
Why the package declared

The problem
The R ecosystem already has some very good packages that deal with labelled objects. In
particular, the inter-connected packages haven and labelled provide all the functionality
most users would ever need.

As nice and useful as these packages are, it has become apparent they have some fundamental
design features that run, in some situations, against users’ expectations. This has a lot
to do with the treatment of declared missing values, that are instrumental for the social
sciences.

The following minimal example (adapted from the vignette in package haven) illustrates
the situation:

> library(haven)
> x1 <- labelled_spss(c(1:5, 99), labels = c(Missing = 99), na_value = 99)

The printed objects from this package nicely display some properties:

> x1
<labelled_spss<double>[6]>
[1] 1 2 3 4 5 99
Missing values: 99

Labels:
value label

99 Missing

There are 5 normal (non-missing) values (supposedly they represent the number of children),
and one declared missing value coded 99. This value acts as a missing value, but it is
different from a regular missing value in R, coded NA. The latter stands for any missing
information (something like an empty cell) regardless of the reason.

Here, on the other hand, the cell is not empty, but the value 99 is not a valid value either.
It cannot possibly represent 99 children in the household, but for instance it could have
meant the respondent did not want to respond. It is properly identified as missing, with:

> is.na(x1)
[1] FALSE FALSE FALSE FALSE FALSE TRUE

1

But when calculating a mean, for instance, the normal expectation is that value 99 would
not play any role in the calculations (since it should be missing). However:

> mean(x1)
[1] 19

This means the value 99 did play an active role despite being identified as “missing”. In an
ideal world, the expected mean would be 3, or at best employ the argument na.rm = TRUE
if the result is NA because of the declared missing value.

A solution to this problem is offered by package labelled, which has a function called
user_na_to_na():

> library(labelled)
> mean(user_na_to_na(x1), na.rm = TRUE)
[1] 3

The declared solution
While solving the problem, this above solution forces two additional operations:

• converting the (already) declared user missing values, and

• employing the na.rm argument.

This should not be necessary, especially if (and it is extremely likely that) users may forget
the declared missing values are not actually missing values. This scenario is quite possible,
as many users previously using other software like SPSS or Stata where nothing else should
be done after declaring the missing values, may not realize more is needed.

To solve this situation, package declared creates a very similar object, where declared
missing values are actually stored (hence interpreted as) regular NA missing values in R.

> library(declared)
> x2 <- declared(c(1:5, 99), labels = c(Missing = 99), na_value = 99)
> x2
<declared<integer>[6]>
[1] 1 2 3 4 5 NA(99)
Missing values: 99

Labels:
value label

99 Missing

It is now obvious the value 99 is not a regular number anymore, but an actual missing
value. More importantly, it circumvents the need to convert user missing values to regular
NAs, since they are already stored as NA values. The average value is calculated simply as:

2

> mean(x2)
[1] 3

Notice that neither user_na_to_na(), nor employing na.rm = TRUE are necessary and,
despite being stored as an NA value, the value 99 is not equivalent to an empty cell. The
information still exists, but it is simply ignored in the calculations.

The na.rm = TRUE is only necessary if there are truly unexplained (hence undeclared)
missing values in the data:

> mean(c(x2, NA))
[1] NA
> mean(c(x2, NA), na.rm = TRUE)
[1] 3

As it can be seen, combining on this vector creates a similar one of the same class:

> x2 <- c(x2, 97, 99)
> x2
<declared<integer>[8]>
[1] 1 2 3 4 5 NA(99) 97 NA(99)
Missing values: 99

Labels:
value label

99 Missing

Similarities and added value
It should be made obvious that packages haven and labelled are excellent packages which
are not inherently doing a bad thing: the very same result is obtained, just via a different
route. Package declared should not even be necessary, if the design philosophy of these
packages would be different.

The current functions offer an alternative to these packages, with only one but fundamental
difference: instead of treating existing values as missing, package declared interprets
missing values as existing.

The declared missing values are (just like in package haven) identified as NAs, but they
can also be compared against the original values:

> is.na(x2)
[1] FALSE FALSE FALSE FALSE FALSE TRUE FALSE TRUE
> x2 == 99
[1] FALSE FALSE FALSE FALSE FALSE TRUE FALSE TRUE

3

Most functions are designed to be as similar as possible, for instance value_labels() to
add / change value labels:

> value_labels(x2) <- c("Does not know" = 97, "Not responded" = 99)
> x2
<declared<integer>[8]>
[1] 1 2 3 4 5 NA(99) 97 NA(99)
Missing values: 99

Labels:
value label

97 Does not know
99 Not responded

The value 97 is now properly labelled, and it can further be declared as missing. Such
declarations do not necessarily have to use the main function declared(), due to the
separate functions missing_values() and missing_range():

> x2 <- c(x2, -3, -1, -2, -5)
> missing_values(x2) <- c(97, 99)
> missing_range(x2) <- c(-1, -5)
> x2
<declared<integer>[12]>
[1] 1 2 3 4 5 NA(99) NA(97) NA(99) NA(-3) NA(-1)

[11] NA(-2) NA(-5)
Missing values: 97, 99
Missing range: [-5, -1]

Labels:
value label

97 Does not know
99 Not responded

To ease the smooth inter-operation with packages haven and labelled, the following
functions are of interest: undeclare(), as.haven() and as.declared().

The function undeclare() replaces the NAs with their declared missing values. The result
is still an object of class declared, but all missing values (and missing range) are stripped
off the vector and values are presented as they have been collected. All other attributes of
interest (variable and value labels) are retained and printed accordingly.

The function as.haven() coerces the resulting object to the class haven_labelled_spss,
and the function as.declared() reverses the process:

4

> xh <- as.haven(x2)
> xh
<labelled_spss<double>[12]>
[1] 1 2 3 4 5 99 97 99 -3 -1 -2 -5

Missing values: 97, 99
Missing range: [-5, -1]

Labels:
value label

97 Does not know
99 Not responded

>
> as.declared(xh)
<declared<integer>[12]>
[1] 1 2 3 4 5 NA(99) NA(97) NA(99) NA(-3) NA(-1)

[11] NA(-2) NA(-5)
Missing values: 97, 99
Missing range: [-5, -1]

Labels:
value label

97 Does not know
99 Not responded

The declared objects play natively with the base functions na.omit() or na.remove(),
either as standalone vectors or part of a data frame:

> dfm <- data.frame(id = sample(1:12, 12), x2)
> dfm

id x2
1 11 1
2 2 2
3 10 3
4 5 4
5 12 5
6 4 NA(99)
7 1 NA(97)
8 6 NA(99)
9 7 NA(-3)
10 3 NA(-1)
11 8 NA(-2)
12 9 NA(-5)

5

> na.omit(dfm)
id x2

1 11 1
2 2 2
3 10 3
4 5 4
5 12 5

As it can be noticed, the missing values are properly formatted inside a data frame. Other
users might prefer a tibble instead of a data frame, in which case objects of class declared
are properly formatted in a similar way to those from package haven:

> library(tibble)
> as_tibble(dfm)
A tibble: 12 x 2

id x2
<int> <int+lbl>

1 11 1
2 2 2
3 10 3
4 5 4
5 12 5
6 4 99 (NA) [Not responded]
7 1 97 (NA) [Does not know]
8 6 99 (NA) [Not responded]
9 7 -3 (NA)

10 3 -1 (NA)
11 8 -2 (NA)
12 9 -5 (NA)

There is an obvious amount of duplication between packages haven, labelled and declared.
As mentioned, the function value_labels() corresponds to the function val_labels(),
and the same overlap happens between functions variable_labels() and var_labels().
The list could grow but it is quite unnecessary, as specific methods can be added to the
functions from the first two packages, to deal with the objects of class declared. And
indeed, most of them work natively, for instance:

> x <- declared(c(1:5), labels = c(Good = 1, Bad = 5))
> to_factor(x)
[1] Good 2 3 4 Bad
Levels: Good 2 3 4 Bad
> to_character(x)
[1] "Good" "2" "3" "4" "Bad"

6

