Package 'effectsize'

August 10, 2022

```
Type Package
Title Indices of Effect Size and Standardized Parameters
Version 0.7.0.5
Maintainer Mattan S. Ben-Shachar <matanshm@post.bgu.ac.il>
Description Provide utilities to work with indices of effect size and
      standardized parameters for a wide variety of models (see list of
      supported models using the function 'insight::supported_models()'),
      allowing computation of and conversion between indices such as Cohen's
      d, r, odds, etc.
License GPL-3
URL https://easystats.github.io/effectsize/
BugReports https://github.com/easystats/effectsize/issues/
Depends R (>= 3.5)
Imports bayestestR (>= 0.12.1), insight (>= 0.18.0), parameters (>=
      0.18.1), performance (>= 0.9.1), datawizard (>= 0.5.0), stats,
Suggests correlation (>= 0.8.1), see (>= 0.7.1), afex, BayesFactor,
      boot, brms, car, emmeans, knitr, lavaan, lme4, lmerTest, MASS,
      mgcv, parsnip, rmarkdown, rms, rstanarm, rstantools, testthat
      (>= 3.1.0)
VignetteBuilder knitr
Encoding UTF-8
Language en-US
RoxygenNote 7.2.1
Config/testthat/edition 3
Config/testthat/parallel true
NeedsCompilation no
Author Mattan S. Ben-Shachar [aut, cre]
       (<https://orcid.org/0000-0002-4287-4801>, @mattansb),
      Dominique Makowski [aut] (<a href="https://orcid.org/0000-0001-5375-9967">https://orcid.org/0000-0001-5375-9967</a>,
```

2 R topics documented:

@Dom_Makowski),
Daniel Lüdecke [aut] (https://orcid.org/0000-0002-8895-3206 ,
@strengejacke),
Indrajeet Patil [aut] (https://orcid.org/0000-0003-1995-6531 ,
@patilindrajeets),
Brenton M. Wiernik [aut] (https://orcid.org/0000-0001-9560-6336 ,
@bmwiernik),
Ken Kelley [ctb],
David Stanley [ctb],
Jessica Burnett [rev] (https://orcid.org/0000-0002-0896-5099),
Johannes Karreth [rev] (https://orcid.org/0000-0003-4586-7153)
pository CRAN

Repo

Date/Publication 2022-08-10 09:20:02 UTC

${\sf R}$ topics documented:

chisq_to_phi
cles
cohens_d
d_to_cles
d_to_r
effectsize.BFBayesFactor
effectsize_API
effectsize_CIs
effectsize_deprecated
equivalence_test.effectsize_table
eta2_to_f2
eta_squared
format_standardize
F_to_eta2
hardlyworking
interpret
interpret_bf
interpret_cohens_d
interpret_cohens_g
interpret_direction
interpret_ess
interpret_gfi
interpret_icc
interpret_kendalls_w
interpret_oddsratio
interpret_omega_squared
interpret_p
interpret_pd
interpret_r
interpret_r2
interpret rope

Index		7
	t_to_d	73
	sd_pooled	
	rules	
	rank_biserial	6
	plot.effectsize_table	66
	phi	6
	odds_to_probs	60
	oddsratio_to_riskratio	59
	is_effectsize_name	59
	interpret_vif	58

chisq_to_phi

Conversion Chi-Squared to Phi or Cramer's V

Description

Convert between Chi square (χ^2) , Cramer's V, phi (ϕ) , Cohen's w, normalized Chi (χ) and Pearson's C for contingency tables or goodness of fit.

Usage

```
{\tt chisq\_to\_phi(}
  chisq,
  n,
  nrow = 2,
  ncol = 2,
  ci = 0.95,
  alternative = "greater",
  adjust = FALSE,
)
chisq_to_cohens_w(
  chisq,
  n,
  nrow,
  ncol,
  ci = 0.95,
  alternative = "greater",
)
chisq_to_cramers_v(
  chisq,
  n,
  nrow,
```

```
ncol,
 ci = 0.95,
  alternative = "greater",
  adjust = FALSE,
)
chisq_to_normalized(
  chisq,
 n,
 nrow,
 ncol,
 р,
 ci = 0.95,
 alternative = "greater",
)
chisq_to_pearsons_c(
  chisq,
 n,
 nrow,
 ncol,
 ci = 0.95,
 alternative = "greater",
)
phi_to_chisq(phi, n, ...)
```

Arguments

chisq	The Chi-squared statistic.
n	Total sample size.
nrow, ncol	The number of rows/columns in the contingency table.
ci	Confidence Interval (CI) level
alternative	a character string specifying the alternative hypothesis; Controls the type of CI returned: "greater" (default) or "less" (one-sided CI), or "two.sided" (default, two-sided CI). Partial matching is allowed (e.g., "g", "l", "two"). See <i>One-Sided CIs</i> in effectsize_CIs.
adjust	Should the effect size be bias-corrected? Defaults to FALSE.
	Arguments passed to or from other methods.
p	Vector of expected values. See stats::chisq.test().
phi	The Phi statistic.

Details

These functions use the following formulae:

$$\phi = \sqrt{\chi^2/n}$$

$$Cramer'sV = \phi/\sqrt{min(nrow, ncol) - 1}$$

$$Pearson'sC = \sqrt{\chi^2/(\chi^2 + n)}$$

$$\chi_{Normalized} = w \times \sqrt{\frac{q}{1 - q}}$$

Where q is the smallest of the expected probabilities.

For adjusted versions of *phi* and *V*, see Bergsma, 2013.

Value

A data frame with the effect size(s), and confidence interval(s). See cramers_v().

Confidence (Compatibility) Intervals (CIs)

Unless stated otherwise, confidence (compatibility) intervals (CIs) are estimated using the non-centrality parameter method (also called the "pivot method"). This method finds the noncentrality parameter ("ncp") of a noncentral t, F, or χ^2 distribution that places the observed t, F, or χ^2 test statistic at the desired probability point of the distribution. For example, if the observed t statistic is 2.0, with 50 degrees of freedom, for which cumulative noncentral t distribution is t = 2.0 the .025 quantile (answer: the noncentral t distribution with ncp = .04)? After estimating these confidence bounds on the ncp, they are converted into the effect size metric to obtain a confidence interval for the effect size (Steiger, 2004).

For additional details on estimation and troubleshooting, see effectsize CIs.

CIs and Significance Tests

"Confidence intervals on measures of effect size convey all the information in a hypothesis test, and more." (Steiger, 2004). Confidence (compatibility) intervals and p values are complementary summaries of parameter uncertainty given the observed data. A dichotomous hypothesis test could be performed with either a CI or a p value. The $100 (1 - \alpha)\%$ confidence interval contains all of the parameter values for which $p > \alpha$ for the current data and model. For example, a 95% confidence interval contains all of the values for which p > .05.

Note that a confidence interval including 0 *does not* indicate that the null (no effect) is true. Rather, it suggests that the observed data together with the model and its assumptions combined do not provided clear evidence against a parameter value of 0 (same as with any other value in the interval),

with the level of this evidence defined by the chosen α level (Rafi & Greenland, 2020; Schweder & Hjort, 2016; Xie & Singh, 2013). To infer no effect, additional judgments about what parameter values are "close enough" to 0 to be negligible are needed ("equivalence testing"; Bauer & Kiesser, 1996).

References

- Cumming, G., & Finch, S. (2001). A primer on the understanding, use, and calculation of confidence intervals that are based on central and noncentral distributions. Educational and Psychological Measurement, 61(4), 532-574.
- Bergsma, W. (2013). A bias-correction for Cramer's V and Tschuprow's T. Journal of the Korean Statistical Society, 42(3), 323-328.
- Johnston, J. E., Berry, K. J., & Mielke Jr, P. W. (2006). Measures of effect size for chi-squared and likelihood-ratio goodness-of-fit tests. Perceptual and motor skills, 103(2), 412-414.
- Rosenberg, M. S. (2010). A generalized formula for converting chi-square tests to effect sizes for meta-analysis. PloS one, 5(4), e10059.

See Also

Other effect size from test statistic: F_to_eta2(), t_to_d()

Examples

```
contingency_table <- as.table(rbind(c(762, 327, 468), c(484, 239, 477), c(484, 239, 477)))
# chisq.test(contingency_table)
#>
#>
           Pearson's Chi-squared test
#>
#> data: contingency_table
\#> X-squared = 41.234, df = 4, p-value = 2.405e-08
chisq_to_cohens_w(41.234,
 n = sum(contingency_table),
 nrow = nrow(contingency_table),
 ncol = ncol(contingency_table)
)
Smoking\_ASD \leftarrow as.table(c(ASD = 17, ASP = 11, TD = 640))
# chisq.test(Smoking_ASD, p = c(0.015, 0.010, 0.975))
#>
   Chi-squared test for given probabilities
#>
#> data: Smoking_ASD
#> X-squared = 7.8521, df = 2, p-value = 0.01972
chisq_to_normalized(
```

cles 7

```
7.8521,

n = sum(Smoking_ASD),

nrow = 1,

ncol = 3,

p = c(0.015, 0.010, 0.975)
```

cles

Estimate Common Language Effect Sizes (CLES)

Description

cohens_u3(), p_superiority(), and p_overlap() give only one of the CLESs.

Usage

```
cles(
 y = NULL
 data = NULL,
 mu = 0,
  ci = 0.95,
  alternative = "two.sided",
  parametric = TRUE,
  verbose = TRUE,
  iterations = 200,
)
common_language(
 Х,
 y = NULL,
 data = NULL,
 mu = 0,
  ci = 0.95,
  alternative = "two.sided",
 parametric = TRUE,
  verbose = TRUE,
  iterations = 200,
)
cohens_u3(...)
p_superiority(...)
p_overlap(...)
```

8 cles

Arguments

X	A formula, a numeric vector, or a character name of one in data.
у	A numeric vector, a grouping (character / factor) vector, a or a character name of one in data. Ignored if ${\sf x}$ is a formula.
data	An optional data frame containing the variables.
mu	a number indicating the true value of the mean (or difference in means if you are performing a two sample test).
ci	Confidence Interval (CI) level
alternative	a character string specifying the alternative hypothesis; Controls the type of CI returned: "two.sided" (default, two-sided CI), "greater" or "less" (one-sided CI). Partial matching is allowed (e.g., "g", "1", "two"). See <i>One-Sided CIs</i> in effectsize_CIs.
parametric	Use parametric estimation (see $cohens_d()$) or non-parametric estimation (see $rank_biserial()$).
verbose	Toggle warnings and messages on or off.
iterations	The number of bootstrap replicates for computing confidence intervals. Only applies when ci is not NULL and parametric = FALSE.
• • •	Arguments passed to or from other methods. When \boldsymbol{x} is a formula, these can be subset and na.action.

Details

These measures of effect size present group differences in probabilistic terms:

- **Probability of superiority** is the probability that, when sampling an observation from each of the groups at random, that the observation from the second group will be larger than the sample from the first group.
- Cohen's U3 is the proportion of the second group that is smaller than the median of the first group.
- **Overlap** (OVL) is the proportional overlap between the distributions. (When parametric = FALSE, bayestestR::overlap() is used.)

For unequal group sizes, it is recommended to use the non-parametric based CLES (parametric = FALSE).

Value

A data frame containing the common language effect sizes (and optionally their CIs).

Confidence Intervals (CIs)

For parametric CLES, the CIs are transformed CIs for Cohen's d ($d_{to_{cles}}$ ()). For non-parametric (parametric = FALSE) CLES, the CI of Pr(superiority) is a transformed CI of the rank-biserial correlation ($rb_{to_{cles}}$ ()), while for Cohen's U3 and the Overlap coefficient the confidence intervals are bootstrapped (requires the boot package).

cohens_d 9

References

- Cohen, J. (1977). Statistical power analysis for the behavioral sciences. New York: Routledge.
- Reiser, B., & Faraggi, D. (1999). Confidence intervals for the overlapping coefficient: the normal equal variance case. Journal of the Royal Statistical Society, 48(3), 413-418.
- Ruscio, J. (2008). A probability-based measure of effect size: robustness to base rates and other factors. Psychological methods, 13(1), 19–30.

See Also

```
d_to_cles() sd_pooled()
Other effect size indices: cohens_d(), effectsize.BFBayesFactor(), eta_squared(), phi(),
rank_biserial()
```

Examples

```
cles(mpg ~ am, data = mtcars)
set.seed(4)
cles(mpg ~ am, data = mtcars, parametric = FALSE)
## Not run:
## Individual CLES
p_superiority(extra ~ group, data = sleep)
cohens_u3(extra ~ group, data = sleep, parametric = FALSE)
p_overlap(extra ~ group, data = sleep)
## End(Not run)
```

cohens_d

Effect size for differences

Description

Compute effect size indices for standardized differences: Cohen's d, Hedges' g and Glass's delta (Δ). (This function returns the **population** estimate.)

Both Cohen's d and Hedges' g are the estimated the standardized difference between the means of two populations. Hedges' g provides a bias correction (using the exact method) to Cohen's d for small sample sizes. For sample sizes > 20, the results for both statistics are roughly equivalent. Glass's delta is appropriate when the standard deviations are significantly different between the populations, as it uses only the second group's standard deviation.

10 cohens_d

Usage

```
cohens_d(
 Х,
 y = NULL
 data = NULL,
 pooled_sd = TRUE,
 mu = 0,
 paired = FALSE,
 ci = 0.95,
  alternative = "two.sided",
 verbose = TRUE,
)
hedges_g(
  х,
 y = NULL,
 data = NULL,
  pooled_sd = TRUE,
 mu = 0,
 paired = FALSE,
 ci = 0.95,
  alternative = "two.sided",
  verbose = TRUE,
)
glass_delta(
 Х,
 y = NULL,
 data = NULL,
 mu = 0,
 ci = 0.95,
  alternative = "two.sided",
  verbose = TRUE,
)
```

Arguments

X	A formula, a numeric vector, or a character name of one in data.
У	A numeric vector, a grouping (character / factor) vector, a or a character name of one in data. Ignored if x is a formula.
data	An optional data frame containing the variables.

pooled_sd If TRUE (default), a sd_pooled() is used (assuming equal variance). Else the mean SD from both groups is used instead.

cohens_d

mu a number indicating the true value of the mean (or difference in means if you

are performing a two sample test).

paired If TRUE, the values of x and y are considered as paired. This produces an effect

size that is equivalent to the one-sample effect size on x - y.

ci Confidence Interval (CI) level

alternative a character string specifying the alternative hypothesis; Controls the type of CI

returned: "two.sided" (default, two-sided CI), "greater" or "less" (one-sided CI). Partial matching is allowed (e.g., "g", "1", "two"...). See *One-Sided*

CIs in effectsize CIs.

verbose Toggle warnings and messages on or off.

.. Arguments passed to or from other methods. When x is a formula, these can be

subset and na.action.

Details

Set pooled_sd = FALSE for effect sizes that are to accompany a Welch's t-test (Delacre et al, 2021).

Value

A data frame with the effect size (Cohens_d, Hedges_g, Glass_delta) and their CIs (CI_low and CI_high).

Confidence (Compatibility) Intervals (CIs)

Unless stated otherwise, confidence (compatibility) intervals (CIs) are estimated using the noncentrality parameter method (also called the "pivot method"). This method finds the noncentrality parameter ("ncp") of a noncentral t, F, or χ^2 distribution that places the observed t, F, or χ^2 test statistic at the desired probability point of the distribution. For example, if the observed t statistic is 2.0, with 50 degrees of freedom, for which cumulative noncentral t distribution is t = 2.0 the .025 quantile (answer: the noncentral t distribution with ncp = .04)? After estimating these confidence bounds on the ncp, they are converted into the effect size metric to obtain a confidence interval for the effect size (Steiger, 2004).

For additional details on estimation and troubleshooting, see effectsize_CIs.

CIs and Significance Tests

"Confidence intervals on measures of effect size convey all the information in a hypothesis test, and more." (Steiger, 2004). Confidence (compatibility) intervals and p values are complementary summaries of parameter uncertainty given the observed data. A dichotomous hypothesis test could be performed with either a CI or a p value. The $100 (1 - \alpha)\%$ confidence interval contains all of the parameter values for which $p > \alpha$ for the current data and model. For example, a 95% confidence interval contains all of the values for which p > .05.

Note that a confidence interval including 0 *does not* indicate that the null (no effect) is true. Rather, it suggests that the observed data together with the model and its assumptions combined do not provided clear evidence against a parameter value of 0 (same as with any other value in the interval), with the level of this evidence defined by the chosen α level (Rafi & Greenland, 2020; Schweder

12 cohens d

& Hjort, 2016; Xie & Singh, 2013). To infer no effect, additional judgments about what parameter values are "close enough" to 0 to be negligible are needed ("equivalence testing"; Bauer & Kiesser, 1996).

Note

The indices here give the population estimated standardized difference. Some statistical packages give the sample estimate instead (without applying Bessel's correction).

References

- Algina, J., Keselman, H. J., & Penfield, R. D. (2006). Confidence intervals for an effect size when variances are not equal. Journal of Modern Applied Statistical Methods, 5(1), 2.
- Cohen, J. (1988). Statistical power analysis for the behavioral sciences (2nd Ed.). New York: Routledge.
- Delacre, M., Lakens, D., Ley, C., Liu, L., & Leys, C. (2021, May 7). Why Hedges' g*s based on the non-pooled standard deviation should be reported with Welch's t-test. https://doi.org/10.31234/osf.io/tu6mp
- Hedges, L. V. & Olkin, I. (1985). Statistical methods for meta-analysis. Orlando, FL: Academic Press.
- Hunter, J. E., & Schmidt, F. L. (2004). Methods of meta-analysis: Correcting error and bias in research findings. Sage.

See Also

```
d_to_cles() sd_pooled()
```

Other effect size indices: cles(), effectsize.BFBayesFactor(), eta_squared(), phi(), rank_biserial()

Examples

```
data(mtcars)
mtcars$am <- factor(mtcars$am)

# Two Independent Samples ------

(d <- cohens_d(mpg ~ am, data = mtcars))
# Same as:
# cohens_d("mpg", "am", data = mtcars)
# cohens_d(mtcars$mpg[mtcars$am=="0"], mtcars$mpg[mtcars$am=="1"])

# More options:
cohens_d(mpg ~ am, data = mtcars, pooled_sd = FALSE)
cohens_d(mpg ~ am, data = mtcars, mu = -5)
cohens_d(mpg ~ am, data = mtcars, alternative = "less")
hedges_g(mpg ~ am, data = mtcars)
glass_delta(mpg ~ am, data = mtcars)</pre>
# One Sample ------------
```

d_to_cles

```
cohens_d(wt ~ 1, data = mtcars)
# same as:
# cohens_d("wt", data = mtcars)
# cohens_d(mtcars$wt)
# More options:
cohens_d(wt ~ 1, data = mtcars, mu = 3)
hedges_g(wt \sim 1, data = mtcars, mu = 3)
# Paired Samples -----
data(sleep)
cohens_d(Pair(extra[group == 1], extra[group == 2]) ~ 1, data = sleep)
# cohens_d(sleep$extra[sleep$group == 1], sleep$extra[sleep$group == 2], paired = TRUE)
# More options:
cohens_d(Pair(extra[group == 1], extra[group == 2]) ~ 1, data = sleep, mu = -1)
hedges_g(Pair(extra[group == 1], extra[group == 2]) ~ 1, data = sleep)
# Interpretation -----
interpret_cohens_d(-1.48, rules = "cohen1988")
interpret_hedges_g(-1.48, rules = "sawilowsky2009")
interpret_glass_delta(-1.48, rules = "gignac2016")
# Or:
interpret(d, rules = "sawilowsky2009")
# Common Language Effect Sizes
d_to_cles(1.48)
# Or:
print(d, append_CLES = TRUE)
```

d_to_cles

Convert Standardized Mean Difference to Common Language Effect Sizes

Description

Convert Standardized Mean Difference to Common Language Effect Sizes

Usage

```
d_to_cles(d)
```

d_to_cles

Arguments

d, rb

A numeric value of Cohen's d / rank-biserial correlation *or* the output from cohens_d() / rank_biserial().

Details

This function use the following formulae for Cohen's *d*:

$$Pr(superiority) = \Phi(d/\sqrt{2})$$

$$Cohen'sU_3 = \Phi(d)$$

$$Overlap = 2 \times \Phi(-|d|/2)$$

And the following for the rank-biserial correlation:

$$Pr(superiority) = (r_{rb} + 1)/2$$

Value

A list of Cohen's U3, Overlap, Pr(superiority), a numeric vector of Pr(superiority), or a data frame, depending on the input.

Note

These calculations assume that the populations have equal variance and are normally distributed.

References

- Cohen, J. (1977). Statistical power analysis for the behavioral sciences. New York: Routledge.
- Reiser, B., & Faraggi, D. (1999). Confidence intervals for the overlapping coefficient: the normal equal variance case. Journal of the Royal Statistical Society, 48(3), 413-418.
- Ruscio, J. (2008). A probability-based measure of effect size: robustness to base rates and other factors. Psychological methods, 13(1), 19–30.

See Also

```
cohens_d(), rank_biserial()
```

Other convert between effect sizes: d_to_r(), eta2_to_f2(), odds_to_probs(), oddsratio_to_riskratio()

<u>d_to_r</u>

d_to_r

Convert between d, r and Odds ratio

Description

Enables a conversion between different indices of effect size, such as standardized difference (Cohen's d), correlation r or (log) odds ratios.

Usage

```
d_to_r(d, ...)
r_to_d(r, ...)

oddsratio_to_d(OR, log = FALSE, ...)

logoddsratio_to_d(OR, log = TRUE, ...)

d_to_oddsratio(d, log = FALSE, ...)

oddsratio_to_r(OR, log = FALSE, ...)

logoddsratio_to_r(OR, log = TRUE, ...)

r_to_oddsratio(r, log = FALSE, ...)
```

Arguments

d Standardized difference value (Cohen's d).

. . . Arguments passed to or from other methods.

r Correlation coefficient r.

OR Odds ratio values in vector or data frame.

log Take in or output the log of the ratio (such as in logistic models).

Details

Conversions between d and OR or r is done through these formulae.

•
$$d = \frac{2*r}{\sqrt{1-r^2}}$$

•
$$r = \frac{d}{\sqrt{d^2+4}}$$

•
$$d = \frac{\log(OR) \times \sqrt{3}}{\pi}$$

•
$$log(OR) = d * \frac{\pi}{\sqrt{(3)}}$$

The conversion from d to r assumes equally sized groups. The resulting r is also called the binomial effect size display (BESD; Rosenthal et al., 1982).

Value

Converted index.

References

- Sánchez-Meca, J., Marín-Martínez, F., & Chacón-Moscoso, S. (2003). Effect-size indices for dichotomized outcomes in meta-analysis. Psychological methods, 8(4), 448.
- Borenstein, M., Hedges, L. V., Higgins, J. P. T., & Rothstein, H. R. (2009). Converting among effect sizes. Introduction to meta-analysis, 45-49.
- Rosenthal, R., & Rubin, D. B. (1982). A simple, general purpose display of magnitude of experimental effect. Journal of educational psychology, 74(2), 166.

See Also

Other convert between effect sizes: d_to_cles(), eta2_to_f2(), odds_to_probs(), oddsratio_to_riskratio()

Examples

```
r_to_d(0.5)
d_to_oddsratio(1.154701)
oddsratio_to_r(8.120534)

d_to_r(1)
r_to_oddsratio(0.4472136, log = TRUE)
oddsratio_to_d(1.813799, log = TRUE)
```

```
effectsize.BFBayesFactor

Effect Size
```

Description

This function tries to return the best effect-size measure for the provided input model. See details.

Usage

```
## S3 method for class 'BFBayesFactor'
effectsize(model, type = NULL, verbose = TRUE, test = NULL, ...)

effectsize(model, ...)

## S3 method for class 'aov'
effectsize(model, type = NULL, ...)

## S3 method for class 'htest'
effectsize(model, type = NULL, verbose = TRUE, ...)
```

Arguments

model An object of class htest, or a statistical model. See details.

type The effect size of interest. See details.

verbose Toggle warnings and messages on or off.

The indices of effect existence to compute. Character (vector) or list with one or

more of these options: "p_direction" (or "pd"), "rope", "p_map", "equivalence_test"

(or "equitest"), "bayesfactor" (or "bf") or "all" to compute all tests. For each "test", the corresponding bayestestR function is called (e.g. rope() or

p_direction()) and its results included in the summary output.

... Arguments passed to or from other methods. See details.

Details

• For an object of class htest, data is extracted via insight::get_data(), and passed to the relevant function according to:

- A **t-test** depending on type: "cohens_d" (default), "hedges_g", or "cles".
- A **Chi-squared tests of independence**, depending on type: "cramers_v" (default), "phi", "cohens_w", "pearsons_c", "cohens_h", "oddsratio", or "riskratio".
- A Chi-squared tests of goodness-of-fit, depending on type: "normalized_chi" (default) "cohens_w", "pearsons_c"
- A One-way ANOVA test, depending on type: "eta" (default), "omega" or "epsilon" -squared, "f", or "f2".
- A McNemar test returns *Cohen's g*.
- A Wilcoxon test depending on type: returns "rank_biserial" correlation (default) or "cles".
- A **Kruskal-Wallis test** returns rank Epsilon squared.
- A **Friedman test** returns *Kendall's W*. (Where applicable, ci and alternative are taken from the htest if not otherwise provided.)
- For an object of class BFBayesFactor, using bayestestR::describe_posterior(),
 - A **t-test** depending on type: "cohens_d"(default) or"cles".
 - A **correlation test** returns *r*.
 - A contingency table test, depending on type: "cramers_v" (default), "phi", "cohens_w", "pearsons_c", "cohens_h", "oddsratio", or "riskratio".
 - A proportion test returns p.
- Objects of class anova, aov, or aovlist, depending on type: "eta" (default), "omega" or "epsilon" -squared, "f", or "f2".
- Other objects are passed to parameters::standardize_parameters().

For statistical models it is recommended to directly use the listed functions, for the full range of options they provide.

Value

A data frame with the effect size (depending on input) and and its CIs (CI_low and CI_high).

See Also

Other effect size indices: cles(), cohens_d(), eta_squared(), phi(), rank_biserial()

Examples

```
## Hypothesis Testing
## -----
contingency_table <- as.table(rbind(c(762, 327, 468), c(484, 239, 477), c(484, 239, 477)))
Xsq <- chisq.test(contingency_table)</pre>
effectsize(Xsq)
effectsize(Xsq, type = "cohens_w")
Tt \leftarrow t.test(1:10, y = c(7:20), alternative = "less")
effectsize(Tt)
Aov <- oneway.test(extra ~ group, data = sleep, var.equal = TRUE)
effectsize(Aov)
effectsize(Aov, type = "omega")
Wt \leftarrow wilcox.test(1:10, 7:20, mu = -3, alternative = "less")
effectsize(Wt)
effectsize(Wt, type = "cles")
## Bayesian Hypothesis Testing
if (require(BayesFactor)) {
  bf_prop \leftarrow proportionBF(3, 7, p = 0.3)
  effectsize(bf_prop)
  bf_corr <- correlationBF(attitude$rating, attitude$complaints)</pre>
  effectsize(bf_corr)
  data(raceDolls)
  bf_xtab <- contingencyTableBF(raceDolls, sampleType = "poisson", fixedMargin = "cols")</pre>
  effectsize(bf_xtab)
  effectsize(bf_xtab, type = "oddsratio")
  bf_ttest <- ttestBF(sleep$extra[sleep$group == 1],</pre>
    sleep$extra[sleep$group == 2],
    paired = TRUE, mu = −1
  )
  effectsize(bf_ttest)
}
## Models and Anova Tables
fit <- lm(mpg ~ factor(cyl) * wt + hp, data = mtcars)</pre>
effectsize(fit)
```

effectsize_API

```
anova_table <- anova(fit)
effectsize(anova_table)
effectsize(anova_table, type = "epsilon")</pre>
```

effectsize_API

effectsize API

Description

Read the Support functions for model extensions vignette.

Usage

```
.es_aov_simple(
  aov_table,
  type = c("eta", "omega", "epsilon"),
 partial = TRUE,
 generalized = FALSE,
 ci = 0.95,
  alternative = "greater",
 verbose = TRUE,
  include_intercept = FALSE
)
.es_aov_strata(
  aov_table,
 DV_names,
  type = c("eta", "omega", "epsilon"),
  partial = TRUE,
  generalized = FALSE,
 ci = 0.95,
 alternative = "greater",
 verbose = TRUE,
  include_intercept = FALSE
)
.es_aov_table(
  aov_table,
  type = c("eta", "omega", "epsilon"),
 partial = TRUE,
  generalized = FALSE,
 ci = 0.95,
  alternative = "greater",
 verbose = TRUE,
  include_intercept = FALSE
)
```

20 effectsize_CIs

Arguments

aov_table Input data frame

type Which effect size to compute? partial, generalized, ci, alternative, verbose

See eta_squared().

include_intercept

Should the intercept ((Intercept)) be included?

DV_names A character vector with the names of all the predictors, including the grouping

variable (e.g., "Subject").

effectsize_CIs

Confidence (Compatibility) Intervals

Description

More information regarding Confidence (Compatibility) Intervals and how they are computed in *effectsize*.

Confidence (Compatibility) Intervals (CIs)

Unless stated otherwise, confidence (compatibility) intervals (CIs) are estimated using the non-centrality parameter method (also called the "pivot method"). This method finds the noncentrality parameter ("ncp") of a noncentral t, F, or χ^2 distribution that places the observed t, F, or χ^2 test statistic at the desired probability point of the distribution. For example, if the observed t statistic is 2.0, with 50 degrees of freedom, for which cumulative noncentral t distribution is t = 2.0 the .025 quantile (answer: the noncentral t distribution with ncp = .04)? After estimating these confidence bounds on the ncp, they are converted into the effect size metric to obtain a confidence interval for the effect size (Steiger, 2004).

For additional details on estimation and troubleshooting, see effectsize_CIs.

CIs and Significance Tests

"Confidence intervals on measures of effect size convey all the information in a hypothesis test, and more." (Steiger, 2004). Confidence (compatibility) intervals and p values are complementary summaries of parameter uncertainty given the observed data. A dichotomous hypothesis test could be performed with either a CI or a p value. The $100 (1 - \alpha)\%$ confidence interval contains all of the parameter values for which $p > \alpha$ for the current data and model. For example, a 95% confidence interval contains all of the values for which p > .05.

Note that a confidence interval including 0 *does not* indicate that the null (no effect) is true. Rather, it suggests that the observed data together with the model and its assumptions combined do not provided clear evidence against a parameter value of 0 (same as with any other value in the interval), with the level of this evidence defined by the chosen α level (Rafi & Greenland, 2020; Schweder & Hjort, 2016; Xie & Singh, 2013). To infer no effect, additional judgments about what parameter values are "close enough" to 0 to be negligible are needed ("equivalence testing"; Bauer & Kiesser, 1996).

effectsize_CIs 21

One-Sided CIs

Typically, CIs are constructed as two-tailed intervals, with an equal proportion of the cumulative probability distribution above and below the interval. CIs can also be constructed as *one-sided* intervals, giving only a lower bound or upper bound. This is analogous to computing a 1-tailed *p* value or conducting a 1-tailed hypothesis test.

Significance tests conducted using CIs (whether a value is inside the interval) and using p values (whether p < alpha for that value) are only guaranteed to agree when both are constructed using the same number of sides/tails.

Most effect sizes are not bounded by zero (e.g., r, d, g), and as such are generally tested using 2-tailed tests and 2-sided CIs.

Some effect sizes are strictly positive—they do have a minimum value, of 0. For example, R^2 , η^2 , and other variance-accounted-for effect sizes, as well as Cramer's V and multiple R, range from 0 to 1. These typically involve F- or χ^2 -statistics and are generally tested using I-tailed tests which test whether the estimated effect size is larger than the hypothesized null value (e.g., 0). In order for a CI to yield the same significance decision it must then by a I-sided CI, estimating only a lower bound. This is the default CI computed by effectsize for these effect sizes, where alternative = "greater" is set.

This lower bound interval indicates the smallest effect size that is not significantly different from the observed effect size. That is, it is the minimum effect size compatible with the observed data, background model assumptions, and α level. This type of interval does not indicate a maximum effect size value; anything up to the maximum possible value of the effect size (e.g., 1) is in the interval.

One-sided CIs can also be used to test against a maximum effect size value (e.g., is R^2 significantly smaller than a perfect correlation of 1.0?) can by setting alternative = "less". This estimates a CI with only an *upper* bound; anything from the minimum possible value of the effect size (e.g., 0) up to this upper bound is in the interval.

We can also obtain a 2-sided interval by setting alternative = "two.sided". These intervals can be interpreted in the same way as other 2-sided intervals, such as those for r, d, or g.

An alternative approach to aligning significance tests using CIs and 1-tailed p values that can often be found in the literature is to construct a 2-sided CI at a lower confidence level (e.g., $100(1-2\alpha)\% = 100 - 2*5\% = 90\%$). This estimates the lower bound and upper bound for the above 1-sided intervals simultaneously. These intervals are commonly reported when conducting **equivalence tests**. For example, a 90% 2-sided interval gives the bounds for an equivalence test with $\alpha = .05$. However, be aware that this interval does not give 95% coverage for the underlying effect size parameter value. For that, construct a 95% 2-sided CI.

```
data("hardlyworking")
fit <- lm(salary ~ n_comps + age, data = hardlyworking)
eta_squared(fit) # default, ci = 0.95, alternative = "greater"
#> # Effect Size for ANOVA (Type I)
#>
```

22 effectsize_CIs

```
#> Parameter | Eta2 (partial) | 95% CI
#> -----
#> n_comps | 0.21 | [0.16, 1.00]
#> age | 0.10 | [0.06, 1.00]
#>
#> - One-sided CIs: upper bound fixed at [1.00].
eta_squared(fit, alternative = "less") # Test is eta is smaller than some value
#> # Effect Size for ANOVA (Type I)
#>
#> Parameter | Eta2 (partial) |
                                   95% CI
#> n_comps | 0.21 | [0.00, 0.26] 
#> age | 0.10 | [0.00, 0.14]
#>
#> - One-sided CIs: lower bound fixed at [0.00].
eta_squared(fit, alternative = "two.sided") # 2-sided bounds for alpha = .05
#> # Effect Size for ANOVA (Type I)
#>
#> Parameter | Eta2 (partial) | 95% CI
#> -----
#> n_comps | 0.21 | [0.15, 0.27]
#> age | 0.10 | [0.06, 0.15]
eta_squared(fit, ci = 0.9, alternative = "two.sided") # both 1-sided bounds for alpha = .05
#> # Effect Size for ANOVA (Type I)
#>
#> Parameter | Eta2 (partial) | 90% CI
#> -----
#> n_comps | 0.21 | [0.16, 0.26]
#> age | 0.10 | [0.06, 0.14]
```

CI Does Not Contain the Estimate

For very large sample sizes or effect sizes, the width of the CI can be smaller than the tolerance of the optimizer, resulting in CIs of width 0. This can also result in the estimated CIs excluding the point estimate.

For example:

In these cases, consider an alternative optimizer, or an alternative method for computing CIs, such as the bootstrap.

References

Bauer, P., & Kieser, M. (1996). A unifying approach for confidence intervals and testing of equivalence and difference. *Biometrika*, 83(4), 934–937. doi:10.1093/biomet/83.4.934

effectsize_deprecated 23

Rafi, Z., & Greenland, S. (2020). Semantic and cognitive tools to aid statistical science: Replace confidence and significance by compatibility and surprise. *BMC Medical Research Methodology*, 20(1), Article 244. doi:10.1186/s12874020011059

Schweder, T., & Hjort, N. L. (2016). *Confidence, likelihood, probability: Statistical inference with confidence distributions*. Cambridge University Press. doi:10.1017/CBO9781139046671

Steiger, J. H. (2004). Beyond the *F* test: Effect size confidence intervals and tests of close fit in the analysis of variance and contrast analysis. *Psychological Methods*, 9(2), 164–182. doi:10.1037/1082989x.9.2.164

Xie, M., & Singh, K. (2013). Confidence distribution, the frequentist distribution estimator of a parameter: A review. *International Statistical Review*, 81(1), 3—39. doi:10.1111/insr.12000

effectsize_deprecated Deprecated functions

Description

Deprecated functions

Usage

```
interpret_d(...)
interpret_g(...)
interpret_delta(...)
interpret_parameters(...)
```

Arguments

.. Arguments to the deprecated function.

Details

- interpret_d is now interpret_cohens_d.
- interpret_g is now interpret_hedges_g.
- interpret_delta is now interpret_glass_delta.
- interpret_parameters for *standardized parameters* was incorrect. Use interpret_r instead.

```
{\it equivalence\_test.effectsize\_table} \\ {\it Test for Practical Equivalence}
```

Description

Perform a **Test for Practical Equivalence** for indices of effect size.

Usage

```
## S3 method for class 'effectsize_table'
equivalence_test(
    x,
    range = "default",
    rule = c("classic", "cet", "bayes"),
    ...
)
```

Arguments

x	An effect size table, such as returned by cohens_d(), eta_squared(), $F_to_r()$, etc.
range	The range of practical equivalence of an effect. For one-sides CIs, a single value can be proved for the lower / upper bound to test against (but see more details below). For two-sided CIs, a single value is duplicated to c(-range, range). If "default", will be set to [1, .1].
rule	How should acceptance and rejection be decided? See details.
	Arguments passed to or from other methods.

Details

The CIs used in the equivalence test are the ones in the provided effect size table. For results equivalent (ha!) to those that can be obtained using the TOST approach (e.g., Lakens, 2017), appropriate CIs should be extracted using the function used to make the effect size table (cohens_d, eta_squared, F_to_r, etc), with alternative = "two.sided". See examples.

The Different Rules:

- "classic" the classic method:
 - If the CI is completely within the ROPE Accept H0
 - Else, if the CI does not contain 0 Reject H0
 - Else Undecided
- "cet" conditional equivalence testing:
 - If the CI does not contain 0 Reject H0
 - Else, If the CI is completely within the ROPE Accept H0
 - Else Undecided

- "bayes" The Bayesian approach, as put forth by Kruschke:
 - If the CI does is completely outside the ROPE Reject H0
 - Else, If the CI is completely within the ROPE Accept H0
 - Else Undecided

Value

A data frame with the results of the equivalence test.

References

- Campbell, H., & Gustafson, P. (2018). Conditional equivalence testing: An alternative remedy for publication bias. PLOS ONE, 13(4), e0195145. https://doi.org/10.1371/journal.pone.0195145
- Kruschke, J. K. (2014). Doing Bayesian data analysis: A tutorial with R, JAGS, and Stan. Academic Press
- Kruschke, J. K. (2018). Rejecting or accepting parameter values in Bayesian estimation. Advances in Methods and Practices in Psychological Science, 1(2), 270-280. doi: 10.1177/2515245918771304
- Lakens, D. (2017). Equivalence Tests: A Practical Primer for t Tests, Correlations, and Meta-Analyses. Social Psychological and Personality Science, 8(4), 355–362. https://doi.org/10.1177/1948550617697177

See Also

For more details, see bayestestR::equivalence_test().

Examples

```
model <- aov(mpg ~ hp + am * factor(cyl), data = mtcars)</pre>
es <- eta_squared(model, ci = 0.9, alternative = "two.sided")
equivalence_test(es, range = 0.30) # TOST
RCT <- matrix(c(</pre>
 71, 101,
 50, 100
), nrow = 2)
OR <- oddsratio(RCT, alternative = "greater")
equivalence_test(OR, range = 1)
ds \leftarrow t_to_d(
 t = c(0.45, -0.65, 7, -2.2, 2.25),
 df_{error} = c(675, 525, 2000, 900, 1875),
 ci = 0.9, alternative = "two.sided" # TOST
# Can also plot
if (require(see)) plot(equivalence_test(ds, range = 0.2))
if (require(see)) plot(equivalence_test(ds, range = 0.2, rule = "cet"))
if (require(see)) plot(equivalence_test(ds, range = 0.2, rule = "bayes"))
```

eta2_to_f2

eta2_to_f2

Convert between ANOVA effect sizes

Description

Convert between ANOVA effect sizes

Usage

eta2_to_f2(es)

eta2_to_f(es)

f2_to_eta2(f2)

f_to_eta2(f)

Arguments

es Any measure of variance explained such as Eta-, Epsilon-, Omega-, or R-Squared, partial or otherwise. See details.

f, f2 Cohen's f or f-squared.

Details

Any measure of variance explained can be converted to a corresponding Cohen's f via:

$$f^2 = \frac{\eta^2}{1 - \eta^2}$$

$$\eta^2 = \frac{f^2}{1 + f^2}$$

If a partial Eta-Squared is used, the resulting Cohen's f is a partial-Cohen's f; If a less biased estimate of variance explained is used (such as Epsilon- or Omega-Squared), the resulting Cohen's f is likewise a less biased estimate of Cohen's f.

References

- Cohen, J. (1988). Statistical power analysis for the behavioral sciences (2nd Ed.). New York: Routledge.
- Steiger, J. H. (2004). Beyond the F test: Effect size confidence intervals and tests of close fit in the analysis of variance and contrast analysis. Psychological Methods, 9, 164-182.

See Also

```
eta_squared() for more details.
```

Other convert between effect sizes: d_to_cles(), d_to_r(), odds_to_probs(), oddsratio_to_riskratio()

eta_squared

Effect size for ANOVA

Description

Functions to compute effect size measures for ANOVAs, such as Eta- (η) , Omega- (ω) and Epsilon- (ϵ) squared, and Cohen's f (or their partialled versions) for ANOVA tables. These indices represent an estimate of how much variance in the response variables is accounted for by the explanatory variable(s).

When passing models, effect sizes are computed using the sums of squares obtained from anova(model) which might not always be appropriate. See details.

Usage

```
eta_squared(
 model,
 partial = TRUE,
  generalized = FALSE,
  ci = 0.95,
  alternative = "greater",
  verbose = TRUE,
)
omega_squared(
 model,
 partial = TRUE,
 ci = 0.95,
  alternative = "greater",
 verbose = TRUE,
)
epsilon_squared(
 model,
 partial = TRUE,
 ci = 0.95,
  alternative = "greater",
 verbose = TRUE,
)
```

```
cohens_f(
 model,
 partial = TRUE,
  ci = 0.95,
  alternative = "greater",
  squared = FALSE,
  verbose = TRUE,
 model2 = NULL,
)
cohens_f_squared(
 model,
 partial = TRUE,
  ci = 0.95,
  alternative = "greater",
  squared = TRUE,
  verbose = TRUE,
 model2 = NULL,
)
eta_squared_posterior(
 model,
 partial = TRUE,
  generalized = FALSE,
  ss_function = stats::anova,
  draws = 500,
  verbose = TRUE,
)
```

Arguments

model A model, ANOVA object, or the result of parameters::model_parameters.

partial If TRUE, return partial indices.

generalized If TRUE, returns generalized Eta Squared, assuming all variables are manipu-

lated. Can also be a character vector of observed (non-manipulated) variables, in which case generalized Eta Squared is calculated taking these observed variables into account. For afex_aov model, when generalized = TRUE, the observed variables are extracted automatically from the fitted model, if they were

provided then.

ci Confidence Interval (CI) level

alternative a character string specifying the alternative hypothesis; Controls the type of

CI returned: "greater" (default) or "less" (one-sided CI), or "two.sided" (default, two-sided CI). Partial matching is allowed (e.g., "g", "l", "two"...).

See One-Sided CIs in effectsize_CIs.

verbose Toggle warnings and messages on or off.
... Arguments passed to or from other methods.

• Can be include_intercept = TRUE to include the effect size for the intercept (when it is included in the ANOVA table).

• For Bayesian models, arguments passed to ss_function.

squared Return Cohen's f or Cohen's f-squared?

model 2 Optional second model for Cohen's f (/squared). If specified, returns the effect

size for R-squared-change between the two models.

ss_function For Bayesian models, the function used to extract sum-of-squares. Uses anova()

by default, but can also be car::Anova() for simple linear models.

draws For Bayesian models, an integer indicating the number of draws from the pos-

terior predictive distribution to return. Larger numbers take longer to run, but

provide estimates that are more stable.

Details

For aov, aovlist and afex_aov models, and for anova objects that provide Sums-of-Squares, the effect sizes are computed directly using Sums-of-Squares (for mlm / maov models, effect sizes are computed for each response separately). For all other model, effect sizes are approximated via test statistic conversion of the omnibus F statistic provided by the appropriate anova() method (see $F_{to_eta_2}()$) for more details.)

Type of Sums of Squares:

The sums of squares (or F statistics) used for the computation of the effect sizes is based on those returned by anova(model) (whatever those may be - for aov and aovlist these are type-1 sums of squares; for lmerMod (and lmerModLmerTest) these are type-3 sums of squares). Make sure these are the sums of squares you are interested in; You might want to pass the result of car::Anova(mode, type = 2) or type = 3 instead of the model itself, or use the afex package to fit ANOVA models.

For type 3 sum of squares, it is generally recommended to fit models with contr.sum *factor* weights and *centered covariates*, for sensible results. See examples and the afex package.

Un-Biased Estimate of Eta:

Both **Omega** and **Epsilon** are unbiased estimators of the population's **Eta**, which is especially important is small samples. But which to choose?

Though Omega is the more popular choice (Albers and Lakens, 2018), Epsilon is analogous to adjusted R2 (Allen, 2017, p. 382), and has been found to be less biased (Carroll & Nordholm, 1975).

(Note that for Omega- and Epsilon-squared it is possible to compute a negative number; even though this doesn't make any practical sense, it is recommended to report the negative number and not a 0.)

Cohen's f:

Cohen's f can take on values between zero, when the population means are all equal, and an indefinitely large number as standard deviation of means increases relative to the average standard

deviation within each group.

When comparing two models in a sequential regression analysis, Cohen's f for R-square change is the ratio between the increase in R-square and the percent of unexplained variance.

Cohen has suggested that the values of 0.10, 0.25, and 0.40 represent small, medium, and large effect sizes, respectively.

Eta Squared from Posterior Predictive Distribution:

For Bayesian models (fit with brms or rstanarm), eta_squared_posterior() simulates data from the posterior predictive distribution (ppd) and for each simulation the Eta Squared is computed for the model's fixed effects. This means that the returned values are the population level effect size as implied by the posterior model (and not the effect size in the sample data). See rstantools::posterior_predict() for more info.

Value

A data frame with the effect size(s) between 0-1 (Eta2, Epsilon2, Omega2, Cohens_f or Cohens_f2, possibly with the partial or generalized suffix), and their CIs (CI_low and CI_high).

For eta_squared_posterior(), a data frame containing the ppd of the Eta squared for each fixed effect, which can then be passed to bayestestR::describe_posterior() for summary stats.

A data frame containing the effect size values and their confidence intervals.

Confidence (Compatibility) Intervals (CIs)

Unless stated otherwise, confidence (compatibility) intervals (CIs) are estimated using the non-centrality parameter method (also called the "pivot method"). This method finds the noncentrality parameter ("ncp") of a noncentral t, F, or χ^2 distribution that places the observed t, F, or χ^2 test statistic at the desired probability point of the distribution. For example, if the observed t statistic is 2.0, with 50 degrees of freedom, for which cumulative noncentral t distribution is t = 2.0 the .025 quantile (answer: the noncentral t distribution with ncp = .04)? After estimating these confidence bounds on the ncp, they are converted into the effect size metric to obtain a confidence interval for the effect size (Steiger, 2004).

For additional details on estimation and troubleshooting, see effectsize_CIs.

CIs and Significance Tests

"Confidence intervals on measures of effect size convey all the information in a hypothesis test, and more." (Steiger, 2004). Confidence (compatibility) intervals and p values are complementary summaries of parameter uncertainty given the observed data. A dichotomous hypothesis test could be performed with either a CI or a p value. The $100 (1 - \alpha)\%$ confidence interval contains all of the parameter values for which $p > \alpha$ for the current data and model. For example, a 95% confidence interval contains all of the values for which p > .05.

Note that a confidence interval including 0 *does not* indicate that the null (no effect) is true. Rather, it suggests that the observed data together with the model and its assumptions combined do not provided clear evidence against a parameter value of 0 (same as with any other value in the interval),

with the level of this evidence defined by the chosen α level (Rafi & Greenland, 2020; Schweder & Hjort, 2016; Xie & Singh, 2013). To infer no effect, additional judgments about what parameter values are "close enough" to 0 to be negligible are needed ("equivalence testing"; Bauer & Kiesser, 1996).

References

- Albers, C., and Lakens, D. (2018). When power analyses based on pilot data are biased: Inaccurate effect size estimators and follow-up bias. Journal of experimental social psychology, 74, 187-195.
- Allen, R. (2017). Statistics and Experimental Design for Psychologists: A Model Comparison Approach. World Scientific Publishing Company.
- Carroll, R. M., & Nordholm, L. A. (1975). Sampling Characteristics of Kelley's epsilon and Hays' omega. Educational and Psychological Measurement, 35(3), 541-554.
- Kelley, T. (1935) An unbiased correlation ratio measure. Proceedings of the National Academy of Sciences. 21(9). 554-559.
- Olejnik, S., & Algina, J. (2003). Generalized eta and omega squared statistics: measures of effect size for some common research designs. Psychological methods, 8(4), 434.
- Steiger, J. H. (2004). Beyond the F test: Effect size confidence intervals and tests of close fit in the analysis of variance and contrast analysis. Psychological Methods, 9, 164-182.

See Also

```
F_to_eta2()
```

Other effect size indices: cles(), cohens_d(), effectsize.BFBayesFactor(), phi(), rank_biserial()

Examples

```
interpret_omega_squared(0.10, rules = "field2013")
interpret_eta_squared(0.10, rules = "cohen1992")
interpret_epsilon_squared(0.10, rules = "cohen1992")
interpret(eta2, rules = "cohen1992")
plot(eta2) # Requires the {see} package
# Recommended: Type-2 or -3 effect sizes + effects coding
contrasts(mtcars$am_f) <- contr.sum</pre>
contrasts(mtcars$cyl_f) <- contr.sum</pre>
model <- aov(mpg ~ am_f * cyl_f, data = mtcars)</pre>
model_anova <- car::Anova(model, type = 3)</pre>
epsilon_squared(model_anova)
# afex takes care of both type-3 effects and effects coding:
data(obk.long, package = "afex")
model <- afex::aov_car(value ~ treatment * gender + Error(id / (phase)),</pre>
 data = obk.long, observed = "gender"
omega_squared(model)
eta_squared(model, generalized = TRUE) # observed vars are pulled from the afex model.
## Approx. effect sizes for mixed models
## -----
model <- lme4::lmer(mpg ~ am_f * cyl_f + (1 | vs), data = mtcars)</pre>
omega_squared(model)
## Bayesian Models (PPD)
## -----
fit_bayes <- rstanarm::stan_glm(</pre>
 mpg ~ factor(cyl) * wt + qsec,
 data = mtcars, family = gaussian(),
 refresh = 0
)
es <- eta_squared_posterior(fit_bayes,
 verbose = FALSE,
 ss_function = car::Anova, type = 3
bayestestR::describe_posterior(es, test = NULL)
# compare to:
```

format_standardize 33

```
fit_freq <- lm(mpg ~ factor(cyl) * wt + qsec,
  data = mtcars
)
aov_table <- car::Anova(fit_freq, type = 3)
eta_squared(aov_table)</pre>
```

format_standardize

Transform a standardized vector into character

Description

Transform a standardized vector into character, e.g., c("-1 SD", "Mean", "+1 SD").

Usage

```
format_standardize(
    x,
    reference = x,
    robust = FALSE,
    digits = 1,
    protect_integers = TRUE,
    ...
)
```

Arguments

x A standardized numeric vector.

reference The reference vector from which to compute the mean and SD.

robust Logical, if TRUE, centering is done by subtracting the median from the variables

and dividing it by the median absolute deviation (MAD). If FALSE, variables are standardized by subtracting the mean and dividing it by the standard deviation $\frac{1}{2}$

(SD).

digits Number of digits for rounding or significant figures. May also be "signif" to

return significant figures or "scientific" to return scientific notation. Control the number of digits by adding the value as suffix, e.g. digits = "scientific4" to have scientific notation with 4 decimal places, or digits = "signif5" for 5

significant figures (see also signif()).

protect_integers

Should integers be kept as integers (i.e., without decimals)?

... Other arguments to pass to insight::format_value() such as digits, etc.

34 F_to_eta2

Examples

```
format\_standardize(c(-1, 0, 1)) \\ format\_standardize(c(-1, 0, 1, 2), reference = rnorm(1000)) \\ format\_standardize(c(-1, 0, 1, 2), reference = rnorm(1000), robust = TRUE) \\ format\_standardize(standardize(mtcars$wt), digits = 1) \\ format\_standardize(standardize(mtcars$wt, robust = TRUE), digits = 1) \\ format\_standardize(standardize(mtcars$wt, robust = TRUE) \\ format\_standardize(standardize(mtcars$wt, robust = TRUE) \\ format\_standardize(standardize(mtcars$wt, robust = TRUE) \\ format\_standardize(mtcars$wt, robust = TRUE) \\ format
```

F_to_eta2

Convert test statistics (F, t) to indices of partial variance explained (partial Eta / Omega / Epsilon squared and Cohen's f)

Description

These functions are convenience functions to convert F and t test statistics to **partial** Eta- (η) , Omega- (ω) Epsilon- (ϵ) squared (an alias for the adjusted Eta squared) and Cohen's f. These are useful in cases where the various Sum of Squares and Mean Squares are not easily available or their computation is not straightforward (e.g., in liner mixed models, contrasts, etc.). For test statistics derived from 1m and aov models, these functions give exact results. For all other cases, they return close approximations.

See Effect Size from Test Statistics vignette.

Usage

```
F_to_eta2(f, df, df_error, ci = 0.95, alternative = "greater", ...)

t_to_eta2(t, df_error, ci = 0.95, alternative = "greater", ...)

F_to_epsilon2(f, df, df_error, ci = 0.95, alternative = "greater", ...)

t_to_epsilon2(t, df_error, ci = 0.95, alternative = "greater", ...)

F_to_eta2_adj(f, df, df_error, ci = 0.95, alternative = "greater", ...)

t_to_eta2_adj(t, df_error, ci = 0.95, alternative = "greater", ...)

F_to_omega2(f, df, df_error, ci = 0.95, alternative = "greater", ...)

t_to_omega2(t, df_error, ci = 0.95, alternative = "greater", ...)

F_to_f(
    f,
    df,
    df_error,
    ci = 0.95,
    alternative = "greater",
    squared = FALSE,
```

F_to_eta2 35

```
t_to_f(t, df_error, ci = 0.95, alternative = "greater", squared = FALSE, ...)

F_to_f2(
    f,
    df,
    df_error,
    ci = 0.95,
    alternative = "greater",
    squared = TRUE,
    ...
)

t_to_f2(t, df_error, ci = 0.95, alternative = "greater", squared = TRUE, ...)
```

Arguments

df, df_error Degrees of freedom of numerator or of the error estimate (i.e., the residuals).

Ci Confidence Interval (CI) level

alternative a character string specifying the alternative hypothesis; Controls the type of CI returned: "greater" (default) or "less" (one-sided CI), or "two.sided" (default, two-sided CI). Partial matching is allowed (e.g., "g", "l", "two"...). See One-Sided CIs in effectsize_CIs.

... Arguments passed to or from other methods.

t, f The t or the F statistics.

Return Cohen's f or Cohen's f-squared?

Details

These functions use the following formulae:

$$\eta_p^2 = \frac{F \times df_{num}}{F \times df_{num} + df_{den}}$$

$$\epsilon_p^2 = \frac{(F-1) \times df_{num}}{F \times df_{num} + df_{den}}$$

$$\omega_p^2 = \frac{(F-1) \times df_{num}}{F \times df_{num} + df_{den} + 1}$$

$$f_p = \sqrt{\frac{\eta_p^2}{1 - \eta_p^2}}$$

36 F_to_eta2

For t, the conversion is based on the equality of $t^2 = F$ when $df_{num} = 1$.

Choosing an Un-Biased Estimate:

Both Omega and Epsilon are unbiased estimators of the population Eta. But which to choose? Though Omega is the more popular choice, it should be noted that:

- 1. The formula given above for Omega is only an approximation for complex designs.
- 2. Epsilon has been found to be less biased (Carroll & Nordholm, 1975).

Value

A data frame with the effect size(s) between 0-1 (Eta2_partial, Epsilon2_partial, Omega2_partial, Cohens_f_partial or Cohens_f2_partial), and their CIs (CI_low and CI_high). (Note that for ω_p^2 and ϵ_p^2 it is possible to compute a negative number; even though this doesn't make any practical sense, it is recommended to report the negative number and not a 0).

Confidence (Compatibility) Intervals (CIs)

Unless stated otherwise, confidence (compatibility) intervals (CIs) are estimated using the non-centrality parameter method (also called the "pivot method"). This method finds the noncentrality parameter ("ncp") of a noncentral t, F, or χ^2 distribution that places the observed t, F, or χ^2 test statistic at the desired probability point of the distribution. For example, if the observed t statistic is 2.0, with 50 degrees of freedom, for which cumulative noncentral t distribution is t = 2.0 the .025 quantile (answer: the noncentral t distribution with ncp = .04)? After estimating these confidence bounds on the ncp, they are converted into the effect size metric to obtain a confidence interval for the effect size (Steiger, 2004).

For additional details on estimation and troubleshooting, see effectsize_CIs.

CIs and Significance Tests

"Confidence intervals on measures of effect size convey all the information in a hypothesis test, and more." (Steiger, 2004). Confidence (compatibility) intervals and p values are complementary summaries of parameter uncertainty given the observed data. A dichotomous hypothesis test could be performed with either a CI or a p value. The $100 (1 - \alpha)\%$ confidence interval contains all of the parameter values for which $p > \alpha$ for the current data and model. For example, a 95% confidence interval contains all of the values for which p > .05.

Note that a confidence interval including 0 *does not* indicate that the null (no effect) is true. Rather, it suggests that the observed data together with the model and its assumptions combined do not provided clear evidence against a parameter value of 0 (same as with any other value in the interval), with the level of this evidence defined by the chosen α level (Rafi & Greenland, 2020; Schweder & Hjort, 2016; Xie & Singh, 2013). To infer no effect, additional judgments about what parameter values are "close enough" to 0 to be negligible are needed ("equivalence testing"; Bauer & Kiesser, 1996).

Note

Adjusted (partial) Eta-squared is an alias for (partial) Epsilon-squared.

F_to_eta2 37

References

Albers, C., & Lakens, D. (2018). When power analyses based on pilot data are biased: Inaccurate effect size estimators and follow-up bias. Journal of experimental social psychology, 74, 187-195. doi:10.31234/osf.io/b7z4q

- Carroll, R. M., & Nordholm, L. A. (1975). Sampling Characteristics of Kelley's epsilon and Hays' omega. Educational and Psychological Measurement, 35(3), 541-554.
- Cumming, G., & Finch, S. (2001). A primer on the understanding, use, and calculation of confidence intervals that are based on central and noncentral distributions. Educational and Psychological Measurement, 61(4), 532-574.
- Friedman, H. (1982). Simplified determinations of statistical power, magnitude of effect and research sample sizes. Educational and Psychological Measurement, 42(2), 521-526. doi:10.1177/001316448204200214
- Mordkoff, J. T. (2019). A Simple Method for Removing Bias From a Popular Measure of Standardized Effect Size: Adjusted Partial Eta Squared. Advances in Methods and Practices in Psychological Science, 2(3), 228-232. doi:10.1177/2515245919855053
- Morey, R. D., Hoekstra, R., Rouder, J. N., Lee, M. D., & Wagenmakers, E. J. (2016). The fallacy of placing confidence in confidence intervals. Psychonomic bulletin & review, 23(1), 103-123.
- Steiger, J. H. (2004). Beyond the F test: Effect size confidence intervals and tests of close fit in the analysis of variance and contrast analysis. Psychological Methods, 9, 164-182.

See Also

```
eta_squared() for more details.
Other effect size from test statistic: chisq_to_phi(), t_to_d()
```

```
mod <- aov(mpg ~ factor(cyl) * factor(am), mtcars)</pre>
anova(mod)
(etas <- F_to_eta2(
 f = c(44.85, 3.99, 1.38),
 df = c(2, 1, 2),
 df_error = 26
))
if (require(see)) plot(etas)
# Compare to:
eta_squared(mod)
fit <- lmerTest::lmer(extra ~ group + (1 | ID), sleep)</pre>
# anova(fit)
# #> Type III Analysis of Variance Table with Satterthwaite's method
           Sum Sq Mean Sq NumDF DenDF F value Pr(>F)
# #> group 12.482 12.482
                             1
                                    9 16.501 0.002833 **
```

38 interpret

hardlyworking

Workers' salary and other information

Description

A sample (simulated) dataset, used in tests and some examples.

Format

A data frame with 500 rows and 5 variables:

```
salary Salary, in Shmekels
xtra_hours Number of overtime hours (on average, per week)
n_comps Number of compliments given to the boss (observed over the last week)
age Age in years
seniority How many years with the company
```

interpret

Generic function for interpretation

Description

Interpret a value based on a set of rules. See rules().

interpret 39

Usage

```
interpret(x, ...)
## S3 method for class 'numeric'
interpret(x, rules, name = attr(rules, "rule_name"), ...)
## S3 method for class 'effectsize_table'
interpret(x, rules, ...)
```

Arguments

Vector of value break points (edges defining categories), or a data frame of class effectsize_table.
 Currently not used.
 Set of rules(). When x is a data frame, can be a name of an established set of rules.
 Name of the set of rules (will be printed).

Value

- For numeric input: A character vector of interpretations.
- For data frames: the x input with an additional Interpretation column.

See Also

rules

```
rules_grid <- rules(c(0.01, 0.05), c("very significant", "significant", "not significant"))
interpret(0.001, rules_grid)
interpret(0.021, rules_grid)
interpret(0.08, rules_grid)
interpret(c(0.01, 0.005, 0.08), rules_grid)

interpret(c(0.35, 0.15), c("small" = 0.2, "large" = 0.4), name = "Cohen's Rules")
interpret(c(0.35, 0.15), rules(c(0.2, 0.4), c("small", "medium", "large")))

# ------
d <- cohens_d(mpg ~ am, data = mtcars)
interpret(d, rules = "cohen1988")

d <- glass_delta(mpg ~ am, data = mtcars)
interpret(d, rules = "gignac2016")

interpret(d, rules = rules(1, c("tiny", "yeah okay")))

m <- lm(formula = wt ~ am * cyl, data = mtcars)
eta2 <- eta_squared(m)</pre>
```

40 interpret_bf

```
interpret(eta2, rules = "field2013")

X <- chisq.test(mtcars$am, mtcars$cyl == 8)
interpret(oddsratio(X), rules = "chen2010")
interpret(cramers_v(X), "lovakov2021")</pre>
```

interpret_bf

Interpret Bayes Factor (BF)

Description

Interpret Bayes Factor (BF)

Usage

```
interpret_bf(
   bf,
   rules = "jeffreys1961",
   log = FALSE,
   include_value = FALSE,
   protect_ratio = TRUE,
   exact = TRUE
)
```

Arguments

bf Value or vector of Bayes factor (BF) values.

rules Can be "jeffreys1961" (default), "raftery1995" or custom set of rules()

(for the absolute magnitude of evidence).

log Is the bf value log(bf)?

include_value Include the value in the output.

exact Should very large or very small values be reported with a scientific format (e.g.,

4.24e5), or as truncated values (as "> 1000" and "< 1/1000").

Details

Argument names can be partially matched.

Rules

Rules apply to BF as ratios, so BF of 10 is as extreme as a BF of 0.1 (1/10).

```
• Jeffreys (1961) ("jeffreys1961"; default)
```

- **BF** = 1 No evidence
- 1 < BF <= 3 Anecdotal

interpret_cohens_d 41

```
3 < BF <= 10 - Moderate</li>
10 < BF <= 30 - Strong</li>
30 < BF <= 100 - Very strong</li>
BF > 100 - Extreme.
Raftery (1995) ("raftery1995")
BF = 1 - No evidence
1 < BF <= 3 - Weak</li>
3 < BF <= 20 - Positive</li>
20 < BF <= 150 - Strong</li>
BF > 150 - Very strong
```

References

- Jeffreys, H. (1961), Theory of Probability, 3rd ed., Oxford University Press, Oxford.
- Raftery, A. E. (1995). Bayesian model selection in social research. Sociological methodology, 25, 111-164.
- Jarosz, A. F., & Wiley, J. (2014). What are the odds? A practical guide to computing and reporting Bayes factors. The Journal of Problem Solving, 7(1), 2.

Examples

Description

Interpretation of standardized differences using different sets of rules of thumb.

Usage

```
interpret_cohens_d(d, rules = "cohen1988", ...)
interpret_hedges_g(g, rules = "cohen1988")
interpret_glass_delta(delta, rules = "cohen1988")
```

Arguments

```
    d, g, delta
    Value or vector of effect size values.
    rules
    Can be "cohen1988" (default), "gignac2016", "sawilowsky2009", "lovakov2021" or a custom set of rules().
    ...
    Not directly used.
```

42 interpret_cohens_d

Rules

Rules apply to equally to positive and negative d (i.e., they are given as absolute values).

```
• Cohen (1988) ("cohen1988"; default)
```

```
- d < 0.2 - Very small
```

$$-0.2 \le d < 0.5$$
 - Small

$$-0.5 \le d < 0.8$$
 - Medium

$$- d >= 0.8 - Large$$

- Sawilowsky (2009) ("sawilowsky2009")
 - d < 0.1 Tiny
 - $0.1 \le d < 0.2$ Very small
 - $-0.2 \le d < 0.5$ Small
 - $-0.5 \le d < 0.8$ Medium
 - $-0.8 \le d \le 1.2$ Large
 - $-1.2 \le d \le 2$ Very large
 - d >= 2 Huge
- Lovakov & Agadullina (2021) ("lovakov2021")
 - d < 0.15 Very small
 - $-0.15 \le d < 0.36$ Small
 - **0.36 <= d < 0.65** Medium
 - d >= 0.65 Large
- Gignac & Szodorai (2016) ("gignac2016", based on the d_to_r() conversion, see interpret_r())
 - d < 0.2 Very small
 - **0.2** <= **d** < **0.41** Small
 - $0.41 \le d < 0.63$ Moderate
 - d >= 0.63 Large

References

- Lovakov, A., & Agadullina, E. R. (2021). Empirically Derived Guidelines for Effect Size Interpretation in Social Psychology. European Journal of Social Psychology.
- Gignac, G. E., & Szodorai, E. T. (2016). Effect size guidelines for individual differences researchers. Personality and individual differences, 102, 74-78.
- Cohen, J. (1988). Statistical power analysis for the behavioral sciences (2nd Ed.). New York: Routledge.
- Sawilowsky, S. S. (2009). New effect size rules of thumb.

```
interpret_cohens_d(.02)
interpret_cohens_d(c(.5, .02))
interpret_cohens_d(.3, rules = "lovakov2021")
```

interpret_cohens_g 43

interpret_cohens_g

Interpret Cohen's g

Description

Interpret Cohen's g

Usage

```
interpret_cohens_g(g, rules = "cohen1988", ...)
```

Arguments

```
g Value or vector of effect size values.

rules Can be "cohen1988" (default) or a custom set of rules().

... Not directly used.
```

Rules

Rules apply to equally to positive and negative g (i.e., they are given as absolute values).

```
• Cohen (1988) ("cohen1988"; default)
```

```
- d < 0.05 - Very small
```

 $-0.05 \le d < 0.15$ - Small

- **0.15 <= d < 0.25** - Medium

- d >= 0.25 - Large

Note

"Since **g** is so transparently clear a unit, it is expected that workers in any given substantive area of the behavioral sciences will very frequently be able to set relevant [effect size] values without the proposed conventions, or set up conventions of their own which are suited to their area of inquiry." - Cohen, 1988, page 147.

References

• Cohen, J. (1988). Statistical power analysis for the behavioral sciences (2nd Ed.). New York: Routledge.

```
interpret_cohens_g(.02)
interpret_cohens_g(c(.3, .15))
```

interpret_ess

Description

Interpret direction

Usage

```
interpret_direction(x)
```

Arguments

.,

Numeric value.

Examples

```
interpret_direction(.02)
interpret_direction(c(.5, -.02))
```

interpret_ess

Interpret Bayesian diagnostic indices

Description

Interpretation of Bayesian diagnostic indices, such as Effective Sample Size (ESS) and Rhat.

Usage

```
interpret_ess(ess, rules = "burkner2017")
interpret_rhat(rhat, rules = "vehtari2019")
```

Arguments

ess Value or vector of Effective Sample Size (ESS) values.

rules A character string (see *Rules*) or a custom set of rules().

rhat Value or vector of Rhat values.

interpret_gfi 45

Rules

ESS:

- Bürkner, P. C. (2017) ("burkner2017"; default)
 - ESS < 1000 Insufficient
 - ESS >= 1000 Sufficient

Rhat:

- Vehtari et al. (2019) ("vehtari2019"; default)
 - **Rhat < 1.01** Converged
 - **Rhat** >= **1.01** Failed
- Gelman & Rubin (1992) ("gelman1992")
 - Rhat < 1.1 Converged
 - **Rhat** >= **1.1** Failed

References

- Bürkner, P. C. (2017). brms: An R package for Bayesian multilevel models using Stan. Journal of Statistical Software, 80(1), 1-28.
- Gelman, A., & Rubin, D. B. (1992). Inference from iterative simulation using multiple sequences. Statistical science, 7(4), 457-472.
- Vehtari, A., Gelman, A., Simpson, D., Carpenter, B., & Bürkner, P. C. (2019). Rank-normalization, folding, and localization: An improved Rhat for assessing convergence of MCMC. arXiv preprint arXiv:1903.08008.

Examples

```
interpret_ess(1001)
interpret_ess(c(852, 1200))
interpret_rhat(1.00)
interpret_rhat(c(1.5, 0.9))
```

interpret_gfi

Interpret of indices of CFA / SEM goodness of fit

Description

Interpretation of indices of fit found in confirmatory analysis or structural equation modelling, such as RMSEA, CFI, NFI, IFI, etc.

46 interpret_gfi

Usage

```
interpret_gfi(x, rules = "default")
interpret_agfi(x, rules = "default")
interpret_nfi(x, rules = "byrne1994")
interpret_nnfi(x, rules = "byrne1994")
interpret_cfi(x, rules = "default")
interpret_rmsea(x, rules = "default")
interpret_srmr(x, rules = "default")
interpret_rfi(x, rules = "default")
interpret_ifi(x, rules = "default")
interpret_ifi(x, rules = "default")
interpret_pnfi(x, rules = "default")
## S3 method for class 'lavaan'
interpret(x, ...)
## S3 method for class 'performance_lavaan'
interpret(x, ...)
```

Arguments

```
x vector of values, or an object of class lavaan.rules Can be "default" or custom set of rules().... Currently not used.
```

Details

Indices of fit:

- **Chisq**: The model Chi-squared assesses overall fit and the discrepancy between the sample and fitted covariance matrices. Its p-value should be > .05 (i.e., the hypothesis of a perfect fit cannot be rejected). However, it is quite sensitive to sample size.
- **GFI/AGFI**: The (Adjusted) Goodness of Fit is the proportion of variance accounted for by the estimated population covariance. Analogous to R2. The GFI and the AGFI should be > .95 and > .90, respectively.
- NFI/NNFI/TLI: The (Non) Normed Fit Index. An NFI of 0.95, indicates the model of interest improves the fit by 95\ NNFI (also called the Tucker Lewis index; TLI) is preferable for smaller samples. They should be > .90 (Byrne, 1994) or > .95 (Schumacker & Lomax, 2004).

interpret_gfi 47

• **CFI**: The Comparative Fit Index is a revised form of NFI. Not very sensitive to sample size (Fan, Thompson, & Wang, 1999). Compares the fit of a target model to the fit of an independent, or null, model. It should be > .90.

- **RMSEA**: The Root Mean Square Error of Approximation is a parsimony-adjusted index. Values closer to 0 represent a good fit. It should be < .08 or < .05. The p-value printed with it tests the hypothesis that RMSEA is less than or equal to .05 (a cutoff sometimes used for good fit), and thus should be not significant.
- RMR/SRMR: the (Standardized) Root Mean Square Residual represents the square-root of the difference between the residuals of the sample covariance matrix and the hypothesized model. As the RMR can be sometimes hard to interpret, better to use SRMR. Should be < .08.
- **RFI**: the Relative Fit Index, also known as RHO1, is not guaranteed to vary from 0 to 1. However, RFI close to 1 indicates a good fit.
- **IFI**: the Incremental Fit Index (IFI) adjusts the Normed Fit Index (NFI) for sample size and degrees of freedom (Bollen's, 1989). Over 0.90 is a good fit, but the index can exceed 1.
- **PNFI**: the Parsimony-Adjusted Measures Index. There is no commonly agreed-upon cutoff value for an acceptable model for this index. Should be > 0.50.

See the documentation for fitmeasures().

What to report:

For structural equation models (SEM), Kline (2015) suggests that at a minimum the following indices should be reported: The model **chi-square**, the **RMSEA**, the **CFI** and the **SRMR**.

Note

When possible, it is recommended to report dynamic cutoffs of fit indices. See https://dynamicfit.app/cfa/.

References

- Awang, Z. (2012). A handbook on SEM. Structural equation modeling.
- Byrne, B. M. (1994). Structural equation modeling with EQS and EQS/Windows. Thousand Oaks, CA: Sage Publications.
- Tucker, L. R., and Lewis, C. (1973). The reliability coefficient for maximum likelihood factor analysis. Psychometrika, 38, 1-10.
- Schumacker, R. E., and Lomax, R. G. (2004). A beginner's guide to structural equation modeling, Second edition. Mahwah, NJ: Lawrence Erlbaum Associates.
- Fan, X., B. Thompson, and L. Wang (1999). Effects of sample size, estimation method, and model specification on structural equation modeling fit indexes. Structural Equation Modeling, 6, 56-83.
- Kline, R. B. (2015). Principles and practice of structural equation modeling. Guilford publications.

```
interpret_gfi(c(.5, .99))
interpret_agfi(c(.5, .99))
interpret_nfi(c(.5, .99))
```

48 interpret_icc

interpret_icc

Interpret Intraclass Correlation Coefficient (ICC)

Description

The value of an ICC lies between 0 to 1, with 0 indicating no reliability among raters and 1 indicating perfect reliability.

Usage

```
interpret_icc(icc, rules = "koo2016", ...)
```

Arguments

```
icc Value or vector of Intraclass Correlation Coefficient (ICC) values.

rules Can be "koo2016" (default) or custom set of rules().

... Not used for now.
```

Rules

```
Koo (2016) ("koo2016"; default)
ICC < 0.50 - Poor reliability</li>
0.5 <= ICC < 0.75 - Moderate reliability</li>
0.75 <= ICC < 0.9 - Good reliability</li>
**ICC >= 0.9 ** - Excellent reliability
```

References

• Koo, T. K., and Li, M. Y. (2016). A guideline of selecting and reporting intraclass correlation coefficients for reliability research. Journal of chiropractic medicine, 15(2), 155-163.

interpret_kendalls_w 49

Examples

```
interpret_icc(0.6)
interpret_icc(c(0.4, 0.8))
```

 $interpret_kendalls_w \quad \textit{Interpret Kendall's coefficient of concordance}$

Description

Interpret Kendall's coefficient of concordance

Usage

```
interpret_kendalls_w(w, rules = "landis1977")
```

Arguments

W Value or vector of Kendall's coefficient of concordance.rules Can be "landis1977" (default) or a custom set of rules().

Rules

- Landis & Koch (1977) ("landis1977"; default)
 - $0.00 \le w < 0.20$ Slight agreement
 - $0.20 \le w < 0.40$ Fair agreement
 - **0.40 <= w < 0.60** Moderate agreement
 - $-0.60 \le w \le 0.80$ Substantial agreement
 - $w \ge 0.80$ Almost perfect agreement

References

• Landis, J. R., & Koch G. G. (1977). The measurement of observer agreement for categorical data. Biometrics, 33:159-74.

50 interpret_oddsratio

Description

Interpret Odds ratio

Usage

```
interpret_oddsratio(OR, rules = "chen2010", log = FALSE, ...)
```

Arguments

OR	Value or vector of (log) odds ratio values.	
rules	Can be "chen2010" (default), "cohen1988" (through transformation to standardized difference, see oddsratio_to_d()) or custom set of rules().	
log	Are the provided values log odds ratio.	
	Currently not used.	

Rules

Rules apply to OR as ratios, so OR of 10 is as extreme as a OR of 0.1 (1/10).

```
• Chen et al. (2010) ("chen2010"; default)
```

```
OR < 1.68 - Very small
```

$$- **OR >= 6.71 ** - Large$$

- Cohen (1988) ("cohen1988", based on the oddsratio_to_d() conversion, see interpret_cohens_d())
 - **OR < 1.44** Very small
 - 1.44 <= OR < 2.48 Small
 - 2.48 <= OR < 4.27 Medium
 - **OR >= 4.27 ** Large

References

- Cohen, J. (1988). Statistical power analysis for the behavioral sciences (2nd Ed.). New York: Routledge.
- Chen, H., Cohen, P., & Chen, S. (2010). How big is a big odds ratio? Interpreting the magnitudes of odds ratios in epidemiological studies. Communications in Statistics-Simulation and Computation, 39(4), 860-864.
- Sánchez-Meca, J., Marín-Martínez, F., & Chacón-Moscoso, S. (2003). Effect-size indices for dichotomized outcomes in meta-analysis. Psychological methods, 8(4), 448.

Examples

```
interpret_oddsratio(1)
interpret_oddsratio(c(5, 2))
```

interpret_omega_squared

Interpret ANOVA effect size

Description

Interpret ANOVA effect size

Usage

```
interpret_omega_squared(es, rules = "field2013", ...)
interpret_eta_squared(es, rules = "field2013", ...)
interpret_epsilon_squared(es, rules = "field2013", ...)
```

Arguments

es Value or vector of eta / omega / epsilon squared values.

rules Can be "field2013" (default), "cohen1992" or custom set of rules().

... Not used for now.

Rules

- Field (2013) ("field2013"; default)
 - ES < 0.01 Very small
 - $-0.01 \le ES < 0.06$ Small
 - $0.16 \le ES < 0.14$ Medium
 - **ES >= 0.14 ** Large
- Cohen (1992) ("cohen1992") applicable to one-way anova, or to *partial* eta / omega / epsilon squared in multi-way anova.
 - ES < 0.02 Very small
 - $-0.02 \le ES < 0.13$ Small
 - **0.13** <= **ES** < **0.26** Medium
 - ES >= 0.26 Large

References

- Field, A (2013) Discovering statistics using IBM SPSS Statistics. Fourth Edition. Sage:London.
- Cohen, J. (1992). A power primer. Psychological bulletin, 112(1), 155.

52 interpret_p

See Also

https://imaging.mrc-cbu.cam.ac.uk/statswiki/FAQ/effectSize/

Examples

```
interpret_eta_squared(.02)
interpret_eta_squared(c(.5, .02), rules = "cohen1992")
```

interpret_p

Interpret p-values

Description

Interpret p-values

Usage

```
interpret_p(p, rules = "default")
```

Arguments

p Value or vector of p-values.

rules Can be "default", "rss" (for *Redefine statistical significance* rules) or custom

set of rules().

Rules

- Default
 - $p \ge 0.05$ Not significant
 - p < 0.05 Significant
- Benjamin et al. (2018) ("rss")
 - $p \ge 0.05$ Not significant
 - $-0.005 \le p < 0.05$ Suggestive
 - p < 0.005 Significant

References

Benjamin, D. J., Berger, J. O., Johannesson, M., Nosek, B. A., Wagenmakers, E. J., Berk, R.,
 ... & Cesarini, D. (2018). Redefine statistical significance. Nature Human Behaviour, 2(1),
 6-10.

```
interpret_p(c(.5, .02, 0.001))
interpret_p(c(.5, .02, 0.001), rules = "rss")
```

interpret_pd 53

interpret_pd

Interpret Probability of Direction (pd)

Description

Interpret Probability of Direction (pd)

Usage

```
interpret_pd(pd, rules = "default", ...)
```

Arguments

```
pd Value or vector of probabilities of direction.

rules Can be "default", "makowski2019" or a custom set of rules().

... Not directly used.
```

Rules

- Default (i.e., equivalent to p-values)
 - **pd <= 0.975** not significant
 - pd > 0.975 significant
- Makowski et al. (2019) ("makowski 2019")
 - pd <= 0.95 uncertain
 - **pd** > **0.95** possibly existing
 - **pd** > **0.97** likely existing
 - **pd** > **0.99** probably existing
 - pd > 0.999 certainly existing

References

• Makowski, D., Ben-Shachar, M. S., Chen, S. H., and Lüdecke, D. (2019). Indices of effect existence and significance in the Bayesian framework. Frontiers in psychology, 10, 2767.

```
interpret_pd(.98)
interpret_pd(c(.96, .99), rules = "makowski2019")
```

interpret_r

interpret_r

Interpret correlation coefficient

Description

Interpret correlation coefficient

Usage

```
interpret_r(r, rules = "funder2019", ...)
interpret_phi(r, rules = "funder2019", ...)
interpret_cramers_v(r, rules = "funder2019", ...)
interpret_rank_biserial(r, rules = "funder2019", ...)
```

Arguments

Rules

Rules apply positive and negative r alike.

```
• Funder & Ozer (2019) ("funder 2019"; default)
```

```
- r < 0.05 - Tiny
```

 $- 0.05 \le r < 0.1$ - Very small

$$-0.1 \le r < 0.2$$
 - Small

$$-0.2 \le r < 0.3$$
 - Medium

$$-0.3 \le r < 0.4$$
 - Large

$$- r >= 0.4 - Very large$$

• Gignac & Szodorai (2016) ("gignac2016")

```
- r < 0.1 - Very small
```

$$-0.1 \le r < 0.2$$
 - Small

$$-0.2 \le r < 0.3$$
 - Moderate

$$- r >= 0.3 - Large$$

• Cohen (1988) ("cohen1988")

$$- r < 0.1$$
 - Very small

$$-0.1 \le r < 0.3$$
 - Small

$$-0.3 \le r < 0.5$$
 - Moderate

interpret_r 55

```
- r >= 0.5 - Large
```

• Lovakov & Agadullina (2021) ("lovakov2021")

```
- r < 0.12 - Very small
```

$$-0.12 \le r < 0.24$$
 - Small

$$-0.24 \le r < 0.41$$
 - Moderate

$$- r >= 0.41 - Large$$

• Evans (1996) ("evans1996")

```
- r < 0.2 - Very weak
```

$$-0.2 \le r < 0.4$$
 - Weak

$$-0.4 \le r < 0.6$$
 - Moderate

$$-0.6 \le r \le 0.8$$
 - Strong

$$- r >= 0.8$$
 - Very strong

Note

As ϕ can be larger than 1 - it is recommended to compute and interpret Cramer's V instead.

References

- Lovakov, A., & Agadullina, E. R. (2021). Empirically Derived Guidelines for Effect Size Interpretation in Social Psychology. European Journal of Social Psychology.
- Funder, D. C., & Ozer, D. J. (2019). Evaluating effect size in psychological research: sense and nonsense. Advances in Methods and Practices in Psychological Science.
- Gignac, G. E., & Szodorai, E. T. (2016). Effect size guidelines for individual differences researchers. Personality and individual differences, 102, 74-78.
- Cohen, J. (1988). Statistical power analysis for the behavioral sciences (2nd Ed.). New York: Routledge.
- Evans, J. D. (1996). Straightforward statistics for the behavioral sciences. Thomson Brooks/Cole Publishing Co.

See Also

Page 88 of APA's 6th Edition.

```
interpret_r(.015)
interpret_r(c(.5, -.02))
interpret_r(.3, rules = "lovakov2021")
```

56 interpret_r2

interpret_r2

Interpret coefficient of determination (R2)

Description

Interpret coefficient of determination (R2)

Usage

```
interpret_r2(r2, rules = "cohen1988")
```

Arguments

r2 Value or vector of R2 values.

rules Can be "cohen1988" (default), "falk1992", "chin1998", "hair2011", or cus-

tom set of rules()].

Rules

For Linear Regression:

- Cohen (1988) ("cohen1988"; default)
 - R2 < 0.02 Very weak
 - $-0.02 \le R2 < 0.13$ Weak
 - $-0.13 \le R2 < 0.26$ Moderate
 - **R2** >= **0.26** Substantial
- Falk & Miller (1992) ("falk1992")
 - R2 < 0.1 Negligible
 - R2 >= 0.1 Adequate

For PLS / SEM R-Squared of *latent* variables:

- Chin, W. W. (1998) ("chin1998")
 - **R2 < 0.19** Very weak
 - $-0.19 \le R2 < 0.33$ Weak
 - $-0.33 \le R2 < 0.67$ Moderate
 - **R2** >= **0.67** Substantial
- Hair et al. (2011) ("hair 2011")
 - R2 < 0.25 Very weak
 - $-0.25 \le R2 < 0.50$ Weak
 - $-0.50 \le R2 < 0.75$ Moderate
 - **R2** >= **0.75** Substantial

interpret_rope 57

References

• Cohen, J. (1988). Statistical power analysis for the behavioral sciences (2nd Ed.). New York: Routledge.

- Falk, R. F., & Miller, N. B. (1992). A primer for soft modeling. University of Akron Press.
- Chin, W. W. (1998). The partial least squares approach to structural equation modeling. Modern methods for business research, 295(2), 295-336.
- Hair, J. F., Ringle, C. M., & Sarstedt, M. (2011). PLS-SEM: Indeed a silver bullet. Journal of Marketing theory and Practice, 19(2), 139-152.

Examples

```
interpret_r2(.02)
interpret_r2(c(.5, .02))
```

interpret_rope

Interpret Bayesian diagnostic indices

Description

Interpretation of Bayesian indices of percentage in ROPE.

Usage

```
interpret_rope(rope, ci = 0.9, rules = "default")
```

Arguments

rope Value or vector of percentages in ROPE.

ci The Credible Interval (CI) probability, corresponding to the proportion of HDI,

that was used. Can be 1 in the case of "full ROPE".

rules A character string (see details) or a custom set of rules().

Rules

- Default
 - For CI < 1
 - * Rope = 0 Significant
 - * 0 < Rope < 1 Undecided
 - * Rope = 1 Negligible
 - For CI = 1
 - * Rope < 0.01 Significant
 - * 0.01 < Rope < 0.025 Probably significant
 - * 0.025 < Rope < 0.975 Undecided
 - * **0.975 < Rope < 0.99** Probably negligible
 - * Rope > 0.99 Negligible

58 interpret_vif

References

BayestestR's reporting guidelines

Examples

```
interpret_rope(0, ci = 0.9)
interpret_rope(c(0.005, 0.99), ci = 1)
```

interpret_vif

Interpret the Variance Inflation Factor (VIF)

Description

Interpret VIF index of multicollinearity.

Usage

```
interpret_vif(vif, rules = "default")
```

Arguments

vif Value or vector of VIFs.

rules Can be "default" or a custom set of rules().

Rules

- Default
 - **VIF < 5** Low
 - 5 <= VIF < 10 Moderate
 - VIF >= 10 High

```
interpret_vif(c(1.4, 30.4))
```

is_effectsize_name 59

effectsize	

Checks if character is of a supported effect size

Description

For use by other functions and packages.

Usage

```
is_effectsize_name(x, ignore_case = TRUE)
get_effectsize_name(x, ignore_case = TRUE)
get_effectsize_label(x, ignore_case = TRUE)
```

Arguments

x A character, or a vector.

ignore_case Should case of input be ignored?

oddsratio_to_riskratio

Convert between Odds ratios and Risk ratios

Description

Convert between Odds ratios and Risk ratios

Usage

```
oddsratio_to_riskratio(OR, p0, log = FALSE, ...)
riskratio_to_oddsratio(RR, p0, log = FALSE)
```

Arguments

OR, RR	Risk ratio of p1/p0 or Odds ratio of odds(p1)/odds(p0), possibly log-ed. OR can also be a logistic regression model.
p0	Baseline risk
log	Take in or output the log of the ratio (such as in logistic models).

... Arguments passed to and from other methods.

Value

Converted index, or if OR is a logistic regression model, a parameter table with the converted indices.

odds_to_probs

References

Grant, R. L. (2014). Converting an odds ratio to a range of plausible relative risks for better communication of research findings. Bmj, 348, f7450.

See Also

```
Other convert between effect sizes: d_to_cles(), d_to_r(), eta2_to_f2(), odds_to_probs()
```

Examples

```
p0 <- 0.4
p1 <- 0.7

(OR <- probs_to_odds(p1) / probs_to_odds(p0))
(RR <- p1 / p0)

riskratio_to_oddsratio(RR, p0 = p0)
oddsratio_to_riskratio(OR, p0 = p0)

m <- glm(am ~ factor(cyl),
    data = mtcars,
    family = binomial()
)
oddsratio_to_riskratio(m)</pre>
```

 $odds_to_probs$

Convert between Odds and Probabilities

Description

Convert between Odds and Probabilities

Usage

```
odds_to_probs(odds, log = FALSE, ...)

## S3 method for class 'data.frame'
odds_to_probs(odds, log = FALSE, select = NULL, exclude = NULL, ...)

probs_to_odds(probs, log = FALSE, ...)

## S3 method for class 'data.frame'
probs_to_odds(probs, log = FALSE, select = NULL, exclude = NULL, ...)
```

phi 61

Arguments

odds	The $Odds$ (or log(odds) when log = TRUE) to convert.
log	Take in or output log odds (such as in logistic models).
	Arguments passed to or from other methods.
select	When a data frame is passed, character or list of of column names to be transformed.
exclude	When a data frame is passed, character or list of column names to be excluded from transformation.
probs	Probability values to convert.

Value

Converted index.

See Also

```
stats::plogis()
Other convert between effect sizes: d_to_cles(), d_to_r(), eta2_to_f2(), oddsratio_to_riskratio()
```

Examples

```
odds_to_probs(3)
odds_to_probs(1.09, log = TRUE)
probs_to_odds(0.95)
probs_to_odds(0.95, log = TRUE)
```

phi

Effect size for contingency tables

Description

Compute Cramer's V, phi (ϕ) , Cohen's w, normalized Chi (χ) , Pearson's contingency coefficient, Odds ratios, Risk ratios, Cohen's h and Cohen's g for contingency tables or goodness-of-fit. See details.

Usage

```
phi(x, y = NULL, ci = 0.95, alternative = "greater", adjust = FALSE, ...)
cohens_w(x, y = NULL, ci = 0.95, alternative = "greater", ...)
cramers_v(x, y = NULL, ci = 0.95, alternative = "greater", adjust = FALSE, ...)
normalized_chi(x, y = NULL, ci = 0.95, alternative = "greater", ...)
```

62 phi

```
pearsons_c(
    x,
    y = NULL,
    ci = 0.95,
    alternative = "greater",
    adjust = FALSE,
    ...
)

oddsratio(x, y = NULL, ci = 0.95, alternative = "two.sided", log = FALSE, ...)

riskratio(x, y = NULL, ci = 0.95, alternative = "two.sided", log = FALSE, ...)

cohens_h(x, y = NULL, ci = 0.95, alternative = "two.sided", ...)

cohens_g(x, y = NULL, ci = 0.95, alternative = "two.sided", ...)
```

Arguments

X	a numeric vector or matrix. x and y can also both be factors.
У	a numeric vector; ignored if x is a matrix. If x is a factor, y should be a factor of the same length.
ci	Confidence Interval (CI) level
alternative	a character string specifying the alternative hypothesis; Controls the type of CI returned: "greater" (two-sided CI; default for Cramer's V , phi (ϕ) , and Cohen's w), "two.sided" (default for OR, RR, Cohen's h and Cohen's g) or "less" (one-sided CI). Partial matching is allowed (e.g., "g", "l", "two"). See <i>One-Sided CIs</i> in effectsize_CIs.
adjust	Should the effect size be bias-corrected? Defaults to FALSE.
•••	Arguments passed to stats::chisq.test(), such as p for goodness-of-fit. Ignored for cohens_g().

Details

log

Cramer's V, phi (ϕ) , Cohen's w, and Pearson's C are effect sizes for tests of independence in 2D contingency tables. For 2-by-2 tables, Cramer's V, phi and Cohen's w are identical, and are equal to the simple correlation between two dichotomous variables, ranging between 0 (no dependence) and 1 (perfect dependence). For larger tables, Cramer's V or Pearson's C should be used, as they are bounded between 0-1. Cohen's w can also be used, but since it is not bounded at 1 (can be larger) its interpretation is more difficult.

Take in or output the log of the ratio (such as in logistic models).

For goodness-of-fit in 1D tables Cohen's W, normalized Chi (χ) or Pearson's C can be used. Cohen's W has no upper bound (can be arbitrarily large, depending on the expected distribution). Normalized Chi is an adjusted Cohen's W, accounting for the expected distribution, making it bounded between 0-1. Pearson's C is also bounded between 0-1.

To summarize, for correlation-like effect sizes, we recommend:

- For a 2x2 table, use phi()
- For larger tables, use cramers_v()
- For goodness-of-fit, use normalized_chi()

For 2-by-2 contingency tables, Odds ratios, Risk ratios and Cohen's *h* can also be estimated. Note that these are computed with each **column** representing the different groups, and the *first* column representing the treatment group and the *second* column baseline (or control). Effects are given as treatment / control. If you wish you use rows as groups you must pass a transposed table, or switch the x and y arguments.

Cohen's g is an effect size for dependent (paired) contingency tables ranging between 0 (perfect symmetry) and 0.5 (perfect asymmetry) (see stats::mcnemar.test()).

Value

A data frame with the effect size (Cramers_v, phi (possibly with the suffix _adjusted), Cohens_w, normalized_chi, Odds_ratio, Risk_ratio (possibly with the prefix log_), Cohens_h, or Cohens_g) and its CIs (CI_low and CI_high).

Confidence Intervals for Cohen's g, OR, RR and Cohen's h

For Cohen's g, confidence intervals are based on the proportion (P = g + 0.5) confidence intervals returned by stats::prop.test() (minus 0.5), which give a good close approximation.

For Odds ratios, Risk ratios and Cohen's h, confidence intervals are estimated using the standard normal parametric method (see Katz et al., 1978; Szumilas, 2010).

See Confidence (Compatibility) Intervals (CIs), CIs and Significance Tests, and One-Sided CIs sections for phi, Cohen's w, Cramer's V, Pearson's C, and normalized Chi.

Confidence (Compatibility) Intervals (CIs)

Unless stated otherwise, confidence (compatibility) intervals (CIs) are estimated using the non-centrality parameter method (also called the "pivot method"). This method finds the noncentrality parameter ("ncp") of a noncentral t, F, or χ^2 distribution that places the observed t, t, or t0 test statistic at the desired probability point of the distribution. For example, if the observed t statistic is 2.0, with 50 degrees of freedom, for which cumulative noncentral t0 distribution is t0.25 quantile (answer: the noncentral t0 distribution with t1. After estimating these confidence bounds on the t2.0, they are converted into the effect size metric to obtain a confidence interval for the effect size (Steiger, 2004).

For additional details on estimation and troubleshooting, see effectsize_CIs.

CIs and Significance Tests

"Confidence intervals on measures of effect size convey all the information in a hypothesis test, and more." (Steiger, 2004). Confidence (compatibility) intervals and p values are complementary summaries of parameter uncertainty given the observed data. A dichotomous hypothesis test could be performed with either a CI or a p value. The $100 (1 - \alpha)\%$ confidence interval contains all of the

64 phi

parameter values for which $p > \alpha$ for the current data and model. For example, a 95% confidence interval contains all of the values for which p > .05.

Note that a confidence interval including 0 *does not* indicate that the null (no effect) is true. Rather, it suggests that the observed data together with the model and its assumptions combined do not provided clear evidence against a parameter value of 0 (same as with any other value in the interval), with the level of this evidence defined by the chosen α level (Rafi & Greenland, 2020; Schweder & Hjort, 2016; Xie & Singh, 2013). To infer no effect, additional judgments about what parameter values are "close enough" to 0 to be negligible are needed ("equivalence testing"; Bauer & Kiesser, 1996).

References

- Cohen, J. (1988). Statistical power analysis for the behavioral sciences (2nd Ed.). New York: Routledge.
- Katz, D. J. S. M., Baptista, J., Azen, S. P., & Pike, M. C. (1978). Obtaining confidence intervals for the risk ratio in cohort studies. Biometrics, 469-474.
- Szumilas, M. (2010). Explaining odds ratios. Journal of the Canadian academy of child and adolescent psychiatry, 19(3), 227.
- Johnston, J. E., Berry, K. J., & Mielke Jr, P. W. (2006). Measures of effect size for chi-squared and likelihood-ratio goodness-of-fit tests. Perceptual and motor skills, 103(2), 412-414.
- Rosenberg, M. S. (2010). A generalized formula for converting chi-square tests to effect sizes for meta-analysis. PloS one, 5(4), e10059.

See Also

```
chisq_to_phi() for details regarding estimation and CIs.
Other effect size indices: cles(), cohens_d(), effectsize.BFBayesFactor(), eta_squared(),
rank_biserial()
```

```
## 2-by-2 tables
## ------
RCT <-
    matrix(c(
        71, 30,
        50, 100
),
    nrow = 2, byrow = TRUE,
    dimnames = list(
        Diagnosis = c("Sick", "Recovered"),
        Group = c("Treatment", "Control")
)
)
RCT # note groups are COLUMNS
phi(RCT)</pre>
```

phi 65

```
pearsons_c(RCT)
oddsratio(RCT)
oddsratio(RCT, alternative = "greater")
riskratio(RCT)
cohens_h(RCT)
## Larger tables
## -----
M <-
  matrix(c(
   150, 100, 165,
   130, 50, 65,
   35, 10, 2,
   55, 40, 25
  ),
 nrow = 4,
  dimnames = list(
   Music = c("Pop", "Rock", "Jazz", "Classic"),
   Study = c("Psych", "Econ", "Law")
  )
  )
М
cohens_w(M)
cramers_v(M)
pearsons_c(M)
## Goodness of fit
## -----
Smoking\_ASD \leftarrow as.table(c(ASD = 17, ASP = 11, TD = 640))
normalized_chi(Smoking_ASD)
cohens_w(Smoking_ASD)
pearsons_c(Smoking_ASD)
# Use custom expected values:
normalized_chi(Smoking_ASD, p = c(0.015, 0.010, 0.975))
cohens_w(Smoking_ASD, p = c(0.015, 0.010, 0.975))
pearsons_c(Smoking_ASD, p = c(0.015, 0.010, 0.975))
```

66 plot.effectsize_table

```
## Dependent (Paired) Contingency Tables
## ------
#
Performance <-
    matrix(c(
        794, 150,
        86, 570
),
    nrow = 2,
    dimnames = list(
        "1st Survey" = c("Approve", "Disapprove"),
        "2nd Survey" = c("Approve", "Disapprove")
)
)
Performance
cohens_g(Performance)</pre>
```

plot.effectsize_table Methods for effectsize tables

Description

Printing, formatting and plotting methods for effectsize tables.

Usage

```
## S3 method for class 'effectsize_table'
plot(x, ...)

## S3 method for class 'effectsize_table'
print(x, digits = 2, ...)

## S3 method for class 'effectsize_table'
print_md(x, digits = 2, ...)

## S3 method for class 'effectsize_table'
print_html(x, digits = 2, ...)

## S3 method for class 'effectsize_table'
format(x, digits = 2, output = c("text", "markdown", "html"), ...)

## S3 method for class 'effectsize_difference'
print(x, digits = 2, append_CLES = FALSE, ...)
```

Arguments

x	Object to print.
	Arguments passed to or from other functions.
digits	Number of digits for rounding or significant figures. May also be "signif" to return significant figures or "scientific" to return scientific notation. Control the number of digits by adding the value as suffix, e.g. digits = "scientific4" to have scientific notation with 4 decimal places, or digits = "signif5" for 5 significant figures (see also signif()).
output	Which output is the formatting intended for? Affects how title and footers are formatted.
append_CLES	Should the Common Language Effect Sizes be printed as well? Only applicable to Cohen's d , Hedges' g for independent samples of equal variance (pooled sd) or for the rank-biserial correlation for independent samples (See d_to_cles())

See Also

```
insight::display()
```

rank_biserial

Effect size for non-parametric (rank sum) tests

Description

Compute the rank-biserial correlation (r_{rb}) , Cliff's $delta(\delta)$, rank epsilon squared (ε^2) , and Kendall's W effect sizes for non-parametric (rank sum) tests.

Usage

```
rank_biserial(
    x,
    y = NULL,
    data = NULL,
    mu = 0,
    ci = 0.95,
    alternative = "two.sided",
    paired = FALSE,
    verbose = TRUE,
    ...,
    iterations
)

cliffs_delta(
    x,
    y = NULL,
    data = NULL,
```

```
mu = 0,
 ci = 0.95,
  alternative = "two.sided",
  verbose = TRUE,
)
rank_epsilon_squared(
  groups,
 data = NULL,
  ci = 0.95,
  alternative = "greater",
  iterations = 200,
)
kendalls_w(
 Х,
  groups,
 blocks,
  data = NULL,
 blocks_on_rows = TRUE,
  ci = 0.95,
  alternative = "greater",
  iterations = 200,
  verbose = TRUE,
)
```

Arguments

Can be one of:

- A numeric vector, or a character name of one in data.
- A formula in to form of DV ~ groups (for rank_biserial() and rank_epsilon_squared()) or DV ~ groups | blocks (for kendalls_w(); See details for the blocks and groups terminology used here).
- A list of vectors (for rank_epsilon_squared()).
- A matrix of blocks x groups (for kendalls_w()) (or groups x blocks if blocks_on_rows = FALSE). See details for the blocks and groups terminology used here.

An optional numeric vector of data values to compare to x, or a character name of one in data. Ignored if x is not a vector.

data An optional data frame containing the variables.

> a number indicating the value around which (a-)symmetry (for one-sample or paired samples) or shift (for independent samples) is to be estimated. See stats::wilcox.test.

Confidence Interval (CI) level ci

У

mu

alternative a character string specifying the alternative hypothesis; Controls the type of CI returned: "two.sided" (two-sided CI; default for rank-biserial correlation and Cliff's delta), "greater" (default for rank epsilon squared and Kendall's W) or "less" (one-sided CI). Partial matching is allowed (e.g., "g", "l", "two"...). See One-Sided CIs in effectsize_CIs. paired If TRUE, the values of x and y are considered as paired. This produces an effect size that is equivalent to the one-sample effect size on x - y. verbose Toggle warnings and messages on or off. Arguments passed to or from other methods. When x is a formula, these can be subset and na.action. The number of bootstrap replicates for computing confidence intervals. Only iterations applies when ci is not NULL. (Deprecated for rank_biserial()). A factor vector giving the group / block for the corresponding elements of x, or groups, blocks a character name of one in data. Ignored if x is not a vector.

blocks_on_rows Are blocks on rows (TRUE) or columns (FALSE).

Details

The rank-biserial correlation is appropriate for non-parametric tests of differences - both for the one sample or paired samples case, that would normally be tested with Wilcoxon's Signed Rank Test (giving the **matched-pairs** rank-biserial correlation) and for two independent samples case, that would normally be tested with Mann-Whitney's *U* Test (giving **Glass**' rank-biserial correlation). See stats::wilcox.test. In both cases, the correlation represents the difference between the proportion of favorable and unfavorable pairs / signed ranks (Kerby, 2014). Values range from -1 (*all* values of the second sample are larger than *all* the values of the first sample) to +1 (*all* values of the second sample are smaller than *all* the values of the first sample). Cliff's *delta* is an alias to the rank-biserial correlation in the two sample case.

The rank epsilon squared is appropriate for non-parametric tests of differences between 2 or more samples (a rank based ANOVA). See stats::kruskal.test. Values range from 0 to 1, with larger values indicating larger differences between groups.

Kendall's *W* is appropriate for non-parametric tests of differences between 2 or more dependent samples (a rank based rmANOVA), where each group (e.g., experimental condition) was measured for each block (e.g., subject). This measure is also common as a measure of reliability of the rankings of the groups between raters (blocks). See stats::friedman.test. Values range from 0 to 1, with larger values indicating larger differences between groups / higher agreement between raters.

Ties:

When tied values occur, they are each given the average of the ranks that would have been given had no ties occurred. This results in an effect size of reduced magnitude. A correction has been applied for Kendall's W.

Value

A data frame with the effect size (r_rank_biserial, rank_epsilon_squared or Kendalls_W) and its CI (CI_low and CI_high).

Confidence Intervals

Confidence intervals for the rank-biserial correlation (and Cliff's *delta*) are estimated using the normal approximation (via Fisher's transformation). Confidence intervals for rank Epsilon squared, and Kendall's W are estimated using the bootstrap method (using the {boot} package).

References

- Cureton, E. E. (1956). Rank-biserial correlation. Psychometrika, 21(3), 287-290.
- Glass, G. V. (1965). A ranking variable analogue of biserial correlation: Implications for short-cut item analysis. Journal of Educational Measurement, 2(1), 91-95.
- Kendall, M.G. (1948) Rank correlation methods. London: Griffin.
- Kerby, D. S. (2014). The simple difference formula: An approach to teaching nonparametric correlation. Comprehensive Psychology, 3, 11-IT.
- King, B. M., & Minium, E. W. (2008). Statistical reasoning in the behavioral sciences. John Wiley & Sons Inc.
- Cliff, N. (1993). Dominance statistics: Ordinal analyses to answer ordinal questions. Psychological bulletin, 114(3), 494.
- Tomczak, M., & Tomczak, E. (2014). The need to report effect size estimates revisited. An overview of some recommended measures of effect size.

See Also

Other effect size indices: cles(), cohens_d(), effectsize.BFBayesFactor(), eta_squared(), phi()

rules 71

```
# rank_biserial("wt", data = mtcars, mu = 3)
# rank_biserial(mtcars$wt, mu = 3)
# Paired Samples -----
dat <- data.frame(</pre>
  Cond1 = c(1.83, 0.5, 1.62, 2.48, 1.68, 1.88, 1.55, 3.06, 1.3),
  Cond2 = c(0.878, 0.647, 0.598, 2.05, 1.06, 1.29, 1.06, 3.14, 1.29)
(rb <- rank_biserial(Pair(Cond1, Cond2) ~ 1, data = dat, paired = TRUE))</pre>
# same as:
# rank_biserial(dat$Cond1, dat$Cond2, paired = TRUE)
interpret_rank_biserial(0.78)
interpret(rb, rules = "funder2019")
# Rank Epsilon Squared
# =========
rank_epsilon_squared(mpg ~ cyl, data = mtcars)
# Kendall's W
# =======
dat <- data.frame(</pre>
  cond = c("A", "B", "A", "B", "A", "B"),
  ID = c("L", "L", "M", "M", "H", "H"),
  y = c(44.56, 28.22, 24, 28.78, 24.56, 18.78)
)
(W <- kendalls_w(y ~ cond | ID, data = dat, verbose = FALSE))</pre>
interpret_kendalls_w(0.11)
interpret(W, rules = "landis1977")
```

rules

Interpretation Grid

Description

Create a container for interpretation rules of thumb. Usually used in conjunction with interpret.

Usage

```
rules(values, labels = NULL, name = NULL, right = TRUE)
is.rules(x)
```

72 sd_pooled

Arguments

values	Vector of reference values (edges defining categories or critical values).
labels	Labels associated with each category. If NULL, will try to infer it from values (if it is a named vector or a list), otherwise, will return the breakpoints.
name	Name of the set of rules (will be printed).
right	logical, for threshold-type rules, indicating if the thresholds themselves should be included in the interval to the right (lower values) or in the interval to the left (higher values).
x	An arbitrary R object.

See Also

interpret

Examples

```
 rules(c(0.05),\ c("significant",\ "not\ significant"),\ right\ =\ FALSE) \\ rules(c(0.2,\ 0.5,\ 0.8),\ c("small",\ "medium",\ "large")) \\ rules(c("small"\ =\ 0.2,\ "medium"\ =\ 0.5),\ name\ =\ "Cohen's\ Rules")
```

sd_pooled

Pooled Standard Deviation

Description

The Pooled Standard Deviation is a weighted average of standard deviations for two or more groups, assumed to have equal variance. It represents the common deviation among the groups, around each of their respective means.

Usage

```
sd_pooled(x, y = NULL, data = NULL, verbose = TRUE, ...)
mad_pooled(x, y = NULL, data = NULL, constant = 1.4826, verbose = TRUE, ...)
```

Arguments

X	A formula, a numeric vector, or a character name of one in data.
У	A numeric vector, a grouping (character / factor) vector, a or a character name of one in data. Ignored if x is a formula.
data	An optional data frame containing the variables.
verbose	Toggle warnings and messages on or off.
• • •	Arguments passed to or from other methods. When \boldsymbol{x} is a formula, these can be subset and na.action.
constant	scale factor.

t_to_d 73

Details

The standard version is calculated as:

$$\sqrt{\frac{\sum (x_i - \bar{x})^2}{n_1 + n_2 - 2}}$$

The robust version is calculated as:

```
1.4826 \times Median(|\{x - Median_x, y - Median_y\}|)
```

Value

Numeric, the pooled standard deviation.

See Also

```
cohens_d()
```

Examples

```
sd_pooled(mpg ~ am, data = mtcars)
mad_pooled(mtcars$mpg, factor(mtcars$am))
```

t_to_d

Convert test statistics (t, z, F) to effect sizes of differences (Cohen's d) or association (partial r)

Description

These functions are convenience functions to convert t, z and F test statistics to Cohen's d and **partial** r. These are useful in cases where the data required to compute these are not easily available or their computation is not straightforward (e.g., in liner mixed models, contrasts, etc.). See Effect Size from Test Statistics vignette.

Usage

```
t_to_d(
    t,
    df_error,
    paired = FALSE,
    ci = 0.95,
    alternative = "two.sided",
    pooled,
    ...
)

z_to_d(z, n, paired = FALSE, ci = 0.95, alternative = "two.sided", pooled, ...)
```

```
F_to_d(
    f,
    df,
    df,
    df_error,
    paired = FALSE,
    ci = 0.95,
    alternative = "two.sided",
    ...
)

t_to_r(t, df_error, ci = 0.95, alternative = "two.sided", ...)

z_to_r(z, n, ci = 0.95, alternative = "two.sided", ...)

F_to_r(f, df, df_error, ci = 0.95, alternative = "two.sided", ...)
```

Arguments

t, f, z

Should the estimate account for the t-value being testing the difference between dependent means?

Ci Confidence Interval (CI) level

alternative a character string specifying the alternative hypothesis; Controls the type of CI returned: "two.sided" (default, two-sided CI), "greater" or "less" (one-sided CI). Partial matching is allowed (e.g., "g", "1", "two"...). See One-Sided CIs in effectsize_CIs.

pooled Deprecated. Use paired.

Arguments passed to or from other methods.

The number of observations (the sample size).

The t, the F or the z statistics.

df, df_error Degrees of freedom of numerator or of the error estimate (i.e., the residuals).

Details

These functions use the following formulae to approximate r and d:

$$r_{partial} = t/\sqrt{t^2 + df_{error}}$$

$$r_{partial} = z/\sqrt{z^2 + N}$$

$$d = 2 * t / \sqrt{df_{error}}$$

$$d_z = t/\sqrt{df_{error}}$$

$$d = 2 * z/\sqrt{N}$$

The resulting d effect size is an *approximation* to Cohen's d, and assumes two equal group sizes. When possible, it is advised to directly estimate Cohen's d, with cohens_d(), emmeans::eff_size(), or similar functions.

Value

A data frame with the effect size(s)(r or d), and their CIs (CI_low and CI_high).

Confidence (Compatibility) Intervals (CIs)

Unless stated otherwise, confidence (compatibility) intervals (CIs) are estimated using the non-centrality parameter method (also called the "pivot method"). This method finds the noncentrality parameter ("ncp") of a noncentral t, F, or χ^2 distribution that places the observed t, F, or χ^2 test statistic at the desired probability point of the distribution. For example, if the observed t statistic is 2.0, with 50 degrees of freedom, for which cumulative noncentral t distribution is t = 2.0 the .025 quantile (answer: the noncentral t distribution with ncp = .04)? After estimating these confidence bounds on the ncp, they are converted into the effect size metric to obtain a confidence interval for the effect size (Steiger, 2004).

For additional details on estimation and troubleshooting, see effectsize_CIs.

CIs and Significance Tests

"Confidence intervals on measures of effect size convey all the information in a hypothesis test, and more." (Steiger, 2004). Confidence (compatibility) intervals and p values are complementary summaries of parameter uncertainty given the observed data. A dichotomous hypothesis test could be performed with either a CI or a p value. The $100 (1 - \alpha)\%$ confidence interval contains all of the parameter values for which $p > \alpha$ for the current data and model. For example, a 95% confidence interval contains all of the values for which p > .05.

Note that a confidence interval including 0 *does not* indicate that the null (no effect) is true. Rather, it suggests that the observed data together with the model and its assumptions combined do not provided clear evidence against a parameter value of 0 (same as with any other value in the interval), with the level of this evidence defined by the chosen α level (Rafi & Greenland, 2020; Schweder & Hjort, 2016; Xie & Singh, 2013). To infer no effect, additional judgments about what parameter values are "close enough" to 0 to be negligible are needed ("equivalence testing"; Bauer & Kiesser, 1996).

76 t_to_d

References

• Friedman, H. (1982). Simplified determinations of statistical power, magnitude of effect and research sample sizes. Educational and Psychological Measurement, 42(2), 521-526. doi:10.1177/001316448204200214

- Wolf, F. M. (1986). Meta-analysis: Quantitative methods for research synthesis (Vol. 59). Sage.
- Rosenthal, R. (1994) Parametric measures of effect size. In H. Cooper and L.V. Hedges (Eds.). The handbook of research synthesis. New York: Russell Sage Foundation.
- Steiger, J. H. (2004). Beyond the F test: Effect size confidence intervals and tests of close fit in the analysis of variance and contrast analysis. Psychological Methods, 9, 164-182.
- Cumming, G., & Finch, S. (2001). A primer on the understanding, use, and calculation of confidence intervals that are based on central and noncentral distributions. Educational and Psychological Measurement, 61(4), 532-574.

See Also

Other effect size from test statistic: F_to_eta2(), chisq_to_phi()

```
## t Tests
res \leftarrow t.test(1:10, y = c(7:20), var.equal = TRUE)
t_to_d(t = res$statistic, res$parameter)
t_to_r(t = res$statistic, res$parameter)
t_to_r(t = res$statistic, res$parameter, alternative = "less")
res <- with(sleep, t.test(extra[group == 1], extra[group == 2], paired = TRUE))
t_to_d(t = res$statistic, res$parameter, paired = TRUE)
t_to_r(t = res$statistic, res$parameter)
t_to_r(t = res$statistic, res$parameter, alternative = "greater")
## Linear Regression
model <- lm(rating ~ complaints + critical, data = attitude)</pre>
(param_tab <- parameters::model_parameters(model))</pre>
(rs <- t_to_r(param_tab$t[2:3], param_tab$df_error[2:3]))</pre>
if (require(see)) plot(rs)
# How does this compare to actual partial correlations?
if (require("correlation")) {
 correlation::correlation(attitude[, c(1, 2, 6)], partial = TRUE)[1:2, c(2, 3, 7, 8)]
}
```

Index

* convert between effect sizes	cohens_f (eta_squared), 27	
d_to_cles, 13	cohens_f_squared (eta_squared), 27	
d_to_r, 15	cohens_g (phi), 61	
eta2_to_f2, <mark>26</mark>	cohens_h (phi), 61	
odds_to_probs, 60	cohens_u3 (cles), 7	
oddsratio_to_riskratio,59	cohens_w(phi),61	
* data	<pre>common_language(cles), 7</pre>	
hardlyworking, 38	<pre>convert_d_to_common_language</pre>	
* effect size from test statistic	(d_to_cles), 13	
chisq_to_phi, 3	<pre>convert_d_to_oddsratio(d_to_r), 15</pre>	
F_to_eta2, 34	$convert_d_to_r(d_to_r), 15$	
t_to_d, 73	<pre>convert_logoddsratio_to_d (d_to_r), 15</pre>	
* effect size indices	<pre>convert_logoddsratio_to_r (d_to_r), 15</pre>	
cles, 7	convert_odds_to_probs (odds_to_probs)	
cohens_d, 9	60	
effectsize.BFBayesFactor, 16	<pre>convert_oddsratio_to_d (d_to_r), 15</pre>	
eta_squared, 27	<pre>convert_oddsratio_to_r(d_to_r), 15</pre>	
phi, 61	convert_probs_to_odds (odds_to_probs).	
rank_biserial,67	60	
<pre>.es_aov_simple (effectsize_API), 19</pre>	convert_r_to_d (d_to_r), 15	
.es_aov_strata(effectsize_API), 19	<pre>convert_r_to_oddsratio(d_to_r), 15</pre>	
.es_aov_table(effectsize_API), 19	convert_rb_to_common_language	
	(d_to_cles), 13	
anova(), 29	cramers_v(phi), 61	
	cramers_ $v(), 5$	
<pre>bayestestR::describe_posterior(), 17,</pre>		
30	d_to_cles, 13, 16, 27, 60, 61	
<pre>bayestestR::equivalence_test(), 25</pre>	d_to_cles(), 8, 9, 12, 67	
bayestestR::overlap(), 8	<pre>d_to_common_language (d_to_cles), 13</pre>	
	<pre>d_to_oddsratio(d_to_r), 15</pre>	
chisq_to_cohens_w(chisq_to_phi), 3	d_to_r, 14, 15, 27, 60, 61	
chisq_to_cramers_v (chisq_to_phi), 3	d_to_r(), 42	
<pre>chisq_to_normalized(chisq_to_phi), 3</pre>		
chisq_to_pearsons_c (chisq_to_phi), 3	effectsize(effectsize.BFBayesFactor)	
chisq_to_phi, 3, 37, 76	16	
chisq_to_phi(), 64	effectsize.BFBayesFactor, 9, 12, 16, 31,	
cles, 7, 12, 18, 31, 64, 70	64, 70	
cliffs_delta(rank_biserial), 67	effectsize_API, 19	
cohens_d, 9, 9, 18, 31, 64, 70	effectsize_CIs, 4, 5, 8, 11, 20, 20, 28, 30,	
cohens_d(), 8, 14, 24, 73, 75	35, 36, 62, 63, 69, 74, 75	

78 INDEX

offectoize depresented 22	interpret d (affectsize depresented) 22
effectsize_deprecated, 23	interpret_d (effectsize_deprecated), 23
epsilon_squared(eta_squared), 27 equivalence_test.effectsize_table, 24	interpret_delta
•	(effectsize_deprecated), 23
eta2_to_f (eta2_to_f2), 26 eta2_to_f2, 14, 16, 26, 60, 61	interpret_direction, 44
	interpret_epsilon_squared
eta_squared, 9, 12, 18, 27, 64, 70	(interpret_omega_squared), 51
eta_squared(), 20, 24, 27, 37	interpret_ess, 44
eta_squared_posterior(eta_squared),27	interpret_eta_squared
f2 to ata2 (ata2 to f2) 26	(interpret_omega_squared), 51
f2_to_eta2 (eta2_to_f2), 26	<pre>interpret_g (effectsize_deprecated), 23</pre>
F_to_d (t_to_d), 73	interpret_gfi, 45
F_to_epsilon2 (F_to_eta2), 34	interpret_glass_delta, 23
F_to_eta2, 6, 34, 76	interpret_glass_delta
f_to_eta2 (eta2_to_f2), 26	<pre>(interpret_cohens_d), 41</pre>
F_to_eta2(), 29, 31	interpret_hedges_g, 23
F_to_eta2_adj (F_to_eta2), 34	interpret_hedges_g
F_to_f (F_to_eta2), 34	<pre>(interpret_cohens_d), 41</pre>
F_to_f2 (F_to_eta2), 34	interpret_icc, 48
F_to_omega2 (F_to_eta2), 34	<pre>interpret_ifi (interpret_gfi), 45</pre>
F_to_r (t_to_d), 73	interpret_kendalls_w, 49
$F_{to_r(), 24}$	<pre>interpret_nfi (interpret_gfi), 45</pre>
fitmeasures(), 47	<pre>interpret_nnfi (interpret_gfi), 45</pre>
<pre>format.effectsize_table</pre>	interpret_oddsratio, 50
<pre>(plot.effectsize_table), 66</pre>	<pre>interpret_omega_squared, 51</pre>
format_standardize, 33	interpret_p, 52
	interpret_parameters
<pre>get_effectsize_label</pre>	(effectsize_deprecated), 23
<pre>(is_effectsize_name), 59</pre>	interpret_pd, 53
<pre>get_effectsize_name</pre>	interpret_phi (interpret_r), 54
<pre>(is_effectsize_name), 59</pre>	interpret_pnfi (interpret_gfi), 45
glass_delta (cohens_d), 9	interpret_r, 23, 54
	interpret_r(), 42
hardlyworking, 38	interpret_r2, 56
hedges_g (cohens_d), 9	<pre>interpret_rank_biserial (interpret_r),</pre>
	54
<pre>insight::display(),67</pre>	<pre>interpret_rfi (interpret_gfi), 45</pre>
<pre>insight::format_value(), 33</pre>	interpret_rhat (interpret_ess), 44
<pre>insight::get_data(), 17</pre>	interpret_rmsea (interpret_gfi), 45
interpret, 38, 71	interpret_rope, 57
<pre>interpret.lavaan(interpret_gfi), 45</pre>	<pre>interpret_rope, 3/ interpret_srmr (interpret_gfi), 45</pre>
<pre>interpret.performance_lavaan</pre>	
(interpret_gfi), 45	interpret_vif, 58
<pre>interpret_agfi (interpret_gfi), 45</pre>	is.rules (rules), 71
interpret_bf, 40	is_effectsize_name, 59
<pre>interpret_cfi (interpret_gfi), 45</pre>	
interpret_cohens_d, 23, 41	kendalls_w(rank_biserial),67
$interpret_cohens_d(), 50$	
<pre>interpret_cohens_g, 43</pre>	logoddsratio_to_d (d_to_r), 15
<pre>interpret_cramers_v (interpret_r), 54</pre>	logoddsratio_to_r (d_to_r), 15

INDEX 79

mad_pooled(sd_pooled), 72	signif(), 33, 67
normalized_chi (phi), 61	<pre>stats::chisq.test(), 4, 62 stats::friedman.test, 69 stats::kruskal.test, 69</pre>
odds_to_probs, 14, 16, 27, 60, 60	stats::mcnemar.test(), 63
oddsratio (phi), 61	stats::plogis(), 61
oddsratio_to_d (d_to_r), 15	stats::prop.test(), 63
oddsratio_to_d(), 50	stats::wilcox.test, 68, 69
oddsratio_to_r (d_to_r), 15	
oddsratio_to_riskratio, <i>14</i> , <i>16</i> , <i>27</i> , <i>59</i> , <i>61</i>	t_to_d, 6, 37, 73
omega_squared (eta_squared), 27	t_to_epsilon2 (F_to_eta2), 34
	t_to_eta2 (F_to_eta2), 34
<pre>p_direction(), 17</pre>	t_to_eta2_adj (F_to_eta2), 34
p_overlap (cles), 7	t_to_f (F_to_eta2), 34
p_superiority (cles), 7	t_to_f2 (F_to_eta2), 34
<pre>parameters::standardize_parameters(),</pre>	t_to_omega2 (F_to_eta2), 34
17	t_to_r (t_to_d), 73
pearsons_c (phi), 61	(//
phi, 9, 12, 18, 31, 61, 70	z_to_d (t_to_d), 73
phi_to_chisq(chisq_to_phi), 3	z_to_r (t_to_d), 73
plot.effectsize_table, 66	
print.effectsize_difference	
(plot.effectsize_table), 66	
print.effectsize_table	
(plot.effectsize_table), 66	
print_html.effectsize_table	
(plot.effectsize_table), 66	
print_md.effectsize_table	
(plot.effectsize_table), 66	
probs_to_odds (odds_to_probs), 60	
,, //	
$r_to_d(d_{to_r}), 15$	
r_to_oddsratio(d_to_r), 15	
rank_biserial, 9, 12, 18, 31, 64, 67	
$rank_biserial(), 8, 14$	
<pre>rank_epsilon_squared(rank_biserial), 67</pre>	
rb_to_cles (d_to_cles), 13	
rb_to_cles(), 8	
rb_to_common_language (d_to_cles), 13	
riskratio (phi), 61	
riskratio_to_oddsratio	
<pre>(oddsratio_to_riskratio), 59</pre>	
rope(), <i>17</i>	
<pre>rstantools::posterior_predict(), 30</pre>	
rules, 71	
rules(), 38–41, 43, 44, 46, 48–54, 56–58	
sd_pooled, 72	
sd_pooled(), 9, 10, 12	
σα_ροστα(), >, 10, 12	