Package ‘decorators’

March 22, 2021

Type Package
Title Extend the Behaviour of a Function without Explicitly Modifying

1t
URL https://tidylab.github.io/decorators/,
https://github.com/tidylab/decorators

BugReports https://github.com/tidylab/decorators/issues
Version 0.1.0

Date 2021-03-15

Maintainer Harel Lustiger <tidylab@gmail.com>

Description A decorator is a function that receives a function, extends its
behaviour, and returned the altered function. Any caller that uses the
decorated function uses the same interface as it were the original,
undecorated function. Decorators serve two primary uses: (1) Enhancing the
response of a function as it sends data to a second component; (2)
Supporting multiple optional behaviours. An example of the first use is a
timer decorator that runs a function, outputs its execution time on the
console, and returns the original function's result. An example of the
second use is input type validation decorator that during running time
tests whether the caller has passed input arguments of a particular class.
Decorators can reduce execution time, say by memoization, or reduce bugs
by adding defensive programming routines.

License MIT + file LICENSE
Encoding UTF-8

LazyData true
RoxygenNote 7.1.1
Language en-GB

Depends R (>=3.5)
Suggests testthat

Imports purrr
Config/testthat/edition 3

https://tidylab.github.io/decorators/
https://github.com/tidylab/decorators
https://github.com/tidylab/decorators/issues

NeedsCompilation no

Author Harel Lustiger [aut, cre] (<https://orcid.org/0000-0003-2953-9598>),
Tidylab [cph, fnd]

Repository CRAN
Date/Publication 2021-03-22 10:20:02 UTC

R topics documented:

NA X o o 2
tME_it o . e e e e e e e e e e e e e e e 3
validate_arguments e e 3
Index 6
NA_X_ Not Available / Missing Values
Description

NA is a logical constant of length 1 which contains a missing value indicator. Other built-in constants
NA_integer_, NA_real_, NA_complex_ and NA_character_ are missing value place-holder of a
particular type.

NA constants have two typical uses:

1. Signifying the user what data type a function expect in its input; and

2. Representing missing values of a specific type.

This package provides additional NA types.

Usage

NA_Date_

NA_POSIXct_

Format

An object of class Date of length 1.
An object of class POSIXct (inherits from POSIXt) of length 1.

Value

NA value of a particular type.

Examples

class(NA_Date_)
class(NA_POSIXct_)

time_it 3

time_it Measure Execution Time of Functions

Description

Wrap a function with a timer.

Usage
time_it(func, units = "auto”, digits = 2)
Arguments
func (function) A function to decorate.
units (character) Units in which the results are desired, including: "auto”, "secs”,
"mins”, "hours”, "days"”, and "weeks". See difftime.
digits (integer) The number of significant digits to be used. See signif.
Value

(closure) An object that contains the original function bound to the environment of the decorator.

References

e timeit Python module

¢ Closures in R

Examples

Sys.sleep <- time_it(base::Sys.sleep)
Sys.sleep(0.1)

validate_arguments Validate the Type of Input Arguments

Description

Wrap a function with a input validation.

Usage

validate_arguments(func)

Arguments

func (function) A function to decorate.

https://docs.python.org/3/library/timeit.html
http://adv-r.had.co.nz/Functional-programming.html

4 validate_arguments

Details

validate_arguments decorator allows the arguments passed to a function to be parsed and vali-
dated using the function’s annotations before the function is called.

How It Works:

validate_arguments provides an extremely easy way to apply validation to your code with
minimal boilerplate. The original function needs to have key-value pairs in its declaration, where
the each value carries its designated class.

When to Use It:

* To protect functions from receiving unexpected types of input arguments.

e In ValueObjects.
Examples: Functions with Built-in NA classes:
Given a Customer ValueObject

Customer <- function(given = NA_character_, family = NA_character_)
return(data.frame(given = given, family = family))

When Customer is decorated with validate_arguments
Customer <- validate_arguments(Customer)

Then passing arguments of any type other then the declared type prompts an informative error.

In the Customer example, both input arguments given and family are declared as character.

Customer(given = "Bilbo", family = "Baggins”) # Works as both arguments are character
#> given family

#> 1 Bilbo Baggins

try(Customer(given = "Bilbo", family = 90201)) # Fails because family is not a character
#> Error in Customer(given = "Bilbo"”, family = 90201) :

#> family is of type ‘numeric‘ rather than ‘character®!

Value

(closure) An object that contains the original function bound to the environment of the decorator.

Note

The original function must have default values of the designated type.

References

 Similar Python module

e Closures in R

https://tidylab.github.io/R6P/reference/ValueObject.html
https://tidylab.github.io/R6P/reference/ValueObject.html
https://pydantic-docs.helpmanual.io/usage/validation_decorator/
http://adv-r.had.co.nz/Functional-programming.html

validate_arguments

Examples

Car <- function(model = NA_character_, hp = NA_real_){
return(data.frame(model = model, hp = hp))
}

Car <- validate_arguments(Car)
try(Car(model = 555, hp = 120)) # fails because model is numeric rather than character

Index

+ datasets
NA_X_, 2

* defensive programming
validate_arguments, 3

+ misc decorators
time_it, 3

difftime, 3

NA_Date_ (NA_x_), 2
NA_POSIXct_ (NA_x_), 2
NA_x_, 2

signif, 3
time_it, 3

validate_arguments, 3

	NA_x_
	time_it
	validate_arguments
	Index

