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NA_X_ Not Available / Missing Values
Description

NA is a logical constant of length 1 which contains a missing value indicator. Other built-in constants
NA_integer_, NA_real_, NA_complex_ and NA_character_ are missing value place-holder of a
particular type.

NA constants have two typical uses:

1. Signifying the user what data type a function expect in its input; and

2. Representing missing values of a specific type.

This package provides additional NA types.

Usage

NA_Date_

NA_POSIXct_

Format

An object of class Date of length 1.
An object of class POSIXct (inherits from POSIXt) of length 1.

Value

NA value of a particular type.

Examples

class(NA_Date_)
class(NA_POSIXct_)



time_it 3

time_it Measure Execution Time of Functions

Description

Wrap a function with a timer.

Usage
time_it(func, units = "auto”, digits = 2)
Arguments
func (function) A function to decorate.
units (character) Units in which the results are desired, including: "auto”, "secs”,
"mins”, "hours”, "days"”, and "weeks". See difftime.
digits (integer) The number of significant digits to be used. See signif.
Value

(closure) An object that contains the original function bound to the environment of the decorator.

References

e timeit Python module

¢ Closures in R

Examples

Sys.sleep <- time_it(base::Sys.sleep)
Sys.sleep(0.1)

validate_arguments Validate the Type of Input Arguments

Description

Wrap a function with a input validation.

Usage

validate_arguments(func)

Arguments

func (function) A function to decorate.


https://docs.python.org/3/library/timeit.html
http://adv-r.had.co.nz/Functional-programming.html

4 validate_arguments

Details

validate_arguments decorator allows the arguments passed to a function to be parsed and vali-
dated using the function’s annotations before the function is called.

How It Works:

validate_arguments provides an extremely easy way to apply validation to your code with
minimal boilerplate. The original function needs to have key-value pairs in its declaration, where
the each value carries its designated class.

When to Use It:

* To protect functions from receiving unexpected types of input arguments.

e In ValueObjects.
Examples: Functions with Built-in NA classes:
Given a Customer ValueObject

Customer <- function(given = NA_character_, family = NA_character_)
return(data.frame(given = given, family = family))

When Customer is decorated with validate_arguments
Customer <- validate_arguments(Customer)

Then passing arguments of any type other then the declared type prompts an informative error.

In the Customer example, both input arguments given and family are declared as character.

Customer(given = "Bilbo", family = "Baggins”) # Works as both arguments are character
#> given family

#> 1 Bilbo Baggins

try(Customer(given = "Bilbo", family = 90201)) # Fails because family is not a character
#> Error in Customer(given = "Bilbo"”, family = 90201) :

#> family is of type ‘numeric‘ rather than ‘character®!

Value

(closure) An object that contains the original function bound to the environment of the decorator.

Note

The original function must have default values of the designated type.

References

 Similar Python module

e Closures in R


https://tidylab.github.io/R6P/reference/ValueObject.html
https://tidylab.github.io/R6P/reference/ValueObject.html
https://pydantic-docs.helpmanual.io/usage/validation_decorator/
http://adv-r.had.co.nz/Functional-programming.html

validate_arguments

Examples

Car <- function(model = NA_character_, hp = NA_real_){
return(data.frame(model = model, hp = hp))
}

Car <- validate_arguments(Car)
try(Car(model = 555, hp = 120)) # fails because model is numeric rather than character
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