Package 'elastes'

July 3, 2022

Type Package

Title Elastic Full Procrustes Means for Sparse and Irregular Planar Curves

Version 0.1.6

Description Provides functions for the computation of functional elastic shape means over sets of open planar curves. The package is particularly suitable for settings where these curves are only sparsely and irregularly observed. It uses a novel approach for elastic shape mean estimation, where planar curves are treated as complex functions and a full Procrustes mean is estimated from the corresponding smoothed Hermitian covariance surface. This is combined with the methods for elastic mean estimation proposed in Steyer, Stöcker, Greven (2022) doi:10.1111/biom.13706. See Stöcker et. al. (2022) arXiv:2203.10522 for details.

License GPL (>= 3)

Encoding UTF-8

Language en-US
Imports elasdics, utils, graphics, stats, splines, mgcv, sparseFLMM, orthogonalsplinebasis

Suggests knitr, covr, testthat (>= 3.0.0), rmarkdown, shapes
RoxygenNote 7.2.0
Config/testthat/edition 3
VignetteBuilder knitr
URL https://mpff.github.io/elastes/
NeedsCompilation no
Author Manuel Pfeuffer [aut, cre],
Lisa Steyer [aut],
Almond Stoecker [aut]
Maintainer Manuel Pfeuffer <mnl. pfeuffer@gmail.com>
Repository CRAN
Date/Publication 2022-07-03 18:20:05 UTC

R topics documented:

compute_elastic_shape_mean 2
elastes 4
fit_alignment_proc2d 4
fit_mean 5
get_center 7
get_distance 7
get_evals 8
get_optimal_t 9
get_polygon_length 9
get_procrustes_fit 10
get_Procrustes_fit_from_param 10
plot.elastic_shape_mean 11
Index 12

```
compute_elastic_shape_mean
```

Compute an elastic full Procrustes mean for a collection of curves

Description

Computes an elastic full Procrustes mean for curves stored in data_curves. Constructor function for class elastic_shape_mean.

Usage

compute_elastic_shape_mean(data_curves,
knots $=\operatorname{seq}(0,1$, len = 13),
type = c("smooth", "polygon"),
penalty $=2$,
var_type = c("smooth", "constant", "zero"),
pfit_method = c("smooth", "polygon"),
smooth_warp $=$ function(i) 0,
eps $=0.05$,
max_iter = 50,
verbose = FALSE,
cluster = NULL
)

Arguments

data_curves list of data.frames with observed points in each row. Each variable is one coordinate direction. If there is a variable t, it is treated as the time parametrization, not as an additional coordinate.
knots set of knots for the mean spline curve
\(\left.$$
\begin{array}{ll}\text { type } & \begin{array}{l}\text { if "smooth" linear srv-splines are used which results in a differentiable mean } \\
\text { curve if "polygon" the mean will be piecewise linear. } \\
\text { the penalty to use in the covariance smoothing step. use '-1' for no penalty. } \\
\text { (experimental) assume "smooth", "constant" or "zero" measurement-error vari- } \\
\text { ance along t }\end{array}
$$

penalty \& (experimental) "smooth" or "polygon"\end{array}\right\}\)| var_type | (experimental) controls the weighting of original and smoothed observations
 over the iterations, if pfit_method = "smooth". |
| :--- | :--- |
| smooth_warp | |

Value
an object of class elastic_shape_mean, which is a list with entries

type	"smooth" if mean was modeled using linear srv-splines, "polygon" if constant srv-splines
coefs	spline coefficients
knots	spline knots
variance	sample elastic shape variance
data_curves	list of data.frames with observed points in each row. First variable t gives the initial parametrization, second variable t_optim the optimal parametrization
	when the curve is aligned to the mean. Has the attributes 'rotation', 'scaling', 'translation' and 'dist_to_mean'. Use get_procrustes_fit to get the elastic full Procrustes fit.
fit	see fit_mean

Examples

```
curve <- function(t){
    rbind(t*\operatorname{cos(13*t), t*sin(13*t))}
}
set.seed(18)
data_curves <- lapply(1:4, function(i){
    m <- sample(10:15, 1)
    delta <- abs(rnorm(m, mean = 1, sd = 0.05))
    t <- cumsum(delta)/sum(delta)
    data.frame(t(curve(t)) + 0.07*t*matrix(cumsum(rnorm(2*length(delta))),
                ncol = 2))
})
#randomly rotate and scale curves
rand_scale <- function(curve){ ( 0.5 + runif(1) ) * curve }
rand_rotate <- function(curve){
    names <- colnames(curve)
```

```
    theta <- 2*pi*runif(1)
    mat <- matrix(c(cos(theta), sin(theta), -sin(theta), cos(theta)), nrow = 2, ncol = 2)
    curve.rot <- as.matrix(curve) %*% t(mat)
    curve.rot <- as.data.frame(curve.rot)
    colnames(curve.rot) <- names
    return(curve.rot)
}
data_curves <- lapply(data_curves, rand_scale)
data_curves <- lapply(data_curves, rand_rotate)
#compute smooth procrustes mean with 2 order penalty
knots <- seq(0,1, length = 11)
elastic_shape_mean <- compute_elastic_shape_mean(
    data_curves,
    knots = knots,
    type = "smooth",
    penalty = 2
    )
plot(elastic_shape_mean)
```

elastes elastes: Elastic Full Procrustes Means for Sparse and Irregular Pla-
nar Curves

Description

Provides functions for the computation of functional elastic shape means over sets of open planar curves. The package is particularly suitable for settings where these curves are only sparsely and irregularly observed. It uses a novel approach for elastic shape mean estimation, where planar curves are treated as complex functions and a full Procrustes mean is estimated from the corresponding smoothed hermitian covariance surface, which is combined with the methods for elastic mean estimation proposed in Steyer, Stöcker, Greven (2022). See Stöcker et. al. (2022) for details on the method.

Details

Compute a mean for a set of observed curves: compute_elastic_shape_mean

Description

Finds optimal rotation and scaling alignment for a discrete open srv curve to a smooth curve

Usage

fit_alignment_proc2d(
q,
type,
knots,
var_type,
coefs.compl,
method,
cov_fit,
pca,
L
)

Arguments

q	complex srv curve with parametrization, needs to be vectorized. The result of a call to get_model_data_complex
type	spline degree
knots	basis knots
var_type	either "smooth" or "constant" measurement error in cov_fit object
coefs.compl	complex coefficients of smooth curve
method	temp
cov_fit	temp
pca	temp
L	temp

Value

optimal rotation G and scaling b

fit_mean Mean estimation for open planar curves.

Description

Fits an elastic full Procrustes mean for open, planar curves. Is usually called from compute_elastic_shape_mean.

Usage

```
fit_mean(
    srv_data_curves,
    knots,
    penalty,
    var_type,
```

```
    pfit_method,
    max_iter,
    type,
    eps,
    cluster,
    verbose,
    smooth_warp
)
```


Arguments

```
    srv_data_curves
```

 list of data.frames with srv vectors in each row.curves
 knots set of knots for the mean spline curve
 penalty the penalty to use in the covariance smoothing step. use '-1' for no penalty.
 var_type (experimental) assume "smooth", "constant" or "zero" measurement-error vari-
 ance along t
 pfit_method (experimental) "smooth" or "polygon"
 max_iter maximal number of iterations
 type if "smooth" linear srv-splines are used which results in a differentiable mean
 curve if "polygon" the mean will be piecewise linear.
 eps the algorithm stops if L2 norm of coefficients changes less
 cluster a cluster object for use in the bam call
 verbose print iterations
 smooth_warp (experimental) controls the weighting of original and smoothed observations
 over the iterations, if pfit_method \(==\) "smooth".

Value

a list with entries

type \quad "smooth" or "polygon"
coefs coefs srv spline coefficients of the estimated mean
knots spline knots
penalty penalty used in the covariance estimation
distances distances to mean
fit a list containing t_optimsoptimal parametrizations G_optimsoptimal rotations b_optimsoptimal scalings n_optimsoptimal re-normalization n_iternumber of iterations until convergence gram the mean basis Gram matrix, cov_fit the covariance smoothing objects in the final iteration, cov_pca cov coef matrix pca object in the final iteration and pfit_coefs the mean basis coefs of smoothed pfits in the final iteration

Description

Calculate the center of a curve

Usage

get_center(curve)

Arguments

curve a data.frame with observed points in each row. Each variable is one coordinate direction. If there is a variable t, t _optim or id, it is treated as the time parametrization, not as an additional coordinate.

Value

The average of observed points in curve.

```
get_distance Distance to a smooth curve
```


Description

Finds the distance of a discrete open srv curve to a smooth curve

Usage

get_distance(srv_curve, s, q, eps = 10 * .Machine\$double.eps)

Arguments

srv_curve srv transformation of the smooth curve, needs to be vectorized
$\mathrm{s} \quad$ time points for q , first has to be 0 , last has to be 1
$\mathrm{q} \quad$ square root velocity vectors, one less than time points in s
eps convergence tolerance

Value

distance between srv_curve and q

```
get_evals Evaluate a curve on a grid
```


Description

Evaluate a curve on a grid

Usage

get_evals(curve, t_grid $=$ NULL, ...)
\#\# S3 method for class 'data.frame'
get_evals(curve, t_grid $=$ NULL, ...)
\#\# S3 method for class 'elastic_shape_mean'
get_evals(curve, t_grid = NULL, centering = TRUE, srv = FALSE, ...)

Arguments

curve	a one parameter function which is to be evaluated on a grid
$t _g r i d$	the curve is evaluated at the values in $t _$grid, first value needs to be 0, last value needs to be 1. If $t _g r i d ~=~ N U L L, ~ a ~ d e f a u l t ~ r e g u l a r ~ g r i d ~ w i t h ~ g r i d ~ l e n g t h ~$ chosen
$\ldots .01$ is	
centering	other arguments
srv	TRUE if curves shall be centered
	TRUE if SRV curve shall be evaluated

Value

a data. frame with evaluations of the curve at the values in t _grid in its rows.

See Also

See get_evals for the original code.

Examples

```
curve <- function(t){c(t*sin(10*t), t*\operatorname{cos(10*t))}}
```

plot(get_evals(curve), type = "b")

```
get_optimal_t Finds optimal alignment for discrete open curves
```


Description

Finds optimal aligned time points for srv curve q to srv curve p using coordinate wise optimization.

Usage

```
get_optimal_t(srv_procrustes_curves, coefs, t_optims, type, knots, eps, i)
```


Arguments

srv_procrustes_curves	
	scaling and rotation aligned srv curves
coefs	mean coefficients
t_optims	current optimal parametrization
type	"smooth" or "polygon"
knots	mean basis knots
eps	convergence tolerance
i	current iteration

Value

optimal time points for srv_data_curves, without first value 0 and last value 1 optimal time points have the distance of the observation to the srv_curve as an attribute

```
get_polygon_length Calculate the polygon length of a curve
```


Description

Calculate the polygon length of a curve

Usage

get_polygon_length(curve)

Arguments

curve a data.frame with observed points in each row. Each variable is one coordinate direction. If there is a variable t, t _optim or id, it is treated as the time parametrization, not as an additional coordinate.

Value

The length of curve, treating it as a polygon.

Description

Compute the Procrustes aligned data curve...

Usage

get_procrustes_fit(data_curve)

Arguments

data_curve A data.frame in an elastic_shape_mean object.

Value

Aligned data_curve as a data.frame.

```
get_Procrustes_fit_from_param
Helper functions for calculating Procrustes data curve from rotation, scaling and translation parameters.
```


Description

Compute the Procrustes fit given optimal rotation, scaling and translation.

```
Usage
    get_procrustes_fit_from_param(
    data_curve,
    rot,
    scale,
    plength,
    trans,
    norm_factor
)
```


Arguments

data_curve A data.frame with observed points on a curve. Each row is one point, each variable one coordinate direction. If there is a variable t, it is treated as the time parametrization, not as an additional coordinate.
rot The rotation (in radian).
scale The scaling.
plength The polygon length of the original curve.
trans The translation.
norm_factor The normalization factor from the smooth curve estimate.

```
plot.elastic_shape_mean
Plot method for planar elastic Procrustes mean curves
```


Description

Plots objects of class elastic_shape_mean.

Usage

```
## S3 method for class 'elastic_shape_mean'
plot(x, srv = FALSE, centering = TRUE, asp = 1, col = "red", ...)
```


Arguments

x
srv TRUE if the SRV curve should be plotted
centering
asp
col color of the mean curve.
... further plotting parameters.

Value

No return value, called for side effects.

See Also

For examples see documentation of compute_elastic_shape_mean. See plot.elastic_mean for the original code.

Index

```
compute_elastic_shape_mean, 2, 4, 5,11
elastes,4
fit_alignment_proc2d,4
fit_mean,5
get_center,7
get_distance,7
get_evals, 8, 8
get_optimal_t,9
get_polygon_length,9
get_procrustes_fit, 3,10
get_Procrustes_fit_from_param, 10
get_procrustes_fit_from_param
    (get_Procrustes_fit_from_param),
    10
plot.elastic_mean, 11
plot.elastic_shape_mean, 11
plot.window, 11
```

