
Package ‘dataPreparation’
July 15, 2022

Title Automated Data Preparation

Version 1.0.5

Description Do most of the painful data preparation for a data science project with a mini-
mum amount of code; Take advantages of 'data.table' efficiency and use some algorith-
mic trick in order to perform data preparation in a time and RAM efficient way.

Depends R (>= 3.3.0), lubridate, stringr, Matrix, progress

License GPL-3 | file LICENSE

LazyData true

Encoding UTF-8

RoxygenNote 7.2.0

Suggests testthat (>= 2.0.0)

Imports data.table

BugReports https://github.com/ELToulemonde/dataPreparation/issues

NeedsCompilation no

Author Emmanuel-Lin Toulemonde [aut, cre]

Maintainer Emmanuel-Lin Toulemonde <el.toulemonde@protonmail.com>

Repository CRAN

Date/Publication 2022-07-15 10:10:02 UTC

R topics documented:
adult . 2
aggregate_by_key . 3
as.POSIXct_fast . 4
build_bins . 5
build_date_factor . 6
build_encoding . 7
build_scales . 8
build_target_encoding . 8
compute_probability_ratio . 9

1

https://github.com/ELToulemonde/dataPreparation/issues

2 adult

compute_weight_of_evidence . 10
data_preparation_news . 11
date_format_unifier . 11
description . 12
fast_discretization . 12
fast_filter_variables . 13
fast_handle_na . 14
fast_is_equal . 16
fast_round . 17
fast_scale . 18
find_and_transform_dates . 19
find_and_transform_numerics . 21
generate_date_diffs . 22
generate_factor_from_date . 23
generate_from_character . 24
generate_from_factor . 25
get_most_frequent_element . 26
identify_dates . 27
messy_adult . 28
one_hot_encoder . 29
prepare_set . 30
remove_percentile_outlier . 31
remove_rare_categorical . 32
remove_sd_outlier . 34
same_shape . 35
set_as_numeric_matrix . 36
set_col_as_character . 36
set_col_as_date . 37
set_col_as_factor . 38
set_col_as_numeric . 39
shape_set . 40
target_encode . 41
un_factor . 42
which_are_bijection . 43
which_are_constant . 44
which_are_included . 45
which_are_in_double . 46

Index 48

adult Adult for UCI repository

aggregate_by_key 3

Description

For examples and tutorials, and in order to build messy_adult, UCI adult data set is used.
Data Set Information:

Extraction was done by Barry Becker from the 1994 Census database. A set of reasonably clean
records was extracted using the following conditions: ((AAGE>16) && (AGI>100) && (AFNL-
WGT>1)&& (HRSWK>0))

Prediction task is to determine whether a person makes over 50K a year.

Usage

data("adult")

Format

A data.frame with 32561 rows and 15 variables.

References

https://archive.ics.uci.edu/ml/datasets/adult

aggregate_by_key Automatic data_set aggregation by key

Description

Automatic aggregation of a data_set set according to a key.

Usage

aggregate_by_key(data_set, key, verbose = TRUE, thresh = 53, ...)

Arguments

data_set Matrix, data.frame or data.table (with only numeric, integer, factor, logical,
character columns)

key Name of a column of data_set according to which the set should be aggregated
(character)

verbose Should the algorithm talk? (logical, default to TRUE)

thresh Number of max values for frequencies count (numerical, default to 53)

... Optional argument: functions: aggregation functions for numeric columns
(vector of function names (character), optional, if not set we use: c("mean",
"min", "max", "sd"))

https://archive.ics.uci.edu/ml/datasets/adult

4 as.POSIXct_fast

Details

Perform aggregation depending on column type:

• If column is numeric functions are performed on the column. So 1 numeric column give
length(functions) new columns,

• If column is character or factor and have less than thresh different values, frequency count
of values is performed,

• If column is character or factor with more than thresh different values, number of different
values for each key is performed,

• If column is logical, number of TRUE is computed.

In all cases, if the set as more rows than unique key, a number of lines will be computed.

Be careful using functions argument, given functions should be an aggregation function, meaning
that for multiple values it should only return one value.

Value

A data.table with one line per key elements and multiple new columns.

Examples

Not run:
Get generic dataset from R
data("adult")

Aggregate it using aggregate_by_key, in order to extract characteristics for each country
adult_aggregated <- aggregate_by_key(adult, key = 'country')

Exmple with other functions
power <- function(x) {sum(x^2)}
adult_aggregated <- aggregate_by_key(adult, key = 'country', functions = c("power", "sqrt"))

sqrt is not an aggregation function, so it wasn't used.

End(Not run)
"##NOT RUN:" mean that this example hasn't been run on CRAN since its long. But you can run it!

as.POSIXct_fast Faster date transformation

Description

Based on the trick that often dates are repeated in a column, we make date transformation faster by
computing date transformation only on uniques.

Usage

as.POSIXct_fast(x, ...)

build_bins 5

Arguments

x An object to be converted

... other argument to pass to as.POSIXct

Details

The more

Value

as.POSIXct and as.POSIXlt return an object of the appropriate class. If tz was specified, as.POSIXlt
will give an appropriate "tzone" attribute. Date-times known to be invalid will be returned as NA.

Examples

Work the same as as.POSIXct
as.POSIXct_fast("2018-01-01", format="%Y-%m-%d")

build_bins Compute bins

Description

Compute bins for discretization of numeric variable (either equal_width or equal_fred).

Usage

build_bins(
data_set,
cols = "auto",
n_bins = 10,
type = "equal_width",
verbose = TRUE

)

Arguments

data_set Matrix, data.frame or data.table

cols List of numeric column(s) name(s) of data_set to transform. To transform all
characters, set it to "auto". (character, default to "auto")

n_bins Number of group to compute (numeric, default to 10)

type Type of discretization ("equal_width" or "equal_freq")

verbose Should the algorithm talk? (Logical, default to TRUE)

Details

Using equal freq first bin will start at -Inf and last bin will end at +Inf.

6 build_date_factor

Value

A list where each element name is a column name of data set and each element contains bins to
discretize this column.

Examples

Load data
data(messy_adult)
head(messy_adult)

Compute bins
bins <- build_bins(messy_adult, cols = "auto", n_bins = 5, type = "equal_freq")
print(bins)

build_date_factor Date Factor

Description

Map a vector of dates to a factor at one of these levels "yearmonth", "yearquarter", "quarter",
"month"

Usage

build_date_factor(data_set, type = "yearmonth")

Arguments

data_set A vector of date values

type One of "year", "yearquarter", "yearmonth", "quarter", "month"

Details

The resulting vector is an ordered factor of the specified type (e.g. yearmonth)

Examples

library(data.table)
data_set <- as.Date(c("2014-01-01", "2015-01-01", "2015-06-01"))
build_date_factor(data_set, type = "yearmonth")
build_date_factor(data_set, type = "yearquarter")
build_date_factor(data_set, type = "yearquarter")

build_encoding 7

build_encoding Compute encoding

Description

Build a list of one hot encoding for each cols.

Usage

build_encoding(data_set, cols = "auto", verbose = TRUE, min_frequency = 0, ...)

Arguments

data_set Matrix, data.frame or data.table

cols List of numeric column(s) name(s) of data_set to transform. To transform all
characters, set it to "auto". (character, default to "auto")

verbose Should the algorithm talk? (Logical, default to TRUE)

min_frequency The minimal share of lines that a category should represent (numeric, between
0 and 1, default to 0)

... Other arguments such as name_separator to separate words in new columns
names (character, default to ".")

Details

To avoid creating really large sparce matrices, one can use param min_frequency to be sure that
only most representative values will be used to create a new column (and not outlayers or mistakes
in data).
Setting min_frequency to something gretter than 0 may cause the function to be slower (especially
for large data_set).

Value

A list where each element name is a column name of data set and each element new_cols and values
the new columns that will be built during encoding.

Examples

Get a data set
data(adult)
encoding <- build_encoding(adult, cols = "auto", verbose = TRUE)

print(encoding)

To limit the number of generated columns, one can use min_frequency parameter:
build_encoding(adult, cols = "auto", verbose = TRUE, min_frequency = 0.1)
Set to 0.1, it will create columns only for values that are present 10% of the time.

8 build_target_encoding

build_scales Compute scales

Description

Build a list of means and standard deviation for each cols.

Usage

build_scales(data_set, cols = "auto", verbose = TRUE)

Arguments

data_set Matrix, data.frame or data.table
cols List of numeric column(s) name(s) of data_set to transform. To transform all

characters, set it to "auto". (character, default to "auto")
verbose Should the algorithm talk? (Logical, default to TRUE)

Value

A list where each element name is a column name of data set and each element contains means and
sd.

Examples

Get a data set
data(adult)
scales <- build_scales(adult, cols = "auto", verbose = TRUE)

print(scales)

build_target_encoding Build target encoding

Description

Target encoding is the process of replacing a categorical value with the aggregation of the target
variable. build_target_encoding is used to compute aggregations.

Usage

build_target_encoding(
data_set,
cols_to_encode,
target_col,
functions = "mean",
verbose = TRUE

)

compute_probability_ratio 9

Arguments

data_set Matrix, data.frame or data.table

cols_to_encode columns to aggregate according to (list)

target_col column to aggregate (character)

functions functions of aggregation (list or character, default to "mean"). Functions compute_probability_ratio
and compute_weight_of_evidence are classically used functions

verbose Should the algorithm talk? (Logical, default to TRUE)

Value

A list of data.table a data.table for each cols_to_encode each data.table containing a line by
unique value of column and len(functions) + 1 columns.

Examples

Build a data set
require(data.table)
data_set <- data.table(student = c("Marie", "Marie", "Pierre", "Louis", "Louis"),

grades = c(1, 1, 2, 3, 4))

Perform target_encoding construction
build_target_encoding(data_set, cols_to_encode = "student", target_col = "grades",

functions = c("mean", "sum"))

compute_probability_ratio

Compute probability ratio

Description

Probability ratio is an aggregation function that can be used for build_target_encoding. Proba-
bility ratio is the P(most freq element) / (1 - P(most frq element)).

Usage

compute_probability_ratio(x)

Arguments

x A list of categorical elements

Details

To be more generic, the library compute P(most freq element) inplace of traditional formula P(1)/P(0)

Value

P(most freq element) / (1 - P(most frq element))

10 compute_weight_of_evidence

Examples

Build example list
example_list <- c(1, 1, 1, 2, 2, 3)

Compute probability ratio
compute_probability_ratio(example_list)

compute_weight_of_evidence

Compute weight of evidence

Description

Weight of evidence is an aggregation function that can be used for build_target_encoding.
Weight of evidence is the ln(P(most freq element) / (1 - P(most frq element))).

Usage

compute_weight_of_evidence(x)

Arguments

x A list of categorical elements

Details

To be more generic, the library compute P(most freq element) inplace of traditional formula ln(P(1)/P(0))

Value

Weight of evidence

Examples

Build example list
example_list <- c(1, 1, 1, 2, 2, 3)

Compute weight of evidence
compute_weight_of_evidence(example_list)

data_preparation_news 11

data_preparation_news Show the NEWS file

Description

Show the NEWS file of the dataPreparation package.

Usage

data_preparation_news()

date_format_unifier Unify dates format

Description

Unify every column in a date format to the same date format.

Usage

date_format_unifier(data_set, format = "Date")

Arguments

data_set Matrix, data.frame or data.table
format Desired target format: Date, POSIXct or POSIXlt, (character, default to Date)

Details

This function only handle Date, POSIXct and POSIXlt dates.
POSIXct format is a bit slower than Date but can keep hours-min.

Value

The same data_set set but with dates column with the desired format.

Examples

build a data.table
require(data.table)
data_set <- data.table(column1 = as.Date("2016-01-01"), column2 = as.POSIXct("2017-01-01"))

Use the function
data_set = date_format_unifier(data_set, format = "Date")

Control result
sapply(data_set, class)
return Date for both columns

12 fast_discretization

description Describe data set

Description

Generate extensive description of a data set.

Usage

description(data_set, level = 1, path_to_write = NULL, verbose = TRUE)

Arguments

data_set Matrix, data.frame or data.table

level Level of description (0: generic, 1: column by column) (numeric, default to 1)

path_to_write Path where the report should be written (character, default to NULL)

verbose Should the algorithm talk? (Logical, default to TRUE)

Examples

Load exemple set
data(messy_adult)

Describe it
description(messy_adult)

fast_discretization Discretization

Description

Discretization of numeric variable (either equal_width or equal_fred).

Usage

fast_discretization(data_set, bins = NULL, verbose = TRUE)

Arguments

data_set Matrix, data.frame or data.table

bins Result of funcion build_bins, (list, default to NULL).
To perform the same discretization on train and test, it is recommended to com-
pute build_bins before. If it is kept to NULL, build_bins will be called.
bins could also be carefully hand written.

verbose Should the algorithm talk? (Logical, default to TRUE)

fast_filter_variables 13

Details

NAs will be putted in an NA category.

Value

Same dataset discretized by reference.
If you don’t want to edit by reference please provide set data_set = copy(data_set).

Examples

Load data
data(messy_adult)
head(messy_adult)

Compute bins
bins <- build_bins(messy_adult, cols = "auto", n_bins = 5, type = "equal_freq")

Discretize
messy_adult <- fast_discretization(messy_adult, bins = bins)

Control
head(messy_adult)

Example with hand written bins
data("adult")
adult <- fast_discretization(adult, bins = list(age = c(0, 40, +Inf)))
print(table(adult$age))

fast_filter_variables Filtering useless variables

Description

Delete columns that are constant or in double in your data_set set.

Usage

fast_filter_variables(
data_set,
level = 3,
keep_cols = NULL,
verbose = TRUE,
...

)

14 fast_handle_na

Arguments

data_set Matrix, data.frame or data.table
level which columns do you want to filter (1 = constant, 2 = constant and doubles,

3 = constant doubles and bijections, 4 = constant doubles bijections and in-
cluded)(numeric, default to 3)

keep_cols List of columns not to drop (list of character, default to NULL)
verbose Should the algorithm talk (logical or 1 or 2, default to TRUE)
... optional parameters to be passed to the function when called from another func-

tion

Details

verbose can be set to 2 have full details from which functions, otherwise they don’t log. (verbose
= 1 is equivalent to verbose = TRUE).

Value

The same data_set but with fewer columns. Columns that are constant, in double, or bijection of
another have been deleted.

Examples

First let's build a data.frame with 3 columns: a constant column, and a column in double
df <- data.frame(col1 = 1, col2 = rnorm(1e6), col3 = sample(c(1, 2), 1e6, replace = TRUE))
df$col4 <- df$col2
df$col5[df$col3 == 1] = "a"
df$col5[df$col3 == 2] = "b" # Same info than in col1 but with a for 1 and b for 2
head(df)

Let's filter columns:
df <- fast_filter_variables(df)
head(df)

fast_handle_na Handle NA values

Description

Handle NAs values depending on the class of the column.

Usage

fast_handle_na(
data_set,
set_num = 0,
set_logical = FALSE,
set_char = "",
verbose = TRUE

)

fast_handle_na 15

Arguments

data_set Matrix, data.frame or data.table

set_num NAs replacement for numeric column, (numeric or function, default to 0)

set_logical NAs replacement for logical column, (logical or function, default to FALSE)

set_char NAs replacement for character column, (character or function, default to "")

verbose Should the algorithm talk (logical, default to TRUE)

Details

To preserve RAM this function edits data_set by reference. To keep object unchanged, please use
copy.
If you provide a function, it will be applied to the full column. So this function should handle NAs.
For factor columns, it will add NA to list of values.

Value

data_set as a data.table with NAs replaced.

Examples

Build a useful data_set set for example
require(data.table)
data_set <- data.table(numCol = c(1, 2, 3, NA),

charCol = c("", "a", NA, "c"),
booleanCol = c(TRUE, NA, FALSE, NA))

To set NAs to 0, FALSE and "" (respectively for numeric, logical, character)
fast_handle_na(copy(data_set))

In a numeric column to set NAs as "missing"
fast_handle_na(copy(data_set), set_char = "missing")

In a numeric column, to set NAs to the minimum value of the column#'
fast_handle_na(copy(data_set), set_num = min) # Won't work because min(c(1, NA)) = NA so put back NA
fast_handle_na(copy(data_set), set_num = function(x)min(x,na.rm = TRUE)) # Now we handle NAs

In a numeric column, to set NAs to the share of NAs values
rateNA <- function(x) {

sum(is.na(x)) / length(x)
}
fast_handle_na(copy(data_set), set_num = rateNA)

16 fast_is_equal

fast_is_equal Fast checks of equality

Description

Performs quick check if two objects are equal.

Usage

fast_is_equal(object1, object2)

Arguments

object1 An element, a vector, a data.frame, a data.table

object2 An element, a vector, a data.frame, a data.table

Details

This function uses exponential search trick, so it is fast for very large vectors, data.frame and
data.table. This function is also very robust; you can compare a lot of stuff without failing.

Value

Logical (TRUE or FALSE) if the two objects are equals.

Examples

Test on a character
fast_is_equal("a", "a")
fast_is_equal("a", "b")

Test on a vector
myVector <- rep(x = "a", 10000)
fast_is_equal(myVector, myVector)

Test on a data.table
fast_is_equal(messy_adult, messy_adult)

fast_round 17

fast_round Fast round

Description

Fast round of numeric columns in a data.table. Will only round numeric, so don’t worry about
characters. Also, it computes it column by column so your RAM is safe too.

Usage

fast_round(data_set, cols = "auto", digits = 2, verbose = TRUE)

Arguments

data_set matrix, data.frame or data.table

cols List of numeric column(s) name(s) of data_set to transform. To transform all
numerics columns, set it to "auto" (characters, default to "auto")

digits The number of digits after comma (numeric, default to 2)

verbose Should the algorithm talk? (logical, default to TRUE)

Details

It is performing round by reference on data_set, column by column, only on numercial columns.
So that it avoid copying data_set in RAM.

Value

The same datasets but as a data.table and with numeric rounded.

Examples

First let's build a very large data.table with random numbers
require(data.table)
M <- as.data.table(matrix(runif (3e4), ncol = 10))

M_rouded <- fast_round(M, 2)
Lets add some character
M[, stringColumn := "a string"]

And use our function
M_rouded <- fast_round(M, 2)
It still work :) and you don't have to worry about the string.

18 fast_scale

fast_scale scale

Description

Perform efficient scaling on a data set.

Usage

fast_scale(data_set, scales = NULL, way = "scale", verbose = TRUE)

Arguments

data_set Matrix, data.frame or data.table

scales Result of funcion build_scales, (list, default to NULL).
To perform the same scaling on train and test, it is recommended to compute
build_scales before. If it is kept to NULL, build_scales will be called.

way should scaling or unscaling be performed? (character either "scale" or "unscale",
default to "scale")

verbose Should the algorithm talk? (Logical, default to TRUE)

Details

Scaling numeric values is usefull for some machine learning algorithm such as logistic regression
or neural networks.
Unscaling numeric values can be very usefull for most post-model analysis to do so set way to
"unscale".
This implementation of scale will be faster that scale for large data sets.

Value

data_set with columns scaled (or unscaled) by reference. Scaled means that each column mean
will be 0 and each column standard deviation will be 1.

Examples

Load data
data(adult)

compute scales
scales <- build_scales(adult, cols = "auto", verbose = TRUE)

Scale data set
adult <- fast_scale(adult, scales = scales, verbose = TRUE)

Control
print(mean(adult$age)) # Almost 0
print(sd(adult$age)) # 1

find_and_transform_dates 19

To unscale it:
adult <- fast_scale(adult, scales = scales, way = "unscale", verbose = TRUE)

Control
print(mean(adult$age)) # About 38.6
print(sd(adult$age)) # About 13.6

find_and_transform_dates

Identify date columns

Description

Find and transform dates that are hidden in a character column.
It use a bunch of default formats, and you can also add your own formats.

Usage

find_and_transform_dates(
data_set,
cols = "auto",
formats = NULL,
n_test = 30,
ambiguities = "IGNORE",
verbose = TRUE

)

Arguments

data_set Matrix, data.frame or data.table

cols List of column(s) name(s) of data_set to look into. To check all all columns, set
it to "auto". (characters, default to "auto")

formats List of additional Date formats to check (see strptime)

n_test Number of non-null rows on which to test (numeric, default to 30)

ambiguities How ambiguities should be treated (see details in ambiguities section) (charac-
ter, default to IGNORE)

verbose Should the algorithm talk? (Logical, default to TRUE)

Details

This function is using identify_dates to find formats. Please see it’s documentation. In case
identify_dates doesn’t find wanted formats you can either provide format in param formats or
use set_col_as_date to force transformation.

20 find_and_transform_dates

Value

data_set set (as a data.table) with identified dates transformed by reference.

Ambiguity

Ambiguities are often present in dates. For example, in date: 2017/01/01, there is no way to know
if format is YYYY/MM/DD or YYYY/DD/MM.
Some times ambiguity can be solved by a human. For example 17/12/31, a human might guess that
it is YY/MM/DD, but there is no sure way to know.
To be safe, find_and_transform_dates doesn’t try to guess ambiguities.
To answer ambiguities problem, param ambiguities is now available. It can take one of the fol-
lowing values

• IGNORE function will then take the first format which match (fast, but can make some mistakes)

• WARN function will try all format and tell you - via prints - that there are multiple matches (and
won’t perform date transformation)

• SOLVE function will try to solve ambiguity by going through more lines, so will be slower. If
it is able to solve it, it will transform the column, if not it will print the various acceptable
formats.

If there are some columns that have no chance to be a match think of removing them from cols to
save some computation time.

Examples

Load exemple set
data(messy_adult)
head(messy_adult)
using the find_and_transform_dates
find_and_transform_dates(messy_adult, n_test = 5)
head(messy_adult)

Example with ambiguities
Not run:
require(data.table)
data(messy_adult) # reload data
Add an ambiguity by sorting date1
messy_adult$date1 = sort(messy_adult$date1, na.last = TRUE)
Try all three methods:
result_1 = find_and_transform_dates(copy(messy_adult))
result_2 = find_and_transform_dates(copy(messy_adult), ambiguities = "WARN")
result_3 = find_and_transform_dates(copy(messy_adult), ambiguities = "SOLVE")

End(Not run)
"##NOT RUN:" mean that this example hasn't been run on CRAN since its long. But you can run it!

find_and_transform_numerics 21

find_and_transform_numerics

Identify numeric columns in a data_set set

Description

Function to find and transform characters that are in fact numeric.

Usage

find_and_transform_numerics(
data_set,
cols = "auto",
n_test = 30,
verbose = TRUE

)

Arguments

data_set Matrix, data.frame or data.table

cols List of column(s) name(s) of data_set to look into. To check all all columns, set
it to "auto". (characters, default to "auto")

n_test Number of non-null rows on which to test (numeric, default to 30)

verbose Should the algorithm talk? (logical, default to TRUE)

Details

This function is looking for perfect transformation. If there are some mistakes in data_set, consider
setting them to NA before.
If there are some columns that have no chance to be a match think of removing them from cols to
save some computation time.

Value

The data_set set (as a data.table) with identified numeric transformed.

Warning

All these changes will happen by reference.

Examples

Let's build a data_set set
data_set <- data.frame(ID = seq_len(5),

col1 = c("1.2", "1.3", "1.2", "1", "6"),
col2 = c("1,2", "1,3", "1,2", "1", "6")
)

22 generate_date_diffs

using the find_and_transform_numerics
find_and_transform_numerics(data_set, n_test = 5)

generate_date_diffs Date difference

Description

Perform the differences between all dates of the data_set set and optionally with a static date.

Usage

generate_date_diffs(
data_set,
cols = "auto",
analysis_date = NULL,
units = "years",
drop = FALSE,
verbose = TRUE,
...

)

Arguments

data_set Matrix, data.frame or data.table

cols List of date column(s) name(s) of data_set to comute difference on. To transform
all dates, set it to "auto". (character, default to "auto")

analysis_date Static date (Date or POSIXct, optional)

units Unit of difference between too dates (string, default to ’years’)

drop Should cols be dropped after generation (logical, default to FALSE)

verbose should the function log (logical, default to TRUE)

... Other arguments such as name_separator to separate words in new columns
names (character, default to ".")

Details

units is the same as difftime units, but with one more possiblity: years.

Value

data_set (as a data.table) with more columns. A numeric column has been added for every couple
of Dates. The result is in years.

generate_factor_from_date 23

Examples

First build a useful data_set set
require(data.table)
data_set <- data.table(ID = seq_len(100),

date1 = seq(from = as.Date("2010-01-01"),
to = as.Date("2015-01-01"),
length.out = 100),

date2 = seq(from = as.Date("1910-01-01"),
to = as.Date("2000-01-01"),
length.out = 100)

)

Now let's compute
data_set <- generate_date_diffs(data_set, cols = "auto", analysis_date = as.Date("2016-11-14"))

generate_factor_from_date

Generate factor from dates

Description

Taking Date or POSIXct colums, and building factor columns from them.

Usage

generate_factor_from_date(
data_set,
cols = "auto",
type = "yearmonth",
drop = FALSE,
verbose = TRUE,
...

)

Arguments

data_set Matrix, data.frame or data.table

cols List of date column(s) name(s) of data_set to transform into factor. To transform
all dates, set it to "auto". (characters, default to "auto")

type "year", "yearquarter", "yearmonth", "quarter" or "month", way to aggregate a
date, (character, default to "yearmonth")

drop Should cols be dropped after generation (logical, default to FALSE)

verbose Should the function log (logical, default to TRUE)

... Other arguments such as name_separator to separate words in new columns
names (character, default to ".")

24 generate_from_character

Value

data_set with new columns. data_set is edited by reference.

Examples

Load set, and find dates
data(messy_adult)
messy_adult <- find_and_transform_dates(messy_adult, verbose = FALSE)

Generate new columns
Generate year month columns
messy_adult <- generate_factor_from_date(messy_adult, cols = c("date1", "date2", "num1"))
head(messy_adult[, .(date1.yearmonth, date2.yearmonth)])

Generate quarter columns
messy_adult <- generate_factor_from_date(messy_adult, cols = c("date1", "date2"), type = "quarter")
head(messy_adult[, .(date1.quarter, date2.quarter)])

generate_from_character

Recode character

Description

Recode character into 3 new columns:

• was the value not NA, "NA", "",

• how often this value occures,

• the order of the value (ex: M/F => 2/1 because F comes before M in alphabet).

Usage

generate_from_character(
data_set,
cols = "auto",
verbose = TRUE,
drop = FALSE,
...

)

Arguments

data_set Matrix, data.frame or data.table

cols List of character column(s) name(s) of data_set to transform. To transform all
characters, set it to "auto". (character, default to "auto")

generate_from_factor 25

verbose Should the function log (logical, default to TRUE)

drop Should cols be dropped after generation (logical, default to FALSE)

... Other arguments such as name_separator to separate words in new columns
names (character, default to ".")

Value

data_set with new columns. data_set is edited by reference.

Examples

Load data set
data(messy_adult)
messy_adult <- un_factor(messy_adult, verbose = FALSE) # un factor ugly factors

transform column "mail"
messy_adult <- generate_from_character(messy_adult, cols = "mail")
head(messy_adult)

To transform all characters columns:
messy_adult <- generate_from_character(messy_adult, cols = "auto")

generate_from_factor Recode factor

Description

Recode factors into 3 new columns:

• was the value not NA, "NA", "",

• how often this value occures,

• the order of the value (ex: M/F => 2/1 because F comes before M in alphabet).

Usage

generate_from_factor(
data_set,
cols = "auto",
verbose = TRUE,
drop = FALSE,
...

)

26 get_most_frequent_element

Arguments

data_set Matrix, data.frame or data.table
cols list of character column(s) name(s) of data_set to transform. To transform all

factors, set it to "auto". (character, default to "auto")
verbose Should the function log (logical, default to TRUE)
drop Should cols be dropped after generation (logical, default to FALSE)
... Other arguments such as name_separator to separate words in new columns

names (character, default to ".")

Value

data_set with new columns. data_set is edited by reference.

Examples

Load data set
data(messy_adult)

transform column "type_employer"
messy_adult <- generate_from_factor(messy_adult, cols = "type_employer")
head(messy_adult)

To transform all factor columns:
messy_adult <- generate_from_factor(messy_adult, cols = "auto")

get_most_frequent_element

Get most frequent element

Description

Provide most frequent element in a list, a data.frame or data.table column

Usage

get_most_frequent_element(x)

Arguments

x A list, data.frame or data.table column

Examples

Build example list
example_list <- c(1, 1, 2, 3, 1, 4, 1)

Compute most frequent element
get_most_frequent_element(example_list)

identify_dates 27

identify_dates Identify date columns

Description

Function to identify dates columns and give there format. It use a bunch of default formats. But
you can also add your own formats.

Usage

identify_dates(
data_set,
cols = "auto",
formats = NULL,
n_test = 30,
ambiguities = "IGNORE",
verbose = TRUE

)

Arguments

data_set Matrix, data.frame or data.table

cols List of column(s) name(s) of data_set to look into. To check all all columns, set
it to "auto". (characters, default to "auto")

formats List of additional Date formats to check (see strptime)

n_test Number of non-null rows on which to test (numeric, default to 30)

ambiguities How ambiguities should be treated (see details in ambiguities section) (charac-
ter, default to IGNORE)

verbose Should the algorithm talk? (Logical, default to TRUE)

Details

This function is looking for perfect transformation. If there are some mistakes in data_set, consider
setting them to NA before.
In the unlikely case where you have numeric higher than as.numeric(as.POSIXct("1990-01-01"))
they will be considered as timestamps and you might have some issues. On the other side, if you
have timestamps before 1990-01-01, they won’t be found, but you can use set_col_as_date to
force transformation.

Value

A named list with names being col names of data_set and values being formats.

28 messy_adult

Ambiguity

Ambiguities are often present in dates. For example, in date: 2017/01/01, there is no way to know
if format is YYYY/MM/DD or YYYY/DD/MM.
Some times ambiguity can be solved by a human. For example 17/12/31, a human might guess that
it is YY/MM/DD, but there is no sure way to know.
To be safe, find_and_transform_dates doesn’t try to guess ambiguities.
To answer ambiguities problem, param ambiguities is now available. It can take one of the fol-
lowing values

• IGNORE function will then take the first format which match (fast, but can make some mistakes)

• WARN function will try all format and tell you - via prints - that there are multiple matches (and
won’t perform date transformation)

• SOLVE function will try to solve ambiguity by going through more lines, so will be slower. If
it is able to solve it, it will transform the column, if not it will print the various acceptable
formats.

Examples

Load exemple set
data(messy_adult)
head(messy_adult)
using the find_and_transform_dates
identify_dates(messy_adult, n_test = 5)

messy_adult Adult with some ugly columns added

Description

For examples and tutorials, messy_adult has been built using UCI adult.

Usage

data("messy_adult")

Format

A data.table with 32561 rows and 24 variables.

Details

We added 9 really ugly columns to the data set:

• 4 dates with various formats and time stamp, containing NAs

• 1 constant column

• 3 numeric with different decimal separator

• 1 email address

one_hot_encoder 29

one_hot_encoder One hot encoder

Description

Transform factor column into 0/1 columns with one column per values of the column.

Usage

one_hot_encoder(
data_set,
encoding = NULL,
type = "integer",
verbose = TRUE,
drop = FALSE

)

Arguments

data_set Matrix, data.frame or data.table

encoding Result of funcion build_encoding, (list, default to NULL).
To perform the same encoding on train and test, it is recommended to compute
build_encoding before. If it is kept to NULL, build_encoding will be called.

type What class of columns is expected? "integer" (0L/1L), "numeric" (0/1), or "log-
ical" (TRUE/FALSE), (character, default to "integer")

verbose Should the function log (logical, default to TRUE)

drop Should cols be dropped after generation (logical, default to FALSE)

Details

If you don’t want to edit your data set consider sending copy(data_set) as an input.
Please be carefull using this function, it will generate as many columns as there different values in
your column and might use a lot of RAM. To be safe, you can use parameter min_frequency in
build_encoding.

Value

data_set edited by reference with new columns.

Examples

data(messy_adult)

Compute encoding
encoding <- build_encoding(messy_adult, cols = c("marital", "occupation"), verbose = TRUE)

Apply it

30 prepare_set

messy_adult <- one_hot_encoder(messy_adult, encoding = encoding, drop = TRUE)

Apply same encoding to adult
data(adult)
adult <- one_hot_encoder(adult, encoding = encoding, drop = TRUE)

To have encoding as logical (TRUE/FALSE), pass it in type argument
data(adult)
adult <- one_hot_encoder(adult, encoding = encoding, type = "logical", drop = TRUE)

prepare_set Preparation pipeline

Description

Full pipeline for preparing your data_set set.

Usage

prepare_set(data_set, final_form = "data.table", verbose = TRUE, ...)

Arguments

data_set Matrix, data.frame or data.table
final_form "data.table" or "numerical_matrix" (default to data.table)
verbose Should the algorithm talk? (logical, default to TRUE)
... Additional parameters to tune pipeline (see details)

Details

Additional arguments are available to tune pipeline:

• key Name of a column of data_set according to which data_set should be aggregated (charac-
ter)

• analysis_date A date at which the data_set should be aggregated (differences between every
date and analysis_date will be computed) (Date)

• n_unfactor Number of max value in a facotr, set it to -1 to disable un_factor function.
(numeric, default to 53)

• digits The number of digits after comma (optional, numeric, if set will perform fast_round)
• dateFormats List of format of Dates in data_set (list of characters)
• name_separator character to separate parts of new column names (character, default to ".")
• functions Aggregation functions for numeric columns, see aggregate_by_key (list of func-

tions names (character))
• factor_date_type Aggregation level to factorize date (see generate_factor_from_date)

(character, default to "yearmonth")
• target_col A target column to perform target encoding, see target_encode (character)
• target_encoding_functions Functions to perform target encoding, see build_target_encoding,

if target_col is not given will not do anything, (list, default to "mean")

remove_percentile_outlier 31

Value

A data.table or a numerical matrix (according to final_form).
It will perform the following steps:

• Correct set: unfactor factor with many values, id dates and numeric that are hiden in character

• Transform set: compute differences between every date, transform dates into factors, generate
features from character..., if key is provided, will perform aggregate according to this key

• Filter set: filter constant, in double or bijection variables. If ‘digits‘ is provided, will round
numeric

• Handle NA: will perform fast_handle_na)

• Shape set: will put the result in asked shape (final_form) with acceptable columns format.

Examples

Load ugly set
Not run:
data(messy_adult)

Have a look to set
head(messy_adult)

Compute full pipeline
clean_adult <- prepare_set(messy_adult)

With a reference date
adult_agg <- prepare_set(messy_adult, analysis_date = as.Date("2017-01-01"))

Add aggregation by country
adult_agg <- prepare_set(messy_adult, analysis_date = as.Date("2017-01-01"), key = "country")

With some new aggregation functions
power <- function(x) {sum(x^2)}
adult_agg <- prepare_set(messy_adult, analysis_date = as.Date("2017-01-01"), key = "country",

functions = c("min", "max", "mean", "power"))

End(Not run)
"##NOT RUN:" mean that this example hasn't been run on CRAN since its long. But you can run it!

remove_percentile_outlier

Percentile outlier filtering

Description

Remove outliers based on percentiles.
Only values within nth and 100 - nth percentiles are kept.

32 remove_rare_categorical

Usage

remove_percentile_outlier(
data_set,
cols = "auto",
percentile = 1,
verbose = TRUE

)

Arguments

data_set Matrix, data.frame or data.table

cols List of numeric column(s) name(s) of data_set to transform. To transform all
numeric columns, set it to "auto". (character, default to "auto")

percentile percentiles to filter (numeric, default to 1)

verbose Should the algorithm talk? (logical, default to TRUE)

Details

Filtering is made column by column, meaning that extrem values from first element of cols are
removed, then extrem values from second element of cols are removed, ...
So if filtering is perfomed on too many column, there ia high risk that a lot of rows will be dropped.

Value

Same dataset with less rows, edited by reference.
If you don’t want to edit by reference please provide set data_set = copy(data_set).

Examples

Given
library(data.table)
data_set <- data.table(num_col = seq_len(100))

When
data_set <- remove_percentile_outlier(data_set, cols = "auto", percentile = 1, verbose = TRUE)

Then extrem value is no longer in set
1 %in% data_set[["num_col"]] # Is false
2 %in% data_set[["num_col"]] # Is true

remove_rare_categorical

Filter rare categoricals

Description

Filter rows that have a rare occurences

remove_rare_categorical 33

Usage

remove_rare_categorical(
data_set,
cols = "auto",
threshold = 0.01,
verbose = TRUE

)

Arguments

data_set Matrix, data.frame or data.table

cols List of column(s) name(s) of data_set to transform. To transform all columns,
set it to "auto". (character, default to "auto")

threshold share of occurencies under which row should be removed (numeric, default to
0.01)

verbose Should the algorithm talk? (logical, default to TRUE)

Details

Filtering is made column by column, meaning that extrem values from first element of cols are
removed, then extrem values from second element of cols are removed, ...
So if filtering is perfomed on too many column, there ia high risk that a lot of rows will be dropped.

Value

Same dataset with less rows, edited by reference.
If you don’t want to edit by reference please provide set data_set = copy(data_set).

Examples

Given a set with rare "C"
library(data.table)
data_set <- data.table(cat_col = c(sample(c("A", "B"), 1000, replace=TRUE), "C"))

When calling function
data_set <- remove_rare_categorical(data_set, cols = "cat_col",

threshold = 0.01, verbose = TRUE)

Then there are no "C"
unique(data_set[["cat_col"]])

34 remove_sd_outlier

remove_sd_outlier Standard deviation outlier filtering

Description

Remove outliers based on standard deviation thresholds.
Only values within mean - sd * n_sigmas and mean + sd * n_sigmas are kept.

Usage

remove_sd_outlier(data_set, cols = "auto", n_sigmas = 3, verbose = TRUE)

Arguments

data_set Matrix, data.frame or data.table

cols List of numeric column(s) name(s) of data_set to transform. To transform all
numeric columns, set it to "auto". (character, default to "auto")

n_sigmas number of times standard deviation is accepted (interger, default to 3)

verbose Should the algorithm talk? (logical, default to TRUE)

Details

Filtering is made column by column, meaning that extrem values from first element of cols are
removed, then extrem values from second element of cols are removed, ...
So if filtering is perfomed on too many column, there ia high risk that a lot of rows will be dropped.

Value

Same dataset with less rows, edited by reference.
If you don’t want to edit by reference please provide set data_set = copy(data_set).

Examples

Given
library(data.table)
col_vals <- runif(1000)
col_mean <- mean(col_vals)
col_sd <- sd(col_vals)
extrem_val <- col_mean + 6 * col_sd
data_set <- data.table(num_col = c(col_vals, extrem_val))

When
data_set <- remove_sd_outlier(data_set, cols = "auto", n_sigmas = 3, verbose = TRUE)

Then extrem value is no longer in set
extrem_val %in% data_set[["num_col"]] # Is false

same_shape 35

same_shape Give same shape

Description

Transform data_set into the same shape as reference_set. Espacially this function will be use-
full to make your test set have the same shape as your train set.

Usage

same_shape(data_set, reference_set, verbose = TRUE)

Arguments

data_set Matrix, data.frame or data.table to transform

reference_set Matrix, data.frame or data.table

verbose Should the algorithm talk? (logical, default to TRUE)

Details

This function will make sure that data_set and reference_set

• have the same class

• have exactly the same columns

• have columns with exactly the same class

• have factor factor with exactly the same levels

You should always use this function before applying your model on a new data set to make sure
that everything will go smoothly. But if this function change a lot of stuff you should have a look
to your preparation process, there might be something wrong.

Value

Return data_set transformed in order to make it have the same shape as reference_set

Examples

Not run:
Build a train and a test
data("messy_adult")
data("adult")
train <- messy_adult
test <- adult # So test will have missing columns

Prepare them
train <- prepare_set(train, verbose = FALSE, key = "country")
test <- prepare_set(test, verbose = FALSE, key = "country")

36 set_col_as_character

Give them the same shape
test <- same_shape(test, train)
As one can see in log, a lot of small change had to be done.
This is an extreme case but you get the idea.

End(Not run)
"##NOT RUN:" mean that this example hasn't been run on CRAN since its long. But you can run it!

set_as_numeric_matrix Numeric matrix preparation for Machine Learning.

Description

Prepare a numeric matrix from a data.table. This matrix is suitable for machine learning purposes,
since factors are binarized. It may be sparsed, include an intercept, and drop a reference column for
each factor if required (when using lm(), for instance)

Usage

set_as_numeric_matrix(
data_set,
intercept = FALSE,
all_cols = FALSE,
sparse = FALSE

)

Arguments

data_set data.table

intercept Should a constant column be added? (logical, default to FALSE)

all_cols For each factor, should we create all possible dummies, or should we drop a
reference dummy? (logical, default to FALSE)

sparse Should the resulting matrix be of a (sparse) Matrix class? (logical, default to
FALSE)

set_col_as_character Set columns as character

Description

Set as character a column (or a list of columns) from a data.table.

Usage

set_col_as_character(data_set, cols = "auto", verbose = TRUE)

set_col_as_date 37

Arguments

data_set Matrix, data.frame or data.table

cols List of column(s) name(s) of data_set to transform into characters. To transform
all columns, set it to "auto". (characters, default to "auto")

verbose Should the function log (logical, default to TRUE)

Value

data_set (as a data.table), with specified columns set as character.

Examples

Build a fake data.frame
data_set <- data.frame(numCol = c(1, 2, 3), factorCol = as.factor(c("a", "b", "c")))

Set numCol and factorCol as character
data_set <- set_col_as_character(data_set, cols = c("numCol", "factorCol"))

set_col_as_date Set columns as POSIXct

Description

Set as POSIXct a character column (or a list of columns) from a data.table.

Usage

set_col_as_date(data_set, cols = NULL, format = NULL, verbose = TRUE)

Arguments

data_set Matrix, data.frame or data.table

cols List of column(s) name(s) of data_set to transform into dates

format Date’s format (function will be faster if the format is provided) (character or list
of character, default to NULL).
For timestamps, format need to be provided ("s" or "ms" or second or millisec-
ond timestamps)

verbose Should the function log (logical, default to TRUE)

Details

set_col_as_date is way faster when format is provided. If you want to identify dates and format
automatically, have a look to identify_dates.
If input column is a factor, it will be returned as a POSIXct column.
If cols is kept to default (NULL) set_col_as_date won’t do anything.

38 set_col_as_factor

Value

data_set (as a data.table), with specified columns set as Date. If the transformation generated
only NA, the column is set back to its original value.

Examples

Lets build a data_set set
data_set <- data.frame(ID = seq_len(5),

date1 = c("2015-01-01", "2016-01-01", "2015-09-01", "2015-03-01", "2015-01-31"),
date2 = c("2015_01_01", "2016_01_01", "2015_09_01", "2015_03_01", "2015_01_31")

)

Using set_col_as_date for date2
data_transformed <- set_col_as_date(data_set, cols = "date2", format = "%Y_%m_%d")

Control the results
lapply(data_transformed, class)

With multiple formats:
data_transformed <- set_col_as_date(data_set, format = list(date1 = "%Y-%m-%d", date2 = "%Y_%m_%d"))
lapply(data_transformed, class)

It also works with timestamps
data_set <- data.frame(time_stamp = c(1483225200, 1485990000, 1488495600))
set_col_as_date(data_set, cols = "time_stamp", format = "s")

set_col_as_factor Set columns as factor

Description

Set columns as factor and control number of unique element, to avoid having too large factors.

Usage

set_col_as_factor(data_set, cols = "auto", n_levels = 53, verbose = TRUE)

Arguments

data_set Matrix, data.frame or data.table

cols List of column(s) name(s) of data_set to transform into factor. To transform all
columns set it to "auto", (characters, default to auto).

n_levels Max number of levels for factor (integer, default to 53) set it to -1 to disable
control.

verbose Should the function log (logical, default to TRUE)

set_col_as_numeric 39

Details

Control number of levels will help you to distinguish true categorical columns from just characters
that should be handled in another way.

Value

data_set(as a data.table), with specified columns set as factor or logical.

Examples

Load messy_adult
data("messy_adult")

we wil change education
messy_adult <- set_col_as_factor(messy_adult, cols = "education")

sapply(messy_adult[, .(education)], class)
education is now a factor

set_col_as_numeric Set columns as numeric

Description

Set as numeric a character column (or a list of columns) from a data.table.

Usage

set_col_as_numeric(data_set, cols, strip_string = FALSE, verbose = TRUE)

Arguments

data_set Matrix, data.frame or data.table

cols List of column(s) name(s) of data_set to transform into numerics

strip_string should I change "," to "." in the string? (logical, default to FALSE) If set to
TRUE, computation will be a bit longer

verbose Should the function log (logical, default to TRUE)

Value

data_set (as a data.table), with specified columns set as numeric.

40 shape_set

Examples

Build a fake data.table
data_set <- data.frame(charCol1 = c("1", "2", "3"),
charCol2 = c("4", "5", "6"))

Set charCol1 and charCol2 as numeric
data_set <- set_col_as_numeric(data_set, cols = c("charCol1", "charCol2"))

Using strip string when spaces or wrong decimal separator is used
data_set <- data.frame(charCol1 = c("1", "2", "3"),

charCol2 = c("4, 1", "5, 2", "6, 3"))

Set charCol1 and charCol2 as numeric
set_col_as_numeric(data_set, cols = c("charCol1", "charCol2"))
generate mistakes
set_col_as_numeric(data_set, cols = c("charCol1", "charCol2"), strip_string = TRUE)
Doesn't generate any mistake (but is a bit slower)

shape_set Final preparation before ML algorithm

Description

Prepare a data.table by:

• transforming numeric variables into factors whenever they take less than thresh unique vari-
ables

• transforming characters using generate_from_character

• transforming logical into binary integers

• dropping constant columns

• Sending the data.table to set_as_numeric_matrix (when final_form == "numerical_matrix")
will then allow you to get a numerical matrix usable by most Machine Learning Algorithms.

Usage

shape_set(data_set, final_form = "data.table", thresh = 10, verbose = TRUE)

Arguments

data_set Matrix, data.frame or data.table

final_form "data.table" or "numerical_matrix" (default to data.table)

thresh Threshold such that a numerical column is transformed into a factor whenever
its number of unique modalities is smaller or equal to thresh (numeric, default
to 10)

verbose Should the algorithm talk? (logical, default to TRUE)

target_encode 41

Warning

All these changes will happen by reference.

target_encode Target encode

Description

Target encoding is the process of replacing a categorical value with the aggregation of the target
variable. the target variable. target_encode is used to apply this transformations on a data set.
Function build_target_encoding must be used first to compute aggregations.

Usage

target_encode(data_set, target_encoding, drop = FALSE, verbose = TRUE)

Arguments

data_set Matrix, data.frame or data.table
target_encoding

result of function build_target_encoding (list)

drop Should col_to_encode be dropped after generation (logical, default to FALSE)

verbose Should the algorithm talk? (Logical, default to TRUE)

Value

data_set with new cols of target_encoding merged to data_set using target_encoding names
as merging key. data_set is edited by reference.

Examples

Build a data set
require(data.table)
data_set <- data.table(student = c("Marie", "Marie", "Pierre", "Louis", "Louis"),

grades = c(1, 1, 2, 3, 4))

Construct encoding
target_encoding <- build_target_encoding(data_set, cols_to_encode = "student",

target_col = "grades", functions = c("mean", "sum"))

Apply them
target_encode(data_set, target_encoding = target_encoding)

42 un_factor

un_factor Unfactor factor with too many values

Description

To unfactorize all columns that have more than a given amount of various values. This function will
be usefull after using some reading functions that put every string as factor.

Usage

un_factor(data_set, cols = "auto", n_unfactor = 53, verbose = TRUE)

Arguments

data_set Matrix, data.frame or data.table

cols List of column(s) name(s) of data_set to look into. To check all all columns, set
it to "auto". (characters, default to "auto")

n_unfactor Number of max element in a factor (numeric, default to 53)

verbose Should the algorithm talk? (logical, default to TRUE)

Details

If a factor has (strictly) more than n_unfactor values it is unfactored.
It is recommended to use find_and_transform_numerics and find_and_transform_dates after
this function.
If n_unfactor is set to -1, nothing will be performed.
If there are a lot of column that have been transformed, you might want to look at the documentation
of your data reader in order to stop transforming everything into a factor.

Value

Same data_set (as a data.table) with less factor columns.

Examples

Let's build a data_set
data_set <- data.frame(true_factor = factor(rep(c(1,2), 13)),

false_factor = factor(LETTERS))

Let's un factorize all factor that have more than 5 different values
data_set <- un_factor(data_set, n_unfactor = 5)
sapply(data_set, class)
Let's un factorize all factor that have more than 5 different values
data_set <- un_factor(data_set, n_unfactor = 0)
sapply(data_set, class)

which_are_bijection 43

which_are_bijection Identify bijections

Description

Find all the columns that are bijections of another column.

Usage

which_are_bijection(data_set, keep_cols = NULL, verbose = TRUE)

Arguments

data_set Matrix, data.frame or data.table

keep_cols List of columns not to drop (list of character, default to NULL)

verbose Should the algorithm talk (logical, default to TRUE)

Details

Bijection, meaning that there is another column containing the exact same information (but maybe
coded differently) for example col1: Men/Women, col2 M/W.
This function is performing search by looking to every couple of columns. It computes numbers of
unique elements in each column, and number of unique tuples of values.
Computation is made by exponential search, so that the function is faster.
If verbose is TRUE, the column logged will be the one returned.
Ex: if column i and column j (with j > i) are bijections it will return j, expect if j is a character then
it return i.

Value

A list of index of columns that have an exact bijection in the data_set set.

Examples

First let's get a data set
data("adult")

Now let's check which columns are equals
which_are_in_double(adult)
It doesn't give any result.

Let's look of bijections
which_are_bijection(adult)
Return education_num index because education_num and education which
contain the same info

44 which_are_constant

which_are_constant Identify constant columns

Description

Find all the columns that are constant.

Usage

which_are_constant(data_set, keep_cols = NULL, verbose = TRUE)

Arguments

data_set Matrix, data.frame or data.table

keep_cols List of columns not to drop (list of character, default to NULL)

verbose Should the algorithm talk (logical, default to TRUE)

Details

Algorithm is performing exponential search: it check constancy on row 1 to 10, if it’s not constant
it stops, if it’s constant then on 11 to 100 ...
If you have a lot of columns than aren’t constant, this function is way faster than a simple length(unique())!
The larger the data_set set is, the more interesting it is to use this function.

Value

List of column’s indexes that are constant in the data_set set.

Examples

Let's load our data_set
data("messy_adult")

Let's try our function
which_are_constant(messy_adult)
Indeed it return constant the name of the constant column.

which_are_included 45

which_are_included Identify columns that are included in others

Description

Find all the columns that don’t contain more information than another column. For example if you
have a column with an amount and another with the same amount but rounded, the second column
is included in the first.

Usage

which_are_included(data_set, keep_cols = NULL, verbose = TRUE)

Arguments

data_set Matrix, data.frame or data.table

keep_cols List of columns not to drop (list of character, default to NULL)

verbose Should the algorithm talk (logical, default to TRUE)

Details

This function is performing exponential search and is looking to every couple of columns.
Be very careful while using this function:
- if there is an id column, it will say everything is included in the id column;
- the order of columns will influence the result.

For example if you have a column with an amount and another with the same amount but rounded,
the second column is included in the first.

And last but not least, with some machine learning algorithm it’s not always smart to drop columns
even if they don’t give more info: the extreme example is the id example.

Value

A list of index of columns that have an exact duplicate in the data_set.

Examples

Load toy data set
require(data.table)
data(messy_adult)

Reduce set size to save time (you can run it on full set)
messy_adult = messy_adult[seq_len(100),]

Check for included columns
which_are_included(messy_adult)

46 which_are_in_double

Return columns that are also constant, double and bijection
Let's add a truly just included column
messy_adult$are50OrMore <- messy_adult$age > 50
which_are_included(messy_adult[, .(age, are50OrMore)])

As one can, see this column that doesn't have additional info than age is spotted.

But you should be careful, if there is a column id, every column will be dropped:
messy_adult$id = seq_len(nrow(messy_adult)) # build id
which_are_included(messy_adult)

which_are_in_double Identify double columns

Description

Find all the columns that are in double.

Usage

which_are_in_double(data_set, keep_cols = NULL, verbose = TRUE)

Arguments

data_set Matrix, data.frame or data.table

keep_cols List of columns not to drop (list of character, default to NULL)

verbose Should the algorithm talk (logical, default to TRUE)

Details

This function is performing search by looking to every couple of columns. First it compares the first
10 lines of both columns. If they are not equal then the columns aren’t identical, else it compares
lines 11 to 100; then 101 to 1000... So this function is fast with data_set set with a large number of
lines and a lot of columns that aren’t equals.
If verbose is TRUE, the column logged will be the one returned.

Value

A list of index of columns that have an exact duplicate in the data_set set. Ex: if column i and
column j (with j > i) are equal it will return j.

Examples

First let's build a matrix with 3 columns and a lot of lines, with 1's everywhere
M <- matrix(1, nrow = 1e6, ncol = 3)

Now let's check which columns are equals
which_are_in_double(M)

which_are_in_double 47

It return 2 and 3: you should only keep column 1.

Let's change the column 2, line 1 to 0. And check again
M[1, 2] <- 0
which_are_in_double(M)
It only returns 3

What about NA? NA vs not NA => not equal
M[1, 2] <- NA
which_are_in_double(M)
It only returns 3

What about NA? Na vs NA => yep it's the same
M[1, 1] <- NA
which_are_in_double(M)
It only returns 2

Index

∗ data
adult, 2
messy_adult, 28

adult, 2
aggregate_by_key, 3, 30
as.POSIXct, 5
as.POSIXct_fast, 4

build_bins, 5, 12
build_date_factor, 6
build_encoding, 7, 29
build_scales, 8, 18
build_target_encoding, 8, 30, 41

compute_probability_ratio, 9
compute_weight_of_evidence, 10
copy, 15

data.table, 4, 9, 15, 22, 37–39
data_preparation_news, 11
date_format_unifier, 11
description, 12
difftime, 22

fast_discretization, 12
fast_filter_variables, 13
fast_handle_na, 14, 31
fast_is_equal, 16
fast_round, 17, 30
fast_scale, 18
find_and_transform_dates, 19, 42
find_and_transform_numerics, 21, 42

generate_date_diffs, 22
generate_factor_from_date, 23, 30
generate_from_character, 24, 40
generate_from_factor, 25
get_most_frequent_element, 26

identify_dates, 19, 27, 37

messy_adult, 28

one_hot_encoder, 29

prepare_set, 30

remove_percentile_outlier, 31
remove_rare_categorical, 32
remove_sd_outlier, 34

same_shape, 35
scale, 18
set_as_numeric_matrix, 36, 40
set_col_as_character, 36
set_col_as_date, 19, 27, 37
set_col_as_factor, 38
set_col_as_numeric, 39
shape_set, 40
strptime, 19, 27

target_encode, 30, 41

un_factor, 30, 42

which_are_bijection, 43
which_are_constant, 44
which_are_in_double, 46
which_are_included, 45

48

	adult
	aggregate_by_key
	as.POSIXct_fast
	build_bins
	build_date_factor
	build_encoding
	build_scales
	build_target_encoding
	compute_probability_ratio
	compute_weight_of_evidence
	data_preparation_news
	date_format_unifier
	description
	fast_discretization
	fast_filter_variables
	fast_handle_na
	fast_is_equal
	fast_round
	fast_scale
	find_and_transform_dates
	find_and_transform_numerics
	generate_date_diffs
	generate_factor_from_date
	generate_from_character
	generate_from_factor
	get_most_frequent_element
	identify_dates
	messy_adult
	one_hot_encoder
	prepare_set
	remove_percentile_outlier
	remove_rare_categorical
	remove_sd_outlier
	same_shape
	set_as_numeric_matrix
	set_col_as_character
	set_col_as_date
	set_col_as_factor
	set_col_as_numeric
	shape_set
	target_encode
	un_factor
	which_are_bijection
	which_are_constant
	which_are_included
	which_are_in_double
	Index

