Package ‘dequer’

March 14, 2022

Type Package
Title Stacks, Queues, and 'Deques' for R
Version 2.0-2

Description Queues, stacks, and 'deques' are list-like, abstract data types.
These are meant to be very cheap to ~“grow", or insert new objects into.
A typical use case involves storing data in a list in a streaming fashion,
when you do not necessarily know how may elements need to be stored.
Unlike R's lists, the new data structures provided here are not
necessarily stored contiguously, making insertions and deletions at the
front/end of the structure much faster. The underlying implementation
is new and uses a head/tail doubly linked list; thus, we do not rely on R's
environments or hashing. To avoid unnecessary data copying, most operations
on these data structures are performed via side-effects.

License BSD 2-clause License + file LICENSE
Depends R (>=3.1.0)

NeedsCompilation yes

ByteCompile yes

Author Drew Schmidt [aut, cre]

URL https://github.com/wrathematics/dequer

BugReports https://github.com/wrathematics/dequer/issues
Maintainer Drew Schmidt <wrathematics@gmail.com>
RoxygenNote 7.1.2

Repository CRAN

Date/Publication 2022-03-13 23:20:02 UTC

R topics documented:

dequer-package e
as.deque L L e e
AS.QUEUL .+ v v v e i e e e e e e e e e e e e e e

https://github.com/wrathematics/dequer
https://github.com/wrathematics/dequer/issues

2 as.deque
as.stack . . oL 4
combine e e 5
deque e e 6
peeking 6
POPPING . . o o o o e e e e e e 7
PHNEr e e e e e 9
pushing 9
QUEUE .+ v vttt e e e e e e e e e e e e e e e e e e 11
TEVVET o v v ittt e e e e e e e e e e e e e e e e e e e 11
7] o 12
StaCK e e 13

Index 14

dequer-package dequer

Description

Queues, stacks, and ’deques’ are list-like, abstract data types. These are meant to be very cheap to
"grow", or insert new objects into. A typical use case involves storing data in a list in a streaming
fashion, when you do not necessarily know how may elements need to be stored. Unlike R’s lists,
the new data structures provided here are not necessarily stored contiguously, making insertions and
deletions at the front/end of the structure much faster. The underlying implementation is new and
uses a head/tail doubly linked list; thus, we do not rely on R’s environments or hashing. To avoid
unnecessary data copying, most operations on these data structures are performed via side-effects.

as.deque Convert to Deque

Description

Convert to Deque

Usage

as

.deque(x)

S3 method for class 'list'

as

.deque(x)

Default S3 method:

as

.deque(x)

S3 method for class 'queue'

as

.deque(x)

as.queue 3

S3 method for class 'stack'
as.deque(x)

Arguments
X An object either to be converted to the first element of a deque (default), or the
elements of a list (or columns of a dataframe) to be set as elements of a deque.
Value

A queue, stack, or deque.

Examples

Not run:

library(dequer)

d <- as.deque(lapply(1:5, identity))
d

End(Not run)

as.queue Convert to Queue

Description

Convert to Queue

Usage

as.queue(x)

S3 method for class 'list'
as.queue(x)

Default S3 method:
as.queue(x)

S3 method for class 'deque'
as.queue(x)

S3 method for class 'stack'
as.queue(x)

4 as.stack

Arguments
X An object either to be converted to the first element of a queue (default), or the
elements of a list (or columns of a dataframe) to be set as elements of a queue.
Value

A queue object.

Examples

Not run:

library(dequer)

g <- as.queue(lapply(1:5, identity))
q

End(Not run)

as.stack Convert to Stack

Description

Convert to Stack
Usage
as.stack(x)

S3 method for class 'list'
as.stack(x)

Default S3 method:
as.stack(x)

S3 method for class 'deque'
as.stack(x)

S3 method for class 'queue'
as.stack(x)

Arguments
X An object either to be converted to the first element of a stack (default), or the
elements of a list (or columns of a dataframe) to be set as elements of a stack.
Value

A stack object.

combine

Examples

Not run:

library(dequer)

s <- as.stack(lapply(1:5, identity))
s

End(Not run)

combine combine

Description

Combine two objects (queue/stack/deque) into one of the same type.

Usage

combine(x1, x2)

Arguments

x1, x2 Two different deques, stacks, or queues. Arguments must be of the same type.

Details

Operates via side-effects; see examples for clarification on usage.

Value

Returns NULL. After combining, object x2 is a 0-length (empty) object.

Examples

Not run:

library(dequer)

s1 <- stack()

for (i in 1:5) push(s1, i)
s2 <- stack()

for (i in 10:8) push(s2, i)

combine(s1, s2)
s1 # now holds all 8 elements

s2 # holds @ elements

End(Not run)

6 peeking

deque deque

Description

A constructor for a deque.

Usage
deque()

Details

A deque is a double-ended queue. Insertion and deletion of objects can happen at either end.

The implementation is a head/tail doubly linked list.

Examples

Not run:
library(dequer)
d <- deque()

d

End(Not run)

peeking peek/peekback

Description
These methods are side-effect free. Note that unlike R’s head() and tail(), the sub-objects are
not actually created. They are merely printed to the terminal.

Usage
peek(x, n = 1L)

S3 method for class 'deque'
peek(x, n = 1L)

S3 method for class 'queue'
peek(x, n = 1L)

S3 method for class 'stack'
peek(x, n = 1L)

popping 7

peekback(x, n = 1L)

S3 method for class 'deque'
peekback(x, n = 1L)

S3 method for class 'queue'
peekback(x, n = 1L)

S3 method for class 'stack'
peekback(x, n = 1L)

Arguments

X A queue, stack, or deque.

n The number of items to view.
Details

View items from the front (peek ()) or back (peekback()) of a queue, stack, or deque.

Value

Returns NULL; sub-elements are only printed.

Examples

Not run:
library(dequer)

s <- stack()

for (i in 1:3) push(s, i)

peek(s)
peekback(s)
peek(s, length(s))

End(Not run)

popping pop/popback

Description

Remove items from the front of a stack, queue, or deque for pop(); or, remove items from the back
of a deque for popback().

8 popping

Usage
pop (x)

S3 method for class 'deque'
pop (x)

S3 method for class 'queue'
pop (x)

S3 method for class 'stack'
pop(x)

popback (x)

S3 method for class 'deque'
popback (x)
Arguments

X A queue, stack, or deque.

Details

Operates via side-effects; see examples for clarification on usage.

Value

Returns NULL; deletion operates via side-effects.

Examples

Not run:
library(dequer)

A simple queue example
g <- queue()
for (i in 1:3) pushback(q, i)

pop(a)
str(q)

#i## A simple stack example
s <- stack()

for (i in 1:3) push(s, i)
pop(s)

str(s)

End(Not run)

printer 9

printer Printing Deques, Stacks, and Queues

Description

Printing Deques, Stacks, and Queues

Usage

S3 method for class 'deque'
print(x, ..., output = "summary")

S3 method for class 'stack'
print(x, ..., output = "summary")

S3 method for class 'queue'

print(x, ..., output = "summary")
Arguments
X A queue, stack, or deque.
Unused.
output A character string; determines what exactly is printed. Options are "summary",

"truncated", and "full".

Details

If output=="summary"”, then just a simple representation is printed.
If output=="truncated”, then the first 5 items will be printed.

If output=="full"” then the full data structure will be printed.

pushing push/pushback

Description

Add items to the front of a stack or deque via pop(). Add items to the back of a queue or deque via
popback().

10 pushing
Usage
push(x, data)

S3 method for class 'deque'
push(x, data)

S3 method for class 'stack'
push(x, data)

pushback(x, data)

S3 method for class 'deque'
pushback(x, data)

S3 method for class 'queue'
pushback(x, data)

Arguments

X A queue, stack, or deque.

data R object to insert at the front of the deque/stack.
Details

Operates via side-effects; see examples for clarification on usage.

Value

Returns NULL; insertion operates via side-effects.

Examples

Not run:
library(dequer)

A simple queue example

g <- queue()

for (i in 1:3) pushback(q, i)
str(q)

#i## A simple stack example

s <- stack()

for (i in 1:3) push(s, i)

str(s)

End(Not run)

queue 11

queue queue

Description

A queue is a "first in, first out" abstract data type. Like a checkout queue (line) at a store, the first
item in the queue is the first one out. New items are added to the end of the queue via pushback().
Items are removed from the queue at the front via pop().

The implementation is a head/tail doubly linked list.

Usage

queue()

Details

A constructor for a queue.

Examples

Not run:
library(dequer)
g <- queue()

q

End(Not run)

revver rey

Description

Iev

Usage

S3 method for class 'deque'
rev(x)

S3 method for class 'stack'
rev(x)
S3 method for class 'queue'
rev(x)

12 sep

Arguments

X A queue, stack, or deque.

Details

Operates via side-effects; see examples for clarification on usage.

Value

Returns NULL; insertion operates via side-effects.

Examples

Not run:
library(dequer)

s <- stack()

for (i in 1:5) push(d, i)

str(s)
rev(s)

str(s)

End(Not run)

sep sep

Description

Spliot one object (queue/stack/deque) into two of the same type. NOTE: this function operates via
side-effects AND has a return.

Usage
sep(x, k)

Arguments

X A deque.
k Index to split the deque at.

Details
Operates via side-effects ALTHOUGH THERE IS A NON-NULL RETURN; see examples for
clarification on usage.

The split occurs after index k. So if the input x has, say, elements 1 to n, then after running
sep(x,k), x will have elements 1 to k, and the return will have values k+1, k+2, ..., n.

stack 13

Value

A deque, stack, or queue (depending on the input)

Examples

Not run:
library(dequer)

s <- stack()

for (i in 1:5) push(s, i)

Split s into 2 stacks holding: (s) the first 3, and (s_last_2) last 2 elements
s_last_2 <- sep(s, 3)

str(s)
str(s_last_5)

End(Not run)

stack stack

Description

A stack is a "last in, first out" (LIFO) abstract data type. New items are added to the front of the
stack via push (). Items are removed from the stack at the front via pop ().

The implementation is a head/tail doubly linked list.

Usage
stack()

Details

A constructor for a stack.

Examples

Not run:
library(dequer)
s <- stack()

s

End(Not run)

Index

x Package
dequer-package, 2

as.deque, 2
as.queue, 3
as.stack, 4

combine, 5

deque, 6
dequer-package, 2

peek (peeking), 6
peekback (peeking), 6
peeking, 6

pop (popping), 7

popback (popping), 7
popping, 7

print.deque (printer), 9
print.queue (printer), 9
print.stack (printer), 9
printer, 9

push (pushing), 9
pushback (pushing), 9
pushing, 9

queue, 11

rev.deque (revver), 11
rev.queue (revver), 11
rev.stack (revver), 11
revver, 11

sep, 12
stack, 13

14

	dequer-package
	as.deque
	as.queue
	as.stack
	combine
	deque
	peeking
	popping
	printer
	pushing
	queue
	revver
	sep
	stack
	Index

