Package 'doebioresearch'

July 8, 2020
Type Package
Title Analysis of Design of Experiments for Biological Research
Version 0.1.0

Description

Performs analysis of popular experimental designs used in the field of biological research. The designs covered are completely randomized design, randomized complete block design, factorial completely randomized design, factorial randomized complete block design, split plot design, strip plot design and latin square design. The analysis include analysis of variance, coefficient of determination, normality test of residuals, standard error of mean, standard error of difference and multiple comparison test of means. The package has functions for transformation of data and yield data conversion. Some datasets are also added in order to facilitate examples.
License GPL-3
Encoding UTF-8
LazyData true
RoxygenNote 7.1.0
Imports agricolae ($>=1.3 .3$), stats ($>=4.0 .2$)
Depends R (>=2.10)
NeedsCompilation no
Author Raj Popat [aut, cre],
Kanthesh Banakara [aut]
Maintainer Raj Popat popatrajc@gmail.com
Repository CRAN
Date/Publication 2020-07-08 12:20:03 UTC

R topics documented:

arcsineretransform 2
arcsinetransform 3
convert 3
crd 4
factorialdata 4
fcrd2fact 5
fcrd3fact 6
frbd2fact 6
frbd3fact 7
logretransform 8
logtransform 9
lsd 10
lsddata 10
rcbd 11
splitdata 12
splitplot 12
sqrtretransform 13
sqrttransform 14
stripplot 14
yieldconvert 15
Index 17
arcsineretransform Re-transform the Arc sine transformed data

Description

Re-transform the arc sine transformed data. When arc sine transformation is done, the mean of the treatments needs to be re-transformed for comparison.

Usage

arcsineretransform(mean.vector, type)

Arguments

mean. vector	vector of mean which needs to be re-transformed
type	0 if data was in proportion prior to re-transformation, 1 if data was in percentage prior to re-transformation

Value

Arc sine re-transformed vector

Examples

```
data<-c(60,63.43495,71.56505,78.46304)
#If data was in percentage prior to re-transformation
arcsineretransform(data,1)
#If data was in proportion prior to re-transformation
arcsineretransform(data,0)
```


Description

The function divide values by 100 , does square root and than sin inverse of each values of vector. If any of the values of a vector is 0 or 100 , it is replaced by $1 / 4 \mathrm{n}$ or $100-(1 / 4 \mathrm{n})$, respectively.

Usage

arcsinetransform(numeric.vector, type, n)

Arguments

numeric.vector data vector to be transformed
type $\quad 0$ if data is in percentage and 1 if data is in proportion
$\mathrm{n} \quad$ is the number of units upon which the percentage/proportion data is based

Value

Arc sine transformed data

Examples

```
vector<-c(23,0,29.6,35.6,33,35.6,10.5,100)
# Arc sine trnasformation for percentage data and n=10
arcsinetransform(vector,0,10)
```

convert Convert the data frame into list of numeric nature

Description

Convert the data frame into list of numeric nature

Usage

convert(data1)

Arguments

data1 data-frame to be converted into list

Value

list of numeric vectors

```
crd Analysis of Completely Randomized Design
```


Description

The function gives ANOVA, R-square of the model, normality testing of residuals, SEm (standard error of mean), SEd (standard error of difference), interpretation of ANOVA results and multiple comparison test for means

Usage
 crd(data, trt.vector, MultipleComparisonTest)

Arguments

data	dependent variables
trt.vector	vector containing treatments
MultipleComparisonTest	

0 for no test, 1 for LSD test, 2 for Duncan test and 3 for HSD test

Value

ANOVA, interpretation of ANOVA, R-square, normality test result, SEm, SEd and multiple comparison test result

Examples

```
data<-data.frame(Treatments=c("T1", "T2", "T3", "T4", "T5", "T6", "T7", "T1", "T2", "T3", "T4", "T5", "T6",
"T7", "T1","T2", "T3", "T4", "T5", "T6","T7"),
yield=c(25,21,21,18, 25,28,24,25,24,24,16,21,20,17,16,19,14,15,13,11,25),
height=c(130,120,125,135,139,140,145,136,129,135,150,152,140,148,130,135,145,160,145,130,160))
#CRD analysis with LSD test for yield only
crd(data[2],data$Treatments,1)
#CRD analysis with LSD test for both yield and height
crd(data[2:3],data$Treatments,1)
```

```
factorialdata Data of Factorial Experiment
```


Description

The data consists of three factors nitrogen, phosphorus and Potassium, replication and two dependent variables yield and plant height. The data is generated manually.

Usage

factorialdata

Format

The data has 6 columns and 36 rows
Nitrogen Consist sequence of two nitrogen levels n 0 and n 1
Phosphorus Consist sequence of two phosphorus levels p0 and p1
Potassium Consist sequence of two potassium levels k 0 and k 1
Replication Contains replication which has three levels
Yield Yield as dependent variable
Plant Height Plant height as dependent variable
fcrd2fact Analysis of Factorial Completely Randomized Design for 2 factors

Description

The function gives ANOVA, R-square of the model, Normality testing of residuals, SEm (standard error of mean), SEd (standard error of difference), interpretation of ANOVA results and multiple comparison test for means

Usage

fcrd2fact(data, fact.A, fact.B, Multiple.comparison.test)

Arguments

```
    data dependent variables
    fact.A vector containing levels of first factor
    fact.B vector containing levels of second factor
    Multiple.comparison.test
            0 for no test, 1 for LSD test, 2 for Duncan test and 3 for HSD test
```


Value

ANOVA, interpretation of ANOVA, R-square, normality test result, SEm, SEd and multiple comparison test result for both the factors as well as interaction.

Examples

```
data(factorialdata)
#Analysis of Factorial Completely Randomized design along with Dunccan test for Yield only
fcrd2fact(factorialdata[5],factorialdata$Nitrogen,factorialdata$Phosphorus, 2)
#Analysis of Factorial Completely Randomized design along with Dunccan test for Yield & Plant Height
fcrd2fact(factorialdata[5:6],factorialdata$Nitrogen,factorialdata$Phosphorus,2)
```


Description

The function gives ANOVA, R-square of the model, normality testing of residuals, SEm (standard error of mean), SEd (standard error of difference), interpretation of ANOVA results and multiple comparison test for means.

Usage
 fcrd3fact(data, fact.A, fact.B, fact.C, Multiple.comparison.test)

Arguments

data	dependent variables
fact.A	vector containing levels of first factor
fact.B	vector containing levels of second factor
fact.C	vector containing levels of third factor
Multiple.comparison. test	
	0 for no test, 1 for LSD test, 2 for Duncan test and 3 for HSD test

Value

ANOVA, interpretation of ANOVA, R-square, normality test result, SEm, SEd and multiple comparison test result for both the factors as well as interaction.

Examples

```
data(factorialdata)
#FCRD analysis along with dunccan test for two dependent var.
fcrd3fact(factorialdata[5:6],factorialdata$Nitrogen,
factorialdata$Phosphorus,factorialdata$Potassium, 2)
```

frbd2fact Analysis of Factorial Randomized Block Design for 2 factors

Description

The function gives ANOVA, R-square of the model, normality testing of residuals, SEm (standard error of mean), SEd (standard error of difference), interpretation of ANOVA results and multiple comparison test for means.

Usage

frbd2fact(data, replicationvector, fact.A, fact.B, Multiple.comparison.test)

Arguments

```
    data dependent variables
    replicationvector
        vector containing replications
    fact.A vector containing levels of first factor
    fact.B vector containing levels of second factor
    Multiple.comparison.test
        0 for no test, 1 for LSD test, 2 for Duncan test and 3 for HSD test
```


Value

ANOVA, interpretation of ANOVA, R-square, normality test result, SEm, SEd and multiple comparison test results for both the factors as well as interaction.

Examples

```
data(factorialdata)
#FRBD analysis along with dunccan test for two dependent var.
frbd2fact(factorialdata[5:6],factorialdata$Replication,
factorialdata$Nitrogen,factorialdata$Phosphorus,2)
```

frbd3fact

Analysis of Factorial Randomized Block Design for 3 factors

Description

The function gives ANOVA, R-square of the model, normality testing of residuals, SEm (standard error of mean), SEd (standard error of difference), interpretation of ANOVA results and multiple comparison test for means.

Usage

```
frbd3fact(
    data,
    replicationvector,
    fact.A,
    fact.B,
    fact.C,
    Multiple.comparison.test
)
```


Arguments

```
    data dependent variables
    replicationvector
                            vector containing replications
    fact.A vector containing levels of first factor
    fact.B vector containing levels of second factor
    fact.C vector containing levels of third factor
    Multiple.comparison.test
                            0 for no test, 1 for LSD test, 2 for Duncan test and 3 for HSD test
```


Value

ANOVA, interpretation of ANOVA, R-square, normality test result, SEm, SEd and multiple comparison test result for the factors as well as the interaction.

Examples

```
data(factorialdata)
#FRBD analysis along with dunccan test for two dependent var.
frbd3fact(factorialdata[5:6],factorialdata$Replication,factorialdata$Nitrogen,
factorialdata$Phosphorus,factorialdata$Potassium,2)
```

logretransform Re-transform the log transformed data

Description

Re-transform the log transformed data. When log transformation is done, the mean of the treatments needs to be re-transformed for comparison.

Usage

logretransform(transformed.mean, if.zero.present)

Arguments

transformed.mean
vector of mean which needs to be re-transformed
if.zero.present
0 if zero was present in the data prior to transformation of data. 1 if zero was absent in the data prior to transformation

Value

Log re-transformed values

Examples

```
vector<-c(0,2.004,1.114,1.491,1.431,1.415,1.845)
#Re-transformation of data with zero present in data prior to transformation
logretransform(vector,0)
```

logtransform Log transformation of the numeric vector

Description

The function carries out \log with base 10 transformation of each values of vector. If one of values of a vector is 0,1 is added to each observation. Log transformation is carried out for the data when variance is proportional to square of the mean and treatment effects are multiplicative in nature.

Usage

logtransform(numeric.vector)

Arguments

numeric.vector data vector to be transformed

Value

A list of

- Ratio- A ratio of maximum and minimum values of the data
- LogTransformedVector - A vector of the transformed data
- Comment - A comment about zero being present in data or not

Examples

```
vector<-c(100,0,120,1000,52,30,60)
logtransform(vector)
```


Description

The function gives ANOVA, R-square of the model, normality testing of residuals, SEm (standard error of mean), SEd (standard error of difference), interpretation of ANOVA results and multiple comparison test for means.

Usage

lsd(data, treatmentvector, row, column, MultipleComparisonTest)

Arguments

data	dependent variables
treatmentvector	vector containing treatments
	vector for rows
row	vector for columns
column	
MultipleComparisonTest	

0 for no test, 1 for LSD test, 2 for Duncan test and 3 for HSD test

Value

ANOVA, interpretation of ANOVA, R-square, normality test result, SEm, SEd and multiple comparison test result

Examples

```
data(lsddata)
#LSD analysis with LSD test for Yield only
lsd(lsddata[4],lsddata$Treatment,lsddata$Row,lsddata$Column,1)
#LSD analysis with LSD test for Yield and Plant Height
lsd(lsddata[4:5],lsddata$Treatment,lsddata$Row,lsddata$Column,1)
```


lsddata

Data for Latin Square Design

Description

The data consists of Rows, Columns, Treatments and two dependent variables Yield and Plant Height. The data is generated manually.
rcbd

Usage

lsddata

Format

The data has 5 columns and 25 rows
Row Consist sequence of rows. Row consists of 5 levels
Column Consist sequence of column. Column consists of 5 levels
Treatment Consist sequence of treatments. There are 5 treatments A, B, C, D \& E
Yield Yield as dependent variable
Plant Height Plant height as dependent variable
rcbd Analysis of Randomized Complete Block Design

Description

The function gives ANOVA, R-square of the model, normality testing of residuals, SEm (standard error of mean), SEd (standard error of difference), interpretation of ANOVA results and multiple comparison test for means.

Usage

rcbd(data, treatmentvector, replicationvector, MultipleComparisonTest)

Arguments

data dependent variables
treatmentvector
vector containing treatments
replicationvector
vector containing replications
MultipleComparisonTest
0 for no test, 1 for LSD test, 2 for Duncan test and 3 for HSD test

Value

ANOVA, interpretation of ANOVA, R-square, normality test result, SEm, SEd and multiple comparison test result

Examples

```
data<-data.frame(GFY=c (16,13,14,16,16,17,16,17,16,16,17,16,15,15,15,13,15,14,
16,14,15,14,15,17,18,15,15,15,14,14,14,14,15,15,13,15,14,14,13,13,13, 12, 15,12,15),
DMY=c(5,5,6,5,6,7,6,8,6,9,8,7,5,5,5,4,6,5,8,5,5,5,4,6,6,5,5,6,6,6,5,5,5,5,5,6,5,5,5,4,5,4,5,5,5),
Rep=rep(c("R1", "R2", "R3"), each=15),
Trt=rep(c("T1", "T2", "T3", "T4", "T5", "T6", "T7", "T8", "T9", "T10", "T11", "T12", "T13", "T14", "T15"), 3))
#' #RCBD analysis with duncan test for GFY only
rcbd(data[1],data$Trt,data$Rep,2)
#RCBD analysis with duncan test for both GFY and DMY
rcbd(data[1:2],data$Trt,data$Rep,2)
```

```
splitdata Data for Split plot Design
```


Description

The data consists of replication, date of sowing (as main-plot), varieties (as sub-plot) and two dependent variables yield and plant height. The data is generated manually.

Usage

splitdata

Format

The data has 5 columns and 36 rows
Replication Consist sequence of replications. Replications consists of 3 levels
Date of Sowing Consist sequence of levels of date of sowing as Main-plot. Date of sowing consists of 2 levels
Varities Consist sequence of levels of varities as Sub-plot. Varities consist of 6 levels
Yield Yield as dependent variable
Plant Height Plant height as dependent variable

```
splitplot Analysis of Split plot design
```


Description

The function gives ANOVA, R-square of the model, normality testing of residuals, SEm (standard error of mean), SEd (standard error of difference), interpretation of ANOVA results and multiple comparison test for means.

Usage

splitplot(data, block, main.plot, sub.plot, mean.comparison.test)

Arguments

data	dependent variables
block	vector containing replications
main.plot	vector containing main-plot levels
sub.plot vector containing sub-plot levels mean.comparison.test	

0 for no test, 1 for LSD test, 2 for Dunccan test and 3 for HSD test

Value

ANOVA, interpretation of ANOVA, R-square, normality test result, SEm, SEd and multiple comparison test result

Examples

```
data(splitdata)
#Using Date of sowing as Main-plot factor and varieties as sub-plot factor and using LSD test
#Split plot analysis with LSD test for Yield
splitplot(splitdata[4],splitdata$Replication,splitdata$Date_of_Sowing,splitdata$Varities,1)
#Split plot analysis with LSD test for both Yield and Plant Height
splitplot(splitdata[4:5],splitdata$Replication,splitdata$Date_of_Sowing,splitdata$Varities,1)
```

sqrtretransform Re-transform the square root transformed data

Description

Retransform the square root transformed data. When square root transformation is done, the mean of the treatments needs to be re-transformed for comparison.

Usage

sqrtretransform(transformed.mean, if.zero.present)

Arguments

transformed.mean vector of mean which needs to be re-transformed
if.zero.present
0 if zero was present in the data prior to transformation of data. 1 if zero was absent in the data prior to transformation

Value

Square root re-transformed vector

Examples

```
vector<-c(19, 10, 30,60,50,10,5)
#Square root re-transform and zero was absent in the data prior to transformation
sqrtretransform(vector,1)
```

sqrttransform Square root transformation of the numeric vector

Description

The function carries out square root transformation of each values of vector. If one of values of a vector is $0,0.5$ is added to each observation.

Usage

sqrttransform(numeric.vector)

Arguments

numeric.vector data vector to be transformed

Value

Square root transformed data

Examples

vector<-c $(0,25,36,6,9,25,70)$
sqrttransform(vector)
stripplot Analysis of Strip plot design

Description

The function gives ANOVA, R-square of the model, normality testing of residuals, SEm (standard error of mean), SEd (standard error of difference), interpretation of ANOVA results and multiple comparison test for means

Usage

stripplot(data, block, column, row, mean.comparison.test)

Arguments

data	dependent variables
block	vector containing replications
column	vector containing column strip levels
row	vector containing row strip levels
mean.comparison. test	

0 for no test, 1 for LSD test, 2 for Duncan test and 3 for HSD test

Value

ANOVA, interpretation of ANOVA, R-square, normality test result, SEm, SEd and multiple comparison test result

Examples

```
data(splitdata)
#Split data is used for sake of demonstration
#Using Date of sowing as Column factor and varieties as Row factor and using LSD test for Yield only
stripplot(splitdata[4],splitdata$Replication,splitdata$Date_of_Sowing,splitdata$Varities,1)
#Using Date of sowing as Column factor and varieties as Row factor and using LSD test for both var.
stripplot(splitdata[4:5],splitdata$Replication,splitdata$Date_of_Sowing,splitdata$Varities,1)
```

yieldconvert Convert the yield data of plot into different units

Description

The function converts the yield data of plot into $\mathrm{qt} / \mathrm{ha}$, tonnes/ha, $\mathrm{qt} / \mathrm{acre}$ or tonnes/acre depending on the option chosen.

Usage

yieldconvert(yield.in.kg, length.of.plot, width.of.plot, choose.convert.to)

Arguments

```
yield.in.kg yield data in kilograms
length.of.plot length of plot in \(m\)
width.of.plot width of the plot in \(m\)
choose.convert.to
```

0 for $\mathrm{qtl} / \mathrm{ha}, 1$ for tonnes/ha, 2 for $\mathrm{qt} /$ acre and 3 for tonnes/acre

Value

converted yield

Examples

\#Convert yield vector obtained from $10 \mathrm{~m} \times 5 \mathrm{~m}$ plot into different forms
yield<-c($10,15,12,16,19,25,30,25,11)$
\#For converting into qtl/ha
yieldconvert(yield, 10,5,0)
\#For converting into tonnes/ha
yieldconvert(yield,10,5,1)
\#For converting into qtl/acre
yieldconvert(yield,10,5,2)
\#For converting into tonnes/acre
yieldconvert(yield, 10,5,3)

Index

```
* datasets
    factorialdata,4
    lsddata, 10
    splitdata, 12
arcsineretransform, 2
arcsinetransform, 3
convert, 3
crd, 4
factorialdata,4
fcrd2fact, 5
fcrd3fact, }
frbd2fact,6
frbd3fact, }
logretransform,8
logtransform, }
lsd,10
lsddata, 10
rcbd, 11
splitdata, 12
splitplot,12
sqrtretransform, 13
sqrttransform,14
stripplot,14
yieldconvert,15
```

