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Introduction

This vignette will show how to use bootstrap a ddhazard object. It is recommended to read or skim
vignette("ddhazard", "dynamichazard") first. You can get the version used to make this vignette by
calling:

current_version # The string you need to pass devtools::install_github

## [1] "boennecd/dynamichazard@ab27d72035161f15a9866d8ebf15cd8a47bab725"

devtools::install_github(current_version)

You can also get the latest version on CRAN by calling:

install.packages("dynamichazard")

Has to be done

CRAN requires that options is reset somewhere. Thus, we get the old settings and reset them at the end.

old_options <- options()

# set digits

options(ddhazard_max_threads = max(parallel::detectCores() - 2, 1))

TRACE

We will use the TRACE data set from the timreg package. See ?TRACE for a description of the dataset and
?timereg::aalen for a additive hazard models used with data set – at least in version 1.9.1. Some of them
are (kinda) like the models we fit next in the sequal. The TRACE data set is used here to illustrate the
bootstrap methods and not as example of how to analysis the data set. I have not looked at the details of the
data set or the model fits. We fit the model as follows:

library(dynamichazard)

data(TRACE, package = "timereg")

dd_fit <- ddhazard(

Surv(time, status == 9) ~ ddFixed_intercept() +

ddFixed(age) + ddFixed(sex) + ddFixed(diabetes) + chf + vf,

TRACE, max_T = 7, by = .25, model = "exponential",

Q_0 = diag(10, 2), Q = diag(.1^2, 2),

control = ddhazard_control(eps = .001, n_max = 25))

## a_0 not supplied. IWLS estimates of static glm model is used for random walk models. Otherwise the values
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We use the exponential arrival times models with the extended Kalman filter (the default) estimation method.
A plot of the estimates is given below. The dashed lines are 95% point-wise confidence intervals using the
variances estimates from the Extended Kalman filter with smoothing

plot(dd_fit)

summary(dd_fit)

## Call:

## ddhazard(formula = Surv(time, status == 9) ~ ddFixed_intercept() +

## ddFixed(age) + ddFixed(sex) + ddFixed(diabetes) + chf + vf,

## data = TRACE, model = "exponential", by = 0.25, max_T = 7,

## Q_0 = diag(10, 2), Q = diag(0.1^2, 2), control = ddhazard_control(eps = 0.001,

## n_max = 25))

##

## 'exponential' model fitted with the 'EKF' method in 19 iterations of the EM algorithm.

##

## Smoothed time-varying coefficients are:

## chf sd vf sd

## 0.00 1.70950193 0.24337394 2.15710647 0.3415211

## 0.75 0.76306761 0.09438822 1.02734147 0.1455356

## 1.50 0.30781226 0.13981459 0.26484347 0.2418010

## 2.25 0.38133351 0.14453683 0.29675565 0.2639489

## 3.00 0.26332240 0.15698279 0.12343800 0.2920732
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## 4.00 0.31451983 0.16521643 0.17376623 0.3111066

## 4.75 0.22839484 0.17777955 0.02797998 0.3372086

## 5.50 0.09962127 0.17998873 -0.15218903 0.3572790

## 6.25 0.34226679 0.19162187 0.19571998 0.3963496

## 7.00 -0.01399385 0.26664463 -0.23268303 0.5006394

##

## The estimated diagonal entries of the covariance matrix in the state equation are:

## chf vf

## 0.2147913 0.4115283

##

## The estimated fixed effects are:

## (Intercept) age sex diabetes

## -6.76556920 0.06120493 0.17884482 0.48937436

##

## 1878 individuals used in estimation with 938 observed events.

Sampling individuals

We can bootstrap the estimates in the model by using the ddhazard_boot function as done below:

set.seed(7451)

R <- 999 # number of bootstrap samples

boot_out <- ddhazard_boot(dd_fit, R = R)

The list has the same structure and class as the list returned by boot::boot a few other elements:

class(boot_out)

## [1] "ddhazard_boot" "boot"

str(boot_out)

## List of 12

## $ t0 : Named num [1:62] 1.714 1.714 1.231 0.759 0.513 ...

## ..- attr(*, "names")= chr [1:62] "chf:t0" "chf:t1" "chf:t2" "chf:t3" ...

## $ t : num [1:999, 1:62] 1.73 1.85 1.52 1.8 1.77 ...

## ..- attr(*, "dimnames")=List of 2

## .. ..$ : NULL

## .. ..$ : chr [1:62] "chf:t0" "chf:t1" "chf:t2" "chf:t3" ...

## $ R : num 999

## $ data : Named num [1:1878] 1 1 1 1 1 1 1 1 1 1 ...

## ..- attr(*, "names")= chr [1:1878] "1" "2" "3" "4" ...

## $ seed : int [1:626] 403 624 -1318928793 -836455556 -1543698867 826078378 2061930019 -1376085752

## $ statistic:function (data, ran.gen)

## ..- attr(*, "srcref")= 'srcref' int [1:8] 104 16 195 3 16 3 1331 1422

## .. ..- attr(*, "srcfile")=Classes 'srcfilealias', 'srcfile' <environment: 0x0000000022e99348>

## $ sim : chr "ordinary"

## $ call : language boot(data = data, statistic = statistic, R = R, sim = ifelse(do_sample_weights,

## $ stype : chr "i"

## $ strata : Factor w/ 1 level "1": 1 1 1 1 1 1 1 1 1 1 ...

## $ weights : num [1:1878] 0.000532 0.000532 0.000532 0.000532 0.000532 ...

## $ t_names : chr [1:62] "chf:t0" "chf:t1" "chf:t2" "chf:t3" ...

## - attr(*, "class")= chr [1:2] "ddhazard_boot" "boot"

## - attr(*, "boot_type")= chr "boot"

Above, we bootstrap the model by sampling the individuals. I.e. individuals will have weights of 0, 1, 2, . . .

in the estimation. We can plot 95% confidence bounds from the bootstrap coefficients with the percentile
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bootstrap method as follows:

plot(dd_fit, ddhazard_boot = boot_out, level = 0.95)

## Only plotting 50 of the boot sample estimates

The completely black line is the original estimates, the dashed lines are 5% and 95% quantiles of the bootstrap
coefficient taken at each point and the transparent black lines each represent a bootstrap estimate. Linear
interpolation on the normal quantile scale is used if we do not have a quantile that match exactly.

Fixed effects

Recall that the fixed effects are estimated to be:

dd_fit$fixed_effects

## (Intercept) age sex diabetes

## -6.76556920 0.06120493 0.17884482 0.48937436

We can get confidence bounds for these with the boot.ci function from the boot library as shown below:

library(boot)

# print confidence intervals for

colnames(boot_out$t)[ncol(boot_out$t)] # this variable

## [1] "diabetes"
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boot.ci(

boot_out, index = ncol(boot_out$t), type = c("norm", "basic", "perc"))

## BOOTSTRAP CONFIDENCE INTERVAL CALCULATIONS

## Based on 999 bootstrap replicates

##

## CALL :

## boot.ci(boot.out = boot_out, type = c("norm", "basic", "perc"),

## index = ncol(boot_out$t))

##

## Intervals :

## Level Normal Basic Percentile

## 95% ( 0.2765, 0.6876 ) ( 0.2706, 0.6821 ) ( 0.2971, 0.7086 )

## Calculations and Intervals on Original Scale

Strata

You can provide a strata variable to perform stratified sampling. This is done by setting the strata argument
in the call to ddhazard_boot. Notice that this has to be on an individual level (one indicator variable per
individual) not observation level (not one indicator variable per row in the data set). You can use the
unique_id argument to match the individual entries with the entries in strata. Though, this is not needed
for this data set as we do not have time-varying covariates. As an example, we stratify by the chf value
below:

# all observations are unique. I.e. all other individuals have one record.

# Otherwise we had to make a strata with an entry for each individual -- not

# each record in the data.frame used in the estimation

sum(duplicated(TRACE$id))

## [1] 0

# use strafied bootstrap

set.seed(101)

boot_out_with_strata <- ddhazard_boot(

dd_fit, R = R, unique_id = TRACE$id, strata = TRACE$chf)

plot(dd_fit, ddhazard_boot = boot_out_with_strata, level = 0.95)

## Only plotting 50 of the boot sample estimates
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Boot envelope

We may also want to get simultaneous confidence intervals. An easy way to get such confidence intervals is
with the envelope function in the boot library. For instance, we can get simultaneous confidence intervals
for the vf coefficient as follows:

# find the indices that correspondents to the coefficient we want

is_vf <- grep("^vf:", colnames(boot_out$t))

# use the envelope

envelopes <- envelope(boot_out, level = 0.95 ,index = is_vf)

# plot curves

plot(dd_fit, ylim = c(-1.5, 4),

cov_index = grep("^vf$", colnames(dd_fit$state_vecs)))

lines(dd_fit$times, envelopes$point[1, ], col = "blue")

lines(dd_fit$times, envelopes$point[2, ], col = "blue")

lines(dd_fit$times, envelopes$overall[1, ], col = "red")

lines(dd_fit$times, envelopes$overall[2, ], col = "red")
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The dashed black lines are from the smoothed covariance matrix. The blue lines are pointwise confidence
intervals using the percentile method from the envelope function. The red line is the simultaneous confidence
bounds using the envelope method in equation (4.17) of Davison & Hinkley (1997). The latter curves are
formed by creating an envelope over each of the pointwise confidence intervals and hence the name.

How good is the coverage

In this section, we will test the coverage of the pointwise confidence intervals using the smoothed covariance
matrix and the bootstrap percentile method. We will test these in a simulation study where:

• The coefficients are drifting deterministically with a some normal noise added to them.
• Individuals have time invariant covariates.

The simulation is to mimic a situation where we assume that the coefficients are not random (as the model
implies) but we do not know the shape of the coefficient curves across time. We setup the parameters for the
experiment below and plot the coefficients without noise:

tmax <- 22 # Number of periods

n_start_grps <- 3 # Number of "start group" - see text

# Number of multiple of tmax - 1 in each

mlt <- 30 # start group

n <- (tmax - 1) * mlt * n_start_grps # Total number of individuals

n

## [1] 1890
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# Define the noise free coefficients

beta <- cbind(

x1 = rep(-2, (tmax - 1) + 1),

x2 = (0:(tmax - 1) - (tmax - 1)/2) / ((tmax - 1) / 2),

x3 = ((tmax - 1):0 - (tmax - 1)/2) / ((tmax - 1) / 2),

x4 = - sin(pi / 7 * (0:(tmax - 1))),

x5 = sin(pi / 7 * (0:(tmax - 1))))

# Plot noise free coefficients

cols <- c("#BC5C00", "#BEBE00", "#23BC00", "#0082BC", "#3500C1")

matplot(beta, type = "l", lty = 1, ylab = "coefficient without noise",

col = cols)

There will be a total of n = 1890 individuals in groups of three. We start observing each group at time 0,
7 and 14. I.e. we have random random delayed entry. We do so to have a “stable” number of individual
through the experiment. The experiment ends after tmax = 22.

We add a bit of normally distributed noise to the coefficients with mean zero and standard deviation 0.1.
The individuals’ covariates are simulated from the uniform distribution from the range [-1, 1]. The function
sim_func is used to make the simulation. The definition of the function can be found in the markdown
file for this vignette on the github site. We simulate a series below, illustrate the data matrix and plot the
coefficients with noise added to them:
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# Simulate

set.seed(122044)

sim_list <- sim_func()

# Show data matrix

head(sim_list$sims, 10)

## id tstart tstop x1 x2 x3 x4 x5 eta dies

## 1 1 14 16 1 0.18 -0.64 0.195 0.14 -1.8 TRUE

## 2 2 14 22 1 0.76 -0.14 -0.882 -0.80 -1.7 FALSE

## 3 3 14 16 1 0.58 0.48 0.921 0.50 -2.0 TRUE

## 4 4 14 22 1 -0.78 0.69 0.995 0.29 -2.5 FALSE

## 5 5 14 22 1 -0.51 0.80 0.290 0.79 -2.4 FALSE

## 6 6 14 22 1 -0.27 0.62 0.962 0.94 -2.3 FALSE

## 7 7 14 19 1 -0.84 0.96 0.816 -0.50 -2.5 TRUE

## 8 8 14 22 1 -0.58 0.62 0.969 -0.34 -2.4 FALSE

## 9 9 14 15 1 0.70 -0.87 0.763 -0.70 -1.5 TRUE

## 10 10 14 17 1 0.59 0.23 0.063 -0.20 -1.9 TRUE

tail(sim_list$sims, 10)

## id tstart tstop x1 x2 x3 x4 x5 eta dies

## 1881 1881 0 3 1 0.48 0.728 -0.834 0.91 -1.92 TRUE

## 1882 1882 0 12 1 -0.66 -0.385 0.084 -0.97 -1.66 TRUE

## 1883 1883 0 3 1 0.25 -0.908 0.246 0.40 -3.34 TRUE

## 1884 1884 0 10 1 0.92 -0.243 -0.544 -0.98 -3.15 TRUE

## 1885 1885 0 16 1 -0.93 0.514 -0.878 -0.65 -0.45 TRUE

## 1886 1886 0 12 1 -0.90 -0.230 0.744 0.38 -1.47 TRUE

## 1887 1887 0 2 1 -0.21 -0.393 -0.621 -0.71 -2.14 TRUE

## 1888 1888 0 10 1 -0.50 -0.088 0.352 -0.87 -1.56 TRUE

## 1889 1889 0 5 1 -0.29 0.123 -0.142 0.55 -1.72 TRUE

## 1890 1890 0 14 1 0.83 0.294 0.643 0.02 -2.71 TRUE

# Plot coefficients with noise

matplot(sim_list$beta_w_err, type = "l", lty = 1, ylab = "coefficient with noise",

col = cols)

9



We are now able to estimate the model as follows:

# Estimate model

fit_expression <- expression({

fit <- ddhazard(

Surv(tstart, tstop, dies) ~ -1 + x1 + x2 + x3 + x4 + x5,

data = sim_list$sims, id = sim_list$sims$id, max_T = tmax,

by = 1, Q_0 = diag(1e4, 5), Q = diag(.1, 5),

a_0 = rep(0, 5), control = ddhazard_control(eps = .001, n_max = 25))

})

eval(fit_expression)

# Plot estimates with pointwise confidence bounds from smoothed covariance

# matrix

for(i in 1:5){

plot(fit, cov_index = i)

points(sim_list$beta_w_err[, i], pch = 16, col = "red")

}
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The plots shows the estimated coefficient with 95% pointwise confidence intervals from the smoothed covariance
matrix. The dots are the actual values (i.e. those with noise added to them). A bootstrap estimate of the
confidence bounds is made below:

# bootstrap with resampling individuals

boot_out <- ddhazard_boot(fit, R = 999)

# Plot estimated confidence bounds

for(i in 1:5){

plot(fit, cov_index = i, ddhazard_boot = boot_out)

points(sim_list$beta_w_err[, i], pch = 16, col = "red")

}

## Only plotting 50 of the boot sample estimates

## Only plotting 50 of the boot sample estimates

## Only plotting 50 of the boot sample estimates

## Only plotting 50 of the boot sample estimates

## Only plotting 50 of the boot sample estimates
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We can now pose the question how the pointwise coverage is for each coefficient. For this reason, we have
defined the function compute_coverage which is not included but can be found in the markdown for this
vignette on the github site:

compute_coverage(fit, boot_out, sim_list$beta_w_err)

## $smooth

## x1 x2 x3 x4 x5

## 0.8181818 0.9545455 0.9545455 0.9545455 1.0000000

##

## $boot

## x1 x2 x3 x4 x5

## 0.8181818 0.9545455 0.9090909 0.9545455 1.0000000

compute_coverage outputs a list of the true coverage of the 95% confidence intervals from the smoothed
covariance matrix and the percentile method from the bootstrap. That is, the fractions of red dots from
the previous plot that are within the 95% confidence interval. The two elements of the list is for the the
percentile method from the bootstrap. These are respectively the smooth and boot elements of the list. We
can now repeat the above M times (defined below) as follows:

set.seed(520920)

R <- 999 # Number of bootstrap estimates in each trials

M <- 100 # Number of trials

# Define matrix for output
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coverage_boot <- coverage_smooth <- matrix(

NA_real_, nrow = M, ncol = ncol(fit$state_vecs))

# Sometimes estimations fails. We use this counter to keep track of the number

# of times

n_fails <- 0

LRs <- 1.1^(0:(-6)) # Learning rates to try in order to get a fit

# We save this as an epxression as we will re-run it later

boot_exp <- expression({

for(i in 1:M){

# Simulate data set

sim_list <- sim_func()

# Fit on whole data set

did_succed <- F

try({

eval(fit_expression)

did_succed <- T

})

if(!did_succed){

n_fails <- n_fails + 1

next

}

# Bootstrap fits

boot_out <- ddhazard_boot(fit,

strata = as.factor(sim_list$sims$tstart),

do_stratify_with_event = FALSE,

do_sample_weights = FALSE, R = R,

LRs = LRs)

# Compute coverage and add to output

coverage <- compute_coverage(fit, boot_out, sim_list$beta_w_err)

coverage_smooth[i, ] <- coverage$smooth

coverage_boot[i, ] <- coverage$boot

}

})

eval(boot_exp)

n_fails # number of failed estimations

## [1] 0

The mean of the fraction of the overages for the two methods are printed below. That is, the mean of the
fraction for each coefficient from each run that did not fail:

colMeans(coverage_smooth, na.rm = TRUE)

## [1] 0.8122727 0.9481818 0.9500000 0.9468182 0.9400000

colMeans(coverage_boot, na.rm = TRUE)

## [1] 0.8422727 0.9404545 0.9445455 0.9386364 0.9368182
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Finally, we can make a boxplot of the fraction of coverage in each trail as follows:

boxplot(coverage_smooth, ylim = c(.6, 1), main = "Smoothed covariance")

abline(h = .95, lty = 1)

boxplot(coverage_boot, ylim = c(.6, 1), main = "Bootstrap")

abline(h = .95, lty = 1)
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We do alter the learning rate in the previous simulation in order to get a fit when we bootstrap. An alternative
could be not to allow for this as done below where failed fits are excluded:

n_fails <- 0

LRs <- 1 # Changed to one value only

eval(boot_exp)

## NULL

n_fails # number of failed estimations

## [1] 0

The means and box plot are given below:

colMeans(coverage_smooth, na.rm = TRUE)

## [1] 0.8122727 0.9481818 0.9500000 0.9468182 0.9400000

colMeans(coverage_boot, na.rm = TRUE)

## [1] 0.8422727 0.9404545 0.9445455 0.9386364 0.9368182

boxplot(coverage_smooth, ylim = c(.6, 1), main = "Smoothed covariance")

abline(h = .95, lty = 1)
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boxplot(coverage_boot, ylim = c(.6, 1), main = "Bootstrap")

abline(h = .95, lty = 1)
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Has to be done

We reset options here as per CRAN policy.

options(old_options)
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