Package ‘delaunay’

July 19, 2022
Type Package
Title 2d, 2.5d, and 3d Delaunay Tessellations
Version 1.1.0
Author Stéphane Laurent
Maintainer Stéphane Laurent <laurent_step@outlook.fr>

Description Construction and visualization of 2d Delaunay triangulations,
possibly constrained, 2.5d (i.e. elevated) Delaunay triangulations,
and 3d Delaunay triangulations.

License GPL-3
URL https://github.com/stla/delaunay

BugReports https://github.com/stla/delaunay/issues
Depends R (>=4.2.0)

Imports gplots, graphics, randomcoloR, Rcpp (>= 1.0.8), rgl, Rvceg,
utils

Suggests uniformly

LinkingTo Rcpp, ReppCGAL, ReppEigen, BH
Encoding UTF-8

RoxygenNote 7.2.0

SystemRequirements C++ 14, gmp, mpfr
NeedsCompilation yes

Repository CRAN

Date/Publication 2022-07-19 15:00:02 UTC

R topics documented:

delaunay
mesh2d
plotDelaunay2D
plotDelaunay3D L. e e e

Index

https://github.com/stla/delaunay
https://github.com/stla/delaunay/issues

delaunay

delaunay Delaunay tessellation

Description

Delaunay tessellation of a set of 2D or 3D points.

Usage

delaunay(points, elevation = FALSE, constraints = NULL, quick3d = FALSE)

Arguments
points numeric matrix which stores the points, one point per row
elevation if points are three-dimensional and elevation=TRUE, then the function performs
an elevated two-dimensional Delaunay triangulation, using the z coordinates of
the points for the elevations; see the example
constraints for 2D only, some edges to perform a constrained Delaunay triangulation, given
as an integer matrix with two columns (each row provides the indices of the two
points forming the edge); NULL for no constraint
quick3d Boolean, for 3D only; if FALSE, there is more information in the output about
the Delaunay tessellation; see the Value section for details
Value

The Delaunay tessellation.

¢ If the dimension is 2 and constraints=NULL, the returned value is a list with three fields:

faces, edges and area. The faces field contains an integer matrix with three columns; each
row represents a triangle whose each vertex is given by the index (row number) of this point in
the points matrix. The edges field also contains an integer matrix with three columns. The
two first integers of a row are the indices of the two points which form the edge. The third
column, named border, only contains some zeros and some ones; a border (exterior) edge is
labelled by a 1. The area field contains only a number: the area of the triangulated region
(that is, the area of the convex hull of the points).

If the dimension is 2 and constraints is not NULL, the returned value is a list with four
fields: faces, edges, constraints, and area. The faces field contains an integer matrix
with three columns; each row represents a triangle whose each vertex is given by the index
(row number) of this point in the points matrix. The edges field is a dataframe with four
columns. The first two columns provide the edges of the triangulation; they are given by row,
the two integers of a row are the indices of the two points which form the edge. Each integer
of the third column is the index of the face the corresponding edge belongs to. The fourth
column, named border, only contains some zeros and some ones; a border edge is labelled by
a 1. The constraints field is an integer matrix with two columns, it represents the constraint
edges. Finally, the area field contains only a number: the area of the triangulated region.

delaunay

If the dimension is 3, the returned value is a list with four fields: cells, facets, edges, and
volume. The cells field represents the tetrahedra which form the tessellation. The facets
field represents the faces of these tetrahedra, some triangles. The edges field represents the
edges of these triangles. The volume field provides only one number, the volume of the tessel-
lation, in other words the volume of the convex hull of the given points. If quick3d=TRUE, then
cells, facets and edges are integer matrices with four, three, and two columns respectively;
each integer is a vertex index. If quick3d=FALSE, the cells field is a list of lists. Each sublist
is composed of three fields: cell provides the indices of the four vertices of the correspond-
ing tetrahedron, faces provides the indices of the four faces of the tetrahedron, that is to say
the row number of the facets field which represents this face, and finally there is a volume
field which provides the volume of the tetrahedron. The facets field is an integer matrix with
four columns. The three first integers of a row are the indices of the points which form the
corresponding facet. The fourth column, named onhull is composed of zeros and ones only,
and a 1 means that the corresponding facet lies on the convex hull of the points. The edges
field contains an integer matrix with three columns. Each row represents an edge, given by
the two indices of the points which form this edge, and the third integer, in the column named
onhull is a @/1 indicator of whether the edge lies on the convex hull. Finally the volume field
provides only one number, the volume of the tessellation (i.e. the volume of the convex hull
of the points).

If elevation=TRUE, the returned value is a list with five fields: mesh, edges, faceVolumes,
volume and area. The mesh field is an object of class mesh3d, ready for plotting with the rgl
package. The edges field provides the indices of the edges, given as an integer matrix with
two columns. The faceVolumes field is a numeric vector, it provides the volumes under the
faces that can be found in the mesh field. The volume field provides the sum of these volumes,
that is to say the total volume under the triangulated surface. Finally, the area field provides
the sum of the areas of all triangles, thereby approximating the area of the triangulated surface.

Examples
library(delaunay)
elevated Delaunay triangulation ##i##
f <- function(x, y){
2 % exp(-(x*2 + y*2)) # integrate to 2pi
3
x <- y <- seq(-4, 4, length.out = 50)
grd <- transform(expand.grid(x = x, y =y), z = f(x, y))
del <- delaunay(as.matrix(grd), elevation = TRUE)
‘del‘ is a list; its first component is a mesh representing the surface:
mesh <- del[["mesh"]]
library(rgl)
open3d(windowRect = c(50, 50, 562, 562))
shade3d(mesh, color = "limegreen")
wire3d(mesh)
in “del® you can also found the volume under the surface, which should
approximate the integral of the function:

dell

["volume"]]

4 mesh2d

mesh2d Convert a 2D Delaunay triangulation to a 'rgl’ mesh

Description

Makes a ’rgl” mesh (mesh3d object) from a 2D Delaunay triangulation, unconstrained or con-
strained.

Usage

mesh2d(triangulation)

Arguments

triangulation an output of delaunay executed with 2D points

Value

A list with three fields; mesh, a mesh3d object, borderEdges, a numeric matrix that can be used
with segments3d to plot the border edges, and constraintEdges, a numeric matrix that can be
used with segments3d to plot the constraint edges which are not border edges.

See Also

plotDelaunay2D

Examples

library(delaunay)
outer and inner hexagons #i###
nsides <- 6L
angles <- seq(@, 2*pi, length.out = nsides+1L)[-1L]
outer_points <- cbind(cos(angles), sin(angles))
inner_points <- outer_points / 2
points <- rbind(outer_points, inner_points)
constraint edges
indices <- 1L:nsides
edges <- cbind(
indices, c(indices[-1L], indices[1L])
)
edges <- rbind(edges, edges + nsides)
constrained Delaunay triangulation
del <- delaunay(points, constraints = edges)
mesh
m2d <- mesh2d(del)
mesh <- m2d[["mesh"]]
plot all edges with ‘wire3d®
library(rgl)
open3d(windowRect = c(100, 100, 612, 612))

plotDelaunay2D 5

shade3d(mesh, color = "red”, specular = "orangered”)
wire3d(mesh, color = "black”, lwd = 3, specular = "black")
plot only the border edges

open3d(windowRect = c(100, 100, 612, 612))

shade3d(mesh, color = "darkred", specular = "firebrick")
segments3d(m2d[["borderEdges”1], lwd = 3)

plotDelaunay2D Plot 2D Delaunay triangulation

Description

Plot a constrained or unconstrained 2D Delaunay triangulation.

Usage

plotDelaunay2D(
triangulation,
col_edges = "black”,
col_borders = "red”,
col_constraints = "green”,
fillcolor = "distinct”,
hue = "random”,
luminosity = "light",
lty_edges = par("lty"),
lwd_edges = par("lwd"),
lty_borders = par("1ty"),
lwd_borders = par(”1lwd"),
lty_constraints = par("lty"),
lwd_constraints = par("lwd"),

Arguments

triangulation an output of delaunay without constraints (constraints=NULL) or with con-
straints

col_edges the color of the edges of the triangles which are not border edges nor constraint
edges; NULL for no color

col_borders the color of the border edges; note that the border edges can contain the con-
straint edges for a constrained Delaunay tessellation; NULL for no color

col_constraints
for a constrained Delaunay tessellation, the color of the constraint edges which
are not border edges; NULL for no color

fillcolor controls the filling colors of the triangles, either NULL for no color, a single color,
"random” to get multiple colors with randomColor, or "distinct” get multiple
colors with distinctColorPalette

6 plotDelaunay2D

hue, luminosity
if color = "random”, these arguments are passed to randomColor

1lty_edges, lwd_edges
graphical parameters for the edges which are not border edges nor constraint
edges

1ty_borders, 1lwd_borders
graphical parameters for the border edges

lty_constraints, lwd_constraints
in the case of a constrained Delaunay triangulation, graphical parameters for the
constraint edges which are not border edges

n.n

arguments passed to points for the vertices, such as type="n" or asp=1

Value

No value, just renders a 2D plot.

See Also

mesh2d for an interactive plot

Examples

library(delaunay)
random points in a square
square <- rbind(
c(-1, 1, c(1, 1), cC1, -1), c(-1, -1
)
library(uniformly)
set.seed(314)
ptsinsquare <- runif_in_cube(10L, d = 2L)
pts <- rbind(square, ptsinsquare)
d <- delaunay(pts)
opar <- par(mar = c(@, 0, 9, 0))

plotDelaunay2D(
d, type = "n", xlab = NA, ylab = NA, axes = FALSE, asp = 1,
fillcolor = "random”, luminosity = "dark"”, lwd_borders = 3
)
par (opar)

a constrained Delaunay triangulation: outer and inner hexagons
nsides <- 6L
angles <- seq(@, 2xpi, length.out = nsides+1L)[-1L]
outer_points <- cbind(cos(angles), sin(angles))
inner_points <- outer_points / 2
points <- rbind(outer_points, inner_points)
constraint edges
indices <- 1L:nsides
edges <- cbind(
indices, c(indices[-1L], indices[1L])
)

edges <- rbind(edges, edges + nsides)

plotDelaunay3D

constrained Delaunay triangulation
d <- delaunay(points, constraints = edges)
opar <- par(mar = c(@, 0, 9, 0))

plotDelaunay2D(
d, type = "p", pch = 19, xlab = NA, ylab = NA, axes = FALSE, asp = 1,
fillcolor = "orange"”, lwd_borders = 3

)

par(opar)

another constrained Delaunay tesselation: a face #i##
V <- as.matrix(read.table(
system.file("extdata”, "face_vertices.txt"”, package = "delaunay")

N e, 30)]

E <- as.matrix(read.table(
system.file("extdata”, "face_edges.txt"”, package = "delaunay")

NI, e2h, 30)]

d <- delaunay(points = V, constraints = E)

opar <- par(mar =

c(o, o, 0, 9))

plotDelaunay2D(
d, type = "n", xlab = NA, ylab = NA, axes = FALSE, asp = 1,
fillcolor = "salmon", col_borders = "black”,
lwd_borders = 3, lwd_constraints = 2, lty_edges = "dashed"

)

par (opar)

plotDelaunay3D Plot 3D Delaunay tessellation
Description

Plot a 3D Delaunay tessellation with rgl.

Usage
plotDelaunay3D(
tessellation,
color = "distinct"”,
hue = "random”,
luminosity = "light",
alpha = 0.3,
)
Arguments
tessellation the output of delaunay with 3D points
color controls the filling colors of the tetrahedra, either FALSE for no color, "random”

to use randomColor, or "distinct” to use distinctColorPalette

8 plotDelaunay3D

hue, luminosity
if color="random", these arguments are passed to randomColor

alpha opacity, number between 0 and 1

arguments passed to material3d

Value

No value, just renders a 3D plot.

Examples

library(delaunay)

pts <- rbind(
c(-5, -5, 16),
c(-5, 8, 3),
c(4, -1, 3),
c(4, -5, 7),
c(4, -1, -10),
c(4, -5, -10),
c(-5, 8, -10),
c(-5, -5, -10)

)

tess <- delaunay(pts)

library(rgl)

open3d(windowRect = c(50, 50, 562, 562))

plotDelaunay3D(tess)

Index

delaunay, 2,4, 5,7
distinctColorPalette, 5,7

material3d, 8
mesh2d, 4, 6
mesh3d, 4

plotDelaunay2D, 4, 5
plotDelaunay3D, 7
points, 6

randomColor, 5-8

segments3d, 4

	delaunay
	mesh2d
	plotDelaunay2D
	plotDelaunay3D
	Index

