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Abstract

Most clustering strategies have not changed considerably since their initial definition.
The common improvements are either related to the distance measure used to assess
dissimilarity, or the function used to calculate prototypes. Time-series clustering is no
exception, with the Dynamic Time Warping distance being particularly popular in that
context. This distance is computationally expensive, so many related optimizations have
been developed over the years. Since no single clustering algorithm can be said to perform
best on all datasets, different strategies must be tested and compared, so a common
infrastructure can be advantageous. In this manuscript, a general overview of shape-
based time-series clustering is given, including many specifics related to Dynamic Time
Warping and other recently proposed techniques. At the same time, a description of the
dtwclust package for the R statistical software is provided, showcasing how it can be used
to evaluate many different time-series clustering procedures.
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1. Introduction

Cluster analysis is a task which concerns itself with the creation of groups of objects, where
each group is called a cluster. Ideally, all members of the same cluster are similar to each
other, but are as dissimilar as possible from objects in a different cluster. There is no single
definition of a cluster, and the characteristics of the objects to be clustered vary. Thus, there
are several algorithms to perform clustering. Each one defines specific ways of defining what
a cluster is, how to measure similarities, how to find groups efficiently, etc. Additionally, each
application might have different goals, so a certain clustering algorithm may be preferred
depending on the type of clusters sought (Kaufman and Rousseeuw 1990).

Clustering algorithms can be organized differently depending on how they handle the data
and how the groups are created. When it comes to static data, i.e., if the values do not
change with time, clustering methods can be divided into five major categories: partitioning
(or partitional), hierarchical, density-based, grid-based and model-based methods (Liao 2005;
Rani and Sikka 2012). They may be used as the main algorithm, as an intermediate step, or
as a preprocessing step (Aghabozorgi et al. 2015).

Time-series is a common type of dynamic data that naturally arises in many different scenar-
ios, such as stock data, medical data, and machine monitoring, just to name a few (Aghabo-
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zorgi et al. 2015; Aggarwal and Reddy 2013). They pose some challenging issues due to the
large size and high dimensionality commonly associated with time-series (Aghabozorgi et al.
2015). In this context, dimensionality of a series is related to time, and it can be under-
stood as the length of the series. Additionally, a single time-series may be constituted by
several values that change on the same time scale, in which case they are named multivariate
time-series.

There are many techniques to modify time-series in order to reduce dimensionality, and they
mostly deal with the way time-series are represented. Changing representation can be an
important step, not only in time-series clustering, and it constitutes a wide research area on
its own (cf. Table 2 in Aghabozorgi et al. (2015)). While choice of representation can directly
affect clustering, it can be considered as a different step, and as such it will not be discussed
further here.

Time-series clustering is a type of clustering algorithm made to handle dynamic data. The
most important elements to consider are the (dis)similarity or distance measure, the proto-
type extraction function (if applicable), the clustering algorithm itself, and cluster evaluation
(Aghabozorgi et al. 2015). In many cases, algorithms developed for time-series clustering
take static clustering algorithms and either modify the similarity definition or the prototype
extraction function to an appropriate one, or apply a transformation to the series so that
static features are obtained (Liao 2005). Therefore, the underlying basis for the different
clustering procedures remains approximately the same across clustering methods. The most
common approaches are hierarchical and partitional clustering (cf. Table 4 in Aghabozorgi
et al. (2015)), the latter of which includes fuzzy clustering.

Aghabozorgi et al. (2015) classify time-series clustering algorithms based on the way they
treat the data and how the underlying grouping is performed. One classification depends on
whether the whole series, a subsequence, or individual time points are to be clustered. On the
other hand, the clustering itself may be shape-based, feature-based or model-based. Aggarwal
and Reddy (2013) make an additional distinction between online and offline approaches, where
the former usually deals with grouping incoming data streams on-the-go, while the latter deals
with data that no longer change.

In the context of shape-based time-series clustering, it is common to utilize the Dynamic
Time Warping (DTW) distance as dissimilarity measure (Aghabozorgi et al. 2015). The
calculation of the DTW distance involves a dynamic programming algorithm that tries to
find the optimum warping path between two series under certain constraints. However, the
DTW algorithm is computationally expensive, both in time and memory utilization. Over the
years, several variations and optimizations have been developed in an attempt to accelerate
or optimize the calculation. Some of the most common techniques will be discussed in more
detail in Section 2.1.

Due to their nature, clustering procedures lend themselves for parallelization, since a lot
of similar calculations are performed independently of each other. This can make a very
significant difference, especially if the data complexity increases (which can happen really
quickly in case of time-series), or more computationally expensive algorithms are used.

The choice of time-series representation, preprocessing, and clustering algorithm has a big im-
pact on performance with respect to cluster quality and execution time. Similarly, different
programming languages have different run-time characteristics and user interfaces, and even
though many authors make their algorithms publicly available, combining them is far from
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trivial. As such, it is desirable to have a common platform on which clustering algorithms
can be tested and compared against each other. The dtwclust package, developed for the R

statistical software (R Core Team 2019), provides such functionality, and includes implemen-
tations of recently developed time-series clustering algorithms and optimizations. It serves as
a bridge between classical clustering algorithms and time-series data, additionally providing
visualization and evaluation routines that can handle time-series. All of the included algo-
rithms are custom implementations, except for the hierarchical clustering routines. A great
amount of effort went into implementing them as efficiently as possible, and the functions
were designed with flexibility and extensibility in mind.

Most of the included algorithms and optimizations are tailored to the DTW distance, hence
the package’s name. However, the main clustering function is flexible so that one can test
many different clustering approaches, using either the time-series directly, or by applying
suitable transformations and then clustering in the resulting space. We will describe the
algorithms that are available in dtwclust, mentioning the most important characteristics of
each and showing how the package can be used to evaluate them, as well as how other packages
complement it. Additionally, the variations related to DTW and other common distances will
be explored, and the parallelization strategies and optimizations included in the package will
be described.

There are many available R packages for data clustering. The flexclust package (Leisch 2006)
implements many partitional procedures, while the cluster package (Maechler et al. 2019)
focuses more on hierarchical procedures and their evaluation; neither of them, however, is
specifically targeted at time-series data. Packages like TSdist (Mori et al. 2016) and TSclust

(Montero and Vilar 2014) focus solely on dissimilarity measures for time-series, the latter of
which includes a single algorithm for clustering based on p values. Another example is the
pdc package (Brandmaier 2015), which implements a specific clustering algorithm, namely
one based on permutation distributions. The dtw package (Giorgino 2009) implements ex-
tensive functionality with respect to DTW, but does not include the lower bound techniques
that can be very useful in time-series clustering. New clustering algorithms like k-Shape
(Paparrizos and Gravano 2015) and TADPole (Begum et al. 2015) are available to the pub-
lic upon request, but were implemented in MATLAB, making their combination with other
R packages cumbersome. Hence, the dtwclust package is intended to provide a consistent
and user-friendly way of interacting with classic and new clustering algorithms, taking into
consideration the nuances of time-series data.

The rest of this manuscript is organized as follows. The information relevant to the distance
measures will be presented in Section 2. Supported algorithms for prototype extraction will
be discussed in Section 3. The main clustering algorithms will be described in Section 4. The
included parallelization strategies will be outlined in Section 5. Basic information regarding
cluster evaluation will be provided in Section 6. The functions provided for more complicated
clustering workflows are described in Section 7. An overview of extensibility will be given in
Section 8, and the final remarks will be given in Section 9. Code examples will be deferred
to the appendices. Note, however, that these examples are intentionally brief, and do not
necessarily represent a thorough procedure to choose or evaluate a clustering algorithm. The
data used in all examples is included in the package (saved in a list called CharTraj), and
is a subset of the character trajectories dataset found in Lichman (2013): they are pen tip
trajectories recorded for individual characters, and the subset contains 5 examples of the x

velocity for each considered character. Refer to Appendix A for some technical notes about
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the package, and for a more comprehensive overview of the state of the art in time-series
clustering, please refer to the included references and the articles mentioned therein.

2. Distance measures

Distance measures provide quantification for the dissimilarity between two time-series. Cal-
culating distances, as well as cross-distance matrices, between time-series objects is one of the
cornerstones of any time-series clustering algorithm. It is a task that is repeated very often
and loops across all data objects applying a suitable distance function. The proxy package
(Meyer and Buchta 2019) provides a highly optimized and extensible framework for these
calculations, and is used extensively by dtwclust. It includes several common metrics, and
users can register custom functions in its database. Please refer to Appendix B for further
information.

The l1 and l2 vector norms, also known as Manhattan and Euclidean distances respectively, are
the most commonly used distance measures, and are arguably the only competitive lp norms
when measuring dissimilarity (Aggarwal et al. 2001; Lemire 2009). They can be efficiently
computed, but are only defined for series of equal length and are sensitive to noise, scale and
time shifts. Thus, many other distance measures tailored to time-series have been developed
in order to overcome these limitations as well as other challenges associated with the structure
of time-series, such as multiple variables, serial correlation, etc.

In the following sections a description of the distance functions included in dtwclust will be
provided; these functions are associated with shape-based time-series clustering, and either
support DTW or provide an alternative to it. The included distances are a basis for some of the
prototyping functions described in Section 3, as well as the clustering routines from Section 4,
but there are many other distance measures that can be used for time-series clustering and
classification (Montero and Vilar 2014; Mori et al. 2016). It is worth noting that, even though
some of these distances are also available in other R packages, e.g. DTW in dtw or Keogh’s
DTW lower bound in TSdist (see Section 2.1 and Section 2.1.2), the implementations in
dtwclust are optimized for speed, since all of them are implemented in C++ and have custom
loops for computation of cross-distance matrices, including multi-threading support.

To facilitate notation, we define a time-series as a vector (or set of vectors in case of multi-
variate series) x. Each vector must have the same length for a given time-series. In general,
xv

i represents the i-th element of the v-th variable of the (possibly multivariate) time-series
x. We will assume that all elements are equally spaced in time in order to avoid the time
index explicitly.

2.1. Dynamic time warping distance

DTW is a dynamic programming algorithm that compares two series and tries to find the
optimum warping path between them under certain constraints, such as monotonicity. It
started being used by the data mining community to overcome some of the limitations asso-
ciated with the Euclidean distance (Ratanamahatana and Keogh 2004; Berndt and Clifford
1994).

The easiest way to get an intuition of what DTW does is graphically. Figure 1 shows the
alignment between two sample time-series x and y. In this instance, the initial and final
points of the series must match, but other points may be warped in time in order to find
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better matches.
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Figure 1: Sample alignment performed by the DTW algorithm between two series. The dashed blue
lines exemplify how some points are mapped to each other, which shows how they can be
warped in time. Note that the vertical position of each series was artificially altered for
visualization.

DTW is computationally expensive. If x has length n and y has length m, the DTW distance
between them can be computed in O(nm) time, which is quadratic if m and n are similar.
Additionally, DTW is prone to implementation bias since its calculations are not easily vec-
torized and tend to be very slow in non-compiled programming languages. The dtw package
(Giorgino 2009) includes a C implementation of the dynamic programming step of the algo-
rithm, which should be very fast; its level of generality may sacrifice some performance, but in
most situations it will be negligible. Optionally, a basic custom implementation of the DTW
algorithm is included with dtwclust in the dtw_basic function, which has less functionality
but still supports the most common options, it has a C++ core, implements some memory
optimizations, and it is faster, especially when computing the DTW distance between several
pairs of time-series.

The DTW distance can potentially deal with series of different length directly. This is not
necessarily an advantage, as it has been shown before that performing linear reinterpolation to
obtain equal length may be appropriate if m and n do not vary significantly (Ratanamahatana
and Keogh 2004). For a more detailed explanation of the DTW algorithm see, e.g., Giorgino
(2009). However, there are some aspects that are worth discussing here.

The first step in DTW involves creating a local cost matrix (LCM or lcm), which has n × m

dimensions. Such a matrix must be created for every pair of series compared, meaning that
memory requirements may grow quickly as the dataset size grows. Considering x and y as
the input series, for each element (i, j) of the LCM, the lp norm between xi and yj must
be computed. This is defined in Equation 1, explicitly denoting that multivariate series are
supported as long as they have the same number of variables (note that for univariate series,
the LCM will be identical regardless of the used norm). Thus, it makes sense to speak of a
DTWp distance, where p corresponds to the lp norm that was used to construct the LCM.
However, this norm also plays an important role in the next step of DTW.
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In the seconds step, the DTW algorithm finds the path that minimizes the alignment between
x and y by iteratively stepping through the LCM, starting at lcm(1, 1) and finishing at
lcm(n, m), and aggregating the cost. At each step, the algorithm finds the direction in
which the cost increases the least under the chosen constraints; see Figure 2 for a visual
representation of the path corresponding to Figure 1. If we define φ = {(1, 1), . . . , (n, m)} as
the set containing all the points that fall on the optimum path, then the final distance would
be computed with Equation 2, where mφ is a per-step weighting coefficient and Mφ is the
corresponding normalization constant (Giorgino 2009).
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Figure 2: Visual representation of the optimum path found. The big square in the center represents
the LCM created for these specific series.

DTWp(x, y) =

�

� mφ lcm(k)p

Mφ

"1/p

, ∀k ∈ φ (2)

In this definition the choice of lp norm comes into play twice during the DTW the algorithm.
The dtw package also makes internal use of proxy to calculate the LCM, and it allows changing
the norm by means of its dist.method argument. However, as previously mentioned, the
norm only affects the LCM if multivariate series are used. By default, dtw does not consider
the lp norm in Equation 2 during step two of the algorithm, regardless of what is provided
in dist.method. For this reason, a special version of DTW2 is registered with proxy by
dtwclust (called simply "DTW2"), which also uses dtw for the core calculations, but also uses
the l2 norm in the second step. The dtw_basic function follows the above definition.
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The way in which the algorithm traverses through the LCM is primarily dictated by the
chosen step pattern. It is a local constraint that determines which directions are allowed
when moving ahead in the LCM as the cost is being aggregated, as well as the associated per-
step weights. Figure 3 depicts two common step patterns and their names in the dtw package.
Unfortunately, very few articles from the data mining community specify which pattern they
use, although in the author’s experience, the symmetric1 pattern seems to be standard. By
contrast, the dtw and dtw_basic functions use the symmetric2 pattern by default, but it
is simple to modify this by providing the appropriate value in the step.pattern argument.
The choice of step pattern also determines whether the corresponding DTW distance can be
normalized or not (which may be important for series with different length). See Giorgino
(2009) for a complete list of step patterns and to know which ones can be normalized.
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(b) symmetric2 step pattern

Figure 3: Two common step patterns used by DTW when traversing the LCM. At each step, the
lines denote the allowed directions that can be taken, as well as the weight associated with
each one.

It should be noted that the DTW distance does not satisfy the triangle inequality, and it is
not symmetric in general, e.g., for asymmetric step patterns (Giorgino 2009). The patterns
in Figure 3 can result in a symmetric DTW calculation, provided no constraints are used (see
the next section), or all series have the same length if a constraint is indeed used.

Global DTW constraints

One of the possible modifications of DTW is to use global constraints, also known as window
constraints. These limit the area of the LCM that can be reached by the algorithm. There
are many types of windows (see, e.g., Giorgino (2009)), but one of the most common ones is
the Sakoe-Chiba window (Sakoe and Chiba 1978), with which an allowed region is created
along the diagonal of the LCM (see Figure 4). These constraints can marginally speed up
the DTW calculation, but they are mainly used to avoid pathological warping. It is common
to use a window whose size is 10% of the series’ length, although sometimes smaller windows
produce even better results (Ratanamahatana and Keogh 2004).
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Figure 4: Visual representation of the Sakoe-Chiba constraint for DTW. The red elements will not
be considered by the algorithm when traversing the LCM.

Strictly speaking, if the series being compared have different lengths, a constrained path
may not exist, since the Sakoe-Chiba band may prevent the end point of the LCM to be
reached (Giorgino 2009). In these cases a slanted band window may be preferred, since it
stays along the diagonal for series of different length and is equivalent to the Sakoe-Chiba
window for series of equal length. If a window constraint is used with dtwclust, a slanted
band is employed.

It is not possible to know a priori what window size, if any, will be best for a specific appli-
cation, although it is usually agreed that no constraint is a poor choice. For this reason, it
is better to perform tests with the data one wants to work with, perhaps taking a subset to
avoid excessive running times.

It should be noted that, when reported, window sizes are always integers greater than zero. If
we denote this number with w, and for the specific case of the slanted band window, the valid
region of the LCM will be constituted by all valid points in the range [(i, j − w), (i, j + w)]
for all (i, j) along the LCM diagonal. Thus, at each step, 2w + 1 elements will fall within the
window for a given window size w. This is the convention followed by dtwclust.

Lower bounds for DTW

Due to the fact that DTW itself is expensive to compute, lower bounds (LBs) for the DTW
distance have been developed. These lower bounds guarantee being less than or equal to the
corresponding DTW distance. They have been exploited when indexing time-series databases,
classification of time-series, clustering, etc. (Keogh and Ratanamahatana 2005; Begum et al.
2015). Out of the existing DTW LBs, the two most effective are termed LB_Keogh (Keogh and
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Ratanamahatana 2005) and LB_Improved (Lemire 2009), and they have been implemented in
dtwclust in the functions lb_keogh and lb_improved. The reader is referred to the respective
articles for detailed definitions and proofs of the LBs, however some important considerations
will be further discussed here.

Each LB can be computed with a specific lp norm. Therefore, it follows that the lp norms used
for DTW and LB calculations must match, such that LBp f DTWp. Moreover, LB_Keoghp f
LB_Improvedp f DTWp, meaning that LB_Improved can provide a tighter LB. It must be
noted that the LBs are only defined for series of equal length and are not symmetric regardless
of the lp norm used to compute them. Also note that the choice of step pattern affects the
value of the DTW distance, changing the tightness of a given LB.

One crucial step when calculating the LBs is the computation of the so-called envelopes.
These envelopes require a window constraint, and are thus dependent on both the type and
size of the window. Based on these, a running minimum and maximum are computed and,
respectively, a lower and upper envelope are generated. Figure 5 depicts a sample time-series
with its corresponding envelopes for a Sakoe-Chiba window of size 15.
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Figure 5: Visual representation of a time-series (shown as a solid black line) and its corresponding
envelopes based on a Sakoe-Chiba window of size 15. The green dashed line represents
the upper envelope, while the red dashed line represents the lower envelope.

When calculating the LBs between x and y, one must be taken as a reference and the other
one as a query. Assume x is the reference and y is the query. First, a copy of the reference
series is created; denote this copy with H. The envelopes for the query are computed: y’s
upper and lower envelopes (UE and LE respectively) are compared against x, so that the
values of H are updated according to Equation 3. Subsequently, LB_Keogh is defined as in
Equation 4, where ∥·∥p is the lp norm of the series. The improvement made by LB_Improved

consists in calculating a second vector H ′ by using H as query and y as reference, effectively
defining the LB as in Equation 5 (cf. Figure 5 in Lemire (2009)).

Hi = UEi, ∀xi > UEi (3a)

Hj = LEj , ∀xj < LEj (3b)

9



LB_Keoghp(x, y) = ∥x − H∥p (4)

LB_Improvedp(x, y) = p

�

LB_Keoghp(x, y)p + LB_Keoghp(y, H)p (5)

In order for the LBs to be worth it, they must be computed in significantly less time than
it takes to calculate the DTW distance. Lemire (2009) developed a streaming algorithm
to calculate the envelopes using no more than 3n comparisons when using a Sakoe-Chiba
window. This algorithm has been ported to dtwclust using the C++ programming language,
ensuring an efficient calculation, and it is exposed in the compute_envelope function.

LB_Keogh requires the calculation of one set of envelopes for every pair of series compared,
whereas LB_Improved must calculate two sets of envelopes for every pair of series. If the LBs
must be calculated between several time-series, some envelopes can be reused when a given
series is compared against many others. This optimization is included in the LB functions
registered with proxy by dtwclust.

The function dtw_lb included in dtwclust (and the corresponding version registered with
proxy) leverages LB_Improved in order to find nearest neighbors faster. It first computes a
distance matrix using only LB_Improved. Then, it looks for the nearest neighbor by taking the
argument of the row-wise minima of the resulting matrix. Using this information, it updates
the distance values of the nearest neighbors using the DTW distance. It continues this process
iteratively until no changes in the nearest neighbors are detected. See Appendix C for specific
examples.

Because of the way it works, dtw_lb may only be useful if one is only interested in nearest
neighbors, which is usually the case in partitional clustering. However, if partition around
medoids is performed (see Section 3.2), the distance matrix should not be precomputed so
that the matrices are correctly updated on each iteration. Additionally, a considerably large
dataset would be needed before the overhead of DTW becomes much larger than that of
dtw_lb’s iterations.

2.2. Global alignment kernel distance

Cuturi (2011) proposed an algorithm to assess similarity between time series by using kernels.
He began by formalizing an alignment between two series x and y as π, and defined the set
of all possible alignments as A(n, m), which is constrained by the lengths of x and y. It is
shown that the DTW distance can be understood as the cost associated with the minimum
alignment as expressed in Equation 6, where |π| is the length of π and the divergence function
ϕ is typically the Euclidean distance.

DTW(x,y) = min
π∈A(n,m)

Dx,y(π) (6a)

Dx,y(π) =

|π|
�

i=1

ϕ
�

xπ1(i), yπ2(i)

�

(6b)

A Global Alignment (GA) kernel is defined as in Equation 7, where κ is a local similarity
function. In contrast to DTW, this kernel considers the cost of all possible alignments by
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computing their exponentiated soft-minimum, so it is argued that it quantifies similarities in
a more coherent way. However, the GA kernel has associated limitations, namely diagonal
dominance and a complexity O(nm). With respect to the former, Cuturi (2011) states that
diagonal dominance should not be an issue as long as one of the series being compared is not
longer than twice the length of the other.

kGA(x,y) =
�

π∈A(n,m)

|π|
�

i=1

κ
�

xπ1(i), yπ2(i)

�

(7)

In order to reduce the GA kernel’s complexity, Cuturi (2011) proposed using the triangular
local kernel for integers shown in Equation 8, where T represents the kernel’s order. By
combining it with the kernel κ in Equation 9 (which is based on the Gaussian kernel κσ), the
Triangular Global Alignment Kernel (TGAK) in Equation 10 is obtained. Such a kernel can
be computed in O(T min(n, m)), and is parameterized by the triangular constraint T and the
Gaussian’s kernel width σ.

ω(i, j) =

�

1 −
|i − j|

T

�

+
(8)

κ(x, y) = e−φσ(x,y) (9a)

φσ(x, y) =
1

2σ2
∥x − y∥2 + log

�

2 − e
−

∥x−y∥2

2σ2

�

(9b)

TGAK(x, y, σ, T ) = τ−1
�

ω ¹
1

2
κ

�

(i, x; j, y) =
ω(i, j)κ(x, y)

2 − ω(i, j)κ(x, y)
(10)

The triangular constraint is similar to the window constraints that can be used in the DTW
algorithm. When T = 0 or T → ∞, the TGAK converges to the original GA kernel. When
T = 1, the TGAK becomes a slightly modified Gaussian kernel that can only compare series
of equal length. If T > 1, then only the alignments that fulfill −T < π1(i) − π2(i) < T are
considered.

Cuturi (2011) also proposed a strategy to estimate the value of σ based on the time-series
themselves and their lengths, namely c ·med(∥x − y∥) ·

"

med(|x|), where med(·) is the empir-
ical median, c is some constant, and x and y are subsampled vectors from the dataset. This,
however, introduces some randomness into the algorithm when the value of σ is not provided,
so it might be better to estimate it once and re-use it in subsequent function evaluations. In
dtwclust, the value of c is set to 1.

The similarity returned by the TGAK can be normalized with Equation 11 so that its values
lie in the range [0, 1]. Hence, a distance measure for time-series can be obtained by subtracting
the normalized value from 1. The algorithm supports multivariate series and series of different
length (with some limitations). The resulting distance is symmetric and satisfies the triangle
inequality, although it is more expensive to compute in comparison to DTW.

exp

�

log (TGAK(x, y, σ, T )) −
log (TGAK(x, x, σ, T )) + log (TGAK(y, y, σ, T ))

2

�

(11)
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A C implementation of the TGAK algorithm is available at its author’s website1. An R

wrapper has been implemented in dtwclust in the GAK function, performing the aforementioned
normalization and subtraction in order to obtain a distance measure that can be used in
clustering procedures.

2.3. Soft-DTW

Following with the idea of the TGAK, i.e., of regularizing DTW by smoothing it, Cuturi and
Blondel (2017) proposed a unified algorithm using a parameterized soft-minimum as shown
in Equation 12 (where ∆(x, y) represents the LCM), and called the resulting discrepancy a
soft-DTW, discussing its differentiability. Thanks to this property, a gradient function can
be obtained, and Cuturi and Blondel (2017) developed a more efficient way to compute it.
This can be then used to calculate centroids with numerical optimization as discussed in
Section 3.4.

dtwγ(x, y) = minγ{ïA, ∆(x, y)ð, A ∈ A(n, m)} (12a)

minγ{a1, . . . , an} =

�

minifnai, γ = 0

−γ log
�n

i=1 e−ai/γ , γ > 0
(12b)

However, as a stand-alone distance measure, the soft-DTW distance has some disadvantages:
the distance can be negative, the distance between x and itself is not necessarily zero, it does
not fulfill the triangle inequality, and also has quadratic complexity with respect to the series’
lengths. On the other hand, it is a symmetric distance, it supports multivariate series as well
as different lengths, and it can provide differently smoothed results by means of a user-defined
parameter γ.

2.4. Shape-based distance

The shape-based distance (SBD) was proposed as part of the k-Shape clustering algorithm
(Paparrizos and Gravano 2015); this algorithm will be further discussed in Section 3.5 and
Section 4.2.2. SBD is presented as a faster alternative to DTW. It is based on the cross-
correlation with coefficient normalization (NCCc) sequence between two series, and is thus
sensitive to scale, which is why Paparrizos and Gravano (2015) recommend z-normalization.
The NCCc sequence is obtained by convolving the two series, so different alignments can be
considered, but no point-wise warpings are made. The distance can be calculated with the
formula shown in Equation 13, where ∥·∥2 is the l2 norm of the series. Its range lies between
0 and 2, with 0 indicating perfect similarity.

SBD(x, y) = 1 −
max (NCCc(x, y))

∥x∥2 ∥y∥2

(13)

This distance can be efficiently computed by utilizing the Fast Fourier Transform (FFT) to
obtain the NCCc sequence, which is how it is implemented in dtwclust in the SBD function,
although that might make it sensitive to numerical precision, especially in 32-bit architectures.
It can be very fast, it is symmetric, it was very competitive in the experiments performed in

1http://marcocuturi.net/GA.html, accessed on 2016-10-29
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Paparrizos and Gravano (2015) (although the run-time comparison was slightly biased due to
the slow MATLAB implementation of DTW), and it supports (univariate) series of different
length directly. Additionally, some FFTs can be reused when computing the SBD between
several series; this optimization is also included in the SBD function registered with proxy by
dtwclust.

2.5. Summary of distance measures

The distances described in this section are the ones implemented in dtwclust, which serve as
basis for the algorithms presented in Section 3 and Section 4. Table 1 summarizes the salient
characteristics of these distances.

Distance Computational
cost

Normalized Symmetric Multivariate
support

Support for
length

differences

LB_Keogh Low No No No No

LB_Improved Low No No No No

DTW Medium Can be* Can be* Yes Yes

GAK High Yes Yes Yes Yes

Soft-DTW High Yes Yes Yes Yes

SBD Low Yes Yes No Yes

Table 1: Characteristics of time-series distance measures implemented in dtwclust. Regarding the
cells marked with an asterisk: the DTW distance can be normalized for certain step pat-
terns, and can be symmetric for symmetric step patterns when either no window constraints
are used, or all time-series have the same length if constraints are indeed used.

3. Time-series prototypes

A very important step of time-series clustering has to do with the calculation of so-called
time-series prototypes. It is expected that all series within a cluster are similar to each other,
and one may be interested in trying to define a time-series that effectively summarizes the
most important characteristics of all series in a given cluster. This series is sometimes referred
to as an average series, and prototyping is also sometimes called time-series averaging, but
we will prefer the term “prototyping”, although calling them time-series centroids is also
common.

Computing prototypes is commonly done as a sub-routine of a larger task. In the context
of clustering (see Section 4), partitional procedures rely heavily on the prototyping function,
since the resulting prototypes are used as cluster centroids. Prototyping could even be a pre-
processing step, whereby different samples from the same source can be summarized before
clustering (e.g., for the character trajectories dataset, all trajectories from the same character
can be summarized and then groups of similar characters could be sought), thus reducing the
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amount of data and execution time. Another example is time-series classification based on
nearest-neighbors, which can be optimized by considering only group-prototypes as neighbors
instead of the union of all groups. Nevertheless, it is important to note that the distance
used in the overall task should be congruent with the chosen centroid, e.g. using the DTW
distance for DTW-based prototypes.

The choice of prototyping function is closely related to the chosen distance measure and, in
a similar fashion, it is not simple to know which kind of prototype will be better a priori.
There are several strategies available for time-series prototyping, although due to their high
dimensionality, what exactly constitutes an average time-series is debatable, and some notions
could worsen performance significantly. The following sections will briefly describe some of the
common approaches, which are the ones implemented by default in dtwclust. Nevertheless,
it is also possible to create custom prototyping functions and provide them in the centroid

argument (see Section 8).

3.1. Mean and median

The arithmetic mean is used very often in conjunction with the Euclidean distance, and in
many applications this combination is very competitive, even with multivariate data. How-
ever, because of the structure of time-series, the mean is arguably a poor prototyping choice,
and could even perturb convergence of a clustering algorithm (Petitjean et al. 2011).

Mathematically, the mean simply takes the average of each time-point i across all variables of
the considered time-series. For a cluster C of size N , the (possibly multivariate) time-series
mean µ can be calculated with Equation 14, where xv

c,i is the i-th element of the v-th variable
from the c-th series that belongs to cluster C.

µv
i =

1

N

�

c

xv
c,i, ∀c ∈ C (14)

Following this idea, it is also possible to use the median value across series in C instead of the
mean, although we are not aware if this has been used in the existing literature. Also note
that this prototype is limited to series of equal length and equal amount of variables.

3.2. Partition around medoids

Another very common approach is to use partition around medoids (PAM). A medoid is
simply a representative object from a cluster, in this case also a time-series, whose average
distance to all other objects in the same cluster is minimal. Since the medoid object is always
an element of the original data, PAM is sometimes preferred over mean or median so that
the time-series structure is not altered.

Another possible advantage of PAM is that, since the data does not change, it is possible
to precompute the whole distance matrix once and re-use it on each iteration, and even
across different number of clusters and random repetitions. While this precomputation is not
necessary, it usually saves time overall, so it is done by default by dtwclust. However, this is
not suitable for large datasets since the whole distance matrix has to be allocated at once, so
it is also possible to deactivate this precomputation.

In the implementation included in the package, k series from the data are randomly chosen
as initial centroids. Then the distance between all series and the centroids is calculated (or
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retrieved from the whole distance matrix if it was precomputed), and each series is assigned to
the cluster of its nearest centroid. For each created cluster, the distance between all member
series is computed (if necessary), and the series with minimum sum of distances is chosen as
the new centroid. This continues iteratively until no series change clusters, or the maximum
number of allowed iterations has been exceeded.

3.3. DTW barycenter averaging

The DTW distance is used very often when working with time-series, and thus a prototyping
function based on DTW has also been developed in Petitjean et al. (2011). The procedure
is called DTW barycenter averaging (DBA), and is an iterative, global method. The latter
means that the order in which the series enter the prototyping function does not affect the
outcome. It is available as a standalone function in dtwclust, named simply DBA.

DBA requires a series to be used as reference (centroid), and it usually begins by randomly
selecting one of the series in the data. On each iteration, the DTW alignment between each
series in the cluster C and the centroid is computed. Because of the warping performed in
DTW, it can be that several time-points from a given time-series map to a single time-point
in the centroid series, so for each time-point in the centroid, all the corresponding values
from all series in C are grouped together according to the DTW alignments, and the mean is
computed for each centroid point using the values contained in each group. This is iteratively
repeated until a certain number of iterations are reached, or until convergence is assumed.

The dtwclust implementation of DBA is done in C++ and includes several memory optimiza-
tions. Nevertheless, it is more computationally expensive due to all the DTW calculations
that must be performed. However, it is very competitive when using the DTW distance and,
thanks to DTW itself, it can support series with different length directly, with the caveat that
the length of the resulting prototype will be the same as the length of the reference series that
was initially chosen by the algorithm, and that the symmetric1 or symmetric2 step pattern
should be used.

3.4. Soft-DTW centroid

Thanks to the gradient that can be computed as a by-product of the soft-DTW distance
calculation (see Section 2.3), it is possible to define an objective function (see Equation (4)
in Cuturi and Blondel (2017)) and subsequently minimize it with numerical optimization. In
addition to the smoothing parameter of soft-DTW (γ), the optimization procedure considers
the option of using normalizing weights for the input series, which noticeably alters the result-
ing centroids (see Figure 4 in Cuturi and Blondel (2017)). The clustering and classification
experiments performed by Cuturi and Blondel (2017) showed that using soft-DTW (distance
and centroid) provided quantitatively better results in many scenarios.

3.5. Shape extraction

A recently proposed method to calculate time-series prototypes is termed shape extraction,
and is part of the k-Shape algorithm (see Section 4.2.2) described in Paparrizos and Gra-
vano (2015); in dtwclust, it is implemented in the shape_extraction function. As with the
corresponding SBD (see Section 2.4), the algorithm depends on NCCc, and it first uses it
to match two series optimally. Figure 6 depicts the alignment that is performed using two
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Figure 6: Visualization of the NCCc-based alignment performed on two sample series. After align-
ment, the second (red) series is either truncated and/or prepended/appended with zeros
so that its length matches the first(black) series.

As with DBA, a centroid series is needed, so one is usually randomly chosen from the data. An
exception is when all considered time-series have the same length, in which case no centroid is
needed beforehand. The alignment can be done between series with different length, and since
one of the series is shifted in time, it may be necessary to truncate and prepend or append
zeros to the non-reference series, so that the final length matches that of the reference. This
is because the final step of the algorithm builds a matrix with the matched series (row-wise)
and performs a so-called maximization of Rayleigh Quotient to obtain the final prototype;
see Paparrizos and Gravano (2015) for more details.

The output series of the algorithm must be z-normalized. Thus, the input series as well as the
reference series must also have this normalization. Even though the alignment can be done
between series with different length, it has the same caveat as DBA, namely that the length
of the resulting prototype will depend on the length of the chosen reference. Technically, for
multivariate series, the shape extraction algorithm could be applied for each variable v of all
involved series, but this was not explored by the authors of k-Shape.

3.6. Fuzzy-based prototypes

Even though fuzzy clustering will not be discussed until Section 4.3, it is worth mentioning
here that its most common implementation uses its own centroid function, which works like
a weighted average. Therefore, it will only work with data of equal dimension, and it may
not be suitable to use directly with raw time-series data.

3.7. Summary of prototyping functions

Table 2 summarizes the time-series prototyping functions implemented in dtwclust, including
the distance measure they are based upon, where applicable. It is worth mentioning that,
as will be described in Section 4, the choice of distance and prototyping function is very
important for time-series clustering, and it may be ill-advised to use a distance measure that
does not correspond to the one used by the prototyping function. Using PAM is an exception,
because the medoids are not modified, so any distance can be used to choose a medoid. It is
possible to use custom prototyping functions for time-series clustering (see Section 8), but it
is important to maintain congruence with the chosen distance measure.
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Prototyping function Distance used Algorithm used

PAM — Time-series with minimum
sum of distances to the
other series in the group.

DBA DTW Average of points grouped
according to DTW
alignments.

Soft-DTW centroid Soft-DTW Numerical optimization
using the derivative of
soft-DTW.

Shape extraction SBD Normalized eigenvector of a
matrix created with
SBD-aligned series.

Table 2: Time-series prototyping functions implemented in dtwclust, and their corresponding dis-
tance measures.

4. Time-series clustering algorithms

4.1. Hierarchical clustering

Hierarchical clustering, as its name suggests, is an algorithm that tries to create a hierarchy
of groups in which, as the level in the hierarchy increases, clusters are created by merging
the clusters from the next lower level, such that an ordered sequence of groupings is obtained
(Hastie et al. 2009). In order to decide how the merging is performed, a (dis)similarity
measure between groups should be specified, in addition to the one that is used to calculate
pairwise similarities. However, a specific number of clusters does not need to be specified for
the hierarchy to be created, and the procedure is deterministic, so it will always give the same
result for a chosen set of (dis)similarity measures.

Algorithms for hierarchical clustering can be agglomerative or divisive, with the former being
much more common than the latter (Hastie et al. 2009). In agglomerative procedures, every
member of the data starts in its own cluster, and members are grouped together sequentially
based on the similarity measure until all members are contained in a single cluster. Divisive
procedures do the exact opposite, starting with all data in one cluster and dividing them until
each member is in a singleton. Both strategies suffer from a lack of flexibility, because they
cannot perform adjustments once a split or merger has been done.

The inter-group dissimilarity is also known as linkage. As an example, single linkage takes the
inter-group dissimilarity to be that of the closest (least dissimilar) pair (Hastie et al. 2009).
There are many linkage methods available, although if the data can be “easily” grouped,
they should all provide similar results. In dtwclust, the native R function hclust is used
by default, and all its linkage methods are supported. However, it is possible to use other
clustering functions, albeit with some limitations (see Appendix D).
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The created hierarchy can be visualized as a binary tree where the height of each node is
proportional to the value of the inter-group dissimilarity between its two daughter nodes
(Hastie et al. 2009). Such a plot is called a dendrogram, an example of which can be seen in
Figure 7. These plots can be a useful way of summarizing the whole data in an interpretable
way, although it may be deceptive, as the algorithms impose the hierarchical structure even
if such structure is not inherent to the data (Hastie et al. 2009).
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Figure 7: Sample dendrogram created by using SBD and average linkage.

The dendrogram does not directly imply a certain number of clusters, but one can be induced.
One option is to visually evaluate the dendrogram in order to assess the height at which the
largest change in dissimilarity occurs, consequently cutting the dendrogram at said height and
extracting the clusters that are created. Another option is to specify the number of clusters
that are desired, and cut the dendrogram in such a way that the chosen number is obtained.
In the latter case, several cuts can be made, and validity indices can be used to decide which
value yields better performance (see Section 6).

Once the clusters have been obtained, it may be desirable to use them to create prototypes
(see Section 3). At this point, any suitable prototyping function may be used, but we want
to emphasize that this is not a mandatory step in hierarchical clustering. A complete set of
examples is provided in Appendix D.

Hierarchical clustering has the disadvantage that the whole distance matrix must be calculated
for a given dataset, which in most cases has a time and memory complexity of O(N2) if N

is the total number of objects in the dataset. Thus, hierarchical procedures are usually used
with relatively small datasets.

4.2. Partitional clustering

Partitional clustering is a different strategy used to create partitions. In this case, the data

18



is explicitly assigned to one and only one cluster out of k total clusters. The total number of
desired clusters must be specified beforehand, which can be a limiting factor, although this
can be ameliorated by using validity indices (see Section 6).

Partitional procedures can be stated as combinatorial optimization problems that minimize
the intra-cluster distance while maximizing the inter-cluster distance. However, finding a
global optimum would require enumerating all possible groupings, something which is in-
feasible even for relatively small datasets (Hastie et al. 2009). Therefore, iterative greedy
descent strategies are used instead, which examine a small fraction of the search space until
convergence, but could converge to local optima.

Partitional clustering algorithms commonly work in the following way. First, k centroids are
randomly initialized, usually by choosing k objects from the dataset at random; these are
assigned to individual clusters. The distance between all objects in the data and all centroids
is calculated, and each object is assigned to the cluster of its closest centroid. A prototyping
function is applied to each cluster to update the corresponding centroid. Then, distances
and centroids are updated iteratively until a certain number of iterations have elapsed, or no
object changes clusters any more. It can happen that a cluster becomes empty at a certain
iteration, in which case a new cluster can be reinitialized at random by choosing a new object
from the data (this is what dtwclust does). This tries to maintain the desired amount of
clusters, but can result in instability or divergence in some cases. Perhaps using a different
distance function or a lower value of k can help in those situations.

An optimization that the included centroid functions in dtwclust have is that, on each itera-
tion, the centroid function is only applied to those clusters that changed either by losing or
gaining data objects. Additionally, when PAM centroids are used and the distance matrix
is precomputed, the function simply keeps track of the data indices, how they change, and
which ones are chosen as cluster centroids, so that no data is modified.

Some of the most popular partitional algorithms are k-means and k-medoids (Hastie et al.
2009). These use the Euclidean distance and, respectively, mean or PAM centroids (see
Section 3). Most of the proposed algorithms for time-series clustering use the same basic
strategy while changing the distance and/or centroid function.

Partitional clustering procedures are stochastic due to their random start. Thus, it is common
practice to test different random starts to evaluate several local optima and choose the best
result out of all the repetitions. It tends to produce spherical clusters, but has a lower
complexity, so it can be applied to very large datasets. An example is given in Appendix E.

TADPole clustering

TADPole clustering was proposed in Begum et al. (2015), and is implemented in dtwclust

in the TADPole function. It adopts a relatively new clustering framework and adapts it to
time-series clustering with the DTW distance. Because of the way the algorithm works, it
can be considered a kind of PAM clustering, since the centroids are always elements of the
data. However, this algorithm is deterministic depending on the value of a cutoff distance
(dc).

The algorithm first uses the DTW distance’s upper and lower bounds (Euclidean distance and
LB_Keogh respectively) to find series with many close neighbors (in DTW space). Anything
below dc is considered a neighbor. Aided with this information, the algorithm then tries to
prune as many DTW calculations as possible in order to accelerate the clustering procedure.
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The series that lie in dense areas (i.e., that have lots of neighbors) are taken as cluster
centroids. For a more detailed explanation of each step, please refer to Begum et al. (2015).

TADPole relies on the DTW bounds, which are only defined for time-series of equal length.
Consequently, it requires a Sakoe-Chiba constraint. Furthermore, it should be noted that the
Euclidean distance is only valid as a DTW upper bound if the symmetric1 step pattern is
used (see Figure 3). Finally, the allocation of several distance matrices is required, making
it similar to hierarchical procedures memory-wise, so its applicability is limited to relatively
small datasets.

k-Shape clustering

The k-Shape clustering algorithm was developed by Paparrizos and Gravano (2015). It is a
partitional clustering algorithm with a custom distance measure (SBD; see Section 2.4), as
well as a custom centroid function (shape extraction; see Section 3.5). It is also stochastic in
nature, and requires z-normalization in its default definition.

Both the distance and centroid functions were implemented in dtwclust as individual func-
tions, because that allows the user to combine them and use them independently with other
algorithms. In order to use this clustering algorithm, the main clustering function (tsclust)
should be called with SBD as the distance measure, shape extraction as the centroid function,
and z-normalization as the preprocessing step.

4.3. Fuzzy clustering

The previous procedures result in what is known as a crisp or hard partition, although hi-
erarchical clustering only indirectly when the dendrogram is cut. In crisp partitions, each
member of the data belongs to only one cluster, and clusters are mutually exclusive. By
contrast, fuzzy clustering creates a fuzzy or soft partition in which each member belongs to
each cluster to a certain degree. For each member of the data, the degree of belongingness is
constrained so that its sum equals 1 across all clusters. Therefore, if there are N objects in
the data and k clusters are desired, an N × k membership matrix u can be created, where all
the rows must sum to 1 (note that some authors use the transposed version of u).

One of the most widely used versions of the algorithm is fuzzy c-means, which is described
in Bezdek (1981), and is implemented in dtwclust. It tries to create a fuzzy partition by
minimizing the function in Equation 15a under the constraints given in Equation 15b. The
membership matrix u is initialized randomly in such a way that the constraints are fulfilled.
The exponent m is known as the fuzziness exponent and should be greater than 1, with a
common default value of 2. Originally, the distance dp,c was defined as the Euclidean distance
between the p-th object and the c-th fuzzy centroid, so that the objective was written in terms
of the squared Euclidean distance. However, the definition of this distance can change (see,
e.g., D’Urso and Maharaj (2009)), and, in contrast to other R packages that implement
fuzzy clustering, doing so in dtwclust is straightforward, since it only entails registering the
corresponding distance function with proxy.
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The centroid function used by fuzzy c-means calculates the mean for each point across all
members in the data, weighted by their degree of belongingness. If we define µc,i as the i-th
element of the c-th centroid, and xp,i as the i-th data-point of the p-th object in the data, the
centroid calculation can be expressed with Equation 16. It follows that all members of the
data must have the same dimensionality in this case. As with the normal mean prototype,
this centroid function might not be suitable for time-series, so it might be better to first apply
a transformation to the data and cluster in the resulting space. For instance, D’Urso and
Maharaj (2009) used the autocorrelation function to extract a certain amount of coefficients
from time-series, resulting in data with equal dimensionality, and performed fuzzy clustering
on the autocorrelation coefficients. See Appendix F for an example.

µc,i =

�N
p=1 um

p,cxp,i
�N

p=1 um
p,c

(16)

Another option is to use fuzzy c-medoids (FCMdd) as the centroid function (Krishnapuram
et al. 2001; Izakian et al. 2015), whereby the centroids are selected according to Equation 17.
Similar to PAM, this centroid function does not alter the data, so the centroids are always
elements of the original set, and series of different length can be supported (as long as the
distance function also supports this).

µc = xq (17a)

q = arg min
N
�

p=1

um
p,cd

2
p,c (17b)

Finally, the objective is minimized iteratively by applying Equation 18 a certain number
of iterations or until convergence is assumed. In Equation 18, dp,c represents the distance
between the p-th member of the data and the c-th fuzzy centroid, so great care must be given
to the shown indices p, c and q. It is clear from the equation that this update only depends
on the chosen fuzziness exponent and the distance measure.
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(18)

Technically, fuzzy clustering can be repeated several times with different random starts, since
u is initialized randomly. However, comparing the results would be difficult, since it could
be that the values within u are shuffled but the overall fuzzy grouping remains the same, or
changes very slightly, once the algorithm has converged.
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Note that it is straightforward to change the fuzzy partition to a crisp one by taking the
argument of the row-wise maxima of u or of the row-wise minima of dp,c for all p, and
assigning the respective series to the corresponding cluster only.

5. Parallel computation

Using parallelization is not something that is commonly explored explicitly in the literature,
but it can be extremely useful in practical applications. In the case of time-series clustering,
parallel computation can result in a very significant reduction in execution times.

There are some important considerations when using parallelization. First of all, there is
a basic distinction between multi-process and multi-threaded parallelization. The optimal
amount of parallel workers, i.e., subprocesses that can each handle a given task, is dependent
on the computer processor that is being used and the number of physical processing cores
and logical threads it can handle. Each worker may require additional RAM, and R usually
only works with data that is loaded on RAM. Finally, the overhead introduced for the orches-
tration of parallelization may be too large when compared to the amount of time needed to
complete each task, which is especially true for relatively simple workloads. Therefore, using
parallelization does not guarantee faster execution times, and should be tested in the context
of a specific application.

Handling parallelization has been greatly simplified in R by different software packages. The
implementations done in dtwclust use the foreach package (Revolution Analytics and Weston
2017) for multi-processing, and RcppParallel for multi-threading (Allaire et al. 2018). See
Appendix G for a specific example of multi-processing, and refer to the parallelization vignette
for additional information.

The documentation for each function specifies if they use parallelization and how, but in
general, all distances included with dtwclust use multi-threading, and multi-processing is
leveraged during clustering. Before describing the different cases where dtwclust can take
advantage of multi-processing, it should also be noted that, by default, there is only one level
of parallelization in that case. This means that all tasks performed by a given parallel worker’s
process are done sequentially, and they cannot take advantage of further parallelization even
if there are workers available.

When performing partitional clustering, it is common to do many repetitions with different
random seeds to account for different starting points. When many repetitions are specified
directly to tsclust, the package assigns each repetition to a different worker. This is also the
case when the function is called with several values of k, i.e., when different number of clusters
are to be tested; this is detected in partitional, fuzzy and TADPole clustering. The included
implementation of the TADPole algorithm also supports multi-processing for different values
of the cutoff distance.

In the context of partitional clustering, calculating time-series prototypes is something that
is done many times each iteration. Since clusters are mutually exclusive, the prototype
calculations can be executed in parallel, but this is only worth it if the calculations are time
consuming. Therefore, in dtwclust, only DBA, shape extraction, and the soft-DTW centroid
attempt to do multi-processing when used in partitional clustering.
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6. Cluster evaluation

Clustering is commonly considered to be an unsupervised procedure, so evaluating its per-
formance can be rather subjective. However, a great amount of effort has been invested in
trying to standardize cluster evaluation metrics by using cluster validity indices (CVIs). Many
indices have been developed over the years, and they form a research area of their own, but
there are some overall details that are worth mentioning. The discussion here is based on Ar-
belaitz et al. (2013) and Wang and Zhang (2007), which provide a much more comprehensive
overview.

In general, CVIs can be either tailored to crisp or fuzzy partitions. For the former, CVIs can
be classified as internal, external or relative depending on how they are computed. Focusing
on the first two, the crucial difference is that internal CVIs only consider the partitioned data
and try to define a measure of cluster purity, whereas external CVIs compare the obtained
partition to the correct one. Thus, external CVIs can only be used if the ground truth is
known.

Note that even though a fuzzy partition can be changed into a crisp one, making it compatible
with many of the existing “crisp” CVIs, there are also fuzzy CVIs tailored specifically to fuzzy
clustering, and these may be more suitable in those situations. Fuzzy partitions usually have
no ground truth associated with them, but there are exceptions depending on the task’s goal
(Lei et al. 2017).

Each index defines its range of values and whether they are to be minimized or maximized. In
many cases, these CVIs can be used to evaluate the result of a clustering algorithm regardless
of how the clustering works internally, or how the partition came to be. The Silhouette index
(Rousseeuw 1987) is an example of an internal CVI, whereas the Variation of Information
(Meilă 2003) is an external CVI.

Several of the best-performing CVIs according to Wang and Zhang (2007), Arbelaitz et al.
(2013), and Lei et al. (2017) are implemented in dtwclust in the cvi function. Table 3 specifies
which ones are available and some of their particularities.

There are some advantages and corresponding caveats with respect to the dtwclust implemen-
tations. Many internal CVIs require additional distance calculations, and some also compute
so-called global centroids (a centroid that uses the whole dataset), which were calculated with,
respectively, the Euclidean distance and a mean centroid in the original definition. The im-
plementations in dtwclust change this, making use of whatever distance/centroid was utilized
during clustering without further intervention from the user, so it is possible to leverage the
distance and centroid functions that support time-series. Nevertheless, many CVIs assume
symmetric distance functions, so the cvi function warns the user when this is not fulfilled.

Knowing which CVI will work best cannot be determined a priori, so they should be tested
for each specific application. Many CVIs can be utilized and compared to each other, maybe
using a majority vote to decide on a final result, but there is no best CVI, and it is important
to conceptually understand what a given CVI measures in order to appropriately interpret
its results. Furthermore, it should be noted that, due to additional distance and/or centroid
calculations, computing CVIs can be prohibitive in some cases. For example, the Silhouette
index effectively needs the whole distance matrix between the original series to be calculated.

CVIs are not the only way to evaluate clustering results. The clue package (Hornik 2005, 2019)
includes its own extensible framework for evaluation of cluster ensembles. It does not directly

23



CVI Internal or
external

Crisp or fuzzy
partitions

Minimized or
Maximized

Considerations

Rand External Crisp Maximized —

Adjusted rand External Crisp Maximized —

Jaccard External Crisp Maximized —

Fowlkes-Mallows External Crisp Maximized —

Variation of
information

External Crisp Minimized —

Soft rand External Fuzzy Maximized —

Soft adjusted rand External Fuzzy Maximized —

Soft variation of
information

External Fuzzy Minimized —

Soft normalized
mutual information

External Fuzzy Maximized —

Silhouette Internal Crisp Maximized Requires the whole
cross-distance

matrix.

Dunn Internal Crisp Maximized Requires the whole
cross-distance

matrix.

COP Internal Crisp Minimized Requires the whole
cross-distance

matrix.

Davies-Bouldin Internal Crisp Minimized Calculates distances
to the computed
cluster centroids.

Modified
Davies-Bouldin
(DB*)

Internal Crisp Minimized Calculates distances
to the computed
cluster centroids.

Calinski-Harabasz Internal Crisp Maximized Calculates a global
centroid.

Score function Internal Crisp Maximized Calculates a global
centroid.

MPC Internal Fuzzy Maximized —

K Internal Fuzzy Minimized Calculates a global
centroid.

T Internal Fuzzy Minimized —

SC Internal Fuzzy Maximized Calculates a global
centroid.

PBMF Internal Fuzzy Maximized Calculates a global
centroid.

Table 3: Cluster validity indices included in dtwclust. Internal fuzzy CVIs use the nomenclature
from Wang and Zhang (2007).
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deal with the clustering algorithms themselves, rather with ways of quantifying agreement
and consensus between several clustering results. As such, it is directly compatible with the
results from dtwclust, since it does not care how a partition/hierarchy was created. Support
for the clue package framework is included, see Appendix H for more complete examples.

7. Comparing clustering algorithms with dtwclust

As we have seen, there are several aspects that must be considered for time-series clustering.
Some examples are:

• Pre-processing of data, possibly changing the decision space.

• Type of clustering (partitional, hierarchical, etc.).

• Number of desired or expected clusters.

• Choice of distance measure, along with its parameterization.

• Choice of centroid function and its parameterization. This may also depend on the
chosen distance.

• Evaluation of clustering results.

• Computational cost, which depends not only on the size of the dataset, but also on the
complexity of the aforementioned aspects.

In order to facilitate more laborious workflows, dtwclust includes the compare_clusterings

function which, along with its helper functions, optimizes the way the different clustering
algorithms can be executed. Its main advantage is that it leverages parallelization. In order
to avoid data copies and communication overhead in these scenarios, compare_clusterings is
coded in a way that, by default, less data is returned from the parallel processes. Nevertheless,
as is shown in Appendix I, the results can be fully re-created in the main process on demand.
With this infrastructure, it is possible to cover the whole clustering workflow with dtwclust.

8. Package extensibility

All of the clustering algorithms implemented in dtwclust have something in common: they
depend on a distance measure between time-series. By leveraging the proxy package, any
suitable distance function can be used (see Appendix B). This fact alone already overcomes
a severe limitation that other packages have, such as flexclust (Leisch 2006).

Another important aspect of the clustering procedure is the extraction of centroids or time-
series prototypes. The most common ones are already implemented in dtwclust, but it is also
possible to provide custom centroid algorithms (see Appendix J). Because of this, it would
even be possible to implement a custom fuzzy clustering algorithm if desired.

As previously mentioned, most time-series clustering algorithms use existing functions and
only modify the distance and centroid functions to an appropriate one. On the other hand,
a lot of work has also been devoted to time-series representation. However, performing data
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transformations can be done independently of dtwclust, or provided as a preprocessing func-
tion if desired (which might be more convenient if the predict generic is to be used).

Other clustering algorithms that make significant modifications would be harder to integrate
by the user. However, it would still be possible, thanks to the open-source nature of R and
the fact that dtwclust is hosted on GitHub2.

9. Conclusion

In this manuscript a general overview of shape-based time-series clustering was provided. This
included a lot of information related to the DTW distance and its corresponding optimizations,
such as constraints and lower bounding techniques. At the same time, the dtwclust package
for R was described and showcased, demonstrating how it can be used to test and compare
different procedures efficiently and unbiasedly by providing a common infrastructure.

The package implements several different routines, most of which are related to the DTW
algorithm. Nevertheless, its modular structure enables the user to customize and complement
the included functionality by means of custom algorithms or even other R packages, as it was
the case with TSdist, cluster and clue. These packages are more specialized, dealing with
specific tasks (respectively: distance calculations, hierarchical clustering, cluster evaluation),
and they are more difficult to extend. By contrast, dtwclust provides a more general purpose
clustering workflow, having enough flexibility to allow for the most common approaches to
be used.

The goal of this manuscript was not to give a comprehensive and thorough explanation of all
the discussed algorithms, but rather to provide information related to what has been done in
the literature, including some more recent propositions, so that the reader knows where to
start looking for further information, as well as what can or cannot be done with dtwclust.

Choosing a specific clustering algorithm for a given application is not an easy task. There are
many factors to take into account and it is not possible to know a priori which one will yield
the best results. The included implementations try to use the native (and heavily optimized)
R functions as much as possible, relying on compiled code where needed, so we hope that, if
time-series clustering is required, dtwclust can serve as a starting point.

2https://github.com/asardaes/dtwclust
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A. Technical notes

After installation, the package and the sample data can be loaded and attached with the
following code.

library("dtwclust")

data("uciCT")

The main clustering function is tsclust. It returns objects of type S4, which are one way
in which R implements classes. The formal elements of the class are called slots, and can
be accessed with the @ operator (instead of the usual $). The documentation of the slots
can be found with ?"TSClusters-class", and the methods with ?"TSClusters-methods".
Controls are set via intermediary functions whose documentation can be found by typing
?"tsclust-controls". The function compare_clusterings and its helper functions can be
used to execute many different clustering configurations in a convenient way. The tsclust

function is used for the calculations. A series of examples are included in the documentation
of the function.

The random number generator of R is set to L’Ecuyer-CMRG when dtwclust is attached3 in
an attempt to preserve reproducibility. The user is free to change this afterwards by using
the RNGkind function.

This manuscript summarizes some of the theory behind the algorithms. However, the docu-
mentation of the different functions and the other vignettes4 include additional information
regarding usability, and should also be considered when using the package.

B. Using the proxy package

The proxy package is one of the main dependencies of dtwclust. It aggregates all its measures
in a database object called pr_DB. This has the advantage that all registered functions can be
used with the proxy::dist function, which results in a high level of consistency. Moreover,
this also means that distance measures from dtwclust, other R packages, or user-created can
be exploited in different applications, even those that are not directly related to time-series
clustering. All the distances mentioned in this manuscript are registered with proxy when
dtwclust is attached in R.

It is important to note that the proxy::dist function parses all matrix-like objects row-wise,
meaning that, in the context of time-series clustering, it would consider the rows of a matrix
or data frame as the individual time-series. Matrices and data frames cannot contain series
with different length, something that can be circumvented by encapsulating the series in a list,
each element of the list being a single series. Internally, dtwclust coerces all provided data to
a list, and it parses both matrices and data frames row-wise (see function tslist). Moreover,
lists enable support for multivariate series, where a single multivariate time-series should be
provided as a matrix where time spans the rows and the variables span the columns. Thus,
several multivariate time-series should be provided as a list of matrices to ensure that they
are correctly detected. Note, however, that not all distance and centroid functions support
multivariate time-series.

3Via the library function. Loading without attaching the package would not change the generator.
4https://cran.r-project.org/web/packages/dtwclust/vignettes/
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As a first example, the autocorrelation-based distance from the TSclust package (Montero
and Vilar 2014) is registered with proxy so that it can be used either directly or with dtwclust.

require("TSclust")

proxy::pr_DB$set_entry(FUN = diss.ACF, names = c("ACFD"),

loop = TRUE, type = "metric", distance = TRUE,

description = "Autocorrelation-based distance")

In time-series clustering and classification, the dissimilarity measure plays a crucial role. The
TSdist package (Mori et al. 2016) aggregates a large amount of distance measures specifically
tailored to time-series. Thanks to the way dtwclust is structured, making use of any of those
distances is extremely simple, as the previous example showed.

The user is also free to modify or create distance functions and use them. For instance, a
wrapper to the dtw function in dtw can be created in order to use the asymmetric step pattern
and the normalized distance.

# Normalized DTW

ndtw <- function(x, y, ...) {

dtw(x, y, ...,

step.pattern = asymmetric,

distance.only = TRUE)$normalizedDistance

}

# Register the distance with proxy

proxy::pr_DB$set_entry(FUN = ndtw, names = c("nDTW"),

loop = TRUE, type = "metric", distance = TRUE,

description = "Normalized, asymmetric DTW")

# Partitional clustering

tsclust(CharTraj[1L:10L], k = 2L,

distance = "nDTW", seed = 838)

## partitional clustering with 2 clusters

## Using ndtw distance

## Using pam centroids

##

## Time required for analysis:

## user system elapsed

## 0.403 0.000 0.403

##

## Cluster sizes with average intra-cluster distance:

##

## size av_dist

## 1 2 0.03788899

## 2 8 0.04946588
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C. Finding nearest neighbors in DTW space

In the following example, the nearest neighbors in DTW space of the first 5 time-series are
found in two different ways, first calculating all DTW distances, and then using dtw_lb to
leverage LB_Improved. Since the LB is only defined for series of equal length, reinterpolation
is performed. For such a small dataset, using dtw_lb instead of dtw_basic is probably slower.

# Reinterpolate to same length

data <- reinterpolate(CharTraj, new.length = max(lengths(CharTraj)))

# Calculate the DTW distances between all elements

system.time(D1 <- proxy::dist(data[1L:5L], data[6L:100L],

method = "dtw_basic",

window.size = 20L))

## user system elapsed

## 0.06 0.00 0.06

# Nearest neighbors

NN1 <- apply(D1, 1L, which.min)

# Calculate the distance matrix with dtw_lb

system.time(D2 <- dtw_lb(data[1L:5L], data[6L:100L],

window.size = 20L))

## user system elapsed

## 0.009 0.000 0.009

# Nearest neighbors

NN2 <- apply(D2, 1L, which.min)

# Same results?

all(NN1 == NN2)

## [1] TRUE

Finding nearest neighbors can be used for time-series classification. A very basic but surpris-
ingly competitive algorithm is the 1-nearest-neighbor classifier, which could be implemented
as follows.

# Exclude a series as an example

database <- data[-100L]

classify_series <- function(query) {

d <- dtw_lb(database, query, window.size = 18L, nn.margin = 2L)
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# Return label of nearest neighbor

CharTrajLabels[which.min(d)]

}

# 100-th series is a Z character

classify_series(data[100L])

## [1] Z

## Levels: A B C D E G H L M N O P Q R S U V W Y Z

D. Hierarchical clustering examples

In the following call to tsclust, specifying the value of k indicates the number of desired
clusters, so that the cutree function is called internally. Additionally, the shape extraction
function is provided in the centroid argument so that, once the k clusters are obtained, their
prototypes are extracted. Therefore, the series are z-normalized by means of the zscore

function. The seed is provided because of the randomness in shape extraction when choosing
a reference series (see Section 3.5).

hc_sbd <- tsclust(CharTraj, type = "h", k = 20L,

preproc = zscore, seed = 899,

distance = "sbd", centroid = shape_extraction,

control = hierarchical_control(method = "average"))

# By default, the dendrogram is plotted in hierarchical clustering

plot(hc_sbd)
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Figure 8: Resulting dendrogram after hierarchical clustering.
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# The series and the obtained prototypes can be plotted too

plot(hc_sbd, type = "sc")
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Figure 9: Obtained clusters and their respective prototypes (centroids) shown as dashed lines.

# Focusing on the first cluster

plot(hc_sbd, type = "series", clus = 1L)

plot(hc_sbd, type = "centroids", clus = 1L)

1

0 50 100 150

−2

−1

0

1

2

t

va
lu

e

Clusters' members (z−normalized)

(a) Series in cluster 1

1

0 50 100 150

−1

0

1

2

t

va
lu

e

Clusters' members (z−normalized)

(b) Prototype obtained by applying shape extrac-
tion to cluster 1

Figure 10: Side by side comparison of the series in the first cluster and the obtained prototype.

This exemplifies the advantage of having independent functions for the SBD and shape ex-
traction algorithms. Even though they were originally proposed for partitional clustering,
using them in hierarchical procedures is also possible.
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It is also possible to use other functions for hierarchical procedures by providing them in the
method argument. However, there are two important considerations: such a function will
receive the lower triangular part of the distance matrix, and it should return a classed object
that supports coercion to hclust objects via the as.hclust generic. The functions in the
cluster package (Maechler et al. 2019) follow this convention, so, as an example, using them
in conjunction with dtwclust is straightforward.

require("cluster")

tsclust(CharTraj[1L:20L], type = "h", k = 4L,

distance = "dtw_basic",

control = hierarchical_control(method = diana),

args = tsclust_args(dist = list(window.size = 18L)))

## hierarchical clustering with 4 clusters

## Using dtw_basic distance

## Using PAM (Hierarchical) centroids

## Using method diana

##

## Time required for analysis:

## user system elapsed

## 0.048 0.000 0.030

##

## Cluster sizes with average intra-cluster distance:

##

## size av_dist

## 1 5 5.685692

## 2 5 7.231309

## 3 5 7.622881

## 4 5 15.038478

E. Partitional clustering examples

In this example, four different partitional clustering strategies are used: one uses the DTW2

distance and DBA centroids, then dtw_lb and DBA centroids are used (which provides the
same results as using the DTW distance directly; see Section 2.1.2), then k-Shape, and finally
TADPole. The results are evaluated using Variation of Information (see Section 6), with
lower numbers indicating better results. Note that z-normalization is applied by default
when selecting shape extraction as the centroid function. For consistency, all algorithms used
the reinterpolated and normalized data, since some algorithms require series of equal length.
A subset of the data is used for speed. The outcome should not be generalized to other data,
and normalization/reinterpolation may actually worsen some of the algorithms’ performance.

# Reinterpolate to same length

data <- reinterpolate(CharTraj, new.length = max(lengths(CharTraj)))
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# z-normalization

data <- zscore(data[60L:100L])

pc_dtw <- tsclust(data, k = 4L,

distance = "dtw_basic", centroid = "dba",

trace = TRUE, seed = 8,

norm = "L2", window.size = 20L,

args = tsclust_args(cent = list(trace = TRUE)))

## Iteration 1: Changes / Distsum = 41 / 274.5699

## DBA Iteration: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10,

## 11, 12, 13, 14, 15, 16, 17, 18, 19, 20,

## Did not 'converge'

## DBA Iteration: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10,

## 11, 12, 13, 14, 15, 16, 17, 18, 19, 20,

## Did not 'converge'

## DBA Iteration: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10,

## 11, 12 - Converged!

## DBA Iteration: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10,

## 11, 12, 13, 14, 15, 16, 17, 18, 19, 20,

## Did not 'converge'

## Iteration 2: Changes / Distsum = 0 / 173.0314

##

## Elapsed time is 0.099 seconds.

pc_dtwlb <- tsclust(data, k = 4L,

distance = "dtw_lb", centroid = "dba",

trace = TRUE, seed = 8,

norm = "L2", window.size = 20L,

control = partitional_control(pam.precompute = FALSE),

args = tsclust_args(cent = list(trace = TRUE)))

## Iteration 1: Changes / Distsum = 41 / 274.5699

## DBA Iteration: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10,

## 11, 12, 13, 14, 15, 16, 17, 18, 19, 20,

## Did not 'converge'

## DBA Iteration: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10,

## 11, 12, 13, 14, 15, 16, 17, 18, 19, 20,

## Did not 'converge'

## DBA Iteration: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10,

## 11, 12 - Converged!

## DBA Iteration: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10,

## 11, 12, 13, 14, 15, 16, 17, 18, 19, 20,

## Did not 'converge'

## Iteration 2: Changes / Distsum = 0 / 173.0314

##
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## Elapsed time is 0.087 seconds.

pc_ks <- tsclust(data, k = 4L,

distance = "sbd", centroid = "shape",

seed = 8, trace = TRUE)

## Iteration 1: Changes / Distsum = 41 / 8.625422

## Iteration 2: Changes / Distsum = 8 / 6.107082

## Iteration 3: Changes / Distsum = 3 / 5.374779

## Iteration 4: Changes / Distsum = 2 / 5.019199

## Iteration 5: Changes / Distsum = 2 / 4.89067

## Iteration 6: Changes / Distsum = 3 / 4.696871

## Iteration 7: Changes / Distsum = 2 / 4.492085

## Iteration 8: Changes / Distsum = 0 / 4.322737

##

## Elapsed time is 0.39 seconds.

pc_tp <- tsclust(data, k = 4L, type = "t",

seed = 8, trace = TRUE,

control = tadpole_control(dc = 1.5,

window.size = 20L))

##

## Entering TADPole...

##

## Computing lower and upper bound matrices

## Pruning during local density calculation

## Pruning during nearest-neighbor distance calculation (phase 1)

## Pruning during nearest-neighbor distance calculation (phase 2)

## Pruning percentage = 62.1%

## Performing cluster assignment

##

## TADPole completed for k = 4 & dc = 1.5

##

## Elapsed time is 0.047 seconds.

sapply(list(DTW = pc_dtw, DTW_LB = pc_dtwlb, kShape = pc_ks, TADPole = pc_tp),

cvi, b = CharTrajLabels[60L:100L], type = "VI")

## DTW.VI DTW_LB.VI kShape.VI TADPole.VI

## 0.5017081 0.5017081 0.4353306 0.4901096
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F. Fuzzy clustering example

This example performs autocorrelation-based fuzzy clustering as proposed by D’Urso and
Maharaj (2009). Using the autocorrelation function can be used to overcome the problem of
time-series with different length. Note, however, that this essentially changes the clustering
space, using autocorrelation coefficients instead of the time-series themselves.

# Calculate autocorrelation up to 50th lag

acf_fun <- function(series, ...) {

lapply(series, function(x) {

as.numeric(acf(x, lag.max = 50, plot = FALSE)$acf)

})

}

# Fuzzy c-means

fc <- tsclust(CharTraj[1:20], type = "f", k = 4L,

preproc = acf_fun, distance = "L2",

seed = 42)

# Fuzzy membership matrix

fc@fcluster

## cluster_1 cluster_2 cluster_3 cluster_4

## A.V1 0.944079794 0.010596054 0.020895926 0.0244282262

## A.V2 0.973024707 0.004558053 0.009814713 0.0126025278

## A.V3 0.910457782 0.013363454 0.026818391 0.0493603740

## A.V4 0.487954179 0.212700292 0.219111649 0.0802338802

## A.V5 0.557762811 0.172923239 0.188579412 0.0807345380

## B.V1 0.128665544 0.034803979 0.082738850 0.7537916278

## B.V2 0.010999524 0.002277317 0.004997756 0.9817254027

## B.V3 0.197222739 0.033052784 0.061935472 0.7077890056

## B.V4 0.166409909 0.031366546 0.050323544 0.7519000007

## B.V5 0.427121633 0.235092628 0.187510917 0.1502748225

## C.V1 0.311652169 0.047492672 0.197978128 0.4428770302

## C.V2 0.007458354 0.002748052 0.986187858 0.0036057365

## C.V3 0.075206881 0.051338895 0.840850637 0.0326035878

## C.V4 0.340863672 0.055549042 0.357239701 0.2463475850

## C.V5 0.015607418 0.006151640 0.970146090 0.0080948526

## D.V1 0.017714824 0.958605028 0.016256793 0.0074233544

## D.V2 0.047929862 0.903236104 0.030495920 0.0183381136

## D.V3 0.002225743 0.994942451 0.001865065 0.0009667418

## D.V4 0.004954758 0.988846881 0.004040801 0.0021575597

## D.V5 0.018867912 0.954708141 0.017683168 0.0087407796

# Are constraints fulfilled?

all.equal(rep(1, 20), rowSums(fc@fcluster), check.attributes = FALSE)

## [1] TRUE
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# Plot crisp partition in the original space

plot(fc, series = CharTraj[1:20], type = "series")
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Figure 11: Visualization of the clusters that would result from changing the fuzzy partition to a
crisp one. Note that the original time-series are used, so the centroids are not shown,
since the centroids are made of autocorrelation coefficients.

G. Using the doParallel package for parallel computation

One way of using parallelization with R and foreach is by means of the doParallel package
(Microsoft Corporation and Weston 2018). It provides a great level of abstraction so that
users can easily configure a parallel backend which can be used by dtwclust. The example
below does the backend registration and calls tsclust, returning to sequential computation
after it finishes. It only uses 2 parallel workers, but more can be configured depending on
each processor (see function detectCores in R). Refer to dtwclust’s parallelization vignette
for more information.

require("doParallel")

# Create parallel workers

workers <- makeCluster(2L)

# Preload dtwclust in each worker; not necessary but useful

invisible(clusterEvalQ(workers, library("dtwclust")))

# Register the backend; this step MUST be done

registerDoParallel(workers)
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# Backend detected automatically

pc_par <- tsclust(CharTraj[1L:20L], k = 4L,

distance = "dtw_basic", centroid = "dba",

window.size = 15L, seed = 938,

control = partitional_control(nrep = 2L))

# Stop parallel workers

stopCluster(workers)

# Go back to sequential computation

registerDoSEQ()

H. Cluster evaluation examples

The easiest way to evaluate clustering results is with the cvi function, which supports both
internal and external CVIs (in case the ground truth is known). In the following example,
different numbers of clusters are computed and, using internal CVIs, it is possible to assess
which one resulted in a partition with more “purity”. The majority of indices suggest using
k = 4 in this case.

# subset

data <- CharTraj[1L:20L]

pc_k <- tsclust(data, k = 3L:5L,

distance = "dtw_basic", centroid = "pam",

seed = 94L)

names(pc_k) <- paste0("k_", 3L:5L)

sapply(pc_k, cvi, type = "internal")

## k_3 k_4 k_5

## Sil 6.897035e-01 7.295148e-01 6.726453e-01

## SF 1.105005e-11 1.345888e-10 1.074494e-10

## CH 2.375816e+01 2.873765e+01 2.207096e+01

## DB 4.141004e-01 3.225955e-01 2.858009e-01

## DBstar 4.799175e-01 4.998963e-01 7.029138e-01

## D 1.054228e+00 7.078230e-01 4.430916e-01

## COP 1.176921e-01 7.768459e-02 7.153216e-02

If we choose the value of k = 4, we could then compare results among different random
repetitions with help of the clue package (or with CVIs again).

require("clue")

pc_4 <- tsclust(data, type = "p", k = 4L,

distance = "dtw_basic", centroid = "pam",

control = partitional_control(nrep = 5L),

seed = 95L)
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names(pc_4) <- paste0("r_", 1L:5L)

pc_4 <- cl_ensemble(list = pc_4)

cl_dissimilarity(pc_4)

## Dissimilarities using minimal Euclidean membership distance:

## r_1 r_2 r_3 r_4

## r_2 3.464102

## r_3 0.000000 3.464102

## r_4 0.000000 3.464102 0.000000

## r_5 0.000000 3.464102 0.000000 0.000000

# Confusion matrix

table(Medoid = cl_class_ids(cl_medoid(pc_4)),

"True Classes" = rep(c(4L, 3L, 1L, 2L), each = 5L))

## True Classes

## Medoid 1 2 3 4

## 1 5 0 0 0

## 2 0 5 0 0

## 3 0 0 5 0

## 4 0 0 0 5

The same could be done for hierarchical procedures, as the next example shows. All linkage
methods yielded the same results.

hclust_methods <- c("single", "complete", "average", "mcquitty")

hc <- tsclust(data, type = "h", k = 4L,

control = hierarchical_control(method = hclust_methods,

distmat = pc_4[[1L]]@distmat))

names(hc) <- hclust_methods

hc <- cl_ensemble(list = hc)

cl_dissimilarity(hc)

## Dissimilarities using minimal Euclidean membership distance:

## single complete average

## complete 0

## average 0 0

## mcquitty 0 0 0

I. Compare clusterings example

The configuration is specified with two helper functions: compare_clusterings_configs

and pdc_configs. It tests partitional clustering with DTW distance and DBA centroids,
exploring different values for window size and norm. The value of the window size can have a

41



very significant effect on clustering quality (Dau et al. 2016)5, but there is no single size that
performs best on all datasets, so it is important to assess its effect on each specific case.

Since the ground truth is known in this scenario, an external CVI is chosen for evaluation: the
adjusted Rand index. The cvi_evaluators function generates functions that can be passed
to compare_clusterings which, internally, use the cvi function (see Section 6).

cfg <- compare_clusterings_configs(

types = "partitional",

k = 20L,

controls = list(

partitional = partitional_control(

iter.max = 20L

)

),

distances = pdc_configs(

"distance",

partitional = list(

dtw_basic = list(

window.size = seq(from = 10L, to = 30L, by = 5L),

norm = c("L1", "L2")

)

)

),

centroids = pdc_configs(

"centroid",

share.config = c("p"),

dba = list(

window.size = seq(from = 10L, to = 30L, by = 5L),

norm = c("L1", "L2")

)

),

no.expand = c(

"window.size",

"norm"

)

)

evaluators <- cvi_evaluators("ARI", ground.truth = CharTrajLabels)

comparison <- compare_clusterings(CharTraj, types = "partitional",

configs = cfg, seed = 8L,

score.clus = evaluators$score,

pick.clus = evaluators$pick)

5The strategy presented in this reference is also included in dtwclust in the ssdtwclust function, and it is
implemented by leveraging compare_clusterings.
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# some rows and columns from the results data frame

head(comparison$results$partitional[, c("distance",

"centroid",

"window.size_distance",

"norm_distance",

"ARI")])

## distance centroid window.size_distance norm_distance ARI

## 1 dtw_basic dba 10 L1 0.6021905

## 2 dtw_basic dba 10 L2 0.6589223

## 3 dtw_basic dba 15 L1 0.5306598

## 4 dtw_basic dba 15 L2 0.4733479

## 5 dtw_basic dba 20 L1 0.4474698

## 6 dtw_basic dba 20 L2 0.5840729

Based on the ARI, one of the configurations was picked as the best one, and it is possible to
obtain the clustering object by calling repeat_clustering:

clusters <- repeat_clustering(CharTraj, comparison, comparison$pick$config_id)

matrix(clusters@cluster, ncol = 5L, byrow = TRUE)

## [,1] [,2] [,3] [,4] [,5]

## [1,] 5 5 5 5 5

## [2,] 7 7 7 7 7

## [3,] 18 18 18 18 18

## [4,] 15 15 15 15 15

## [5,] 17 17 17 17 17

## [6,] 4 4 4 4 9

## [7,] 2 2 2 2 2

## [8,] 3 3 3 3 11

## [9,] 6 6 6 6 6

## [10,] 20 20 20 20 20

## [11,] 10 10 10 10 10

## [12,] 10 19 19 19 19

## [13,] 20 20 20 20 12

## [14,] 14 8 16 8 8

## [15,] 4 4 4 4 4

## [16,] 2 2 2 2 2

## [17,] 1 1 1 14 1

## [18,] 6 6 6 6 6

## [19,] 13 13 13 13 9

## [20,] 18 12 17 17 17
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J. Extensibility examples

In this example, a weighted mean centroid is desired and implemented as follows. The use-
fulness of such an approach is of course questionable.

# Formal arguments before ... must be the same

weighted_mean_cent <- function(x, cl_id, k, cent, cl_old, ..., weights) {

x <- Map(x, weights, f = function(ts, w) { w * ts })

x_split <- split(x, cl_id)

new_cent <- lapply(x_split, function(xx) {

xx <- do.call(rbind, xx)

colMeans(xx)

})

}

data <- reinterpolate(CharTraj, new.length = max(lengths(CharTraj)))

weights <- rep(c(0.9,1.1), each = 5L)

tsclust(data[1L:10L], type = "p", k = 2L,

distance = "Manhattan",

centroid = weighted_mean_cent,

seed = 123,

args = tsclust_args(cent = list(weights = weights)))

## partitional clustering with 2 clusters

## Using manhattan distance

## Using weighted_mean_cent centroids

##

## Time required for analysis:

## user system elapsed

## 0.011 0.000 0.011

##

## Cluster sizes with average intra-cluster distance:

##

## size av_dist

## 1 5 15.05069

## 2 5 18.99145

Other clustering algorithms that significantly alter the workflow in dtwclust are harder to
integrate by the user, although the provided formal class can still be of use. Formal objects
can be created with the new function, which has a custom constructor registered. For instance,
the following would reproduce the result of TADPole clustering, enabling the usage of the
cvi function (and any other generic that has methods for appropriate TSClusters objects).

tadp <- TADPole(data[1L:20L],

k = 4L,

dc = 1.5,

window.size = 15L)
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tp_obj <- new("PartitionalTSClusters",

type = "tadpole",

datalist = data[1L:20L],

centroids = data[tadp$centroids],

cluster = tadp$cl,

dots = list(window.size = 15L,

norm = "L2"),

distance = "dtw_lb",

centroid = "PAM_TADPole")

cvi(tp_obj, CharTrajLabels[1L:20L], type = "external")

## ARI RI J FM VI

## 1 1 1 1 0

Assuming the following results were obtained by applying k-Shape independently of dtwclust,
the following would reproduce the values in a formal class, which can then be used, for
example, to predict cluster membership of new data.

ks_obj <- new("PartitionalTSClusters",

type = "partitional",

datalist = zscore(CharTraj)[-100L],

centroids = zscore(CharTraj[seq(1L, 100L, 5L)]),

cluster = unclass(CharTrajLabels)[-100L],

distance = "sbd",

centroid = "shape")

# Preprocessing is performed by ks_obj@family@preproc

predict(ks_obj, newdata = CharTraj[100L])

## Z.V5

## 5
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