Package 'eikosograms'

August 22, 2018

Type Package

Title The Picture of Probability

Version 0.1.1

Date 2018-08-21

Author Wayne Oldford [aut, cre],

Erle Holgersen [aut], Ben Lafreniere [aut],

Tianlu Zhu [aut]

Maintainer Wayne Oldford < rwoldford@uwaterloo.ca>

URL https://github.com/rwoldford/eikosograms

Description An eikosogram (ancient Greek for probability picture) divides the unit square into rectangular regions whose areas, sides, and widths, represent various probabilities associated with the values of one or more categorical variates.

Rectangle areas are joint probabilities, widths are always marginal (though possibly joint margins, i.e. marginal joint distributions of two or more variates), and heights of rectangles are always conditional probabilities.

Eikosograms embed the rules of probability and are useful for introducing elementary probability theory, including axioms, marginal, conditional, and joint probabilities, and their relationships (including Bayes theorem as a completely trivial consequence).

They are markedly superior to Venn diagrams for this purpose, especially in distinguishing probabilistic independence, mutually exclusive events, coincident events, and associations.

They also are useful for identifying and understanding conditional independence structure.

As data analysis tools, eikosograms display categorical data in a manner similar to Mosaic plots, especially when only two variates are involved (the only case in which they are essentially identical, though eikosograms purposely disallow spacing between rectangles).

Unlike Mosaic plots, eikosograms do not alternate axes as each new categorical variate (beyond two) is introduced.

Instead, only one categorical variate, designated the ``response", presents on the vertical axis and all others, designated the ``conditioning" variates, appear on the horizontal.

In this way, conditional probability appears only as height and marginal probabilities as widths. The eikosogram is therefore much better suited to a response model analysis (e.g. logistic model) than is a Mosaic plot.

Mosaic plots are better suited to log-linear style modelling as in discrete multivariate analysis.

2 R topics documented:

Of course, eikosograms are also suited to discrete multivariate analysis with each variate in turn appearing as the response.

This makes it better suited than Mosaic plots to discrete graphical models based on conditional independence graphs (i.e. ``Bayesian Networks" or ``BayesNets").

The eikosogram and its superiority to Venn diagrams in teaching probability is described in W.H. Cherry and R.W. Old-

ford (2003) https://math.uwaterloo.ca/~rwoldfor/papers/eikosograms/paper.pdf, its value in exploring conditional independence structure and relation to graphical and log-linear models

is described in R.W. Old-

ford (2003) https://math.uwaterloo.ca/~rwoldfor/papers/eikosograms/independence/paper.pdf, and a number of problems, puzzles, and paradoxes that are easily explained with eikosograms are given in

R.W. Old-

ford (2003) https://math.uwaterloo.ca/~rwoldfor/papers/eikosograms/examples/paper.pdf.

License GPL-3

Depends R (>= 3.1.0)

Imports plyr, grid

LazyLoad yes

LazyData no

RoxygenNote 6.0.1

NeedsCompilation no

Suggests knitr, rmarkdown, gridExtra

VignetteBuilder knitr, rmarkdown

Repository CRAN

Date/Publication 2018-08-22 19:40:02 UTC

R topics documented:

eikos																					3
eikos.default .																					4
eikos.formula																					6
eikos_data																					8
eikos_legend																					9
$eikos_x_labels$																					9
eikos_x_probs																					10
$eikos_y_labels$																					11
eikos_y_probs																					11

Index 13

eikos 3

\mathbf{L}	

Generic method for creating an eikosogram

Description

Generic method for creating an eikosogram

Usage

```
eikos(y, x = NULL, data = NULL, marginalize = NULL, main = "",
    main_size = 16, ylabs = TRUE, ylab_rot = 0, yname_size = 12,
    yvals_size = 12, yaxs = TRUE, yprobs = NULL, yprobs_size = 8,
    xlabs = TRUE, xlab_rot = 0, xname_size = 12, xvals_size = 12,
    xaxs = TRUE, xprobs = NULL, xprobs_size = 8, vertical_xprobs = TRUE,
    ispace = list(bottom = 8, left = 2, top = 2, right = 5), legend = FALSE,
    col = NULL, bottomcol = "steelblue", topcol = "snow2", lcol = "black",
    draw = TRUE, newpage = TRUE, lock_aspect = TRUE)
```

Arguments

У	Either the name of a variable in the data set (eikos.default), or a formula of such variables (eikos.formula).
X	name(s) of any conditional variable(s) (horizontal axis). Should be null if formula given.
data	data frame or table
marginalize	variable(s) to marginalize on, or NULL if none. Marginalized variables still appear in plot.
main	title of plot
main_size	font size of title (in points)
ylabs	logical, whether y labels should appear or not.
ylab_rot	rotation of y labels
yname_size	font size of vertical axis names (in points)
yvals_size	font size of labels for values of y variable (in points)
yaxs	logical, whether y axis should appear or not.
yprobs	probabilities to be shown on y-axis. NULL if they should be calculated from the data.
yprobs_size	font size of labels for horizontal probabilities (in points)
xlabs	logical, whether x labels should appear or not.
xlab_rot	rotation of x labels
xname_size	font size of horizontal axis names (in points)
xvals_size	font size of labels for values of x variables (in points)
xaxs	logical, whether x axis should appear or not.

4 eikos,default

xprobs probabilities to be shown on x-axis. NULL if they should be calculated from the

data.

xprobs_size font size of labels for horizontal probabilities (in points)

vertical_xprobs

logical, whether probabilities on x axis should be rotated vertically.

ispace list of four items (bottom, left, top, right) indicating the margins separating the

text around the diagram. Each value is a positive integer giving a measure in

"points".

legend logical, whether to include legend

col a vector of colours to match the response values. If NULL (the default), the

colours are constructed as a smooth transition from 'bottomcol' to 'topcol' via

'grDevices::colorRampPalette

bottomcol bottom colour topcol top colour lcol colour of lines

draw logical, whether to draw eikosogram.

newpage logical, whether to draw on a newpage.

lock_aspect logical, whether to force entire plot to 1:1 aspect ratio.

See Also

```
eikos.default
eikos.formula
```

Examples

eikos.default

Create a new eikosogram

Description

Return a grid graphic object (grob) and draw an eikosogram if draw = TRUE.

eikos.default 5

Usage

```
## Default S3 method:
eikos(y, x = NULL, data = NULL, marginalize = NULL,
    main = "", main_size = 16, ylabs = TRUE, ylab_rot = 0,
    yname_size = 12, yvals_size = 12, yaxs = TRUE, yprobs = NULL,
    yprobs_size = 8, xlabs = TRUE, xlab_rot = 0, xname_size = 12,
    xvals_size = 12, xaxs = TRUE, xprobs = NULL, xprobs_size = 8,
    vertical_xprobs = TRUE, ispace = list(bottom = 8, left = 2, top = 2, right = 5), legend = FALSE, col = NULL, bottomcol = "steelblue",
    topcol = "snow2", lcol = "black", draw = TRUE, newpage = TRUE,
    lock_aspect = TRUE)
```

Arguments

y Either the name of a variable in the data set (eikos.default), or a formula of such

variables (eikos.formula).

x name(s) of any conditional variable(s) (horizontal axis). Should be null if for-

mula given.

data data frame or table

marginalize variable(s) to marginalize on, or NULL if none. Marginalized variables still

appear in plot.

main title of plot

main_size font size of title (in points)

ylabs logical, whether y labels should appear or not.

ylab_rot rotation of y labels

yname_size font size of vertical axis names (in points)

yvals_size font size of labels for values of y variable (in points)

yaxs logical, whether y axis should appear or not.

yprobs probabilities to be shown on y-axis. NULL if they should be calculated from the

data.

yprobs_size font size of labels for horizontal probabilities (in points)

xlabs logical, whether x labels should appear or not.

xlab_rot rotation of x labels

xname_size font size of horizontal axis names (in points)

xvals_size font size of labels for values of x variables (in points)

xaxs logical, whether x axis should appear or not.

xprobs probabilities to be shown on x-axis. NULL if they should be calculated from the

data.

xprobs_size font size of labels for horizontal probabilities (in points)

vertical_xprobs

logical, whether probabilities on x axis should be rotated vertically.

6 eikos.formula

ispace list of four items (bottom, left, top, right) indicating the margins separating the

text around the diagram. Each value is a positive integer giving a measure in

"points".

legend logical, whether to include legend

col a vector of colours to match the response values. If NULL (the default), the

colours are constructed as a smooth transition from 'bottomcol' to 'topcol' via

'grDevices::colorRampPalette

bottomcol bottom colour topcol top colour lcol colour of lines

draw logical, whether to draw eikosogram.

newpage logical, whether to draw on a newpage.

lock_aspect logical, whether to force entire plot to 1:1 aspect ratio.

Examples

```
eikos("Hair", "Eye", data=HairEyeColor, legend = TRUE)
eikos("Hair", "Eye", data=HairEyeColor,
    legend = TRUE, ylabs = FALSE,
    yname_size = 16, yvals_size = 8)
eikos("Hair", "Eye", data=HairEyeColor,
    legend = TRUE, ylabs = FALSE,
    yprobs = seq(0.2, 1, .2))
eikos("Eye", "Hair", data=HairEyeColor, yprobs = seq(0,1,0.25),
    yname_size = 20, xname_size = 20,
    col = c("sienna4", "steelblue", "darkkhaki", "springgreen3"),
    lcol = "grey10",
    lock_aspect = FALSE)
```

eikos.formula

Draw eikosogram using a formula to identify response and conditioning variates

Description

Draw eikosogram using a formula to identify response and conditioning variates

Usage

```
## S3 method for class 'formula'
eikos(y, x = NULL, data = NULL, marginalize = NULL,
main = "", main_size = 16, ylabs = TRUE, ylab_rot = 0,
yname_size = 12, yvals_size = 12, yaxs = TRUE, yprobs = NULL,
yprobs_size = 8, xlabs = TRUE, xlab_rot = 0, xname_size = 12,
xvals_size = 12, xaxs = TRUE, xprobs = NULL, xprobs_size = 8,
```

eikos.formula 7

```
vertical_xprobs = TRUE, ispace = list(bottom = 8, left = 2, top = 2, right = 5), legend = FALSE, col = NULL, bottomcol = "steelblue", topcol = "snow2", lcol = "black", draw = TRUE, newpage = TRUE, lock_aspect = TRUE)
```

Arguments

y Either the name of a variable in the data set (eikos.default), or a formula of such

variables (eikos.formula).

x name(s) of any conditional variable(s) (horizontal axis). Should be null if for-

mula given.

data data frame or table

marginalize variable(s) to marginalize on, or NULL if none. Marginalized variables still

appear in plot.

main title of plot

main_size font size of title (in points)

ylabs logical, whether y labels should appear or not.

ylab_rot rotation of y labels

yname_size font size of vertical axis names (in points)

yvals_size font size of labels for values of y variable (in points)

yaxs logical, whether y axis should appear or not.

yprobs probabilities to be shown on y-axis. NULL if they should be calculated from the

data.

yprobs_size font size of labels for horizontal probabilities (in points)

xlabs logical, whether x labels should appear or not.

xlab_rot rotation of x labels

xname_size font size of horizontal axis names (in points)

xvals_size font size of labels for values of x variables (in points)

xaxs logical, whether x axis should appear or not.

xprobs probabilities to be shown on x-axis. NULL if they should be calculated from the

data.

xprobs_size font size of labels for horizontal probabilities (in points)

vertical_xprobs

logical, whether probabilities on x axis should be rotated vertically.

ispace list of four items (bottom, left, top, right) indicating the margins separating the

text around the diagram. Each value is a positive integer giving a measure in

"points".

legend logical, whether to include legend

col a vector of colours to match the response values. If NULL (the default), the

colours are constructed as a smooth transition from 'bottomcol' to 'topcol' via

'grDevices::colorRampPalette

8 eikos_data

bottom colour

topcol top colour

lcol colour of lines

draw logical, whether to draw eikosogram.

newpage logical, whether to draw on a newpage.

lock_aspect logical, whether to force entire plot to 1:1 aspect ratio.

Examples

```
eikos(Eye ~ Hair + Sex, data=HairEyeColor)
eikos(Hair ~ ., data=HairEyeColor,
     yaxs = FALSE, ylabs = FALSE,
     legend = TRUE,
     col = c("black", "sienna4",
              "orangered", "lightgoldenrod" ))
eikos(Hair ~ ., data=HairEyeColor, xlab_rot = 30,
     yprobs = seq(0.1, 1, 0.1),
     yvals_size = 10,
     xvals_size = 8,
      ispace = list(bottom = 10),
     bottomcol = "grey30", topcol = "grey70",
     lcol = "white")
eikos(Hair ~ ., data=HairEyeColor, xlab_rot = 30,
     marginalize = "Eye",
     yvals_size = 10,
     xvals_size = 8,
     ispace = list(bottom = 10),
     bottomcol = "grey30", topcol = "grey70",
     lcol = "white")
eikos(Hair ~ ., data=HairEyeColor, xlab_rot = 30,
     marginalize = c("Eye", "Sex"),
     yvals_size = 10,
     xvals_size = 8,
     ispace = list(bottom = 10),
     bottomcol = "grey30", topcol = "grey70",
     lcol = "white")
```

eikos_data

Create eikosogram data frame

Description

Eikos helper function used to convert data.

Usage

```
eikos_data(y, x, data, marginalize = NULL)
```

eikos_legend 9

Arguments

y response variable.x conditional variables.

data data frame or table to be converted.

marginalize name of variable to marginalize on, NULL if none.

eikos_legend Create eikosogram legend

Description

Eikos helper function used to create legend.

Usage

```
eikos_legend(labels, title = NULL, yname_size = 12, yvals_size = 12, col,
  margin = unit(2, "points"), lcol = "black")
```

Arguments

labels labels to be included in legend

title if non-NULL a string to give as the legend title

yname_size font size of vertical axis names (in points)

yvals_size font size of labels for values of y variable (in points)

col colours od

margin unit specifying margin between legend entries

lcol line colour

eikos_x_labels eikos helper function. Returns grob with x axis labels.

Description

eikos helper function. Returns grob with x axis labels.

Usage

```
eikos_x_labels(x, data, margin = unit(10, "points"), xname_size = 12,
    xvals_size = 10, lab_rot = 0)
```

10 eikos_x_probs

Arguments

x vector of conditional variablesdatadata frame from eikos_data.marginunit specifying margin

xname_size font size for x axis variable names (in points)

xvals_size font size of labels for values of x variables (in points)

lab_rot integer indicating the rotation of the label, default is horizontal

Value

gList with x labels and x-axis names as grob frames.

eikos_x_probs Create grob with eikosogram x-axis probabilities

Description

Creates x axis grob to be placed on eikosogram. Called by eikos functions.

Usage

Arguments

data frame from eikos_data object

xprobs vector of probabilities to be shown. NULL if they should be calculated from the

data.

xprobs_size font size of labels for horizontal probabilities (in points)
margin unit specifying margin between y axis and eikosogram
rotate logical, whether probabilities should be rotated vertically.

Value

textGrob with x-axis probabilities.

eikos_y_labels 11

eikos_y_labels	eikos helper function. Returns grob with y axis labels.

Description

eikos helper function. Returns grob with y axis labels.

Usage

```
eikos_y_labels(y, data, margin = unit(2, "points"), yname_size = 12,
  yvals_size = 10, lab_rot = 0)
```

Arguments

y response variable

data frame from eikos_data.
margin unit specifying margin

yname_size for y axis variable names (in points)

yvals_size font size of labels for values of y variable (in points)

lab_rot integer indicating the rotation of the label, default is horizontal

Value

gList with x labels and x-axis names as grob frames. grobFrame with response variable labels and axis text

eikos_y_probs Create grob with eikosogram y-axis probabilities	
--	--

Description

Creates y axis grob to be placed on eikosogram. Called by eikos functions.

Usage

```
eikos_y_probs(data, yprobs, yprobs_size = 8, margin = unit(2, "points"))
```

Arguments

data frame from eikos_data object

yprobs vector of probabilities to be shown. NULL if they should be calculated from the

data.

yprobs_size font size of labels for horizontal probabilities (in points)
margin unit specifying margin between y axis and eikosogram

12 eikos_y_probs

Value

textGrob with y-axis probabilities.

Index

```
eikos, 3
eikos.default, 4, 4
eikos.formula, 4, 6
eikos_data, 8
eikos_legend, 9
eikos_x_labels, 9
eikos_x_probs, 10
eikos_y_labels, 11
eikos_y_probs, 11
```