
HierAFS() function call. This function returns a character vector of the factor names entered at this step
and prints the lm() summary to the console. It can be seen that the variable entered C:F is significant at the
(p=0106) level. In this example, the variable trm captures the variables entered in the first step.

R> trm<-ihstep(lnVar,Design,m=0,c=7)

Call:
lm(formula = y ~ (.), data = d1)

Residuals:
Min 1Q Median 3Q Max

-0.70667 -0.19333 -0.08167 0.23500 0.77333

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) -2.8033 0.1368 -20.499 3.36e-08 ***
C 0.0750 0.1368 0.548 0.5984
F 0.1683 0.1368 1.231 0.2533
C.F -0.4533 0.1368 -3.315 0.0106 *
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 0.4737 on 8 degrees of freedom
Multiple R-squared: 0.6155, Adjusted R-squared: 0.4713
F-statistic: 4.268 on 3 and 8 DF, p-value: 0.04473

In the code below, the fhstep() is used to make the second step. The arguments m=0 and c=7 have the same
meaning as they had in the HierAFS() function call, and the last argument trm is the vector of factors that
entered the model at the previous step. The resulting output shows that the next term to enter the model
was the F:G interaction and its parent main effect G. However, F:G was not significant. Therefore, only one
step of the forward stepwise regression enforcing model hierarchy is required for this problem.

R> trm<-fhstep(lnVar,Design,m=0,c=7,trm)

Call:
lm(formula = y ~ (.), data = d2)

Residuals:
Min 1Q Median 3Q Max

-0.50333 -0.24500 -0.04792 0.14937 0.54250

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) -2.803333 0.120408 -23.282 4.12e-07 ***
F 0.168333 0.120408 1.398 0.21160
G 0.100625 0.127712 0.788 0.46074
F.G 0.245625 0.127712 1.923 0.10280
C -0.006875 0.127712 -0.054 0.95882
C.F -0.486875 0.127712 -3.812 0.00884 **
---
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Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 0.4171 on 6 degrees of freedom
Multiple R-squared: 0.7764, Adjusted R-squared: 0.5901
F-statistic: 4.167 on 5 and 6 DF, p-value: 0.05574

If more than two steps are required for obtaining the final model, the function fhstep() can be called
repeatedly to see the details of the model fit at each of the steps.

The final model for this problem is:

ln(s2) = −2.8033 + 0.0750C + 0.1683F − 0.4533(C × F ), (1)

where C, F are the coded factor levels shown in Table 1, C × F is the product or interaction of C and F ,
and ln(s2) is the predicted natural log variance. To minimize the natural log of the variance and make the
copperplate thickness more uniform from top to bottom, the hole should be placed in the right side of the
electrolysis cell (i.e., factor F = −) and Acid concentration should be 198gm/L (i.e., factor C = −) as shown
in the interaction plot in Figure 1.

Figure 1: Interaction Plot.

The code to create the interaction plot in Figure 1 is shown below.

R> C.Acid_concentration<-211.5+(27/2)*Design$C
R> F.Position_in_cell<-rep(" ",12)
R> for (i in 1:12){
R> if (Design$F[i]==-1){F.Position_in_cell[i]="right"}
R> if (Design$F[i]==1){F.Position_in_cell[i]="left"}
R> }
R> C.Feedback_spring<-as.factor(C.Feedback_spring)
R> hdes<-data.frame(C.Acid_concentration,F.Position_in_cell,lnVar)
R> with(hdes, (interaction.plot(C.Acid_concentration, F.Position_in_cell,

+ lnVar, type = "b",pch = c(0,15), leg.bty = "o",
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+ main = "Acid concentration effect for each Position in cell",
+ xlab = "C = Acid concentration (gm/L)",
+ ylab = "ln(Variance)")))

The analysis of the data from this experiment shown in Lawson and Erjavec(2017) was made by analysis
of the main effects only. Factor E (Total current) was marginally significant, and the 9th column in the
full Plackett-Burman design matrix (that included 11 columns) was significant. However, no main effect
was assigned to the 9th column, and each column in the full design matrix was was shown to be partially
confounded with all 21 of the possible two-factor interactions. Therefore, it was concluded that it would be
difficult to interpret the results based on this analysis alone. Follow-up experiments would be required to
predict what conditions would result in the maximum uniformity of the copperplate thickness.

On the other hand, the analysis based on the forward stepwise regression enforcing model hierarchy has
a simple interpretation and the condition predicted to maximize the uniformity was found. The three
experiments conducted at the predicted optimal conditions (i.e., low level of factor C and high level of factor
F ) included two of the three lowest log variance results found. Additional confirmatory experiments could
next be run to further test the predicted optimum.

Example 2:

Montgomery(2005) presented an example of a 16-run 26−2
IV fractional factorial experiment for studying factors

that affected the thickness of a photoresist layer. In this example main effects A, B, C, and E along with
the confounded string of two-factor interactions AB=CE.were found to be significant. It would have taken
follow-up experiments to determine which interaction was causing the significance of the confounded string of
interactions and identify the optimal factor settings as was done in the last example. Instead, Johnson and
Jones(2010) considered the same situation using an Alternative Screening Design. They simulated data for
the photoresist thickness where the generated data had CE as the active two-factor interaction. In the code
below, the Altscreen() function in the daewr package was used to generate the same six-factor Alternative
screening design used in Johnson and Jones’ article, and the thickness data was the simulated data. The
HierAFS() function identified the correct model for the simulated data in three steps, and the variable that
entered in the fourth step, B:E, was not significant (p-value=0.11327). Had the original experiment been
conducted with this design, no follow-up experiments would have been required.

R> library(daewr)
R> Design<-Altscreen(nfac=6,randomize=FALSE)
R> Thickness<-c(4494,4592,4357,4489,4513,4483,4288,4448,4691,4671,4219,4271,

+ 4530,4632,4337,4391)
R> HierAFS(Thickness,Design,m=0,c=6,step=3)

formula R2
1 y~A 0.660
2 y~B+A 0.791
3 y~C+E+C:E+B+A 0.953

The details of the fit at the third step is shown following the code below. This code shows the second call of
fhstep(). All terms in the model were significant at this step.

R> trm<-fhstep(Thickness,Design,m=0,c=6,trm)

Call:
lm(formula = y ~ (.), data = d2\\
Residuals:

Min 1Q Median 3Q Max
-56.625 -19.625 2.625 23.125 53.875
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Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 4462.875 9.494 470.073 < 2e-16 ***
C -34.250 9.494 -3.608 0.00479 **
E 21.500 9.494 2.265 0.04700 *
C.E 54.750 13.427 4.078 0.00222 **
B -77.750 11.628 -6.687 5.45e-05 ***
A 85.500 11.628 7.353 2.44e-05 ***
---
Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

Residual standard error: 37.98 on 10 degrees of freedom
Multiple R-squared: 0.9533, Adjusted R-squared: 0.93
F-statistic: 40.85 on 5 and 10 DF, p-value: 2.447e-06

Example 3:

A 17-run Definitive Screening Design was used in studying the effect of eight factors on the properties of
TiO2 as a support material for metal and metal oxide catalysts in oxidative synthesis and pollution control
reactions Olsen et. al.(2016). The eight factors were: B (Speed of H2O addition), C (Amount of H2O), E
(Drying Time), F (Drying Temp.), G (Calcination Ramp Rate), H (Calcination Temp.), I (Calcination Time),
and J (Mole % Al). The process outputs or properties of the TiO2 of interest were the Crystallite diameter,
Surface Area, Pore volume, and Pore diameter. The purpose of the experiments was to identify combinations
of process input factors that would be appropriate for various catalysts applications.

The following code illustrates calling the DefScreen() function to create a Definitive Screening design with 8
three-level factors in standard order. The vector of data pd is the pore diameter data from Table 5 in Olsen
et. al.(2016). The default column names in the design created by the DefScreen() were renamed in the
fourth line of code to match the factor names in the article. The FitDefSc() function was called in the next
line of code to fit a model to the data, and the output is shown below the code.

The FitDefSc() attempts to find an appropriate model by taking into account the special structure of the
Definitive Screening Design. That special structure is that the linear main effects are completely unconfounded
with quadratic and two-factor interaction terms, while quadratic and two-factor interaction terms are partially
confounded. Therefore, the FitDefSc() function fits a model to a Definitive Screening Design by first
restricting main effects to the smallest main effects and those significant at at least the .20 level in a main
effects model. Next forward stepwise selection is used to enter two-factor interactions and quadratic effects
involving the main effects in the model. Usually this procedure results in a reasonable model, but sometimes
it includes insignificant terms in the model, and additional steps can be taken to eliminate them.

library(daewr)
Design<-DefScreen(m=8,c=0)
pd<-c(5.4,4.35,12.91,3.79,4.15,14.05,11.40,4.29,3.56,11.4,

10.09,5.9,9.54,4.53,3.919,8.1,5.35)
colnames(Design)<-c('B','C','E','F','G','H','J','K')
FitDefSc(pd,Design,alpha=.10)
Call:
lm(formula = y ~ (.), data = ndesign)

Residuals:
Min 1Q Median 3Q Max
-0.8140 -0.4303 0.1504 0.2182 0.8289

Coefficients:
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Estimate Std. Error t value Pr(>|t|)
(Intercept) 5.6710 0.4749 11.940 6.57e-06 ***
B 0.7664 0.2066 3.710 0.00756 **
G 0.7356 0.2066 3.561 0.00921 **
B:G -0.5987 0.2268 -2.640 0.03344 *
C 0.4442 0.2066 2.150 0.06858 .
G:C -0.9565 0.2438 -3.923 0.00573 **
I(B^2) 1.8801 0.5299 3.548 0.00937 **
E -0.8686 0.2066 -4.205 0.00401 **
H 3.1579 0.2066 15.287 1.23e-06 ***
K -0.5743 0.2066 -2.780 0.02730 *
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.7729 on 7 degrees of freedom
Multiple R-squared: 0.9797, Adjusted R-squared: 0.9537
F-statistic: 37.62 on 9 and 7 DF, p-value: 4.168e-05

The model shown above contains a term C that is not significant at the α = 0.05 level, therefore a backwards
elimination was performed using the ols_step_backward_p() function in the R package olsrr. When this
was done, all terms were eliminated except H and the quadratic term for B as shown in the section of output
below the code.

B<-Design$B
C<-Design$C
E<-Design$E
G<-Design$G
H<-Design$H
K<-Design$K
BG<-B*G
B2<-B*B
CG<-C*G
desmod<-data.frame(B,C,E,G,H,K,BG,B2,CG)
library(olsrr)
modr<-lm(pd~.,data=desmod)
back<-ols_step_backward_p(modr,prem=.05,progress=T)

Parameter Estimates
------------------------------------------------------------------------------------

model Beta Std. Error Std. Beta t Sig lower upper
------------------------------------------------------------------------------------
(Intercept) 5.033 1.085 4.640 0.000 2.707 7.360

H 3.158 0.502 0.822 6.288 0.000 2.081 4.235
B2 2.654 1.195 0.290 2.220 0.043 0.090 5.218

------------------------------------------------------------------------------------

Since this model only has two terms, a comparison was made by using the HierAFS() function to fit a model,
as shown in the code below. It can be seen from the output of the first step that the linear main effect for
factor H entered the model first. In the second step, the quadratic term for factor B entered the model and
the linear effect of B was also included to preserve model hierarchy. A third step (not shown) entered the
main effect E, but it was not significant. The final model found after two steps was fit by the lm() function
and is shown below the code. Therefore after two steps model found is the nearly same as the model found
after performing backwards elimination on the model found by the FitDefSc() function.
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> HierAFS(pd,Design,m=8,c=0,step=2)
formula R2

1 y~H 0.676
2 y~I(B^2)+B+H 0.800

moddf<-lm(pd~B+I(B^2)+H,data=Design)
summary(moddf)
Call:
lm(formula = pd ~ B + I(B^2) + H, data = Design)

Residuals:
Min 1Q Median 3Q Max

-2.7913 -1.0214 -0.2121 0.5265 2.8306

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 5.0333 1.0279 4.897 0.000292 ***
B 0.7664 0.4758 1.611 0.131286
I(B^2) 2.6545 1.1327 2.343 0.035662 *
H 3.1579 0.4758 6.636 1.62e-05 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 1.78 on 13 degrees of freedom
Multiple R-squared: 0.8004, Adjusted R-squared: 0.7543
F-statistic: 17.38 on 3 and 13 DF, p-value: 7.809e-05

In order to identify the process inputs that would produce different pore diameters, the contour plots like the
ones shown in Figure 2 were used. The plot on the left is the two term model found using the FitDefSc()
and backwards elimination, and the plot on the right was the three term model found by the HierAFS()
function. Since the linear coefficient on B(Speed of H2O addition) is less than one, the two plots are very
similar.

The code below was used to create the contour plots shown in Figure 2.

par (mfrow=c(1,2), cex.sub=.8)
####### contour plot of two term equation
Speed_H2O_Addition<-seq(from=1.0,to=3.0,by=(2)/(24))
Calc_Temp<-seq(from=400,to=700,by=(300/24))
B<-(Speed_H2O_Addition-2)
H<-(Calc_Temp-550)/150
Pore_Diameter<-matrix(rep(0,625),nrow=25)
for (i in 1:25) {

for (j in 1:25) {
Pore_Diameter[i,j]<-5.033+3.158*H[j]+2.654*B[i]*B[i]

}
}

contour(Speed_H2O_Addition,Calc_Temp,Pore_Diameter,
xlab="B=Speed of H2O Addition (1=Slow, 2=Med., 3=Fast)",
ylab="H=Calcination Temp. Deg. C", main="Pore Diameter (nm) Two term model")

# contour plot of 3 term equation
Speed_H2O_Addition<-seq(from=1.0,to=3.0,by=(2)/(24))
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Calc_Temp<-seq(from=400,to=700,by=(300/24))
B<-(Speed_H2O_Addition-2)
H<-(Calc_Temp-550)/150
Pore_Diameter<-matrix(rep(0,625),nrow=25)
for (i in 1:25) {

for (j in 1:25) {
Pore_Diameter[i,j]<-5.033+3.158*H[j]+0.7664*B[i]+2.654*B[i]*B[i]

}
}
contour(Speed_H2O_Addition,Calc_Temp,Pore_Diameter,

xlab="B=Speed of H2O Addition (1=Slow, 2=Med., 3=Fast)",
ylab="H=Calcination Temp. Deg. C", main="Pore Diameter (nm) Three term model" )

par (mfrow=c(1,1))

Figure 2: Contour plot of TiO2 Pore Diameter.

Summary and discussion
The general quadratic model for k three-level quantitative factors is:

y = β0 +
k∑

i=1
βixi +

k∑
i=1

βiix
2
i +

k∑ k∑
i<j

βijxixj + ε (2)

This model is a good approximation to any unknown functional relationship between the response y and the
independent variables xi for i = 1 to k since it is in the form of a second-order Taylor series approximation.
When the independent variables xi only have two levels, or a linear approximation is sufficient, this model
simplifies to:

y = β0 +
k∑

i=1
βixi +

k∑ k∑
i<j

βijxixj + ε (3)
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If there are only a few independent variables, data to fit model (2) or (3) can usually be obtained in one set
of experiments. However, if there are several independent variables the number of experiments required, in
one design, to estimate all the coefficients in either model (2) or model (3) could become excessive. In that
situation, a sequential approach is usually recommended as illustrated in in the right column of Figure 3.

Figure 3: One-shot versus Sequential Experimentation.

When there are only two-level factors, the Plackett-Burman designs, Alternative Screening designs, or
Model-Robust designs offer an alternative to obtaining enough data for fitting a model with the important
subset of terms in model (3) requiring less experimentation than the sequential approach. When there are
three-level quantitative factors or a mixture of two-level and three-level factors, the Definitive Screening
designs or column-augmented Definitive Screening designs also offer a one-shot alternative to obtaining the
data to fit model (2) or a mixture of model (2) and (3) with less experimentation than required by the
sequential experimentation approach.

There is a difference in the approach to model fitting when there are few independent variables than when
there are many independent variables. With few independent variables, the designs listed in column 1 of
Figure 3, provide sufficient data for estimating the coefficients in model (2) or (3), and these models can be
fit by regression analysis. The fitted model can then be refined by dropping insignificant terms. On the other
hand, when there are many independent variables, the one-shot alternatives to sequential experimentation do
not provide enough data to fit model (2) or (3) with all independent variables. The assumption is that not all
the variables will be important and a subset selection procedure will be used to obtain and refine the model.

Subset selection procedures like forward stepwise regression, full stepwise regression, or all possible subset
regression (up to a given size) are different ways of obtaining a subset model. However, for finding a subset
of model (2) or (3) in a subspace of the independent variables, the forward selection procedure that enforces
model hierarchy seems to be particularly valuable. This selection procedure automatically results in one model
unlike the all possible subsets regression that may result in several near equivalent models for explaining the
data. Secondly, unlike the simple forward or full stepwise regression, it ensures the model hierarchy normally
found in the real world. When a Definitive Screening design is used with all quantitative three-level factors,
the FitDefSc() function can sometimes find an appropriate model containing a subset of the terms in model
(2) in one step.

A Google Scholar search reveals several recent articles that illustrate the use of Plackett-Burman de-
signs(Plackett and Burman 1946) and Definitive Screening designs(Jones and Nachtsheim 2011) in applications.
The articles discussing Definitive Screening designs illustrate obtaining a subset of the full quadratic model
(2) for fitting the data. However, most all applications of Plackett-Burman designs illustrate the analysis by
main effects only. The Model Robust designs(Li and Nachtsheim2000), and Alternative Screening designs in
16 runs (Jones and Montgomery 2010) appear to be underutilized. When there are only two-level factors, and
a forward stepwise regression enforcing model hierarchy is employed, the latter two designs are very useful for
screening main effects and two-factor interactions.
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As illustrated in this vignette, the R package daewr has functions for obtaining Definitive Screening designs,
Model Robust designs, Alternative Screening designs, and Plackett-Burman designs. It also contains functions
for model fitting by forward selection enforcing model hierarchy or using the special structure of a Definitive
Screening design. The data used in the examples in this article were taken from other published sources,
and these examples illustrate economy of the designs available in daewr and the efficacy of the model fitting
functions. It is hoped that the functions available in daewr will make these designs and method of analysis
more accessible to practitioners in various fields of application.
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