Package ‘diversitree’

June 11, 2021
Version 0.9-16
Title Comparative 'Phylogenetic' Analyses of Diversification
Depends R (>=2.10), methods, ape

Imports deSolve (>= 1.7), graphics, grDevices, stats, subplex, Rcpp
(>=0.10.0)

Suggests numDeriv, minqa, lubridate, expm, caper, geiger
LinkingTo Rcpp

RcppModules diversitree

SystemRequirements fftw3 (>=3.1.2), gsl (>=1.15)

Description Contains a number of comparative 'phylogenetic' methods,
mostly focusing on analysing diversification and character
evolution. Contains implementations of 'BiSSE' (Binary State
'Speciation' and Extinction) and its unresolved tree extensions,
'MuSSE' (Multiple State 'Speciation' and Extinction), 'QuaSSE',
'GeoSSE', and 'BiSSE-ness' Other included methods include Markov
models of discrete and continuous trait evolution and constant rate
'speciation’ and extinction.

License GPL (>=2)

URL https://www.zoology.ubc.ca/prog/diversitree/
NeedsCompilation yes

Author Richard G. FitzJohn [aut, cre],
Emma Goldberg [aut],
Karen Magnuson-Ford [aut],
Roger Sidje [aut]

Maintainer Richard G. FitzJohn <rich.fitzjohn@gmail.com>
Repository CRAN
Date/Publication 2021-06-11 15:00:10 UTC

https://www.zoology.ubc.ca/prog/diversitree/

2

R topics documented:

R topics documented:

Index

diversitree-package L. e 3
ArGNAMES o . e e e e e e e e e e e e e e 3
ST+ e e e e e e e e e e e e e e 4
asr-biSSE e e e 5
aST-MKN . . . L o e e e e e e e e e e e e e 7
check e e 10
combine e e e e e e e e e 10
COMSIIAIN .+ . v v v v v o e 11
findmle e e e 13
history.from.sim 17
make.bd e e 18
make.bd.split 20
makebd.t e e 22
make.biSse e e e e e e e e e e 24
make.bisse.Split L e e 29
make.bisse.td L L e e e e 31
mMake.biSSEness oL e e e e e e e e e 35
makebm L. e e e 40
make.clade.tree L. e e e e 41
make.classe e e e e e 42
Make.@EOSSE e e e e e e e e e 45
make.geosse.Split L. e e 47
make.geoSSe.t e 49
make.mkn L. 52
MaKE.MUSSE o v o ot e e e e e e e e e e e e e e e e 55
make.musse.multitrait L. e e e e e e 58
make.musse.Split L e e e 63
make.musse.td L L L e e e 65
make.pglso e e 67
mMake.prior e 68
mMake.quasse e e 69
make.quasse.Split L. e e e 71
1003 0 T 73
plot.history e e e 77
profiles.plot 79
QUASSE-COMIMION. .+ . .« & v v e v vt e e e e e e e e e e e e e e e e e 80
set.defaults L e e 81
sim.characCter e e e e e e e 82
simulate L e e e e e e e 83
trait.plot Lo 86
ULlItieS e e e e e 88

diversitree-package 3

diversitree-package Comparative 'Phylogenetic’ Analyses of Diversification

Description

Contains a number of comparative “phylogenetic’ methods, mostly focusing on analysing diversi-
fication and character evolution. Contains implementations of 'BiSSE’ (Binary State *Speciation’
and Extinction) and its unresolved tree extensions, "MuSSE’ (Multiple State ’Speciation’ and Ex-
tinction), ’QuaSSE’, ’GeoSSE’, and *BiSSE-ness’ Other included methods include Markov models
of discrete and continuous trait evolution and constant rate ’speciation’ and extinction.

Author(s)

NA
Maintainer: NA

References

Diversitree contains methods described in the following papers (all of which aside from Maddison
et al. 2007 were originally published as a diversitree implementation).

* FitzJohn R.G., Maddison W.P.,, and Otto S.P. 2009. Estimating trait-dependent speciation
and extinction rates from incompletely resolved phylogenies. systematic biology 58:595-611.
Systematic Biology 58:595-611.

* FitzJohn R.G. 2010. Quantitative traits and diversification. Systematic Biology 59:619-633.

* Goldberg E.E., Lancaster L.T., Ree R.H. 2011. Phylogenetic inference of reciprocal effects
between geographic range evolution and diversification. Systematic Biology 60: 451-465.

* Maddison W.P., Midford P.E., and Otto S.P. 2007. Estimating a binary character’s effect on
speciation and extinction. Systematic Biology 56: 701-710.

* Magnuson-Ford K. and Otto S.P. 2012. Linking the investigations of character evolution and
species diversification. The American Naturalist 180: 225-245.

argnames Argument Names for Vector-Argument Functions

Description

Functions to get and set “argument names” for functions that take vectorised arguments. For ex-
ample, the likelihood function returned by make . bisse takes a vector of six these functions can be
used to get the canonical names for these six parameters, and also to set them to something more
memorable. These names are used by the constrain function to specify submodels.

4 asr

Usage

argnames(x, ...)

argnames(x) <- value

S3 method for class 'constrained'

argnames(x, ...)

S3 replacement method for class 'constrained'
argnames(x) <- value

Arguments
X A function taking a vector of parameters as its first argument.
value Vector of names to set the argument names to.
Ignored arguments to future methods.
Details

Methods exist for all models: bisse, geosse, bd, yule, mk2, and mkn. These are particulary useful
for mkn as the number of parameters for the Q matrix can be very large.

Author(s)
Richard G. FitzJohn

Examples

Same example likelihood function as for \link{make.bisse}:
pars <- c(0.1, 0.2, 0.03, 0.03, 0.01, 0.01)

set.seed(4)

phy <- tree.bisse(pars, max.t=30, x0=0)

f <- make.bisse(phy, phy$tip.state)

argnames(f) # Canonical argument names (set by default)

Names that might be more informative for a tall/short state

argnames(f) <- c("l.tall”, "l.short”, "m.tall”, "m.short”,
"g.tall.short”, "qg.short.tall")

argnames(f)

asr Ancestral State Reconstruction

Description

Perform ancestral state reconstruction. These functions are all generic and will dispatch on the class
of the given likelihood functions. Currently methods exist for all generics for Mk2, and marginal
ancestral state reconstructions are supported for BiSSE.

asr-bisse 5

Usage
asr.marginal(lik, pars, nodes=NULL, ...)
asr.joint(lik, pars, n=1, ...)
asr.stoch(lik, pars, n=1, ...)
make.asr.marginal (lik, ...)
make.asr.joint(lik, ...)
make.asr.stoch(lik, ...)
Arguments
lik A likelihood function.
pars A vector of parameters, suitable for 1ik.
nodes For asr.marginal only; an optional vector of nodes to return ancestral states
for (using ape’s index). By default, all nodes are returned.
n The number of samples to draw from the joint distribution, or number of stochas-
tic reconstructions to make.
Additional arguments passed through to future methods
Details

These three functions compute marginal, joint, and stochastic ancestral reconstructions. The make
versions return functions that can efficiently be used many times over.

Value

The return values of the functions are likely to change in the near future. Watch out!

Author(s)
Richard G. FitzJohn

See Also

asr.mkn and asr.bisse for methods specific to particular classes, with examples of use.

asr-bisse Ancestral State Reconstruction Under BiSSE

Description

Perform ancestral state reconstruction under BiSSE and other constant rate Markov models. Marginal
reconstructions are supported (c.f. asr). Documentation is still in an early stage, and mostly in
terms of examples.

6 asr-bisse

Usage
S3 method for class 'bisse'
make.asr.marginal (lik, ...)
S3 method for class 'musse'’
make.asr.marginal (lik, ...)
Arguments
lik A likelihood function, returned by make . mk2 or make . mkn.

Additional arguments passed through to future methods. Currently unused.

Author(s)
Richard G. FitzJohn

Examples

Start with a simple tree evolved under a BiSSE with all rates
asymmetric:

pars <- c¢(.1, .2, .03, .06, .01, .02)

set.seed(3)

phy <- trees(pars, "bisse”, max.taxa=50, max.t=Inf, x0=0)[[1]]

Here is the true history
h <- history.from.sim.discrete(phy, 0:1)
plot(h, phy, main="True history")

Not run:

BiSSE ancestral state reconstructions under the ML model
lik <- make.bisse(phy, phy$tip.state)

fit <- find.mle(lik, pars, method="subplex")

st <- asr.marginal(lik, coef(fit))

nodelabels(thermo=t(st), piecol=1:2, cex=.5)

Mk2 ancestral state reconstructions, ignoring the shifts in

diversification rates:

lik.m <- make.mk2(phy, phy$tip.state)

fit.m <- find.mle(lik.m, pars[5:6], method="subplex")

st.m <- asr.marginal(lik.m, coef(fit.m))

The Mk2 results have more uncertainty at the root, but both are
similar.

nodelabels(thermo=t(st.m), piecol=1:2, cex=.5, adj=-.5)

(This section will take 1@ or so minutes to run.)

Try integrating over parameter uncertainty and comparing the BiSSE

with Mk2 output:

prior <- make.prior.exponential(2)

samples <- mcmc(lik, coef(fit), 1000, w=1, prior=prior,
print.every=100)

st.b <- apply(samples[2:7], 1, function(x) asr.marginal(lik, x)[2,1)

st.b.avg <- rowMeans(st.b)

asr-mkn 7

samples.m <- mcmc(lik.m, coef(fit.m), 1000, w=1, prior=prior,
print.every=100)

st.m <- apply(samples.m[2:3], 1, function(x) asr.marginal(lik.m, x)[2,])

st.m.avg <- rowMeans(st.m)

These end up being more striking in their similarity than their

differences, except for the root node, where BiSSE remains more sure

that is in state @ (there is about 0.05 red there).

plot(h, phy, main="Marginal ASR, BiSSE (left), Mk2 (right)",
show.node.state=FALSE)

nodelabels(thermo=1-st.b.avg, piecol=1:2, cex=.5)

nodelabels(thermo=1-st.m.avg, piecol=1:2, cex=.5, adj=-.5)

Equivalency of Mk2 and BiSSE where diversification is state

independent. For any values of lambda/mu (here .1 and .03) where
these do not vary across character states, these two methods will
give essentially identical marginal ancestral state reconstructions.
st.id <- asr.marginal(lik, c(.1, .1, .03, .03, coef(fit.m)))

st.id.m <- asr.marginal(lik.m, coef(fit.m))

Reconstructions are identical to a relative tolerance of le-7

(0.0000001), which is similar to the expected tolerance of the BiSSE
calculations.

all.equal(st.id, st.id.m, tolerance=1e-7)

Equivalency of BiSSE and MuSSE reconstructions for two states:
lik.b <- make.bisse(phy, phy$tip.state)
lik.m <- make.musse(phy, phy$tip.state + 1, 2)

st.b <- asr.marginal(lik.b, coef(fit))
st.m <- asr.marginal(lik.m, coef(fit))

all.equal(st.b, st.m)

End(Not run)

asr-mkn Ancestral State Reconstruction Under Mk2/Mkn

Description

Perform ancestral state reconstruction under Mk2 and other constant rate Markov models. Marginal,
joint, and stochastic reconstructions are supported. Documentation is still in an early stage, and
mostly in terms of examples.

Usage

S3 method for class 'mkn'
make.asr.marginal (lik, ...)

8 asr-mkn

S3 method for class 'mkn'

make.asr.joint(lik, ...)
S3 method for class 'mkn'
make.asr.stoch(lik, slim=FALSE, ...)
Arguments
lik A likelihood function, returned by make . mk2 or make . mkn.
slim Should the history object be slimmed down?

Additional arguments; currently ignored.

Details

Output will differ slightly when mk2 and mkn models are used as 1ik, as mk2 uses states 0/1, while
2-state mkn uses 1/2.

This is all quite slow. Faster versions are coming eventually.

These functions all return functions that generate different types of ancestral reconstruction.

Author(s)
Richard G. FitzJohn

Examples

Start with a simple tree evolved under a constant rates birth-death
model with asymetric character evolution

pars <- c(.1, .1, .03, .03, .03, .06)

set.seed(1)

phy <- trees(pars, "bisse"”, max.taxa=50, max.t=Inf, x0=0)[[1]1]

Here is the true history. The root node appears to be state 1 (red)

at the root, despite specifying a root of state @ (x0=0, in statement
above). This is because the tree started with a single lineage, but

had changed state by the time the first speciation event happened.

h <- history.from.sim.discrete(phy, 0:1)

plot(h, phy, main="True history")

All of the methods need a likelihood function; build a mk2 function:
lik <- make.mk2(phy, phy$tip.state)

Using the true parameters, compute the marginal ancestral state
reconstructions:
st.m <- asr.marginal(lik, pars[5:6])

There is still not a good stand-alone plotting command for nodes.
For now, use ape's nodelabels().

plot(h, phy, main="Marginal ASR", show.node.state=FALSE)
nodelabels(thermo=t(st.m), piecol=1:2, cex=.5)

Again, with the true parameters, a sample from the joint

asr-mkn

distribution:
st.j <- asr.joint(lik, pars[5:6])

Plotting this sample against the true values.
plot(h, phy, main="Joint ASR", show.node.state=FALSE)
nodelabels(pch=19, col=st.j + 1)

This is just one sample, and is not very accurate in this case! Make
1,000 such samples and average them:

st.j2 <- asr.joint(lik, pars[5:6], 1000)

st.j2.mean <- colMeans(st.j2)

plot(h, phy, main="Joint ASR (averaged)"”", show.node.state=FALSE)
nodelabels(thermo=1-st.j2.mean, piecol=1:2, cex=.5)

Check the estimates against one another:
plot(st.m[2,], st.j2.mean, xlab="Marginal”, ylab="Joint"”, las=1)
abline(o, 1)

Finally, the stochastic character mapping. This uses samples from
the joint distribution at its core.

st.s <- asr.stoch(lik, pars[5:6])

plot(st.s, phy)

Again, multiple samples can be done at once. There is a function for
summarising histories, but it is still in the works.

Repeating the above with a two-state mkn model:
1ik2 <- make.mkn(phy, phy$tip.state + 1, 2, FALSE)

Everything works:

st2.m <- asr.marginal(lik2, pars[5:61)
st2.j <- asr.joint(lik2, pars[5:6], 100)
st2.s <- asr.stoch(lik2, pars[5:6])

Marginal likelihoods agree:

all.equal(st.m, st2.m)

Joint reconstructions are stochastic, so just check with a
regression:

summary (lm(colMeans(st2.j) - 1 ~ colMeans(st.j2) - 1))

Integrate parameter uncertainty, and see how far down the tree there
is any real information on parameter states for this tree (this takes
about 6s)

Not run:

set.seed(1)

prior <- make.prior.exponential(.5)

samples <- mcmc(lik, pars[5:6], 1000, w=1, prior=prior, print.every=100)
st.m.avg <- rowMeans(apply(samples[2:3], 1, asr.joint, lik=1lik))

plot(h, phy, main="MCMC Averaged ASR", show.node.state=FALSE)
nodelabels(thermo=1 - st.m.avg, piecol=1:2, cex=.5)

10 combine

End(Not run)

check Check Capabilities of the Diversitree Install

Description
These check to see if FFTW support was included in diversitree. They rarely need to be called
directly.

Usage
check. fftC(error=TRUE)

Arguments

error Logical: causes an error if FFTW is not available if TRUE

Author(s)
Richard G. FitzJohn

combine Combine Several Likelihood Functions Multiplicatively

Description

Combine several likelihood functions, so that the new functions gives the product of all likelihoods
(the sum of the log likelihoods). This assumes that all likelihoods are independent from one another!

This function is little tested. Use at your own risk!

Usage
combine(liks)
Arguments
liks A list of likelihood functions. All must be of the same type, with the same
argnames, and not constrained.
Author(s)

Richard G. FitzJohn

constrain

11

constrain

Constrain Parameters of a Model

Description

Constrain a model to make submodels with fewer parameters. If f is a function that takes a vector
x as its first argument, this function returns a new function that takes a shorter vector x with some
elements constrained in some way; parameters can be fixed to particular values, constrained to be
the same as other parameters, or arbitrary expressions of free parameters.

Usage

constrain(f,

., formulae=NULL, names=argnames(f), extra=NULL)

constrain.i(f, p, i.free)

Arguments

.F

formulae

names

extra

i.free

Details

A function to constrain.

Formulae indicating how the function should be constrained (see Details and
Examples).

Optional list of constraints, possibly in addition to those in . . .

Optional Character vector of names, the same length as the number of parame-
ters in x. Use this only if argnames does not return a vector for your function.
Generally this should not be used.

Optional vector of additional names that might appear on the RHS of constraints
but do not represent names in the function’s argnames. This can be used to set
up dummy variables (example coming later).

A parameter vector (for constrain. i) indicating values for all parameters.

Indices of the parameters that are not constrained. Other indices will get the
value in p. The element of p[i.free] will never be used and can be zero, NA,
or any other value.

The relationships are specified in the form target ~ rel, where target is the name of a vector
to be constrained, and rel is some relationship. For example lambda®@ ~ lambdal would have the
effect of making the parameters 1ambda®@ and 1ambda1l take the same value.

The rel term can be a constant (e.g., target ~ @), another parameter (as above) or some expression
of the parameters (e.g., Lambda@ ~ 2 * lambdal or lambda®@ ~ lambdal -mut).

Terms that appear on the right hand side of an expression may not be constrained in another expres-
sion, and no term may be constrained twice.

12 constrain

Value

This function returns a constrained function that can be passed through to find.mle and mcmc.
It will behave like any other function. However, it has a modified class attribute so that some
methods will dispatch differently (argnames, for example). All arguments in addition to x will be
passed through to the original function f.

For help in designing constrained models, the returned function has an additional argument pars.only,
when this is TRUE the function will return a named vector of arguments rather than evaluate the func-
tion (see Examples).

Warning

Only a few checks are done to ensure that the resulting function makes any sense; it is possible that
I have missed some cases. There is currently no way of modifying constrained functions to remove
the constraints. These weaknesses will be addressed in a future version.

Author(s)
Richard G. FitzJohn

Examples

Due to a change in sample() behaviour in newer R it is necessary to
use an older algorithm to replicate the previous examples
if (getRversion() >= "3.6.0") {
RNGkind(sample.kind = "Rounding")
3

Same example likelihood function as for \link{find.mle} - BiSSE on a
tree with 203 species, generated with an asymmetry in the speciation
rates.

pars <- c(0.1, 0.2, 0.03, 0.03, 0.01, 0.01)

set.seed(2)

phy <- tree.bisse(pars, max.t=60, x0=0)

lik <- make.bisse(phy, phy$tip.state)

argnames(lik) # Canonical argument names

Specify equal speciation rates
lik.2 <- constrain(lik, lambda® ~ lambdal)
argnames(lik.2) # Note lambda® now missing

On constrained functions, use the "pars.only” argument to see what
the full argument list would be:
lik.2(c(.1, pars[3:6]), pars.only=TRUE)

Check this works:
lik(c(.1, .1, pars[3:6])) == 1ik.2(c(.1, pars[3:6]))

For optimisation of these functions, see \link{find.mle}, which
includes an example.

find.mle 13

More complicated; constrain lambda®@ to half of lambdal, constrain mu@
to be the same mul, and set g@1 equal to zero.

lik.3 <- constrain(lik, lambda® ~ lambdal / 2, mu@ ~ mul, g@1 ~ @)
argnames(lik.3) # lambdal, mul, ql1@

lik(c(.1, .2, .03, .03, @, .01)) == lik.3(c(.2, .03, .01))

Alternatively, coefficients can be specified using a list of
constraints:

cons <- list(lambdal ~ lambda@, mul ~ mu@, q1@ ~ g@1)
constrain(lik, formulae=cons)

Using the "extra” argument allows recasting things to dummy

parameters. Here both lambda@ and lambdal are mapped to the

parameter "lambda":

lik.4 <- constrain(lik, lambda@ ~ lambda, lambdal ~ lambda, extra="lambda")
argnames(lik.4)

constrain.i can be useful for setting a number of values at once.

Suppose we wanted to look at the shape of the likelihood surface with
respect to one parameter around the ML point. For this tree, the ML
point is approximately:

p.ml <- c(0.09934, 0.19606, 0.02382, 0.03208, 0.01005, 0.00982)

Leaving just lambdal (which is parameter number 2) free:
1lik.11 <- constrain.i(lik, p.ml, 2)

The function now reports that five of the parameters are constrained,
with one free (lambdal)
lik.11

Likewise:
argnames(lik.11)

Looking in the neighbourhood of the ML point, the likelihood surface
is approximately quadratic:

pp <- seq(p.ml[2] - .02, p.ml[2] + .02, length.out=15)

yy <- sapply(pp, lik.11)

plot(yy ~ pp, type="b", xlab="lambda 1", ylab="Log likelihood")
abline(v=p.ml[2], col="red", lty=2)

pars.only works as above, returning the full parameter vector
lik.11(p.ml[2], pars.only=TRUE)
identical(p.ml, lik.11(p.ml[2], pars.only=TRUE))

find.mle Maximimum Likelihood Inference

Description

Find the maximum likelihood point of a model by nonlinear optimisation. find.mle is generic, and
allows different default behaviour for different likelihood functions.

14 find.mle

Usage
find.mle(func, x.init, method, ...)
S3 method for class 'fit.mle'
coef(object, full=FALSE, extra=FALSE, ...)
S3 method for class 'fit.mle'
logLik(object, ...)
S3 method for class 'fit.mle'
anova(object, ..., sequential=FALSE)
Arguments
func A likelihood function. This is assumed to return the log likelihood (see Details).
The function must take a vector of parameters as the first argument.
X.init Initial starting point for the optimisation.
method Method to use for optimisation. May be one of "optim", "subplex"”, "nlminb",
"nlm" (partial unambigious string is allowed).
For find.mle, additional arguments passed through to the methods, optimisa-
tion routines, or to the likelihood function func - see Details. For anova, this is
one or more models to compare against the model object (either submodels or
supermodels or the test is meaningless).
object A fitted model, returned by find.mle.
full When returning the coefficients for a constrained model, should be coefficients
for the underlying constrained model be returned?
extra When returning the coefficients for a constrained model, should dummy “extra”
parameters be returned as well?
sequential Should anova treat the models as a series of increasing complexity? Currently
this is a little overzealous in checking and will refuse to work if the likelihood
values are not strictly increasing.
Details

find.mle starts a search for the maximum likelihood (ML) parameters from a starting point x.init.
x.init should be the correct length for func, so that func(x.init) returns a valid likelihood.
However, if func is a constrained function (via constrain) and x. init is the correct length for the
unconstrained function then an attempt will be made to guess a valid starting point. This will often
do poorly and a warning will be given.

Different methods will be dispatched for different types of likelihood functions. Currently all mod-
els in diversitree are supported (bisse, geosse, mk2, mkn, bd, and yule). With the exception
of the Yule pure-birth process, these methods just specify different default arguments for the un-
derlying optimisation routines (the Yule model has an analytical solution, and no optimisation step
is required). Generally, it will not be necessary to specify the method argument to find.mle as a
sensible method is chosen during dispatch.

The ... argument may contain additional arguments for the function func. This includes things
like condition.surv for conditioning on survival in BiSSE, birth-death, and Yule models. Specify
this as

find.mle 15

find.mle(lik, x.init, condition.surv=TRUE)

(see the Examples).
Different method arguments take different arguments passed through . . . to control their behaviour:

method="optim”: Uses R’s optim function for the optimisation. This allows access to a vari-
ety of general purpose optimisation algorithms. The method within optim can be chosen via the
argument optim.method, which is set to "L-BFGS-B" by default (box constrained quasi-Newton
optimisation). This should be suitable for most uses. See the method argument of optim for other
possibilities. If "L-BFGS-B" is used, then upper and lower bounds may be specified by the argu-
ments lower and upper. The argument control can be used to specify other control parameters
for the algorithms - see optim for details. Most of the optim algorithms require finite values be
returned at every evaluated point. This is often not possible (extreme values of parameters or par-
ticular combinations may have zero likelihood and therefore -Inf log-likelihood). To get around
this, the argument fail.value can be used to specify a fallback value. By default this is set to
func(x.init) -1000, which should work reasonably well for most cases.

method="subplex": Uses the "subplex" algorithm (a variant of the downhill simplex/Nelder-Mead
algorithm that uses Nelder-Mead on a sequence of subspaces). This algorithm generally requires
more evaluations than optim-based optimisation, but does not require approximation of derivatives
and seems to find the global optimum more reliably (though often less precisely). Additional ar-
guments are control to control aspects of the search (see subplex for details). The argument
fail.value can be used as in method="optim", but by default -Inf will be used on failure to
evaluate, which is generally appropriate.

method="nlminb": Uses the function nlminb for optimisation, so that optimising a Mk2/Mkn like-
lihood function behaves as similarly as possible to ape’s ace function. As for method="optim",
lower and upper bounds on parameters may be specified via lower and upper. fail.value can
be used to control behaviour on evaluation failure, but like method="subplex”, -Inf is used
which should work in most cases. Additional control parameters may be passed via control -

see link{nlminb} for details. This function is not generally recommended for use.

method="nlm": Uses the function nlm for optimisation, so that optimising a birth-death likelihood
function behaves as similarly as possible to ape’s birthdeath function. Takes the same additional
arguments as method="nlminb" (except that fail.value behaves as for method="optim"). Like
method="nlminb", this is not recommended for general use.

code and logl ik methods exist for fit.mle objects so that parameters and log-likelihoods may be
extracted. This also allows use with AIC.

Simple model comparison by way of likelihood ratio tests can be performed with anova. See
Examples for usage.
Value

A list of class fit.mle, with at least the components

* par The estimated parameters.
* InLik The log likelihood at the ML point.

* counts The number of function evaluations performed during the search.

16 find.mle

* code Convergence code. See the documentation for the underlying optimisation method for
meaning, but "0" is usually good.

¢ func The likelihood function used in the fit.

* method The optimisation method used.

Model comparison

The anova function carries out likelihood ratio tests. There are a few possible configurations.

First, the first fit provided could be the focal fit, and all other fits are either special cases of it (every
additional model is nested within the focal model) or generalisations of it (the focal model is nested
within every additional model).

Second, the models could be sequential series of fits (if sequential=TRUE), such that models (A,
B, C, D) are to be compared A vs. B, B vs. C, C vs. D. The models can either be strictly increasing
in parameters (A nested in B, B nested in C, ...) or strictly decreasing in parameters (D nested in C,
Cnested in B, ...).

In both cases, nestedness is checked. First, the "class" of the fitted object must match. Second,
the argnames of the likelihood function of a sub model must all appear in the argnames of the
parent model. There are some cases where this second condition may not be satisfied and yet the
comparison is valid (e.g., comparing a time-varying model against a non time varying model, and
some make.quasse fits). We attempt to detect this but it may fail on some valid comparisons and
silently allow some invalid comparisons.

Author(s)
Richard G. FitzJohn

Examples

Due to a change in sample() behaviour in newer R it is necessary to
use an older algorithm to replicate the previous examples
if (getRversion() >= "3.6.0") {
RNGkind(sample.kind = "Rounding")
3

pars <- c(0.1, 0.2, 0.03, 0.03, 0.01, 0.01)
set.seed(2)
phy <- tree.bisse(pars, max.t=60, x0=0)

Here is the 203 species tree with the true character history coded.
Red is state '1', which has twice the speciation rate of black (state
'0').

h <- history.from.sim.discrete(phy, 0:1)

plot(h, phy, cex=.5, show.node.state=FALSE)

Make a BiSSE likelihood function
lik <- make.bisse(phy, phy$tip.state)
lik(pars)

This takes ~30s to run, so is not enabled by default

history.from.sim

Not run:

Fit the full six-parameter model
fit <- find.mle(lik, pars)

fit[1:2]

coef(fit) # Named vector of six parameters
loglik(fit) # -659.93
AIC(fit) # 1331.86

find.mle works with constrained models (see \link{constrain}). Here
the two speciation rates are constrained to be the same as each

other.

lik.1 <- constrain(lik, lambda@ ~ lambdal)

fit.1l <- find.mle(lik.1l, pars[-21)

loglik(fit.1) # 663.41

Compare the models with \link{anova} - this shows that the more
complicated model with two separate speciation rates fits

significantly better than the simpler model with equal rates
(p=0.008).

anova(fit, equal.lambda=fit.1)

You can return the parameters for the full six parameter model from
the fitted five parameter model - this makes a good starting point
for a ML search.

coef(fit.1l, full=TRUE)

End(Not run)

17

history.from.sim Extract Character Histories From Simulations

Description

This function extracts a history object from a simulated phylogeny produced by tree.bisse.

Usage

history.from.sim.discrete(phy, states)

Arguments

phy A phylogeny produced by tree.bisse.

states Possible states. For tree.bisse this should be 0: 1.
Author(s)

Richard G. FitzJohn

18

make.bd

make. bd

Constant Rate Birth-Death Models

Description

Prepare to run a constant rate birth-death model on a phylogenetic tree. This fits the Nee et al. 1994
equation, duplicating the birthdeath function in ape. Differences with that function include (1) the
function is not constrained to positive diversification rates (mu can exceed lambda), (2) [eventual]
support for both random taxon sampling and unresolved terminal clades (but see bd.ext), and (3)
run both MCMC and MLE fits to birth death trees.

Usage

make.bd(tree, sampling.f=NULL, unresolved=NULL, times=NULL, control=1list())
make.yule(tree, sampling.f=NULL, unresolved=NULL, times=NULL, control=list())
starting.point.bd(tree, yule=FALSE)

Arguments

tree

times

sampling.f

unresolved

yule

control

Details

An ultrametric bifurcating phylogenetic tree, in ape “phylo” format.

Vector of branching times, as returned by branching. times. You don’t need to
use this unless you know that you need to use this. Don’t use it at the same time
as tree.

Probability of an extant species being included in the phylogeny (sampling frac-
tion). By default, all extant species are assumed to be included.

Unresolved clade information. This is a named vector, with the number of
species as the value and names corresponding to tip labels. Tips that represent a
single species should not be included in this vector. For example sp1=10, sp2=2,
would mean that sp1 represents 10 species, while sp2 represents two. These la-
bels must exist in tree$tip.label and all other tips are assumed to represent
one species.

Should the starting point function return a Yule model (zero extinction rate)?

List of control parameters. The element method can be either nee or ode to
compute the likelihood using the equation from Nee et al. (1994) or in a BiSSE-
style ODE approach respectively. nee should be faster, and ode is provided for
completeness (and forms the basis of other methods). When ode is selected,
other elements of control affect the behaviour of the ODE solver: see details
in make.bisse.

make . bd returns a function of class bd. This function has argument list (and default values)

f(pars, prior=NULL, condition.surv=TRUE)

make.bd 19

The arguments are interpreted as

* pars A vector of two parameters, in the order lambda, mu.
e prior: avalid prior. See make.prior for more information.

e condition.surv (l