Package 'donut'

November 10, 2021
Title Nearest Neighbour Search with Variables on a Torus
Version 1.0.2
Date 2021-10-10
Description Finds the k nearest neighbours in a dataset of specified points, adding the option to wrap certain variables on a torus. The user chooses the algorithm to use to find the nearest neighbours. Two such algorithms, provided by the packages 'RANN' https://cran.r-project.org/package=RANN, and 'nabor' https://cran.r-project.org/package=nabor, are suggested.
Imports graphics
License GPL (>= 2)
Encoding UTF-8
Depends R (>= 3.3.0)
RoxygenNote 7.1.1
Suggests knitr, nabor, RANN, rmarkdown, testhat (>=2.1.0)
VignetteBuilder knitr
URL https://github.com/paulnorthrop/donut, https://paulnorthrop.github.io/donut/

BugReports https://github.com/paulnorthrop/donut/issues
NeedsCompilation no
Author Paul J. Northrop [aut, cre, cph]
Maintainer Paul J. Northrop p.northrop@ucl.ac.uk
Repository CRAN
Date/Publication 2021-11-10 17:50:02 UTC

R topics documented:

donut . 2
nnt . 2
plot.nnt . 5
Index 7

Description

Finds the k nearest neighbours in a dataset of specified points, adding the option to wrap certain variables on a torus. The user chooses the algorithm to use to find the nearest neighbours.

Details

The function nnt performs the nearest neighbour search. There is also a rudimentary plot method: plot.nnt.

The default algorithm is that provided by the function nn2 in the RANN-package. Another possibility is the knn function in the nabor-package.

See vignette("donut-vignette", package = "donut") for an overview of the package.

References

Arya, S., Mount, D., Kemp, S. E. and Jefferis, G. (2019) RANN: Fast Nearest Neighbour Search (Wraps ANN Library) Using L2 Metric. R package version 2.6.1. https://CRAN.R-project. org/package=RANN

Elseberg J., Magnenat S., Siegwart R., Nuchter, A. (2012) Comparison of nearest-neighbor-search strategies and implementations for efficient shape registration. Journal of Software Engineering for Robotics (JOSER), 3(1), 2-12 https://CRAN.R-project.org/package=nabor

See Also

nnt for nearest neighbour with some variables wrapped on a torus.
plot.nnt plot method for objects returned from nnt (1 and 2 dimensional data only).

```
nnt Nearest Neighbour Search with Variables on a Torus
```


Description

Uses a user-supplied function to find the k nearest neighbours of specified points in a dataset, adding the option to wrap certain variables on a torus.

```
Usage
    nnt (
        data,
        query = data,
        \(\mathrm{k}=\min (10, \operatorname{nrow}(d a t a))\),
        fn = RANN: :nn2,
        torus,
        ranges,
        method \(=1\),
    )
```


Arguments

data An M by d numeric matrix or data frame. Each of the M rows contains a d dimensional observation.
query \quad An N by d numeric matrix or data frame. Each row contains an d-dimensional point that will be queried against data.
$k \quad$ An integer scalar. The number of nearest neighbours, of the points in the rows of query, to find.
fn The function with which to calculate the nearest neighbours. The syntax of this function must be fn (data, query, k, \ldots). The default is RANN: : nn2. Another possibility is nabor: : knn.
torus An integer vector with element(s) in $\{1, \ldots$, ncol (data) $\}$. The corresponding variables are wrapped on the corresponding range gives in ranges.
ranges A length(torus) by 2 numeric matrix. Row i gives the range of variation of the variable indexed by torus[i]. ranges[i,1] and ranges[i,2] are equivalent values of the variable, such as 0 degrees and 360 degrees. If length(torus) $=1$ then ranges may be a vector of length 2 .
method An integer scalar, equal to 1 or 2. See Details.
... Further arguments to be passed to fn.

Details

If method $=1$ then the data are partially replicated, arranged around the original data in a way that wraps the variables in torus on their respective ranges in ranges. Then $f n$ is called using this replicated dataset as the argument data. If k is large and/or data is a sparse dataset then it is possible that a single observation contributes more than once to a set of nearest neighbours, which is incorrect. If this occurs then nnt uses method 2 to correct the offending rows in nn.idx and nn . dists in the returned list object.
If method $=2$ then the following approach is used for the point in each row in query. The data indexed by torus are shifted (and wrapped) so that the point is located at the respective midpoints of ranges. Method 2 is efficient only if the number of points in query is small.
If torus is missing then $f n$ is called using $f n$ (data $=$ data, query $=$ query $, k=k, \ldots$), so that a call to nnt is equivalent to a call to the function chosen by fn .

Value

An object (a list) of class c("nnt", "donut") containing the following components.
$\mathrm{nn} . \mathrm{idx} \quad$ An N by d integer matrix of the k nearest neighbour indices, i.e. the rows of data.
nn.dists An N by d numeric matrix of the k nearest neighbour distances.
data, query, k, fn
The arguments data, query, k and $f n$ (in fact substitute(fn)).
torus, ranges, method
If torus is supplied, the arguments torus, ranges and method.
call The call to spm.

References

Arya, S., Mount, D., Kemp, S. E. and Jefferis, G. (2019) RANN: Fast Nearest Neighbour Search (Wraps ANN Library) Using L2 Metric. R package version 2.6.1. https://CRAN.R-project. org/package=RANN
Elseberg J., Magnenat S., Siegwart R., Nuchter, A. (2012) Comparison of nearest-neighbor-search strategies and implementations for efficient shape registration. Journal of Software Engineering for Robotics (JOSER), 3(1), 2-12 https://CRAN.R-project.org/package=nabor

See Also

RANN: :nn2, nabor::knn: nearest neighbour searches.
plot.nnt plot method for objects returned from nnt (1 and 2 dimensional data only).

Examples

```
got_RANN <- requireNamespace("RANN", quietly = TRUE)
got_nabor <- requireNamespace("nabor", quietly = TRUE)
set.seed(20092019)
# 2D example from the RANN:nn2 documentation (L2 metric)
x1 <- runif(100, 0, 2 * pi)
x2 <- runif(100, 0, 3)
DATA <- data.frame(x1, x2)
if (got_RANN) {
    nearest <- nnt(DATA, DATA)
}
# Suppose that x1 should be wrapped
ranges1 <- c(0, 2 * pi)
query1 <- rbind(c(6, 1.3), c(2 * pi, 3), c(3, 1.5), c(4, 0))
if (got_RANN) {
    res1 <- nnt(DATA, query1, k = 8, torus = 1, ranges = ranges1)
    plot(res1, ylim = c(0, 3))
}
# Suppose that x1 and x2 should be wrapped
```

```
ranges2 <- rbind(c(0, 2 * pi), c(0, 3))
query2 <- rbind(c(6, 1.3), c(2 * pi, 3), c(3, 1.5), c(4, 0))
if (got_RANN) {
    res2 <- nnt(DATA, query2, k = 8, torus = 1:2, ranges = ranges2)
    plot(res2)
}
# Use nabor::knn (L2 metric) instead of RANN::nn2
if (got_nabor) {
    res3 <- nnt(DATA, query2, k = 8, fn = nabor::knn, torus = 1:2,
        ranges = ranges2)
    plot(res3)
}
# 1D example
ranges <- c(0, 2 * pi)
query <- c(4, 0.1)
if (got_RANN) {
    res <- nnt(x1, query, torus = 1, ranges = ranges, method = 1)
    plot(res)
}
```

plot.nnt
Plot diagnostics for an nnt object

Description

plot method for an object of class $c($ "nnt").

Usage

```
## S3 method for class 'nnt'
plot(x, ...)
```


Arguments

$\begin{array}{ll}x & \text { an object of class } c(\text { "nnt"), a result of a call to nnt. } \\ \ldots & \text { Further arguments to be passed to plot, or points. }\end{array}$

Details

This function is only applicable in 1 or 2 dimensions, that is, when ncol $(x \$ d a t a)=1$ or 2 . It provides a visual check that the wrapping of variables is working as intended, in cases where the number of query points, that is, nrow ($x \$$ query) is small enough that sets of nearest neighbours do not overlap much.

If $n \operatorname{col}(x \$ d a t a)=1$ then the index of each observation is plotted against its value, using a plotting character $\mathrm{pch}=1$. A vertical line is superimposed at each value in $x \$ q u e r y$ and the $x \$ k \$$ nearest neighbours of each line are colour-coded.

If $n \operatorname{col}(x \$ d a t a)=2$ then $x \$ d a t a[, 2]$ is plotted against $x \$ d a t a[, 1]$, using a plotting character $p c h=1$. Each point in $x \$ q u e r y$ is plotted with a cross and the $x \$ k \$$ nearest neighbours of each point are colour-coded.
Colours of the lines/crosses and nearest neighbour points can be set sing an argument col. If a variable is wrapped then the default plotting limits are set using the corresponding values in $\mathrm{x} \$$ ranges.

Value

Nothing is returned.

Examples

See the examples in nnt.

See Also

nnt for nearest neighbour with some variables wrapped on a torus.

Index

donut, 2
knn, 2
nabor: :knn, 4
nn2, 2
nnt, 2, 2, 4-6
plot, 5
plot.nnt, 2, 4, 5
points, 5
RANN: : nn2, 4

