Package 'easyCODA'

September 19, 2020
Type Package
Version 0.34.3
Date 2020-10-17
Depends $\mathrm{R}(>=2.10)$, ca ($>=0.7$), vegan ($>=2.3$), ellipse ($>=0.4 .1$)
Title Compositional Data Analysis in Practice
Author Michael Greenacre
Maintainer Michael Greenacre michael.greenacre@upf.edu
Description Univariate and multivariate methods for compositional data analysis, based on logratios. The package implements the approach in the book Compositional Data Analysis in Practice by Michael Greenacre (2018), where accent is given to simple pairwise logratios. Selection can be made of logratios that account for a maximum percentage of logratio variance. Various multivariate analyses of logratios are included in the package.

License GPL

URL https://github.com/michaelgreenacre/CODAinPractice/
Repository CRAN
Repository/R-Forge/Project easycoda
Repository/R-Forge/Revision 39
Repository/R-Forge/DateTimeStamp 2020-09-17 10:54:11
Date/Publication 2020-09-19 18:40:07 UTC
NeedsCompilation no

R topics documented:

easyCODA-package 2
ACLUST 4
ALR 6
BAR 7
CA 9
CIplot_biv 10
CLOSE 12
CLR 13
cups 14
DOT 14
DUMMY 16
fish 16
ILR 17
invALR 18
invCLR 19
invSLR 20
LR 21
LR.VAR 22
LRA 23
PCA 25
PLOT.CA 27
PLOT.LRA 29
PLOT.PCA 30
PLOT.RDA 31
PLR 33
RDA 34
SLR 36
STEP 37
time 39
VAR 39
veg 40
WARD 41
Index 44
easyCODA-package Compositional Data Analysis in Practice

Description

Univariate and multivariate methods for compositional data analysis, based on logratios. The package implements the approach in the book Compositional Data Analysis in Practice by Michael Greenacre (2018), where accent is given to simple pairwise logratios. Selection can be made of logratios that account for a maximum percentage of logratio variance. Various multivariate analyses of logratios are included in the package.

Details

The DESCRIPTION file:

Package:	easyCODA
Type:	Package
Version:	0.34 .3
Date:	$2020-10-17$

Depends:
Title:
Author:
Maintainer:
Description:
License:
URL:
Repository:
Repository/R-Forge/Project:
Repository/R-Forge/Revision:
Repository/R-Forge/DateTimeStamp:
Date/Publication:
ca ($>=0.7$), vegan ($>=2.3$), ellipse ($>=0.4 .1$)
Compositional Data Analysis in Practice
Michael Greenacre
Michael Greenacre michael.greenacre@upf.edu
Univariate and multivariate methods for compositional data analysis, based on lograti
GPL
https://github.com/michaelgreenacre/CODAinPractice/ R-Forge easycoda
39
2020-09-17 10:54:11
2020-09-17 10:54:11

Index of help topics:
\(\left.\begin{array}{ll}ACLUST \& Amalgamation clustering of the parts of a

compositional data matrix\end{array}\right]\)| ALR | Compositional bar plot |
| :--- | :--- |
| BAR | Correspondence analysis |
| CA | Bivariate confidence and data ellipses |
| CLOSE | Closure of rows of compositional data matrix |
| CLR | Centred logratios |
| DOT | Dot plot |
| DUMMY | Dummy variable (indicator) coding |
| ILR | Isometric logratio |
| LR | All pairwise logratios |
| LR.VAR | Total logratio variance |
| LRA | Logratio analysis |
| PCA | Principal component analysis |
| PLOT.CA | Plot the results of a correspondence analysis |
| PLOT.LRA | Plot the results of a logratio analysis |
| PLOT.PCA | Plot the results of a principal component |
| anat.RDA | Plot the results of a redundancy analysis |
| PLR | Pivot logratios |
| RDA | Redundancy analysis |
| SLR | Amalgamation (summed) logratio |
| STEP | Stepwise selection of logratios |
| VAR | Variance of a vector of observations, dividing |
| WARD | by n rather than n-1 |
| Cups | Ward clustering of a compositional data matrix |
| easyCODA-package | Dataset: RomanCups |
| fish | Compositional Data Analysis in Practice |
| invALR | Dataset: FishMorphology |
| invCLR | Inverse of additive logratios |

```
invSLR Inverse of full set of amalgamation balances
time Dataset: TimeBudget
veg Dataset: Vegetables
```


Author(s)

Michael Greenacre
Maintainer: Michael Greenacre michael.greenacre@upf.edu

References

Greenacre, Michael (2018) Compositional Data Analysis in Practice. Chapman \& Hall / CRC Press

See Also

ca

Examples

```
# Roman cups glass compositions
data(cups)
# unweighted logratio analysis
cups.uLRA <- LRA(cups, weight=FALSE)
PLOT.LRA(cups.uLRA)
# weighted logratio analysis
cups.wLRA <- LRA(cups)
PLOT.LRA(cups.wLRA)
# author data set from the ca package
data(author)
which(author == 0, arr.ind = TRUE)
# row 5 (Farewell to Arms) and col 17 (Q) has a zero
# replace it with 0.5 for the logratio analysis
author[5,17] <- 0.5
# LRA (weighted by default)
# Here the ca plot function plot.ca is used
plot(LRA(author))
```

ACLUST

Amalgamation clustering of the parts of a compositional data matrix

Description

This function clusters the parts of a compositional data matrix, using amalgamation of the parts at each step.

Usage

ACLUST(data, weight = TRUE, close = TRUE)

Arguments

data Compositional data matrix, with the parts as columns
weight TRUE (default) for weighting using part averages of closed compositions, FALSE for unweighted analysis, or a vector of user-defined column weights
close \quad TRUE (default) will close the rows of data prior to clustering, FALSE leaves data as it is

Details

The function ACLUST performs amalgamation hierarchical clustering on the parts (columns) of a given compositional data matrix, as proposed by Greenacre (2019). At each step of the clustering two clusters are amalgamated that give the least loss of explained logratio variance.

Value

An object which describes the tree produced by the clustering process on the n objects. The object is a list with components:

> merge an n-1 by 2 matrix. Row i of merge describes the merging of clusters at step i of the clustering. If an element j in the row is negative, then observation -j was merged at this stage. If j is positive then the merge was with the cluster formed at the (earlier) stage j of the algorithm. Thus negative entries in merge indicate agglomerations of singletons, and positive entries indicate agglomerations of non-singletons.
> height a set of $\mathrm{n}-1$ real values (non-decreasing for ultrametric trees). The clustering height: that is, the value of the criterion associated with the clustering method for the particular agglomeration.
> order a vector giving the permutation of the original observations suitable for plotting, in the sense that a cluster plot using this ordering and matrix merge will not have crossings of the branches
> labels a vector of column labels, the column names of data

Author(s)

Michael Greenacre

References

Greenacre, M. (2018), Compositional Data Analysis in Practice, Chapman \& Hall / CRC.
Greenacre, M. (2019), Amalgamations are valid in compositional data analysis, can be used in agglomerative clustering, and their logratios have an inverse transformation. Applied Computing and Geosciences, open access.

See Also

hclust, WARD,CLR, LR.VAR, CLOSE

Examples

```
    data(cups)
    # amalgamation clustering (weighted parts)
    cups.aclust <- ACLUST(cups)
    plot(cups.aclust)
    # reproducing Figure 2(b) of Greenacre (2019) (unweighted parts))
    # dataset Aar is in the compositions package
    # aar is a subset of Aar
    # code given here within the '\dontrun' environment since external package 'compositions' required
    ## Not run:
        library(compositions)
        data(Aar)
        aar <- Aar[,c(3:12)]
    aar.aclust <- ACLUST(aar, weight=FALSE)
    # the maximum height is the total variance
    # convert to percents of variance NOT explained
    aar.aclust$height <- 100 * aar.aclust$height / max(aar.aclust$height)
    plot(aar.aclust, main="Parts of Unexplained Variance", ylab="Variance (percent)")
    ## End(Not run)
```

 ALR Additive logratios

Description

Computation of additive logratios (ALRs) with respect to a specified part.

Usage

ALR(data, denom=ncol(data), weight=TRUE, stats=FALSE)

Arguments

data A compositional data frame or matrix
denom Number of part used in the denominator
weight Logical indicating if varying weights are returned(default:TRUE). If FALSE, unweighted (equal) weights are returned. Alternatively a set of positive weights can be specified.
stats Logical indicating if means, variances and total variance of the ALRs are returned (default:FALSE)

Details

The function ALR computes a set of additive logratios (ALRs) with respect to a specified part (by default, the last part).

Value

LR	The additive logratios (ALRs)
LR.wt	The weights assigned to the ALRs
denom	The index of the denominator used in the computation of the ALRs
part. names	The part names in the data, i.e. column names
part.wt	The part weights
means	The means of the ALRs (only returned if stats = TRUE)
vars	The variances of the ALRs (only returned if stats = TRUE)
totvar	The total variance of the ALRs (only returned if stats = TRUE)

Author(s)

Michael Greenacre

References

Aitchison, J. (1986), The Statistical Analysis of Compositional Data, Chapman \& Hall. Greenacre, M. (2018), Compositional Data Analysis in Practice, Chapman \& Hall / CRC Press.

See Also

invALR, LR, CLR, invCLR, LR. VAR

Examples

data(veg)
ALR (veg, denom=2)

Description

Horizontal bar plot of compositional data

Usage

```
BAR(data, cols=rainbow(ncol(data)), col.names=colnames(data),
    row.names=rownames(data), order.column=NA, eps=0.5, main="", ylab="",
    ylim=c(0,nrow(data)), xlim=c(0,100), cex=1, truncate=NA)
```


Arguments

data	Compositional data matrix or data frame with compositions in rows, parts in columns
cols	Colours of points for each part, default rainbow
col.names	Part names, if modified
row.names	Sample names, if modified
order.column	By default parts are taken in order of columns, but can be re-ordered using this option
eps	Small space between bars, can be modified
main	Heading
ylab	Vertical axis label
ylim	Vertical axis limits (default is the number of rows in data)
xlim	Horizontal axis limits (default c(0,100))
cex	Character size scaling factor for labels
truncate	Truncate part (column) names to this number of characters for legend

Details

The function BAR makes a BAR plot for specified groups of points, which can be in columns of a matrix or data frame.

Author(s)

Michael Greenacre

References

Greenacre, M. (2016), Data reporting and visualization in ecology, Polar Biology: 39, 2189-2205.

See Also

DOT

Examples

```
# Vegetables data set: order samples by carbohydrates
data(veg)
BAR(veg, order.column=2)
data(time)
# TimeBudget data set: put domestic work in first column and order by it
BAR(time[,c(2,1,3,4,5,6)], order.column=1, main="Time Budget")
```

CA Correspondence analysis

Description

Computation of correspondence analysis on a table of nonnegative data.

Usage

$C A($ data, $n d=2$, suprow $=N A$, supcol $=N A)$

Arguments

data	A data frame or matrix of nonnegative data (no negative values)
nd	Number of dimensions for summary solution if not 2 (default)
suprow	Indices of rows that are supplementary points
supcol	Indices of columns that are supplementary points

Details

The function CA is a simple wrapper for the ca function in the ca package (Nenadic and Greenacre, 2007), for compatibility within the easyCODA package.

Supplementary rows and columns can be declared (also known as passive points) - these do not contribute to the solution but are positioned on the solution axes.
The function borrows the structure and functions of the ca package, which is required, and produces a ca object, and the same print, summary and plot methods can be used, as for a ca object. It additionally exports the principal coordinates of both the rows and columns, not presently found in the ca package.

Value

sv	Singular values
nd	Number of dimensions in solution results
rownames	Row names
rowmass	Row weights
rowdist	Row logratio distances to centroid
rowinertia	Row inertias
rowcoord	Row standard coordinates
rowpcoord	Row principal coordinates
rowsup	Indices of row supplementary points
colnames	Column names
colmass	Column weights

coldist	Column logratio distances to centroid
colinertia	Column inertias
colcoord	Column standard coordinates
colpcoord	Column principal coordinates
N	The compositional data table

Author(s)

Michael Greenacre

References

Nenadic, O. and Greenacre, M. (2007). Correspondence analysis in R, with two- and three-dimensional graphics: The ca package. Journal of Statistical Software, 20 (3), https://www. jstatsoft. org/ v20/i03/

See Also

PLOT.CA, plot.ca, summary.ca, print.ca

Examples

```
# (weighted) LRA of the RomanCups data set, showing default symmetric map
data(cups)
PLOT.CA(CA(cups))
data(author)
ca(author)
plot(CA(author)) # ca plot function
PLOT.CA(CA(author)) # easyCODA plot function
```

CIplot_biv Bivariate confidence and data ellipses

Description

Draws confidence and data ellipses in bivariate scatterplots

Usage

```
CIplot_biv(x, y, group, wt=rep(1/length(x),length(x)),
    varnames=c("x","y"), groupnames=sort(unique(group)),
    groupcols=rainbow(length(unique(group))),
    shownames=TRUE, xlim=c(NA,NA), ylim=c(NA,NA),
    lty=1, lwd=1, add=FALSE, alpha=0.95, ellipse=0,
    shade=FALSE, frac=0.01, cex=1)
```


Arguments

X
$y \quad y$-variable (vertical) of scatterplot
group Grouping variable
wt Set of weights on the cases (operates when ellipse=1)
varnames Vector of two labels for the axes (default is x and y)
groupnames Vector of labels for the groups (default is 1, 2, etc...)
groupcols Vector of colours for the groups
shownames Whether to show group names at group centroids or not (default is TRUE)
x lim
ylim Possible new y-limits for plot
lty Line type for the ellipses (default is 1)
lwd Line width for the ellipses (default is 1)
add $\quad=$ TRUE if ellipses/intervals are added to existing plot (default is FALSE)
alpha Confidence level of ellipses (default is 0.95)
ellipse Type of ellipse (see Details below; default is 0 for normal-based ellipses)
shade $\quad=$ TRUE for ellipse shading (default=FALSE)
frac Proportional part defining the width of the bars at the edges of confidence intervals (for ellipse=3 and 4)
cex \quad Character expansion factor for group names

Details

The function CIplot_biv makes various types of confidence and data ellipses, according to option ellipse. Set ellipse<0 for regular data-covering ellipses. Set ellipse=0 (default) for normaltheory confidence ellipses. Setellipse=1 for bootstrap confidence ellipses. The option ellipse=2 for the delta method is not implemented yet. Set ellipse $=3$ for normal-theory confidence error bars lined up with axes. Set ellipse $=4$ for bootstrap confidence error bars along axes. The package ellipse is required.

Author(s)

Michael Greenacre

References

Greenacre, M. (2016), Data reporting and visualization in ecology, Polar Biology, 39:2189-2205.

See Also

DOT

Examples

\# Generate some bivariate normal data in three groups with different means
\# Means $(1,0),(0,1)$ and $(0,0)$
means <- matrix(c $(1,0,0,1,0,0)$, ncol=3)
data <- matrix(nrow=300, ncol=2)
groups <- sample(rep $(c(1,2,3), 100))$
for (i in 1:300) data[i,] <- rnorm(c(1,1), mean=means[,groups[i]])
\# Plot confidence ellipses with shading
CIplot_biv(data[,1], data[,2], group=groups, shade=TRUE)

Description

This function closes (or normalizes) the rows of a compositional data matrix, resulting in rows summing to 1 .

Usage

CLOSE (x)

Arguments

X Compositional data matrix.

Details

Compositional data carry relative information. It is sometimes required to close the data so that each row of observations sums to 1 . The function CLOSE performs the closure.

Value

The closed compositional data matrix.

Author(s)

Michael Greenacre

References

Greenacre, M. (2018), Compositional Data Analysis in Practice, Chapman \& Hall / CRC.

Examples

```
data(cups)
apply(cups, 2, sum)
cups <- CLOSE(cups)
apply(cups, 2, sum)
```

CLR Centred logratios

Description

Computation of centred logratios (CLRs).

Usage

CLR(data, weight=TRUE)

Arguments

$$
\begin{array}{ll}
\text { data } & \text { A compositional data frame or matrix } \\
\text { weight } & \begin{array}{l}
\text { Logical indicating if varying weights are returned(default:TRUE). If FALSE, un- } \\
\text { weighted (equal) weights are returned. Alternatively a set of positive weights } \\
\text { can be specified. }
\end{array}
\end{array}
$$

Details

The function CLR computes the set of centred logratios (CLRs).

Value

LR The centred logratios (CLRs)
LR.wt The weights assigned to the CLRs

Author(s)

Michael Greenacre

References

Aitchison, J. (1986), The Statistical Analysis of Compositional Data, Chapman \& Hall. Greenacre, M. (2018), Compositional Data Analysis in Practice, Chapman \& Hall / CRC Press.

See Also

invCLR, ALR, invALR, LR, LR. VAR

Examples

```
data(veg)
CLR(veg)
```


Description

This data set consists of the compositions of 11 oxides in 47 Roman cups found at an archaeological site in eastern England. Compositions are expressed as percentages.

Usage

data(cups)

Format

Data frame containing the 47×11 matrix.

Source

Baxter MJ, Beardah CC, Cool HEM and Jackson CM (2005) Compositional data analysis of some alkaline glasses. Mathematical Geology 37: 183-196.

DOT Dot plot

Description

Simple dot plot of original data

Usage

```
DOT(data, cols=NA, names=NA, groups=NA, pch=NA, horizon=FALSE, jitter=1,
    xscale=NA, xscalefac=1, yaxis=TRUE, shownames=TRUE, main="", ylab="",
    xlim=c(NA,NA), ylim=c(NA, NA), cex=1)
```


Arguments

data Matrix or data frame with data groups in columns; alternatively, a single vector but then groups (if any) have to specified with the groups option
cols Colours of points for each sample, default rainbow
names Labels for variables, by default the column names of data, or group names
groups Group codes to split the data vector into separate plots
pch Point character
horizon TRUE if horizontal gray dashed lines required at "nice" y-values (default FALSE, not implemented yet)

jitter	1 by default, increase or decrease slightly for more jitter
xscale	User-supplied positions of points on horizontal axis
xscalefac	1 by default, rescale the positions on horizontal axis
yaxis	TRUE by default, FALSE to suppress and optionally add afterwards
shownames	TRUE by default; FALSE to not show group names and add them externally
main	Heading
ylab	Vertical axis label
xlim	Horizontal axis limits
ylim	Vertical axis limits
cex	Character size adjustment for labels

Details

The function DOT makes a dot plot for specified groups of points, which can be in columns of a matrix or data frame, or in a single vector with group codes specified separately.

Author(s)

Michael Greenacre

References

Greenacre, M. (2016), Data reporting and visualization in ecology, Polar Biology, 39:2189-2205.

See Also

BAR

Examples

```
# Dot plot of columns of Vegetables data set
data(veg)
DOT(veg)
# Dot plot of domestic work column of TimeBudget data set, split by sex
data(time)
DOT(time[,2], groups=substr(rownames(time),3,3), cols=c("blue","red"), ylim=c(0, 20),
    jitter=2, main="Percentage of Domestic Work")
```


Description

Convert categorical variable to dummy ($0 / 1$) coding

Usage

DUMMY(x, catnames=NA)

Arguments

$x \quad$ Variable (vector) of categorical data to be coded
catnames Category names

Details

The function DUMMY takes a categorical variable and converts it to a set of dummy variables (zeros and ones), where the ones indicate the corresponding category. There are as many columns in the result as there are unique categories in the input vector.

Author(s)

Michael Greenacre

Examples

```
# Indicator (dummy) coding of sex in FishMorphology data set
data(fish)
sex <- fish[,1]
sex.Z <- DUMMY(sex, catnames=c("F","M"))
```

fish Dataset: FishMorphology

Description

This data set consists of the sex, habitat, mass and then 26 morphometric measurements on 75 fish (Arctic charr)

Usage

```
data(fish)
```


Format

Data frame containing the 75×29 matrix. Column 1 contains sex ($1=$ female, $2=$ male). Column 2 contains habitat ($1=$ litoral, $2=$ pelagic). Column 3 contains the mass in grams. Columns 4 to 29 contain the 26 morphometric measurements.

Source

Greenacre, M and Primicerio, R (2010) Multivariate Analysis of Ecological Data. BBVA Foundation, Bilbao. Free download at www.multivariatestatistics.org

ILR Isometric logratio

Description

Computation of a single isometric logratio (ILR)

Usage

ILR(data, numer=NA, denom=NA, weight=TRUE)

Arguments

data A compositional data frame or matrix
numer \quad Vector of parts in the numerator
denom Vector of parts in the denominator
weight Logical indicating if a varying weight is returned (default:TRUE). If FALSE, a weight based on equally-weighted parts is returned. Alternatively a positive weight can be specified.

Details

The function ILR computes a single isometric logratio based on the specified numerator and denominator parts that define the two geometric means in the ratio.

Value

LR	The isometric logratio (ILR)
LR.wt	The weight assigned to the ILR

Author(s)

Michael Greenacre

References

Aitchison, J. (1986), The Statistical Analysis of Compositional Data, Chapman \& Hall.
Greenacre, M. (2018), Compositional Data Analysis in Practice, Chapman \& Hall / CRC Press.

See Also

SLR, ALR, PLR, LR

Examples

```
data(veg)
ILR(veg, numer=1, denom=2:3)
```

 invALR Inverse of additive logratios

Description

Given additive logratios (ALRs) with respect to a specified part, compute the inverse (i.e. original parts)

Usage

invALR(ALRmatrix, part.names=paste("part", 1:(ncol(ALRmatrix)+1), sep=""), denom=NA)

Arguments

$$
\begin{array}{ll}
\text { ALRmatrix } & \text { A matrix of additive logratios (ALRs) with respect to a specified part) } \\
\text { part. names } & \text { Part names in the reconstructed compositional data matrix } \\
\text { denom } & \text { The index of the denominator used in the computation of the ALRs (default: last } \\
& \text { part)) }
\end{array}
$$

Details

The function invALR computes the original parts, given the additive logratios (ALRs)

Value

parts \quad The reconstructed parts (they add up to 1)

Author(s)

Michael Greenacre

References

Aitchison, J. (1986), The Statistical Analysis of Compositional Data, Chapman \& Hall. Greenacre, M. (2018), Compositional Data Analysis in Practice, Chapman \& Hall / CRC Press.

See Also

ALR, LR, CLR, invCLR, LR.VAR

Examples

data(veg)
\# compute additive logratios with respect to second part
veg. ALR <- ALR(veg, denom=2)\$LR
\# recover original parts (to get same order, specify the denominator used originally) invALR(veg.ALR, denom=2)

```
    invCLR Inverse of centred logratios
```


Description

Given centred logratios (CLRs), compute the inverse (i.e. recover the original parts)

Usage

invCLR(CLRmatrix, part.names=colnames(CLRmatrix))

Arguments

CLRmatrix A matrix of centred logratios
part.names Part names in the reconstructed compositional data matrix

Details

The function invCLR computes the original parts, given the centred logratios (CLRs)

Value

parts \quad The reconstructed parts (they add up to 1)

Author(s)

Michael Greenacre

References

Aitchison, J. (1986), The Statistical Analysis of Compositional Data, Chapman \& Hall. Greenacre, M. (2018), Compositional Data Analysis in Practice, Chapman \& Hall / CRC Press.

See Also

CLR, ALR, invALR, LR.VAR

Examples

```
data(veg)
# compute centred logratios
veg.CLR <- CLR(veg)$LR
# invert back to original parts (parts closed to sum to 1)
invALR(veg.CLR)
```

invSLR Inverse of full set of amalgamation balances

Description

Given a full set of amalgamation (or summation) balances (SLRs), compute the inverse (i.e. recover the original parts)

Usage

invSLR(SLRmatrix, part.names=NA, ratio.names=colnames(SLRmatrix))

Arguments

SLRmatrix A matrix of amalgamation logratios, one less column than the number of parts
part.names Part names in the reconstructed compositional data matrix
ratio.names Definition of the amalgamation logratios

Details

The function invSLR computes the original parts, given the amalgamation logratios (CLRs). The amalgamation logratios are specified in ratio. names in the format num/den where num and den are the numerator and denominator amalgamations respectively. An amalgamation is specified as "p1\&p2\&...", where p1, p2, etc. are the parts summed in the amalgamation. For example, an SLR of the ratio $\mathrm{MnO} /(\mathrm{CaO}+\mathrm{P} 2 \mathrm{O} 5)$ would be names as "MnO/CaO\&P205".

Value

parts \quad The reconstructed parts (they add up to 1)

Author(s)

Michael Greenacre

References

Aitchison, J. (1986), The Statistical Analysis of Compositional Data, Chapman \& Hall. Greenacre, M. (2018), Compositional Data Analysis in Practice, Chapman \& Hall / CRC Press.

See Also

CLR, ALR, invALR, LR.VAR

Examples

```
data(veg)
# compute centred logratios
veg.CLR <- CLR(veg)$LR
# invert back to original parts (parts closed to sum to 1)
invALR(veg.CLR)
```

LR
All pairwise logratios

Description

Computation of all pairwise logratios.

Usage

LR(data, ordering=1:ncol(data), weight=TRUE)

Arguments

data	A compositional data frame or matrix
ordering	A permutation of the columns (default: the original ordering)
weight	Logical indicating if varying weights are returned (default:TRUE). If FALSE, un- weighted (equal) weights are returned. Alternatively a set of positive weights can be specified.

Details

The function LR computes the complete set of pairwise logratios, in the order [1,2], [1,3], [2,3], [1,4], [2,4], [3,4], etc.

Value

LR The pairwise logratios as columns of a data matrix
LR.wt The weights assigned to the respective logratios

Author(s)

Michael Greenacre

References

Aitchison, J. (1986), The Statistical Analysis of Compositional Data, Chapman \& Hall. Greenacre, M. (2018), Compositional Data Analysis in Practice, Chapman \& Hall / CRC Press.

See Also

ALR, invALR, CLR, invCLR, LR.VAR

Examples

> data(veg)

LR(veg)

LR.VAR

Total logratio variance

Description

Computation of total (weighted)logratio variance.

Usage

LR.VAR(LRdata, row.wt = NA, weight=TRUE, vars=FALSE)

Arguments

LRdata Matrix of logratios, either a vector or preferably the logratio object resulting from one of the functions ALR, CLR, PLR or LR
row.wt Optional set of row weights (default: equal weights)
weight Logical indicating if varying weights are returned(default:TRUE). If FALSE, unweighted (equal) weights are returned. Alternatively a set of positive weights can be specified.
vars If TRUE, output individual variances as well (default FALSE)

Details

The function LR.VAR computes the sum of the logratio variances provided as input, using the weights in the logratio data object.

Value

LRtotvar The total logratio variance
LRvars (optional, if vars=TRUE, the individual logratio variances composing the total)

Author(s)

Michael Greenacre

References

Aitchison, J. (1986), The Statistical Analysis of Compositional Data, Chapman \& Hall.
Greenacre, M. (2018), Compositional Data Analysis in Practice, Chapman \& Hall / CRC Press.

See Also

> LR, ALR, invALR, CLR, invCLR

Examples

```
data(cups)
# These give identical total logratio variances (weighted, by default)
LR.VAR(CLR(cups))
LR.VAR(LR(cups))
# Summing over all sets of ALRs gives twice the variance
totvar <- 0
for(j in 1:ncol(cups)) totvar <- totvar + LR.VAR(ALR(cups, denom=j))
totvar/2
```

LRA Logratio analysis

Description

Computation of weighted or unweighted logratio analysis of a samples-by-parts compositional data table.

Usage

LRA (data, nd $=2$, weight $=$ TRUE, suprow $=$ NA, row. wt $=$ NA, amalg $=$ NA, supamalg $=$ FALSE $)$

Arguments

data A data frame or matrix of compositional data, with no zero values
nd \quad Number of dimensions for summary solution if not 2 (default)
weight TRUE (default) for part weighting, FALSE for unweighted analysis, or a vector of user-defined part weights
suprow Indices of rows that are supplementary points
row.wt Optional user-defined set of positive weights for the rows (samples) (default: equal weights)
amalg Optional list of amalgamated parts
supamalg FALSE (default) when amalgamations are active and their subparts supplementary, TRUE when amalgamations are supplementary and their parts active

Details

The function LRA computes a log-ratio analysis of a table of compositional data based on the singular value decomposition. By default the weighted log-ratio analysis is computed (Greenacre \& Lewi 2009). For the unweighted logratio analysis (Aitchison \& Greenacre 2002), specify the option weight=FALSE.
User-specified weights can be supplied, for the rows and/or the columns. Usually row weights are not specified, and are equal unless intentional weighting of the samples is desired. Default column weights (if weight = TRUE) are the part means of the true compositional table, thus summing to 1 . User-specified part weights can be provided using the same weight option.
Supplementary rows can be declared (also known as passive points) - these do not contribute to the solution but are positioned on the solution axes.

Amalgamations can be defined and can either replace their constituent parts (default) or be declared supplementary using the supamalg option: supamalgamate $=$ FALSE (default), $=$ TRUE if all declared amalgamations are supplementary.
The function borrows the structure and functions of the ca package, which is required, and produces a ca object, and the same print, summary and plot methods can be used, as for a ca object.

Value

sv	Singular values
nd	Number of dimensions in solution results
rownames	Row names
rowmass	Row weights
rowdist	Row logratio distances to centroid
rowinertia	Row inertias
rowcoord	Row standard coordinates
rowpcoord	Row principal coordinates
rowsup	Indices of row supplementary points
colnames	Column names
colmass	Column weights
coldist	Column logratio distances to centroid
colinertia	Column inertias
colcoord	Column standard coordinates
colpcoord	Column principal coordinates
N	The compositional data table

Author(s)

Michael Greenacre

References

Aitchison, J. and Greenacre, M. (2002), Biplots of compositional data, Applied Statistics 51, 375392.

Greenacre, M. and Lewi, P.J. (2009), Distributional equivalence and subcompositional coherence in the analysis of compositional data, contingency tables and ratio scale measurements. Journal of Classification 26, 29-54.

See Also

```
plot.ca, summary.ca, print.ca
```


Examples

```
# (weighted) LRA of the RomanCups data set, showing default symmetric map
data(cups)
PLOT.LRA(LRA(cups))
# all the examples below use the data set 'author' and the plot.ca function from
# the ca package; alternatively, PLOT.LRA can be used (see first example below)
data(author)
which(author == 0, arr.ind = TRUE)
# row 5 (Farewell to Arms) and col 17 (Q) has a zero
# replace it with 0.5 for the logratio analysis
author[5,17] <- 0.5
# form compositional table of relative frequencies
author.comp <- author / apply(author, 1, sum)
# (weighted) logratio analysis (default is weighted = TRUE)
author.LRA1 <- LRA(author.comp)
plot(author.LRA1)
PLOT.LRA(author.LRA1)
# unweighted logratio analysis
author.LRA2 <- LRA(author.comp, weight = FALSE)
plot(author.LRA2)
# identical to unweighted logratio analysis by specifying equal column weights
author.LRA3 <- LRA(author.comp, weight = rep(1/ncol(author), ncol(author)))
plot(author.LRA3)
# supplementary rows example (they are plotted with empty circle symbols)
# two books by Arthur C. Clark made supplementary
author.LRA4 <- LRA(author.comp, suprow = c(3,8))
plot(author.LRA4)
# make vowels an amalagamation
author.vowels <- c(1,5,9,15,21)
author.LRA5 <- LRA(author.comp, amalg = list(vowels = author.vowels))
# contribution biplot, just labels plotted, no symbols
plot(author.LRA5, labels=c(1,1), map="rowgreen")
```


Description

Computation of weighted or unweighted principal component analysis of a matrix of interval-scale data (e.g. a matrix of logratios).

Usage

PCA(data, nd $=2$, weight $=$ TRUE, row.wt $=$ NA, suprow $=$ NA)

Arguments

data A data frame or matrix of interval-scale data, or logratio object from functions ALR, CLR or LR
nd \quad Number of dimensions for summary solution if not 2
weight TRUE (default) for column weighting, FALSE for unweighted analysis, or a vector of user-defined column weights
row.wt Optional user-defined set of positive weights for the rows (samples) (default: equal weights)
suprow Indices of rows that are supplementary points (NOTE: this option is not implemented in this version)

Details

The function PCA computes an unstandardized principal component analysis, based on the singular value decomposition, of a matrix of interval-scale data, usually a matrix of logratios in the context of this package (but it can be used for general data as well). For general usage the unweighted option weight $=$ FALSE might be preferred, but the default is weighted in the present context of compositional data.
User-specified weights can be supplied, for the rows and/or the columns. Usually row weights are not specified, and are equal unless intentional weighting of the samples is desired. User-specified part weights can be provided using the weight option.
Supplementary rows and columns can be declared (also known as passive points) - these do not contribute to the solution but are positioned on the solution axes. Notice that this optyion is not implemented in the present version, but will appear in the next one.
The function borrows the structure and functions of the ca package, which is required, and produces a ca object, and the same print, summary and plot methods can be used, as for a ca object.

Value

sv	Singular values
nd	Dimenson of the solution
rownames	Row names
rowmass	Row weights
rowdist	Row logratio distances to centroid
rowinertia	Row variances
rowcoord	Row standard coordinates

rowpcoord	Row principal coordinates
rowsup	Indices of row supplementary points
colnames	Column names
colmass	Column weights
coldist	Column logratio distances to centroid
colinertia	Column variances
colcoord	Column standard coordinates
colpcoord	Column principal coordinates
N	The data table

Author(s)

Michael Greenacre

References

Aitchison, J. and Greenacre, M. (2002), Biplots of compositional data, Applied Statistics 51, 375392.

Greenacre, M. (2010), Biplots in Practice, BBVA Foundation, Bilbao. Free download from www.multivariatestatistics.org

See Also

, PLOT.PCA, plot.ca, summary.ca, print.ca

Examples

\# compute logratios of Vegetables data set
data(veg)
veg.LR <- LR(veg)
\# unweighted PCA biplot of the results
veg.PCA <- PCA(veg.LR\$LR, weight=FALSE)
PLOT.PCA(veg.PCA, map="asymmetric")

```
PLOT.CA
```

Plot the results of a correspondence analysis

Description

Various maps and biplots of the results of a correspondence analysis using function CA.

Usage

PLOT.CA(obj, map="symmetric", rescale=1, dim=c(1,2), axes.inv = c(1,1), main="", cols=c("blue","red"), colarrows = "pink", cexs=c(0.8,0.8), fonts=c(2,4))

Arguments

obj	A CA object created using function CA map Choice of scaling of rows and columns: "symmetric" (default), "asymmetric" or "contribution"
rescale	A rescaling factor applied to column coordinates (default is 1 for no rescaling) dim
main	Dimensions selected for horizontal and vertical axes of the plot (default is c(1,2)) Title for plot
axes.inv	Option for reversing directions of horizontal and vertical axes (default is c(1,1) for no reversing, change one or both to -1 for reversing)
cols	Colours for row and column labels (default is c("blue","red")) colarrows
cexs	Colour for arrows in asymmetric and contribution biplots (default is "pink")
fonts	Character expansion factors for row and column labels (default is c(0.8,0.8))

Details

The function PLOT.CA makes a scatterplot of the results of a correspondence analysis (computed using function CA), with various options for scaling the results and changing the direction of the axes. By default, dimensions 1 and 2 are plotted on the horizontal and vertical axes, and it is assumed that row points refer to samples and columns to variables.
By default, the symmetric scaling is used, where both rows and columns are in principal coordinates and have the same amount of weighted variance (i.e. inertia) along the two dimensions. The other options are biplots: the asymmetric option, when columns are in standard coordinates, and the contribution option, when columns are in contribution coordinates. In cases where the row and column displays occupy widely different extents, the column coordinates can be rescaled using the rescale option.

Author(s)

Michael Greenacre

References

Greenacre, M. (2013), Contribution biplots, Journal of Computational and Graphical Statistics, 22, 107-122.

See Also

CA, plot.ca

Examples

```
data(cups)
cups.CA <- CA(cups)
PLOT.CA(cups.CA, map="contribution", rescale=0.2)
# Compare the above plot with that of an LRA -- practically the same
cups.LRA <- LRA(cups)
PLOT.LRA(cups.LRA, map="contribution", rescale=0.2)
```


Description

Various maps and biplots of the results of a logratio analysis using function LRA.

Usage

PLOT.LRA(obj, map="symmetric", rescale=1, $\operatorname{dim=c}(1,2)$, axes.inv $=c(1,1)$, main="",
cols=c("blue","red"), colarrows $=" p i n k ", ~ c e x s=c(0.8,0.8), ~ f o n t s=c(2,4))$

Arguments

obj	An LRA object created using function LRA
map	Choice of scaling of rows and columns: "symmetric" (default), "asymmetric" or "contribution"
rescale	A rescaling factor applied to column coordinates (default is 1 for no rescaling)
dim	Dimensions selected for horizontal and vertical axes of the plot (default is c(1,2)) axes.inv
Option for reversing directions of horizontal and vertical axes (default is c(1,1) for no reversing, change one or both to -1 for reversing)	
main	Title for plot
cols	Colours for row and column labels (default is c("blue","red"))
colarrows	Colour for arrows in asymmetric and contribution biplots (default is "pink")
cexs	Character expansion factors for row and column labels (default is c(0.8,0.8))
fonts	Fonts for row and column labels (default is c(2,4))

Details

The function PLOT. LRA makes a scatterplot of the results of a logratio analysis (computed using function LRA), with various options for scaling the results and changing the direction of the axes. By default, dimensions 1 and 2 are plotted on the horizontal and vertical axes, and it is assumed that row points refer to samples and columns to compositional parts.
By default, the symmetric scaling is used, where both rows and columns are in principal coordinates and have the same amount of weighted variance along the two dimensions. The other options are the asymmetric option, when columns are in standard coordinates, and the contribution option, when columns are in contribution coordinates. In cases where the row and column displays occupy widely different extents, the column coordinates can be rescaled using the rescale option.

Author(s)

Michael Greenacre

References

Greenacre, M. (2013), Contribution biplots, Journal of Computational and Graphical Statistics, 22, 107-122.

See Also

plot.ca

Examples

```
# perform LRA on the Roman cups data set and plot the results
data(cups)
cups.LRA <- LRA(cups)
PLOT.LRA(cups.LRA, map="contribution", rescale=0.2)
```

PLOT.PCA Plot the results of a principal component analysis

Description

Various maps and biplots of the results of a principal component analysis using function PCA.

Usage

```
PLOT.PCA(obj, map="symmetric", rescale=1, dim=c(1,2), axes.inv = c(1,1),
    main="", cols=c("blue","red"), colarrows = "pink", cexs=c(0.8,0.8),
    fonts=c(2,4))
```


Arguments

obj	An LRA object created using function LRA
map	Choice of scaling of rows and columns: "symmetric" (default), "asymmetric" or "contribution"
rescale	A rescaling factor applied to column coordinates (default is 1 for no rescaling)
dim	Dimensions selected for horizontal and vertical axes of the plot (default is c(1,2))
axes.inv	Option for reversing directions of horizontal and vertical axes (default is c(1,1) for no reversing, change one or both to -1 for reversing)
main	Title for plot
cols	Colours for row and column labels (default is c("blue","red")) colarrows
Colour for arrows in asymmetric and contribution biplots (default is "pink")	
fonts	Character expansion factors for row and column labels (default is c(0.8,0.8))

Details

The function PLOT. PCA makes a scatterplot of the results of a logratio analysis (computed using function PCA), with various options for scaling the results and changing the direction of the axes. By default, dimensions 1 and 2 are plotted on the horizontal and vertical axes, and it is assumed that row points refer to samples and columns to variables.
By default, the symmetric scaling is used, where both rows and columns are in principal coordinates and have the same amount of weighted variance along the two dimensions. The other options are biplots: the asymmetric option, when columns are in standard coordinates, and the contribution option, when columns are in contribution coordinates. In cases where the row and column displays occupy widely different extents, the column coordinates can be rescaled using the rescale option.

Author(s)

Michael Greenacre

References

Greenacre, M. (2013), Contribution biplots, Journal of Computational and Graphical Statistics, 22, 107-122.

See Also

plot.ca

Examples

\# perform weighted PCA on the ALRs of the RomanCups data set
\# where the first oxide silica is chosen as the denominator data(cups)
cups.ALR <- ALR(cups, denom=1)
cups.PCA <- PCA(cups.ALR)
PLOT.PCA(cups.PCA, map="contribution", rescale=0.2, axes.inv=c(1,-1))

PLOT.RDA

Plot the results of a redundancy analysis

Description

Various maps and biplots/triplots of the results of a redundancy analysis using function RDA.

Usage

```
PLOT.RDA(obj, map="symmetric", indcat=NA, rescale=1, dim=c (1,2), axes.inv=c(1,1),
    main="", rowstyle=1, cols=c("blue","red","forestgreen"),
    colarrows=c("pink","lightgreen"), colrows=NA, pchrows=NA, colcats=NA,
    cexs \(=c(0.8,0.8,0.8)\), fonts=c \((2,4,4)\) )
```


Arguments

obj	An RDA object created using function RDA
map	Choice of scaling of rows and columns: "symmetric" (default), "asymmetric" or "contribution"
indcat	A vector indicating which of the covariates are dummy (or fuzzy) variables
rescale	A rescaling factor applied to column coordinates(default is 1 for no rescaling). If rescale is a vector with two values, the first applies to the column coordinates and the second to the covariate coordinates.
dim	Dimensions selected for horizontal and vertical axes of the plot (default is $c(1,2)$)
axes.inv	Option for reversing directions of horizontal and vertical axes (default is $c(1,1)$ for no reversing, change one or both to -1 for reversing)
main	Title for plot
rowstyle	Scaling option for row coordinates, either 1 (SVD coordinates, default) or 2 (as supplementary points)
cols	Colours for row and column and covariate labels (default is c("blue","red","forestgreen"))
colarrows	Colour for arrows in asymmetric or contribution biplots, for columns and covariates (default is c("pink","lightgreen"))
colrows	Optional vector of colours for rows
pchrows	Optional vector of point symbols for rows
colcats	Optional vector of colours for covariate categories (dummy variables)
cexs	Vector of character expansion factors for row and column and covariate labels (default is $\mathrm{c}(0.8,0.8,0.8)$)
fonts	Vector of font styles for row and column and covariate labels (default is $\mathrm{c}(2,4,4)$)

Details

The function PLOT. RDA makes a scatterplot of the results of a redundancy analysis (computed using function RDA), with various options for scaling the results and changing the direction of the axes. By default, dimensions 1 and 2 are plotted on the horizontal and vertical axes, and it is assumed that row points refer to samples and columns to compositional parts. Covariates are plotted according to their regression coefficients with the RDA dimensions, and if they contain dummy (or fuzzy) variables these are indicated by the option indcat, and hence plotted as centroids not arrows.
By default, the symmetric scaling is used, where both rows and columns are in principal coordinates and have the same amount of weighted variance along the two dimensions. The other options are the asymmetric option, when columns are in standard coordinates, and the contribution option, when columns are in contribution coordinates. In cases where the row and column displays as well as the covariate positions occupy widely different extents, the column and covariate coordinates can be rescaled using the rescale option.

Author(s)

Michael Greenacre

See Also

RDA

Examples

\# see the use of PLOT.RDA in the example of the RDA function
PLR Pivot logratios

Description

Computation of the set of pivot logratios(PLRs) based on the specified ordering of parts

Usage

PLR(data, ordering=1:ncol(data), weight=TRUE)

Arguments

data	A compositional data frame or matrix
ordering	The ordering of the parts to be used in the PLRs (by default, the original ordering of the columns)
weight	Logical indicating if varying weights are returned (default:TRUE). If FALSE, weights based on equally-weighted parts are returned. Alternatively a set of positive weights can be specified.

Details

The function PLR computes the set of pivot logratios according to the ordering of the parts.

Value

LR The pivot logratios (PLRs)
LR.wt The weights assigned to the PLRs

Author(s)

Michael Greenacre

References

Hron K., Filzmoser P., de Caritat P., Fiserova E., Gardlo A. (2017). Weighted pivot coordinates for copositional data and their application to geochemical mapping. Mathematical Geosciences 49, 777-796.

See Also

ILR, SLR, CLR, ALR, LR

Examples

```
data(veg)
PLR(veg, ordering=c(1,3,2))
```


Description

Computation of weighted or unweighted redundancy analysis of a samples-by-parts compositional data table, given a set of covariates.

Usage

RDA(data, cov=NA, nd = NA, weight = TRUE, suprow = NA, row.wt = NA)

Arguments

data A data frame or matrix of interval-scale data, e.g. logratios (which are preferably in a list object with weights)
cov List of covariates for constraining solution
nd Number of dimensions for summary output, by default the number of constraining dimensions
weight TRUE (default) when weights are in data list object, FALSE for unweighted analysis, or a vector of user-defined part weights
suprow Indices of rows that are supplementary (passive) points (NOTE: this option is not implemented in this version)
row.wt Optional user-defined set of positive weights for the rows (samples) (default: equal weights)

Details

The function RDA computes a redundancy analysis of a matrix of interval-scaled data, constrained by a matrix of covariates, using the singular value decomposition. By default weights are assumed in the data list object. For the unweighted logratio analysis, specify the option weight=FALSE. If weight = TRUE (the default) it is assumed that the weights are included in the data object, which comes from one of the logratio functions. User-specified part weights can be provided using the same weight option.
Usually row weights are not specified, they are equal unless intentional weighting of the samples is desired. Supplementary rows can be declared (also known as passive points) - these do not contribute to the solution but are positioned on the solution axes. This option will be available in the next release of the package.

Value

sv	Singular values
nd	Number of dimensions in the solution output
rownames	Row names
rowmass	Row weights
rowdist	Row distances to centroid
rowinertia	Row variances
rowcoord	Row standard coordinates
rowpcoord	Row principal coordinates
rowsup	Indices of row supplementary points
colnames	Column names
colmass	Column weights
coldist	Column logratio distances to centroid
colinertia	Column variances
colcoord	Column standard coordinates
colpcoord	Column principal coordinates
covcoord	Regression coordinates of constraining variables
covnames	Names of constraining variables
N	The data table (usually logratios in this package)
cov	The table of covariates

Author(s)

Michael Greenacre

References

Van den Wollenbergh, A. (1977), Redundancy analysis. An alternative to canonical correlation analysis, Psychometrika 42, 207-219.
Greenacre, M. (2013), Contribution biplots, Journal of Computational and Graphical Statistics 22, 107-122.

See Also

PLOT.RDA, CLR, LR, DUMMY

Examples

```
# Data frame fish has sex, habitat and mass in first columns,
# then morphometric data in remaining columns
data(fish)
sex <- fish[,1]
habitat <- fish[,2]
mass <- fish[,3]
```

```
    fishm <- as.matrix(fish[,4:29])
    # Convert to compositional data matrix
    fishm <- fishm / apply(fishm, 1, sum)
    # Compute logarithm of mass and interaction of sex (F/M) and habitat (L/P) categories
    logmass <- log(mass)
    sexhab <- 2*(sex-1)+habitat
    sexhab.names <- c("FL","FP","ML","MP")
    rownames(fishm) <- sexhab.names[sexhab]
    # Create dummy variables for sexhab and create matrix of covariates
    sexhab.Z <- DUMMY(sexhab, catnames=sexhab.names)
    vars <- cbind(logmass, sexhab.Z)
    # Perform RDA on centred logratios
    require(ca)
    fish.RDA <- RDA(CLR(fishm), cov=vars)
    # Plot results
    # (for more options see Appendix of Compositional Data Analysis in Practice)
    PLOT.RDA(fish.RDA, map="contribution", rescale=0.05, indcat=2:5,
        colrows=rainbow(4, start=0.1, end=0.8)[sexhab], cexs=c(0.8,0.8,1))
```

 SLR Amalgamation (summed) logratio

Description

Computation of a single amalgamation (summed) logratio

Usage

SLR(data, numer=NA, denom=NA, weight=TRUE)

Arguments

data A compositional data frame or matrix
numer Vector of parts in the numerator
denom Vector of parts in the denominator
weight Logical indicating if a varying weight is returned (default:TRUE). If FALSE, a weight based on equally-weighted parts is returned. Alternatively a positive weight can be specified.

Details

The function SLR computes a single amalgamation logratio based on the specified numerator and denominator parts that define the two summations in the ratio.

Value
$\begin{array}{ll}\text { LR } & \text { The amalgamation (summed)) logratio (SLR) } \\ \text { LR.wt } & \text { The weight assigned to the SLR }\end{array}$

Author(s)

Michael Greenacre

References

Aitchison, J. (1986), The Statistical Analysis of Compositional Data, Chapman \& Hall. Greenacre, M. (2018), Compositional Data Analysis in Practice, Chapman \& Hall / CRC Press.

See Also

ILR, ALR, CLR, PLR, LR

Examples

data(veg)
SLR(veg, numer=1, denom=2:3)

STEP Stepwise selection of logratios

Description

Stepwise selection of pairwise logratios that explain maximum variance in a target matrix.

Usage

STEP(data, datatarget=data, previous=NA, previous.wt=NA, weight=TRUE, random=FALSE, nsteps=min(ncol(data), ncol(datatarget))-1, top=1)

Arguments

data	A data frame or matrix of compositional data on which pairwise logratios are computed
datatarget	A matrix of interval-scale data, with as many rows as data, which serves as the target matrix whose variance is to be explained (by default it is the same matrix as data, in which case total logratio variance is to be explained)
previous	A vector or matrix of variables to be forced in before logratios are sought Possible weights of the variable(s) forced in before logratios are sought (if not specified, weights of 1 are assumed)
previous.wt	

Details

The function STEP sequentially computes the logratios in a data matrix (usually compositional) that best explain the variance in a second matrix, called the target matrix. By default, the target matrix is the same matrix, in which case the logratios that best explain the logratio variance in the same matrix are computed. In this case, weights for the data matrix are assumed by default, proportional to part means of the compositional data matrix. For the unweighted logratio variance, specify the option weight=FALSE. User-specified weights on the columns of the data matrix (usually compositional parts) can be provided using the same weight option.
If the target matrix is a different matrix, it is the logratio variance of that matrix that is to be explained. An option for the target matrix to be any response matrix will be in the next release.
If nsteps >1 and top=1 the results are in the form of an optimal set of logratios that sequentially add maximum explained variance at each step. If top >1 then at the last step the ordered list of top variance-explaining logratios is returned, which allows users to make an alternative choice of the logratio based on substantive knowledge. Hence, if nsteps=1 and top=10, for example, the procedure will move only one step, but list the top 10 logratios for that step. If top=1 then all results with extension .top related to the top ratios are omitted because they are already given.

Value	
names	Names of maximizing ratios in stepwise process
ratios	Indices of ratios
logratios	Matrix of logratios
R2max	Sequence of maximum cumulative explained variances
pro.cor	Corresponding sequence of Procrustes correlations
names.top	Names of "top" ratios at last step
ratios.top	Indices of "top" ratios
logratios.top	Matrix of "top" logratios
R2.top	Sequence of "top" cumulative explained variances (in descending order)
pro.cor.top	Corresponding sequence of "top" Procrustes correlations
totvar	Total logratio variance of target matrix

Author(s)

Michael Greenacre

References

Van den Wollenbergh, A. (1977), Redundancy analysis. An alternative to canonical correlation analysis, Psychometrika 42, 207-219.
Greenacre, M. (2018), Variable selection in compositional data analysis using pairwise logratios, Mathematical Geosciences, DOI: 10.1007/s11004-018-9754-x.
Greenacre, M. (2018), Compositional Data Analysis in Practice, Chapman \& Hall / CRC

See Also

PLOT.RDA, CLR, LR, ALR

Examples

```
# Stepwise selection of ratios for RomanCups data set
data(cups)
# Set seed to obtain same results as in Appendix C of Greenacre (2018)
set.seed(2872)
STEP(cups, random=TRUE)
# Select best ratio, but output "top 5"
STEP(cups, nsteps=1, top=5)
```


time

 Dataset: TimeBudget
Description

This data set consists of the average percentage breakdown of time use into six categories, for 16 countries, split by males and females.

Usage

data(time)

Format

Data matrix containing the 32×6 matrix. Row samples are labelled by the two-character country code and m (male) or f (female).

Source

Greenacre M., Compositional Data Analysis in Practice, Chapman \& Hall / CRC, 2018.

Description

This function computes the usual variance but divides by n , not by $\mathrm{n}-1$.

Usage

$\operatorname{VAR}(x)$

Arguments

x
Vector of values for which variance is computed

Details

To think of each of n observations weighted by $1 / n$ this function VAR computes squared deviations from the mean and averages them. Thus, the sum of squared deviations is divided by n rather than by $\mathrm{n}-1$, as for the unbiased estimate of the variance.

Value

The value of the variance.

Author(s)

Michael Greenacre

References

Greenacre, M. (2018), Compositional Data Analysis in Practice, Chapman \& Hall / CRC.

See Also

LR.VAR, CLOSE

Examples

```
data(cups)
cups <- CLOSE(cups)
# variances using base R function var
apply(cups, 2, var)
# variances using easyCODA function VAR
apply(cups, 2, VAR)
```

 veg Dataset: Vegetables

Description

This data set consists of the protein, carbohydrate and fat compositions of 10 different vegetables. Compositions are expressed as percentages.

Usage

data(veg)

Format

Data frame containing the 10×3 matrix.

Source

US Department of Agriculture, https://ndb.nal.usda.gov/ndb/nutrients/index

WARD

Ward clustering of a compositional data matrix

Description

This function clusters the rows (or the columns, if the matrix is transformed) of a compositional data matrix, using weighted Ward clustering of the logratios.

Usage

WARD(LRdata, weight=TRUE, row.wt=NA)

Arguments

LRdata Matrix of logratios, either a vector or preferably the logratio object resulting from one of the functions ALR, CLR, PLR or LR (usually CLRs will be used))
weight TRUE (default) for weighted analysis (in which case weights are in the logratio object), FALSE for unweighted analysis, or a vector of user-defined column weights
row.wt Optional set of row weights (default is equal weights when row.wt=NA)

Details

The function WARD performs a weighted WARD hierarchical clustering on the rows of an input set of logratios, usually CLR-transformed. (This would be equivalent to performing the clustering on all pairwise logratios). If the columns of the logratio matrix are unweighted, specify the option weight=FALSE: they will then get equal weights. The default weight=TRUE option implies that column weights are provided, either in the input list object LRdata, as LRdata\$LR.wt, or as a vector of user-specified weights using the same weight option.

Value

An object which describes the tree produced by the clustering process on the n objects. The object is a list with components:

$$
\begin{aligned}
& \text { merge an n-1 by } 2 \text { matrix. Row i of merge describes the merging of clusters at step } \mathrm{i} \\
& \text { of the clustering. If an element } j \text { in the row is negative, then observation }-j \text { was } \\
& \text { merged at this stage. If } \mathrm{j} \text { is positive then the merge was with the cluster formed } \\
& \text { at the (earlier) stage } \mathrm{j} \text { of the algorithm. Thus negative entries in merge indicate } \\
& \text { agglomerations of singletons, and positive entries indicate agglomerations of } \\
& \text { non-singletons. } \\
& \text { height a set of } n-1 \text { real values (non-decreasing for ultrametric trees). The clustering } \\
& \text { height: that is, the value of the criterion associated with the clustering method } \\
& \text { for the particular agglomeration. }
\end{aligned}
$$

order a vector giving the permutation of the original observations suitable for plotting, in the sense that a cluster plot using this ordering and matrix merge will not have crossings of the branches

Author(s)

Michael Greenacre

References

Greenacre, M. (2018), Compositional Data Analysis in Practice, Chapman \& Hall / CRC.

See Also

hclust, CLR, LR.VAR, CLOSE

Examples

```
# clustering steps for unweighted and weighted logratios
# for both row- and column-clustering
data(cups)
cups <- CLOSE(cups)
# unweighted logratios: clustering samples
cups.uclr <- CLR(cups, weight=FALSE)
cups.uward <- WARD(cups.uclr, weight=FALSE) # weight=FALSE not needed here,
                                    # as equal weights are in object
plot(cups.uward)
# add up the heights of the nodes
sum(cups.uward$height)
# [1] 0.02100676
# check against the total logratio variance
LR.VAR(cups.uclr, weight=FALSE)
# [1] 0.02100676
# unweighted logratios: clustering parts
tcups <- t(cups)
tcups.uclr <- CLR(tcups, weight=FALSE)
tcups.uward <- WARD(tcups.uclr, weight=FALSE) # weight=FALSE not needed here,
                                    # as equal weights are in object
plot(tcups.uward, labels=colnames(cups))
sum(tcups.uward$height)
# [1] 0.02100676
LR.VAR(tcups.uclr, weight=FALSE)
# [1] 0.02100676
# weighted logratios: clustering samples
cups.clr <- CLR(cups)
cups.ward <- WARD(cups.clr)
plot(cups.ward)
sum(cups.ward$height)
```

```
# [1] 0.002339335
LR.VAR(cups.clr)
# [1] 0.002339335
# weighted logratios: clustering parts
# weight=FALSE is needed here, since we want equal weights
# for the samples (columns of tcups)
tcups.clr <- CLR(tcups, weight=FALSE)
tcups.ward <- WARD(tcups.clr, row.wt=colMeans(cups))
plot(tcups.ward, labels=colnames(cups))
    sum(tcups.ward$height)
# [1] 0.002339335
LR.VAR(tcups.clr, row.wt=colMeans(cups))
# [1] 0.002339335
```


Index

```
* coding
    DUMMY, 16
* datasets
    cups, }1
    fish, 16
    time, }3
    veg, 40
* logratio
        ALR, }
        CLR,13
        ILR, }1
        invALR,18
        invCLR,19
        invSLR,20
        LR,21
        LR.VAR, 22
        PLR, }3
        SLR, 36
* multivariate
        ACLUST, 4
        CA, }
        LRA, }2
        PCA, 25
        PLOT.CA, 27
        PLOT.LRA, 29
        PLOT.PCA, 30
        PLOT.RDA, 31
        RDA, }3
        STEP, }3
        WARD, 41
* package
        easyCODA-package, 2
* variance
        VAR, }3
* visualization
        BAR,7
        CIplot_biv, 10
        DOT,14
ACLUST, 4
```

ALR, 6, 13, 18, 19, 21-23, 34, 37, 38
BAR, 7,15
CA, 9, 28
ca, 4
CIplot_biv, 10
CLOSE, 5, 12, 40, 42
CLR, 5, 7, 13, 19, 21-23, 34, 35, 37, 38, 42
cups, 14
DOT, 8, 11, 14
DUMMY, 16, 35
easyCODA-package, 2
fish, 16
hclust, 5, 42
ILR, 17, 34, 37
invALR, 7, 13, 18, 19, 21-23
invCLR, 7, 13, 19, 19, 22, 23
invSLR, 20
LR, 7, 13, 18, 19, 21, 23, 34, 35, 37, 38
LR.VAR, 5, 7, 13, 19, 21, 22, 22, 40, 42
LRA, 23
PCA, 25
PLOT.CA, 10, 27
plot.ca, 10, 25, 27, 28, 30, 31
PLOT.LRA, 29
PLOT.PCA, 30
PLOT.RDA, 31, 35, 38
PLR, 18, 33, 37
print.ca, 10, 25, 27
RDA, 33, 34
SLR, 18, 34, 36
STEP, 37
summary.ca, $10,25,27$
time, 39
VAR, 39
veg, 40
WARD, 5, 41

