Which climate variables best explain plant height?
This question is about which variables best explain patterns in height – it is not about hypothesis testing or interval estimation, instead we want to compare different possible models for plant height, and so can think of this as a model selection question.
As before, this research question involves several variables: height (quantitative) and climate. How climate is measured has not been specified here, but it typically involves quantitative measurements of temperature, precipitation and often related variables.
As before we will answer this question using multiple regression, a type of linear model, and the main question is about which predictors to add to this linear model.
Here is the code behind Figures 5.1-5.2. Because of the small sample size, you can get quite different answers on different runs! Hence the seed has been fixed at the values used to generate results in the text.
=1.2
sigma=20
n=8
nDegree
=61
seedset.seed(seed)
= sort( rnorm(2*n) )
x = 3*x-3*x^2 + rnorm(2*n)*sigma
y = sample(1:(2*n),n)
idTrain = x[-idTrain]
xTest = y[-idTrain]
yTest = x[idTrain]
x = y[idTrain]
y = data.frame(x)
X
=rep(NA,nDegree)
err= err
errTrain =c(1,2,4,8)
whichPlot= colorRampPalette(c("red", "blue"))( length(whichPlot) )
cols
par(mar = c(2,1.5,1,1),mgp=c(1.75,0.75,0),mfrow=c(1,length(whichPlot)),las=1,oma=c(1,1,1,1))
=rgb(0,0.75,0,names="dgreen")
dgreen= seq(min(x),max(x),length=500)
xpred for(iDegree in 1:nDegree)
{=lm(y~poly(x,degree=iDegree,raw=TRUE),data=X)
fti= mean( (yTest - predict(fti,newdata=data.frame(x=xTest)))^2 )
err[iDegree] = mean(fti$residuals^2)
errTrain[iDegree] if(iDegree %in% whichPlot)
{plot(y~x,xaxt="n",yaxt="n",ylab="",xlab="")
if(iDegree==1)
mtext("y",2,line=1.5)
mtext("x",1,line=1.5)
axis(1,at=-2:1,labels=1:4,cex.axis=0.75)
axis(2,at=5*(-3:0),labels=1:4,cex.axis=0.75)
points(yTest~xTest,col=dgreen,pch="*")
lines(xpred,predict(fti,newdata=data.frame(x=xpred)),col=cols[which(whichPlot==iDegree)])
mtext(paste("Degree =",iDegree),3,line=0.5)
}
}legend("bottomright",c("Training data","Test data"),pch=c("o","*"),col=c("black",dgreen))
print(err)
#> [1] 10.566356 1.729799 1.742761 1.945641 5.632565 5.681434 7.815761 10.459043
par(mar = c(2.75,2.75,1,1),mgp=c(1.75,0.75,0),mfrow=c(1,1),las=1)
plot(1:nDegree,errTrain,type="l",ylim=c(0,max(c(err,errTrain))),ylab="Mean squared error",xlab="Degree of polynomial [log scale]",xaxt="n",log="x",yaxt="n")
lines(1:nDegree,err,col=dgreen)
for(iDegree in whichPlot)
axis(1,iDegree,col.ticks=cols[which(whichPlot==iDegree)],col.axis=cols[which(whichPlot==iDegree)])
axis(2,c(0,2,4,6))
legend("topright",c("Training data","Test data"),lty=1,col=c("black",dgreen))
library(ecostats)
data(globalPlants)
= dim(globalPlants)[1]
n = sample(n,n^0.75) #select a training sample of size n^0.75:
indTrain = globalPlants[indTrain,]
datTrain = globalPlants[-indTrain,]
datTest = lm(log(height)~rain,dat=datTrain)
ft_r = lm(log(height)~rain+rain.seas,dat=datTrain)
ft_rs = predict(ft_r,newdata=datTest)
pr_r = predict(ft_rs,newdata=datTest)
pr_rs = mean( (log(datTest$height)-pr_r)^2 )
rss_r = mean( (log(datTest$height)-pr_rs)^2 )
rss_rs print( c(rss_r,rss_rs) )
#> [1] 2.668369 2.467766
library(DAAG)
= lm(log(height)~rain,dat=globalPlants)
ft_r = lm(log(height)~rain+rain.seas,dat=globalPlants)
ft_rs = cv.lm(data=globalPlants, ft_r, m=5, printit=FALSE) # 5 fold CV cv_r
= cv.lm(data=globalPlants, ft_rs, m=5, printit=FALSE) # 5 fold CV
cv_rs #> Warning in cv.lm(data = globalPlants, ft_rs, m = 5, printit = FALSE):
#>
#> As there is >1 explanatory variable, cross-validation
#> predicted values for a fold are not a linear function
#> of corresponding overall predicted values. Lines that
#> are shown for the different folds are approximate
print( c( attr(cv_r,"ms"),attr(cv_rs,"ms") ), digits=6 )
#> [1] 2.22541 2.15883
= cv.lm(data=globalPlants, ft_r, m=5, printit=FALSE,seed=1) # 5 fold CV cv_r
= cv.lm(data=globalPlants, ft_rs, m=5, printit=FALSE,seed=1) # 5 fold CV
cv_rs #> Warning in cv.lm(data = globalPlants, ft_rs, m = 5, printit = FALSE, seed = 1):
#>
#> As there is >1 explanatory variable, cross-validation
#> predicted values for a fold are not a linear function
#> of corresponding overall predicted values. Lines that
#> are shown for the different folds are approximate
print( c( attr(cv_r,"ms"),attr(cv_rs,"ms") ), digits=6 )
#> [1] 2.21103 2.16553
= cv.lm(data=globalPlants, ft_r, m=5, printit=FALSE,seed=2) # 5 fold CV cv_r
= cv.lm(data=globalPlants, ft_rs, m=5, printit=FALSE,seed=2) # 5 fold CV
cv_rs #> Warning in cv.lm(data = globalPlants, ft_rs, m = 5, printit = FALSE, seed = 2):
#>
#> As there is >1 explanatory variable, cross-validation
#> predicted values for a fold are not a linear function
#> of corresponding overall predicted values. Lines that
#> are shown for the different folds are approximate
print( c( attr(cv_r,"ms"),attr(cv_rs,"ms") ), digits=6 )
#> [1] 2.22425 2.14762
= cv.lm(data=globalPlants, ft_r, m=5, printit=FALSE,seed=3) # 5 fold CV cv_r
= cv.lm(data=globalPlants, ft_rs, m=5, printit=FALSE,seed=3) # 5 fold CV
cv_rs #> Warning in cv.lm(data = globalPlants, ft_rs, m = 5, printit = FALSE, seed = 3):
#>
#> As there is >1 explanatory variable, cross-validation
#> predicted values for a fold are not a linear function
#> of corresponding overall predicted values. Lines that
#> are shown for the different folds are approximate
print( c( attr(cv_r,"ms"),attr(cv_rs,"ms") ), digits=6 )
#> [1] 2.2783 2.2373
R
for
Exercise 5.1= lm(log(height)~rain,dat=globalPlants)
ft_r = lm(log(height)~rain+rain.seas,dat=globalPlants)
ft_rs c( AIC(ft_r), AIC(ft_rs) )
#> [1] 479.6605 475.4343
c( BIC(ft_r), BIC(ft_rs) )
#> [1] 488.2861 486.9351
library(leaps)
<-regsubsets(log(height)~temp+rain+rain.wetm+temp.seas,
fit_heightallsubdata=globalPlants,nbest=2)
cbind(summary(fit_heightallsub)$outmat,summary(fit_heightallsub)$bic)
#> temp rain rain.wetm temp.seas
#> 1 ( 1 ) " " " " "*" " " "-21.06175277099"
#> 1 ( 2 ) " " "*" " " " " "-19.2868231448677"
#> 2 ( 1 ) "*" "*" " " " " "-24.8920679441895"
#> 2 ( 2 ) "*" " " "*" " " "-23.9315826810965"
#> 3 ( 1 ) "*" "*" " " "*" "-20.9786934545272"
#> 3 ( 2 ) "*" "*" "*" " " "-20.3405400349995"
#> 4 ( 1 ) "*" "*" "*" "*" "-16.4229239023018"
= lm(log(height)~temp+rain+rain.wetm+temp.seas,
ft_clim data=globalPlants)
=step(ft_clim,trace=0)
stepClim$anova
stepClim#> Step Df Deviance Resid. Df Resid. Dev AIC
#> 1 NA NA 126 260.6727 100.13694
#> 2 - rain.wetm 1 0.6363946 127 261.3091 98.45637
#> 3 - temp.seas 1 1.9256333 128 263.2347 97.41819
= lm(log(height)~1,data=globalPlants)
ft_int <- step(ft_int,scope=formula(ft_clim),direction="forward",
stepForward trace=0)
$anova
stepForward#> Step Df Deviance Resid. Df Resid. Dev AIC
#> 1 NA NA 130 355.9206 132.93585
#> 2 + rain.wetm -1 74.59845 129 281.3221 104.12370
#> 3 + temp -1 16.15030 128 265.1718 98.37867
I used nSim=1000
in the book, but have set it to
50
here so the code doesn’t take ages to run…
library(mvtnorm)
= 50 # increase this for a more precise answer
nSim =8
p=32
n
= c(1,1,rep(0,p-2))
beta =2
pTrue
=0.5
rho= diag(rep(1-rho,p))+rho
Sigma =rmvnorm(n,sigma=Sigma)
X= X %*% beta
eta
= array(0,c(3,3,nSim))
resArray dimnames(resArray)[[1]]=c("AIC","MStrue","propTrue")
dimnames(resArray)[[2]]=c("all","for","back")
= matrix(0,3,3)
counter
for(iSim in 1:nSim)
{= eta + rnorm(n)*2
y
# construct matrix of all possible subsets
= matrix(NA,2^p,p)
allSubs for(iVar in 1:p)
= rep(c(0,1),each=2^(p-iVar),times=2^(iVar-1))
allSubs[,iVar]
# define vectors to stor AIC and MS
= rep(NA,2^p)
aics = aics
ms =aics
isTrue
# intercept first as it will give error
= lm(y~1)
ft0 1] = AIC(ft0)
aics[1] = mean((predict(ft0)-eta)^2)
ms[1] = FALSE
isTrue[
# now get all subset results
for(iModel in 2:2^p)
{= lm(y~X[,allSubs[iModel,]==1])
ft = AIC(ft)
aics[iModel] = mean((predict(ft)-eta)^2)
ms[iModel] = allSubs[iModel,1]==1 & allSubs[iModel,2]==1 & sum(allSubs[iModel,])==2
isTrue[iModel]
}
= which(aics==min(aics))[1] #if tie take the first one, probably smaller, but whatever this won't happen
whichBest
# now backward stepwise
= step(lm(y~.,data=data.frame(X)),trace=0,direction="backward")
ftBack = AIC(ftBack)
aicBack = mean((predict(ftBack)-eta)^2)
msBack = length(coef(ftBack))==3 & "X1" %in% names(coef(ftBack)) & "X2" %in% names(coef(ftBack))
trueBack
# now forward stepwise
=paste0("X",1:p,collapse="+")
scopeForm= step(lm(y~1,data=data.frame(X)),scope=paste("~",scopeForm),trace=0,direction="forward")
ftFor = AIC(ftFor)
aicFor = mean((predict(ftFor)-eta)^2)
msFor = length(coef(ftFor))==3 & "X1" %in% names(coef(ftFor)) & "X2" %in% names(coef(ftFor))
trueFor
= matrix(0,3,3)
counterAdd 1,,iSim] = c(aics[whichBest],aicFor,aicBack)
resArray[2,,iSim] = c(ms[whichBest],msFor,msBack)
resArray[3,,iSim] = c(isTrue[whichBest],trueFor,trueBack)
resArray[
=1.e-8
eps= which(resArray[1,,iSim]<min(resArray[1,,iSim])+eps)
whichAIC 1,whichAIC] = 1
counterAdd[= which(resArray[2,,iSim]<min(resArray[2,,iSim])+eps)
whichMS 2,whichMS] = 1
counterAdd[3,] = resArray[3,,iSim]
counterAdd[
= counter + counterAdd
counter
}#end sim
= apply(resArray,c(1,2),mean)
resMean = apply(resArray,c(1,2),sd)/sqrt(nSim)
resSD = counter/nSim
counter
print(resMean)
#> all for back
#> AIC 135.6532644 135.9232694 135.750229
#> MStrue 0.9629137 0.9017192 1.001753
#> propTrue 0.1400000 0.1600000 0.120000
par(mar=c(3,1,1,1),mgp=c(2,0.75,0),mfrow=c(1,2),oma=c(0,4,0,0))
plot(resMean[1,],1:3,ylim=c(0.5,3.5),col="blue",yaxt="n",pch=19,xlab="AIC",ylab="",xlim=range(resMean[1,]-2*resSD[1,],resMean[1,]+2*resSD[1,]))
for(iMethod in 1:3)
lines(c(resMean[1,iMethod]-resSD[1,iMethod]*2,resMean[1,iMethod]+resSD[1,iMethod]*2),c(iMethod,iMethod),col="blue")
axis(2,at=1:3,labels=c("All subsets","Forward","Backward"),las=1)
plot(resMean[2,],1:3,ylim=c(0.5,3.5),col="blue",yaxt="n",pch=19,xlab=expression(paste("Mean squared error of ",hat(mu))),ylab="",xlim=range(resMean[2,]-2*resSD[2,],resMean[2,]+2*resSD[2,]))
for(iMethod in 1:3)
lines(c(resMean[2,iMethod]-resSD[2,iMethod]*2,resMean[2,iMethod]+resSD[2,iMethod]*2),c(iMethod,iMethod),col="blue")
axis(2,at=1:3,labels=c(" "," "," "),las=1)
data(globalPlants)
library(glmnet)
= cbind(globalPlants$temp, globalPlants$rain, globalPlants$rain.wetm,
X $temp.seas)
globalPlants=cv.glmnet(X,log(globalPlants$height))
ft_heightcvplot(ft_heightcv)
=glmnet(X,log(globalPlants$height),lambda=ft_heightcv$lambda.min)
ft_lasso$beta
ft_lasso#> 4 x 1 sparse Matrix of class "dgCMatrix"
#> s0
#> V1 0.0424080540
#> V2 0.0003785307
#> V3 0.0014047575
#> V4 .
How important are the different climate variables in explaining plant height?
We are asked to quantify variable importance. A couple of techniques are suggested in Code Boxes 5.8-5.9.
= lm(log(height)~temp+rain+rain.wetm+temp.seas,data=globalPlants)
ft_clim = lm(log(height)~1,data=globalPlants)
ft_int = step(ft_int, scope=formula(ft_clim), direction="forward",
stepAnova trace=0, k=0)$anova
$R2 = stepAnova$Deviance/deviance(ft_int)
stepAnova
stepAnova#> Step Df Deviance Resid. Df Resid. Dev AIC R2
#> 1 NA NA 130 355.9206 130.93585 NA
#> 2 + rain.wetm -1 74.598450 129 281.3221 100.12370 0.209592965
#> 3 + temp -1 16.150298 128 265.1718 92.37867 0.045376129
#> 4 + rain -1 2.586703 127 262.5851 91.09452 0.007267641
#> 5 + temp.seas -1 1.912441 126 260.6727 90.13694 0.005373225
=add1(ft_int,scope=formula(ft_clim))
stepMargin$R2=stepMargin$`Sum of Sq`/deviance(ft_int)
stepMargin
stepMargin#> Single term additions
#>
#> Model:
#> log(height) ~ 1
#> Df Sum of Sq RSS AIC R2
#> <none> 355.92 132.94
#> temp 1 66.224 289.70 107.97 0.18607
#> rain 1 70.761 285.16 105.90 0.19881
#> rain.wetm 1 74.598 281.32 104.12 0.20959
#> temp.seas 1 46.401 309.52 116.64 0.13037
=drop1(ft_clim)
leave1out$R2=leave1out$`Sum of Sq`/deviance(ft_int)
leave1out
leave1out#> Single term deletions
#>
#> Model:
#> log(height) ~ temp + rain + rain.wetm + temp.seas
#> Df Sum of Sq RSS AIC R2
#> <none> 260.67 100.137
#> temp 1 16.0581 276.73 105.968 0.045117
#> rain 1 3.4438 264.12 99.856 0.009676
#> rain.wetm 1 0.6364 261.31 98.456 0.001788
#> temp.seas 1 1.9124 262.58 99.095 0.005373
# first create a dataset with standardised predictors:
=globalPlants
globalPlantStand=c("temp","rain","rain.wetm","temp.seas")
whichVars=scale(globalPlantStand[,whichVars])
globalPlantStand[,whichVars]# then fit the model:
= lm(log(height)~temp+rain+rain.wetm+temp.seas,
ft_climStand data=globalPlantStand)
summary(ft_climStand)
#>
#> Call:
#> lm(formula = log(height) ~ temp + rain + rain.wetm + temp.seas,
#> data = globalPlantStand)
#>
#> Residuals:
#> Min 1Q Median 3Q Max
#> -2.9649 -1.0454 -0.0122 0.9801 3.4005
#>
#> Coefficients:
#> Estimate Std. Error t value Pr(>|t|)
#> (Intercept) 1.1947 0.1257 9.507 < 2e-16 ***
#> temp 0.5715 0.2051 2.786 0.00616 **
#> rain 0.4185 0.3244 1.290 0.19934
#> rain.wetm 0.1860 0.3353 0.555 0.58013
#> temp.seas 0.2090 0.2174 0.961 0.33816
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#>
#> Residual standard error: 1.438 on 126 degrees of freedom
#> Multiple R-squared: 0.2676, Adjusted R-squared: 0.2444
#> F-statistic: 11.51 on 4 and 126 DF, p-value: 5.378e-08
Compare the \(R^2\) results of Code Boxes 5.7-5.8. Which table(s) do you think Angela should report when describing variable importance?
This is a tough one – I guess the main story is that:
rain
or
rain.wetm
) explains a big hcunk of variationtemp
explains a fair bit of variation even after rain
variables are in the modelThe most concise way to make these points would be to show the marginal \(R^2\) table to make point 1, and the conditional \(R^2\) table to make point 2.
Now look at the standardised coefficients in Code Box 5.9. Do these coefficients measure marginal or conditional effects? Which of the \(R^2\) tables in Code Box 5.8 are they most similar to in relative size (e.g. ranking from largest to smallest)? Is this what you expected?
The summary
function tells us about the coefficients in
the model, which always measure conditional effects after all
other terms have been added to the model. The conditional \(R^2\) table gives the most similar answers,
with the same ranking of predictors (largest to smallest). The
standardised coefficient forrain.wetm
is larger than I
expected, and for temp
it is smaller than I expected, from
looking at the conditional \(R^2\)
values. I guess this is because of differences in the extent of
collinearity across predictors.
= lm(log(height)~temp+temp.seas,data=globalPlants)
ft_onlyTemp =anova(ft_int,ft_onlyTemp,ft_clim)
tempAn$R2=tempAn$`Sum of Sq`/deviance(ft_int)
tempAn
tempAn#> Analysis of Variance Table
#>
#> Model 1: log(height) ~ 1
#> Model 2: log(height) ~ temp + temp.seas
#> Model 3: log(height) ~ temp + rain + rain.wetm + temp.seas
#> Res.Df RSS Df Sum of Sq F Pr(>F) R2
#> 1 130 355.92
#> 2 128 289.00 2 66.917 16.173 0.00000056 0.188011
#> 3 126 260.67 2 28.331 6.847 0.00150359 0.079599
= lm(log(height)~rain+rain.wetm,data=globalPlants)
ft_onlyRain =anova(ft_int,ft_onlyRain,ft_clim)
rainAn$R2=rainAn$`Sum of Sq`/deviance(ft_int)
rainAn
rainAn#> Analysis of Variance Table
#>
#> Model 1: log(height) ~ 1
#> Model 2: log(height) ~ rain + rain.wetm
#> Model 3: log(height) ~ temp + rain + rain.wetm + temp.seas
#> Res.Df RSS Df Sum of Sq F Pr(>F) R2
#> 1 130 355.92
#> 2 128 279.80 2 76.118 18.3964 0.0000001 0.213863
#> 3 126 260.67 2 19.130 4.6233 0.0115445 0.053747
par(mgp=c(1.75,0.75,0),mar=c(2.75,0.5,0.5,0))
= c(0,tempAn$R2[2])
R2sTemp = c(rainAn$R2[3],sum(rainAn$R2[2:3]))
R2sRain =c(sum(rainAn$R2[2:3]),1)
R2error=rgb(0,0,0.5,alpha=0.9)
darkBlue=rgb(0.5,0,0,alpha=0.9)
darkRed=rgb(0.5,0.5,0,alpha=0.9)
darkYellowplot(c(0,1),c(0,1),type="n",yaxt="n",xlab=expression(R^2),ylab="",bty="n")
polygon(c(R2error,R2error[2:1]),c(0,0,1,1),col=rgb(1,1,0,alpha=0.25),lwd=0.25,border=darkYellow)
polygon(c(R2sTemp,R2sTemp[2:1]),c(0,0,1,1),col=rgb(1,0,0,alpha=0.25),border=darkRed,lwd=1.5)
polygon(c(R2sRain,R2sRain[2:1]),c(0,0,1,1),col=rgb(0,0,1,alpha=0.25),border=darkBlue,lwd=1.5)
=0.15
yText=0.008
epstext(mean(R2error),0.5,'Unexplained',adj=0.5,col=darkYellow)
text(eps,yText,'Temperature',adj=0,col=darkRed)
text(R2sRain[2]-eps,1-yText,'Rainfall',adj=1,col=darkBlue)
Terry… wanted to know which environmental features (out of temperature, light and noisiness) were related to head bobbing speed
This is a model selection question, we want to see which environmental variables are associated with head-bobbing, so will try a bunch of different models with different predictors to see which one(s) fits best.
data(headbobLizards)
str(headbobLizards)
#> 'data.frame': 14 obs. of 10 variables:
#> $ LizardID : Factor w/ 14 levels "6","7","8","9",..: 1 2 3 4 5 6 7 8 9 10 ...
#> $ Observation : num 1 1 1 1 1 3.1 1 5 2 1 ...
#> $ Display : int 3 1 1 1 1 1 1 2 1 2 ...
#> $ ObservationDate : Factor w/ 19 levels "03-07-05","04-07-05",..: 1 2 1 1 1 3 1 2 3 1 ...
#> $ ObservationTime24hr: Factor w/ 342 levels "10:00","10:03",..: 186 325 205 243 232 173 300 191 305 165 ...
#> $ TemperatureC : num 25.7 27.2 26.2 26.2 26 27.6 26.2 27.1 27 28.1 ...
#> $ AmbientLight : num 0.47 4.13 2.46 0.31 2.36 ...
#> $ Bg_noise_max : num 11.1 16.47 9.32 2.29 7.37 ...
#> $ Hbspd_max : num 29.7 54.4 34.6 26.7 28.7 ...
#> $ time : POSIXct, format: "2005-07-03 15:44:00" "2005-07-04 09:33:00" "2005-07-03 16:18:00" ...
# try some AIC funny-business
library(MASS)
par(mfrow=c(1,2),mar=c(3,3,1,1),mgp=c(1.75,0.75,0))
plot(Hbspd_max~TemperatureC,data=headbobLizards)
plot(Hbspd_max~Bg_noise_max,data=headbobLizards)
# my vote is log-transformation, covers almost a factor of 3 and a bit of right-skew:
plot(Hbspd_max~TemperatureC,data=headbobLizards,log="y")
plot(Hbspd_max~Bg_noise_max,data=headbobLizards,log="y")
$bobspeed=log(headbobLizards$Hbspd_max)
headbobLizards=lm(bobspeed~TemperatureC+AmbientLight+Bg_noise_max,data=headbobLizards)
ft_headbobplotenvelope(ft_headbob)
#> Error in matrix(NA, nPred, n.sim): object 'n.sim' not found
stepAIC(ft_headbob)
#> Start: AIC=-35.58
#> bobspeed ~ TemperatureC + AmbientLight + Bg_noise_max
#>
#> Df Sum of Sq RSS AIC
#> - Bg_noise_max 1 0.018757 0.64139 -37.164
#> <none> 0.62264 -35.580
#> - AmbientLight 1 0.113540 0.73618 -35.235
#> - TemperatureC 1 0.193576 0.81621 -33.790
#>
#> Step: AIC=-37.16
#> bobspeed ~ TemperatureC + AmbientLight
#>
#> Df Sum of Sq RSS AIC
#> <none> 0.64139 -37.164
#> - AmbientLight 1 0.14217 0.78356 -36.361
#> - TemperatureC 1 0.46327 1.10466 -31.553
#>
#> Call:
#> lm(formula = bobspeed ~ TemperatureC + AmbientLight, data = headbobLizards)
#>
#> Coefficients:
#> (Intercept) TemperatureC AmbientLight
#> -1.930275 0.210716 -0.009144
summary(ft_headbob)
#>
#> Call:
#> lm(formula = bobspeed ~ TemperatureC + AmbientLight + Bg_noise_max,
#> data = headbobLizards)
#>
#> Residuals:
#> Min 1Q Median 3Q Max
#> -0.29881 -0.15097 -0.02893 0.07918 0.43165
#>
#> Coefficients:
#> Estimate Std. Error t value Pr(>|t|)
#> (Intercept) -1.085254 2.581853 -0.420 0.683
#> TemperatureC 0.176014 0.099825 1.763 0.108
#> AmbientLight -0.008383 0.006208 -1.350 0.207
#> Bg_noise_max 0.006418 0.011693 0.549 0.595
#>
#> Residual standard error: 0.2495 on 10 degrees of freedom
#> Multiple R-squared: 0.4611, Adjusted R-squared: 0.2994
#> F-statistic: 2.852 on 3 and 10 DF, p-value: 0.09115
=lm(bobspeed~TemperatureC+AmbientLight,data=headbobLizards)
ft_2summary(ft_2)
#>
#> Call:
#> lm(formula = bobspeed ~ TemperatureC + AmbientLight, data = headbobLizards)
#>
#> Residuals:
#> Min 1Q Median 3Q Max
#> -0.30317 -0.15088 -0.03001 0.07111 0.45789
#>
#> Coefficients:
#> Estimate Std. Error t value Pr(>|t|)
#> (Intercept) -1.930275 2.005678 -0.962 0.3565
#> TemperatureC 0.210716 0.074756 2.819 0.0167 *
#> AmbientLight -0.009144 0.005856 -1.561 0.1467
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#>
#> Residual standard error: 0.2415 on 11 degrees of freedom
#> Multiple R-squared: 0.4448, Adjusted R-squared: 0.3439
#> F-statistic: 4.407 on 2 and 11 DF, p-value: 0.0393
=lm(bobspeed~1,data=headbobLizards)
ft_intBIC(ft_int,ft_2,ft_headbob)
#> df BIC
#> ft_int 2 10.082646
#> ft_2 4 7.122104
#> ft_headbob 5 9.345644
There’s actually a suggestion of non-linearity here, there are only a few points making that pattern though so I’m not sure. Also not sure if that makes sense, for lizards to get most active at an intermediate temperature, would need to check with Terry on that one…
But in any case, the main story seems to be that noisiness doesn’t seem that important, it is more about temperature and light. Some \(R^2\) values might help understand variable relative importance:
=add1(ft_int,scope=formula(ft_headbob))
stepMargin$R2=stepMargin$`Sum of Sq`/deviance(ft_int)
stepMargin
stepMargin#> Single term additions
#>
#> Model:
#> bobspeed ~ 1
#> Df Sum of Sq RSS AIC R2
#> <none> 1.15530 -32.926
#> TemperatureC 1 0.37174 0.78356 -36.361 0.32177
#> AmbientLight 1 0.05064 1.10466 -31.553 0.04384
#> Bg_noise_max 1 0.29569 0.85962 -35.065 0.25594
=drop1(ft_headbob)
leave1out$R2=leave1out$`Sum of Sq`/deviance(ft_int)
leave1out
leave1out#> Single term deletions
#>
#> Model:
#> bobspeed ~ TemperatureC + AmbientLight + Bg_noise_max
#> Df Sum of Sq RSS AIC R2
#> <none> 0.62264 -35.580
#> TemperatureC 1 0.193576 0.81621 -33.790 0.167555
#> AmbientLight 1 0.113540 0.73618 -35.235 0.098278
#> Bg_noise_max 1 0.018757 0.64139 -37.164 0.016235
Well glad we looked at this as well… so temperature and noisiness both seem associated with headbobs, but after adding temp to the model, noisiness doesn’t really add anything, whereas the reverse is not true. So it seems there is a fairly strong association with temp (marginally 32%, conditionally still 17%) and some effect of ambient light (marginally 4%, after controlling for temp 10%). The large marginal effect of noisiness is probably due to correlation with temp.
Find a subset of precipitation variables that optimally predicts plant height
I’ll start with forward selection. We know temp is important so I will include that in all models
data(globalPlants)
str(globalPlants)
#> 'data.frame': 131 obs. of 33 variables:
#> $ sort_number : int 1402 25246 11648 8168 22422 25151 26007 6597 16908 4610 ...
#> $ site : int 193 103 54 144 178 27 118 154 106 201 ...
#> $ Genus_species : Factor w/ 175 levels "_8324","Abies_veitchii",..: 5 143 67 45 127 142 147 37 96 28 ...
#> $ Family : Factor w/ 68 levels "Annonaceae","Asteraceae",..: 60 37 49 12 50 27 55 31 49 5 ...
#> $ growthform : Factor w/ 6 levels "Fern","Herb",..: 6 6 2 4 2 4 6 6 2 4 ...
#> $ height : num 22.86 45 0.55 0.6 0.152 ...
#> $ Country : Factor w/ 37 levels "Argentina","Australia",..: 35 26 2 14 35 2 NA 35 2 8 ...
#> $ Site : Factor w/ 127 levels "a-ngau","ab",..: 84 74 41 52 55 66 75 45 44 NA ...
#> $ lat : num 44.6 12.2 23.8 32.6 41.6 ...
#> $ long : num -123.3 -70.5 133.8 34.9 -87 ...
#> $ alt : int 179 386 553 115 200 157 2 71 2 28 ...
#> $ temp : num 10.8 24.5 20.9 19.9 9.7 16.8 27.7 15.5 26.4 5.4 ...
#> $ diurn.temp : num 11.8 10.8 16.3 9.7 10.7 10 4.8 11.4 5 6.6 ...
#> $ isotherm : num 4.4 7.4 4.8 4.4 2.8 4.8 8.8 3.2 7.4 2.1 ...
#> $ temp.seas : num 5.2 0.9 6 4.9 9.7 3.9 0.2 8.6 0.6 8.3 ...
#> $ temp.max.warm : num 27 31.2 37 30.7 28.6 26.1 30.6 32.9 29.9 21.2 ...
#> $ temp.min.cold : num 0.3 16.7 3.6 8.7 -9.5 5.5 25.2 -2.6 23.2 -9 ...
#> $ temp.ann.range : num 26.7 14.5 33.4 22 38.1 20.6 5.4 35.5 6.7 30.2 ...
#> $ temp.mean.wetqr : num 4.9 25.1 28.1 13.6 21.6 21.2 27.9 15.6 26.8 6.5 ...
#> $ temp.mean.dryqr : num 17.4 23.2 14.8 25.3 -3.3 12.3 27.5 21.5 25.7 -1.6 ...
#> $ temp.mean.warmqr: num 17.6 25.3 28.1 25.7 21.6 21.4 27.9 26.1 27.1 16.1 ...
#> $ temp.mean.coldqr: num 4.5 23.1 12.8 13.6 -3.3 11.5 27.5 3.8 25.5 -5 ...
#> $ rain : int 1208 3015 278 598 976 1283 2585 1262 1704 664 ...
#> $ rain.wetm : int 217 416 37 159 104 157 300 129 309 77 ...
#> $ rain.drym : int 13 99 9 0 44 63 82 66 16 31 ...
#> $ rain.seas : int 69 45 42 115 23 29 34 18 66 28 ...
#> $ rain.wetqr : int 601 1177 109 408 299 450 870 382 806 220 ...
#> $ rain.dryqr : int 68 340 35 0 165 208 305 249 92 106 ...
#> $ rain.warmqr : int 75 928 109 2 299 385 855 268 659 191 ...
#> $ rain.coldqr : int 560 359 42 408 165 279 405 325 135 137 ...
#> $ LAI : num 2.51 4.26 1.32 1.01 3.26 4.14 NA 3.14 4.51 3.07 ...
#> $ NPP : int 572 1405 756 359 1131 1563 NA 1266 2296 536 ...
#> $ hemisphere : int 1 -1 -1 1 1 -1 1 1 -1 1 ...
$logHt = log(globalPlants$height)
globalPlants= lm(logHt~temp, data=globalPlants)
ft_temp = lm(logHt~temp+rain+rain.wetm+rain.drym+rain.seas+rain.wetqr+rain.dryqr+rain.warmqr+rain.coldqr, data=globalPlants)
ft_tempRain par(mfrow=c(1,2),mar=c(3,3,1,1),mgp=c(1.75,0.75,0))
plotenvelope(ft_tempRain)
#> Error in matrix(NA, nPred, n.sim): object 'n.sim' not found
= step(ft_temp, scope=formula(ft_tempRain), direction="forward")
ft_step #> Start: AIC=107.97
#> logHt ~ temp
#>
#> Df Sum of Sq RSS AIC
#> + rain.wetqr 1 26.7393 262.96 97.280
#> + rain 1 26.4615 263.24 97.418
#> + rain.wetm 1 24.5243 265.17 98.379
#> + rain.coldqr 1 20.3413 269.36 100.429
#> + rain.dryqr 1 11.2099 278.49 104.796
#> + rain.warmqr 1 9.4721 280.22 105.611
#> + rain.drym 1 9.2552 280.44 105.713
#> <none> 289.70 107.966
#> + rain.seas 1 0.0632 289.63 109.938
#>
#> Step: AIC=97.28
#> logHt ~ temp + rain.wetqr
#>
#> Df Sum of Sq RSS AIC
#> + rain.coldqr 1 4.0676 258.89 97.238
#> <none> 262.96 97.280
#> + rain.wetm 1 1.5701 261.39 98.495
#> + rain 1 1.1733 261.78 98.694
#> + rain.dryqr 1 0.7535 262.20 98.904
#> + rain.warmqr 1 0.5071 262.45 99.027
#> + rain.drym 1 0.4799 262.48 99.041
#> + rain.seas 1 0.0841 262.87 99.238
#>
#> Step: AIC=97.24
#> logHt ~ temp + rain.wetqr + rain.coldqr
#>
#> Df Sum of Sq RSS AIC
#> <none> 258.89 97.238
#> + rain.wetm 1 1.33741 257.55 98.559
#> + rain.seas 1 0.12668 258.76 99.174
#> + rain.warmqr 1 0.01663 258.87 99.229
#> + rain 1 0.01150 258.88 99.232
#> + rain.dryqr 1 0.00406 258.88 99.236
#> + rain.drym 1 0.00005 258.89 99.238
So forward selection suggests adding rainfall in the wettest and coldest quarters to the model.
How about LASSO…
=with(globalPlants,cbind(temp,rain,rain.wetm,rain.drym,rain.seas,rain.wetqr,rain.dryqr,rain.wetqr,rain.dryqr))
XtempRainlibrary(glmnet)
=cv.glmnet(XtempRain,globalPlants$logHt,penalty.factor=c(0,rep(1,8)))
lasso_rainplot(lasso_rain)
=glmnet(XtempRain,globalPlants$logHt,lambda=lasso_rain$lambda.min)
ft_lasso$beta
ft_lasso#> 9 x 1 sparse Matrix of class "dgCMatrix"
#> s0
#> temp 0.0396005806
#> rain 0.0006377051
#> rain.wetm .
#> rain.drym .
#> rain.seas 0.0055999469
#> rain.wetqr .
#> rain.dryqr .
#> rain.wetqr .
#> rain.dryqr .
This time we are going with two rainfall variables again, but
different ones – total precipitation and seasonality. (This actually
provides similar information to what you would get from
rain.wetqr
and rain.dryqr
, which jointly tell
you about both total rainfall and variability/seasonality.)
Any issues with multi-collinearity amongst the precipitation variables? Try to address any multi-collinearity by culling one or two of the main culprits. Does this affect your previous model selection results?
library(car)
vif(ft_tempRain)
#> temp rain rain.wetm rain.drym rain.seas rain.wetqr rain.dryqr rain.warmqr
#> 1.773040 111.063634 85.433552 110.163673 5.524702 130.580531 144.565319 9.577784
#> rain.coldqr
#> 6.436926
cor(XtempRain)
#> temp rain rain.wetm rain.drym rain.seas rain.wetqr rain.dryqr rain.wetqr
#> temp 1.0000000 0.47869648 0.5552163 0.1923458 0.37764956 0.5530709 0.1959310 0.5530709
#> rain 0.4786965 1.00000000 0.9170080 0.7540378 -0.03914991 0.9276384 0.7811679 0.9276384
#> rain.wetm 0.5552163 0.91700800 1.0000000 0.4730420 0.30626819 0.9935421 0.5030374 0.9935421
#> rain.drym 0.1923458 0.75403779 0.4730420 1.0000000 -0.53128346 0.4907095 0.9933645 0.4907095
#> rain.seas 0.3776496 -0.03914991 0.3062682 -0.5312835 1.00000000 0.2893864 -0.5243323 0.2893864
#> rain.wetqr 0.5530709 0.92763843 0.9935421 0.4907095 0.28938641 1.0000000 0.5187558 1.0000000
#> rain.dryqr 0.1959310 0.78116788 0.5030374 0.9933645 -0.52433232 0.5187558 1.0000000 0.5187558
#> rain.wetqr 0.5530709 0.92763843 0.9935421 0.4907095 0.28938641 1.0000000 0.5187558 1.0000000
#> rain.dryqr 0.1959310 0.78116788 0.5030374 0.9933645 -0.52433232 0.5187558 1.0000000 0.5187558
#> rain.dryqr
#> temp 0.1959310
#> rain 0.7811679
#> rain.wetm 0.5030374
#> rain.drym 0.9933645
#> rain.seas -0.5243323
#> rain.wetqr 0.5187558
#> rain.dryqr 1.0000000
#> rain.wetqr 0.5187558
#> rain.dryqr 1.0000000
A bunch of high VIF’s, looking at correlations,
rain.wetm
looks like one of the main culprits, it is quite
understandable that rainfall in the wettest month should be highly
correlated with total rainfall, and with rainfall in the wettest
quarter! Will also remove rain.drym
because there is high
redundancy between this variable and rain.dryqr
.
= lm(logHt~temp+rain+rain.seas+rain.wetqr+rain.dryqr+rain.warmqr+rain.coldqr, data=globalPlants)
ft_tempLessRain = step(ft_temp, scope=formula(ft_tempLessRain), direction="forward")
ft_Lstep #> Start: AIC=107.97
#> logHt ~ temp
#>
#> Df Sum of Sq RSS AIC
#> + rain.wetqr 1 26.7393 262.96 97.280
#> + rain 1 26.4615 263.24 97.418
#> + rain.coldqr 1 20.3413 269.36 100.429
#> + rain.dryqr 1 11.2099 278.49 104.796
#> + rain.warmqr 1 9.4721 280.22 105.611
#> <none> 289.70 107.966
#> + rain.seas 1 0.0632 289.63 109.938
#>
#> Step: AIC=97.28
#> logHt ~ temp + rain.wetqr
#>
#> Df Sum of Sq RSS AIC
#> + rain.coldqr 1 4.0676 258.89 97.238
#> <none> 262.96 97.280
#> + rain 1 1.1733 261.78 98.694
#> + rain.dryqr 1 0.7535 262.20 98.904
#> + rain.warmqr 1 0.5071 262.45 99.027
#> + rain.seas 1 0.0841 262.87 99.238
#>
#> Step: AIC=97.24
#> logHt ~ temp + rain.wetqr + rain.coldqr
#>
#> Df Sum of Sq RSS AIC
#> <none> 258.89 97.238
#> + rain.seas 1 0.126684 258.76 99.174
#> + rain.warmqr 1 0.016626 258.87 99.229
#> + rain 1 0.011498 258.88 99.232
#> + rain.dryqr 1 0.004059 258.88 99.236
=model.matrix(ft_tempLessRain)[,-1]
XlessRain=cv.glmnet(XlessRain,globalPlants$logHt,penalty.factor=c(0,rep(1,6)))
lasso_Lrainplot(lasso_Lrain)
=glmnet(XlessRain,globalPlants$logHt,lambda=lasso_Lrain$lambda.min)
ft_Llasso$beta
ft_Llasso#> 7 x 1 sparse Matrix of class "dgCMatrix"
#> s0
#> temp 4.188268e-02
#> rain 5.333291e-05
#> rain.seas .
#> rain.wetqr 1.030699e-03
#> rain.dryqr .
#> rain.warmqr .
#> rain.coldqr 6.719062e-04
Forward selection is unchanged, not a big surprise because the
forward path stopped before any deleted variables were considered. This
time LASSO gave a similar model, also picking rain.wetqr
and rain.coldqr
, it also added a small term for
rain
too. Note that the precise solution you get depends on
randomness in the assignment of observations to validation groups, so
your run may come out a little differently to this.