
Package ‘elo’
February 4, 2022

Version 3.0.1

Title Ranking Teams by Elo Rating and Comparable Methods

Date 2022-02-03

Description A flexible framework for calculating Elo ratings and resulting
rankings of any two-team-per-matchup system (chess, sports leagues, 'Go',
etc.). This implementation is capable of evaluating a variety of matchups,
Elo rating updates, and win probabilities, all based on the basic Elo
rating system. It also includes methods to benchmark performance,
including logistic regression and Markov chain models.

Depends R (>= 3.6.0), stats

Imports Rcpp, pROC

Suggests knitr, testthat, rmarkdown

VignetteBuilder knitr

License GPL (>= 2)

URL https://github.com/eheinzen/elo,

https://cran.r-project.org/package=elo,

https://eheinzen.github.io/elo/

BugReports https://github.com/eheinzen/elo/issues

RoxygenNote 7.1.2

LazyData true

LinkingTo Rcpp

Encoding UTF-8

NeedsCompilation yes

Author Ethan Heinzen [aut, cre]

Maintainer Ethan Heinzen <heinzen.ethan@mayo.edu>

Repository CRAN

Date/Publication 2022-02-04 12:50:02 UTC

1

https://github.com/eheinzen/elo
https://cran.r-project.org/package=elo
https://eheinzen.github.io/elo/
https://github.com/eheinzen/elo/issues

2 auc.elo

R topics documented:
auc.elo . 2
elo . 3
elo.calc . 4
elo.colley . 5
elo.glm . 6
elo.markovchain . 8
elo.model.frame . 9
elo.mov . 10
elo.mse . 11
elo.prob . 12
elo.run . 13
elo.run.helpers . 15
elo.run.multiteam . 16
elo.update . 17
elo.winpct . 18
favored.elo . 20
fitted.elo . 21
players . 22
predict.elo . 23
rank.teams . 25
score . 26
summary.elo . 26
tournament . 28
tournament.multiteam . 28

Index 29

auc.elo Calculate AUC on an elo.run object

Description

Calculate AUC on an elo.run object

Usage

S3 method for class 'elo.run'
auc(object, ..., subset = TRUE)

S3 method for class 'elo.glm'
auc(object, ..., subset = TRUE)

S3 method for class 'elo.running'
auc(object, running = TRUE, discard.skipped = FALSE, ..., subset = TRUE)

S3 method for class 'elo.markovchain'

elo 3

auc(object, ..., subset = TRUE)

S3 method for class 'elo.winpct'
auc(object, ..., subset = TRUE)

S3 method for class 'elo.colley'
auc(object, ..., subset = TRUE)

Arguments

object An object of class elo.run.

... Other arguments (not used at this time).

subset (optional) A vector of indices on which to calculate

running logical, denoting whether to use the running predicted values.
discard.skipped

Logical, denoting whether to ignore the skipped observations in the calculation

Value

The AUC of the predicted Elo probabilities and the actual win results.

References

Adapted from code here: https://stat.ethz.ch/pipermail/r-help/2005-September/079872.
html

See Also

pROC::auc, elo.run.

elo The Elo Package

Description

An implementation of Elo ratings for general use in ’R’.

Functions

Listed below are the most useful functions available in elo:

elo.prob: Calculate the probability that team A beats team B.

elo.update: Calculate the update value for a given Elo matchup.

elo.calc: Calculate post-update Elo values.

elo.run: Calculate Elos for a series of matches.

score: Create a 1/0/0.5 win "indicator" based on two teams’ scores.

https://stat.ethz.ch/pipermail/r-help/2005-September/079872.html
https://stat.ethz.ch/pipermail/r-help/2005-September/079872.html

4 elo.calc

Data

tournament: Mock data for examples.

References

Elo, A. E. 1978. The Rating of Chess Players, Past and Present. New York: Arco.

Examples

library(elo)

elo.calc Post-update Elo values

Description

Calculate post-update Elo values. This is vectorized.

Usage

elo.calc(wins.A, ...)

Default S3 method:
elo.calc(wins.A, elo.A, elo.B, k, ..., adjust.A = 0, adjust.B = 0)

S3 method for class 'formula'
elo.calc(formula, data, na.action, subset, k = NULL, ...)

Arguments

wins.A Numeric vector of wins by team A.

... Other arguments (not in use at this time).

elo.A, elo.B Numeric vectors of elo scores.

k A constant k-value (or a vector, where appropriate).
adjust.A, adjust.B

Numeric vectors to adjust elo.A and elo.B by.

formula A formula. See the help page for formulas for details.

data A data.frame in which to look for objects in formula.

na.action A function which indicates what should happen when the data contain NAs.

subset An optional vector specifying a subset of observations.

Value

A data.frame with two columns, giving the new Elo values after each update.

elo.colley 5

See Also

elo.prob, elo.update, elo.model.frame

Examples

elo.calc(c(1, 0), c(1500, 1500), c(1500, 1600), k = 20)

dat <- data.frame(wins.A = c(1, 0), elo.A = c(1500, 1500),
elo.B = c(1500, 1600), k = c(20, 20))

elo.calc(wins.A ~ elo.A + elo.B + k(k), data = dat)

elo.colley Compute a Colley matrix model for a matchup.

Description

Compute a Colley matrix model for a matchup.

Usage

elo.colley(
formula,
data,
family = "binomial",
weights,
na.action,
subset,
k = 1,
...,
running = FALSE,
skip = 0

)

Arguments

formula A formula. See the help page for formulas for details.

data A data.frame in which to look for objects in formula.

family Arguments passed to glm.

weights A vector of weights. Note that these weights are used in the Colley matrix
creation, but not the regression.

na.action A function which indicates what should happen when the data contain NAs.

subset An optional vector specifying a subset of observations.

k The fraction of a win to be assigned to the winning team. See "details".

... Arguments passed to glm.

6 elo.glm

running Logical, denoting whether to calculate "running" projected probabilities. If true,
a model is fit for group 1 on its own to predict group 2, then groups 1 and 2 to
predict 3, then groups 1 through 3 to predict 4, etc. Groups are determined in
formula. Omitting a group term re-runs a glm model to predict each observation
(a potentially time-consuming operation!)

skip Integer, denoting how many groups to skip before fitting the running models.
This is helpful if groups are small, where glm would have trouble converging
for the first few groups. The predicted values are then set to 0.5 for the skipped
groups.

Details

See the vignette for details on this method. The differences in assigned scores (from the coefficients
of the Colley matrix regression) are fed into a logistic regression model to predict wins or (usually)
a linear model to predict margin of victory. In this setting, ’k’ indicates the fraction of a win to be
assigned to the winning team (and the fraction of a loss to be assigned to the losing team); setting
k = 1 (the default) emits the "Bias Free" ranking method presented by Colley. It is also possible
to adjust the regression by setting the second argument of adjust(). As in elo.glm, the intercept
represents the home-field advantage. Neutral fields can be indicated using the neutral() function,
which sets the intercept to 0.

References

Colley W.N. Colley’s Bias Free College Football Ranking Method: The Colley Matrix Explained.
2002.

See Also

glm, summary.elo.colley, score, mov, elo.model.frame

Examples

elo.colley(score(points.Home, points.Visitor) ~ team.Home + team.Visitor, data = tournament,
subset = points.Home != points.Visitor)

elo.glm Compute a (usually logistic) regression model for a series of matches.

Description

Compute a (usually logistic) regression model for a series of matches.

elo.glm 7

Usage

elo.glm(
formula,
data,
family = "binomial",
weights,
na.action,
subset,
...,
running = FALSE,
skip = 0

)

Arguments

formula A formula. See the help page for formulas for details.

data A data.frame in which to look for objects in formula.
family, weights, ...

Arguments passed to glm.

na.action A function which indicates what should happen when the data contain NAs.

subset An optional vector specifying a subset of observations.

running Logical, denoting whether to calculate "running" projected probabilities. If true,
a model is fit for group 1 on its own to predict group 2, then groups 1 and 2 to
predict 3, then groups 1 through 3 to predict 4, etc. Groups are determined in
formula. Omitting a group term re-runs a glm model to predict each observation
(a potentially time-consuming operation!)

skip Integer, denoting how many groups to skip before fitting the running models.
This is helpful if groups are small, where glm would have trouble converging
for the first few groups. The predicted values are then set to 0.5 for the skipped
groups.

Details

The formula syntax is the same as other elo functions. A data.frame of indicator variables is built,
where an entry is 1 if a team is home, 0 if a team didn’t play, and -1 if a team is a visitor. Anything
passed to adjust() in formula is also put in the data.frame. A glm model is then run to predict
wins or margin of victory.

With this setup, the intercept represents the home-field advantage. Neutral fields can be indicated
using the neutral() function, which sets the intercept to 0.

Note that any weights specified in players() will be ignored.

This is essentially the Bradley-Terry model.

Value

An object of class c("elo.glm","glm"). If running==TRUE, the class "elo.glm.running" is
prepended.

8 elo.markovchain

References

https://en.wikipedia.org/wiki/Bradley

See Also

glm, summary.elo.glm, score, mov, elo.model.frame

Examples

data(tournament)
elo.glm(score(points.Home, points.Visitor) ~ team.Home + team.Visitor, data = tournament,

subset = points.Home != points.Visitor)
elo.glm(mov(points.Home, points.Visitor) ~ team.Home + team.Visitor, data = tournament,

family = "gaussian")

elo.markovchain Compute a Markov chain model for a series of matches.

Description

Compute a Markov chain model for a series of matches.

Usage

elo.markovchain(
formula,
data,
family = "binomial",
weights,
na.action,
subset,
k = NULL,
...,
running = FALSE,
skip = 0

)

Arguments

formula A formula. See the help page for formulas for details.

data A data.frame in which to look for objects in formula.

family Arguments passed to glm.

weights A vector of weights. Note that these weights are used in the Markov Chain
model, but not the regression.

na.action A function which indicates what should happen when the data contain NAs.

subset An optional vector specifying a subset of observations.

elo.model.frame 9

k The probability that the winning team is better given that they won. See details.

... Arguments passed to glm.

running Logical, denoting whether to calculate "running" projected probabilities. If true,
a model is fit for group 1 on its own to predict group 2, then groups 1 and 2 to
predict 3, then groups 1 through 3 to predict 4, etc. Groups are determined in
formula. Omitting a group term re-runs a glm model to predict each observation
(a potentially time-consuming operation!)

skip Integer, denoting how many groups to skip before fitting the running models.
This is helpful if groups are small, where glm would have trouble converging
for the first few groups. The predicted values are then set to 0.5 for the skipped
groups.

Details

See the vignette for details on this method. The probabilities we call ’k’ purely for convenience. The
differences in assigned scores (from the stationary distribution pi) are fed into a logistic regression
model to predict wins or (usually) a linear model to predict margin of victory. It is also possible
to adjust the regression by setting the second argument of adjust(). As in elo.glm, the intercept
represents the home-field advantage. Neutral fields can be indicated using the neutral() function,
which sets the intercept to 0.

Note that by assigning probabilities in the right way, this function emits the Logistic Regression
Markov Chain model (LRMC).

References

Kvam, P. and Sokol, J.S. A logistic regression/Markov chain model for NCAA basketball. Naval
Research Logistics. 2006. 53; 788-803.

See Also

glm, summary.elo.markovchain, score, mov, elo.model.frame

Examples

elo.markovchain(score(points.Home, points.Visitor) ~ team.Home + team.Visitor, data = tournament,
subset = points.Home != points.Visitor, k = 0.7)

elo.markovchain(mov(points.Home, points.Visitor) ~ team.Home + team.Visitor, family = "gaussian",
data = tournament, k = 0.7)

elo.model.frame Interpret formulas in elo functions

Description

A helper function to create the model.frame for many elo functions.

10 elo.mov

Usage

elo.model.frame(
formula,
data,
na.action,
subset,
k = NULL,
...,
required.vars = "elos",
warn.k = TRUE,
ncol.k = 1,
ncol.elos = 2

)

Arguments

formula A formula. See the help page for formulas for details.

data A data.frame in which to look for objects in formula.

na.action A function which indicates what should happen when the data contain NAs.

subset An optional vector specifying a subset of observations.

k A constant k-value (or a vector, where appropriate).

... Other arguments (not in use at this time).

required.vars One or more of c("wins","elos","k","group","regress"), denoting which
variables are required to appear in the final model.frame.

warn.k Should a warning be issued if k is specified as an argument and in formula?

ncol.k How many columns (NCOL) should k have?

ncol.elos How many Elo columns are expected?

See Also

elo.run, elo.calc, elo.update, elo.prob

elo.mov Create a "margin of victory" column

Description

Create a "margin of victory" based on two teams’ scores

Usage

mov(score.A, score.B = 0)

elo.mse 11

Arguments

score.A Numeric; the score of the first team. Alternatively, this can be a pre-computed
margin of victory which will get compared to 0.

score.B Numeric; the score of the second team; default is 0, in case score.A is already
a margin of victory..

Value

An object with class "elo.mov", denoting score.A = score.B.

See Also

score

Examples

mov(12, 10)
mov(10, 10)
mov(10, 12)

elo.mse Calculate the mean square error

Description

Calculate the mean square error (Brier score) for a model.

Usage

mse(object, ..., subset = TRUE)

brier(object, ..., subset = TRUE)

S3 method for class 'elo.run'
mse(object, ..., subset = TRUE)

S3 method for class 'elo.glm'
mse(object, ..., subset = TRUE)

S3 method for class 'elo.running'
mse(object, running = TRUE, discard.skipped = FALSE, ..., subset = TRUE)

S3 method for class 'elo.markovchain'
mse(object, ..., subset = TRUE)

S3 method for class 'elo.winpct'
mse(object, ..., subset = TRUE)

12 elo.prob

S3 method for class 'elo.colley'
mse(object, ..., subset = TRUE)

Arguments

object An object

... Other arguments (not used at this time).

subset (optional) A vector of indices on which to calculate

running logical, denoting whether to use the running predicted values.
discard.skipped

Logical, denoting whether to ignore the skipped observations in the calculation

Details

Even though logistic regressions don’t use the MSE on the y=0/1 scale, it can still be informative.
Note that the S3 method is mse.

elo.prob Elo probability

Description

Calculate the probability that team A beats team B. This is vectorized.

Usage

elo.prob(elo.A, ...)

Default S3 method:
elo.prob(elo.A, elo.B, ..., elos = NULL, adjust.A = 0, adjust.B = 0)

S3 method for class 'formula'
elo.prob(formula, data, na.action, subset, ..., elos = NULL)

S3 method for class 'elo.multiteam.matrix'
elo.prob(elo.A, ..., elos = NULL)

Arguments

elo.A, elo.B Numeric vectors of elo scores, or else vectors of teams.

... Other arguments (not in use at this time).

elos An optional named vector containing Elo ratings for all teams in formula or
elo.A and elo.B.

adjust.A Numeric vectors to adjust elo.A and elo.B by.

elo.run 13

adjust.B Numeric vectors to adjust elo.A and elo.B by.

formula A formula. See the help page for formulas for details.

data A data.frame in which to look for objects in formula.

na.action A function which indicates what should happen when the data contain NAs.

subset An optional vector specifying a subset of observations.

Details

Note that formula can be missing the wins.A component. If present, it’s ignored by elo.model.frame.

Value

A vector of Elo probabilities.

See Also

elo.update, elo.calc, elo.model.frame

Examples

elo.prob(1500, 1500)
elo.prob(c(1500, 1500), c(1500, 1600))

dat <- data.frame(wins.A = c(1, 0), elo.A = c(1500, 1500),
elo.B = c(1500, 1600), k = c(20, 20))

elo.prob(~ elo.A + elo.B, data = dat)

Also works to include the wins and k:
elo.prob(wins.A ~ elo.A + elo.B + k(k), data = dat)

Also allows teams
elo.prob(c("A", "B"), c("C", "C"), elos = c(A = 1500, B = 1600, C = 1500))

elo.run Calculate running Elos for a series of matches.

Description

Calculate running Elos for a series of matches.

14 elo.run

Usage

elo.run(
formula,
data,
na.action,
subset,
k = NULL,
initial.elos = NULL,
...,
prob.fun = elo.prob,
update.fun = elo.update,
verbose = TRUE

)

Arguments

formula A formula. See the help page for formulas for details.

data A data.frame in which to look for objects in formula.

na.action A function which indicates what should happen when the data contain NAs.

subset An optional vector specifying a subset of observations.

k A constant k-value (or a vector, where appropriate).

initial.elos An optional named vector containing initial Elo ratings for all teams in formula.
If a single (unnamed) value is supplied, that value is applied to all teams. NULL
(the default) sets all Elos to 1500.

... Other arguments (not used at this time).

prob.fun A function with at least 4 arguments: elo.A, elo.B, adjust.A, and adjust.B. It
should return a predicted probability that team A wins. The values passed in
will be scalars, and a scalar is expected as output.

update.fun A function with at least 6 arguments: the same as elo.update.default. The
function takes in the Elos, the win indicator, k, and any adjustments, and returns
a value by which to update the Elos. The values passed in will be scalars, and a
scalar is expected as output.

verbose Should a message be issued when R is used (over C++)?

Details

elo.run is run two different ways: the first (default) uses C++ and may be up to 50 times faster,
while the second (when prob.fun or update.fun are specified) uses R but also supports custom
update functions. Prefer the first unless you really need a custom update function.

Value

An object of class "elo.run" or class "elo.run.regressed".

See Also

score, elo.run.helperselo.run helpers, elo.calc, elo.update, elo.prob, elo.model.frame.

elo.run.helpers 15

Examples

data(tournament)
elo.run(score(points.Home, points.Visitor) ~ team.Home + team.Visitor,

data = tournament, k = 20)

Create non-constant 'k'
elo.run(score(points.Home, points.Visitor) ~ team.Home + team.Visitor +

k(20*log(abs(points.Home - points.Visitor) + 1)), data = tournament)

Adjust Elo for, e.g., home-field advantage
elo.run(score(points.Home, points.Visitor) ~ adjust(team.Home, 30) + team.Visitor,

data = tournament, k = 20)

tournament$home.field <- 30
elo.run(score(points.Home, points.Visitor) ~ adjust(team.Home, home.field) + team.Visitor,

data = tournament, k = 20)

Regress the Elos back toward 1500 at the end of the half-season
elo.run(score(points.Home, points.Visitor) ~ adjust(team.Home, 30) +

team.Visitor + regress(half, 1500, 0.2), data = tournament, k = 20)

elo.run.helpers Helper functions for elo.run

Description

as.matrix converts an Elo object into a matrix of running Elos. These are the Elos at the time of
grouping, but before any regression takes place.

Usage

S3 method for class 'elo.run'
as.matrix(x, ...)

S3 method for class 'elo.run.regressed'
as.matrix(x, ...)

S3 method for class 'elo.run'
as.data.frame(x, ...)

final.elos(x, ...)

S3 method for class 'elo.run'
final.elos(x, ...)

S3 method for class 'elo.run.regressed'
final.elos(x, regressed = FALSE, ...)

16 elo.run.multiteam

Arguments

x An object of class "elo.run" or class "elo.run.regressed".

... Other arguments (Not in use at this time).

regressed Logical, denoting whether to use the post-regressed (TRUE) or pre-regressed
(FALSE) final Elos. Note that TRUE only makes sense when the final Elos were
regressed one last time (i.e., if the last element of the regress()) vector yields
TRUE).

Details

as.data.frame converts the "elos" component of an object from elo.run into a data.frame.

final.elos is a generic function to extract the last Elo per team.

Value

A matrix, a data.frame, or a named vector.

See Also

elo.run

Examples

e <- elo.run(score(points.Home, points.Visitor) ~ team.Home + team.Visitor + group(week),
data = tournament, k = 20)

head(as.matrix(e))
str(as.data.frame(e))
final.elos(e)

elo.run.multiteam Calculate running Elos for a series of multi-team matches.

Description

Calculate running Elos for a series of multi-team matches.

Usage

elo.run.multiteam(
formula,
data,
na.action,
subset,
k = NULL,
initial.elos = NULL,
...

)

elo.update 17

Arguments

formula A one-sided formula with a multiteam() object. See also the the help page for
formulas for details.

data A data.frame in which to look for objects in formula.

na.action A function which indicates what should happen when the data contain NAs.

subset An optional vector specifying a subset of observations.

k A constant k-value (or a vector, where appropriate).

initial.elos An optional named vector containing initial Elo ratings for all teams in formula.
If a single (unnamed) value is supplied, that value is applied to all teams. NULL
(the default) sets all Elos to 1500.

... Other arguments (not used at this time).

Details

This is like elo.run (and in fact it runs elo.run in the background). The formula takes a multiteam()
object, which assumes that teams "win" in a well-ordered ranking. It assumes that the first place
team beats all other teams, that the second place team loses to the first but beats the others, etc. In
that regard, elo.run.multiteam reduces to elo.run when the number of teams (ncol(multiteam()))
is 2

However, this is less flexible than elo.run, because (1) there cannot be ties; (2) it does not accept
adjustments; and (3) k is constant within a "game"

Examples

data(tournament.multiteam)
elo.run.multiteam(~ multiteam(Place_1, Place_2, Place_3, Place_4),

data = tournament.multiteam, subset = -28, k = 20)

elo.update Elo updates

Description

Calculate the update value for a given Elo matchup. This is used in elo.calc, which reports the
post-update Elo values. This is vectorized.

Usage

elo.update(wins.A, ...)

Default S3 method:
elo.update(wins.A, elo.A, elo.B, k, ..., adjust.A = 0, adjust.B = 0)

S3 method for class 'formula'
elo.update(formula, data, na.action, subset, k = NULL, ...)

18 elo.winpct

Arguments

wins.A Numeric vector of wins by team A.

... Other arguments (not in use at this time).

elo.A Numeric vectors of elo scores.

elo.B Numeric vectors of elo scores.

k A constant k-value (or a vector, where appropriate).

adjust.A Numeric vectors to adjust elo.A and elo.B by.

adjust.B Numeric vectors to adjust elo.A and elo.B by.

formula A formula. See the help page for formulas for details.

data A data.frame in which to look for objects in formula.

na.action A function which indicates what should happen when the data contain NAs.

subset An optional vector specifying a subset of observations.

Value

A vector of Elo updates.

See Also

elo.prob, elo.calc, elo.model.frame

Examples

elo.update(c(1, 0), c(1500, 1500), c(1500, 1600), k = 20)

dat <- data.frame(wins.A = c(1, 0), elo.A = c(1500, 1500),
elo.B = c(1500, 1600), k = c(20, 20))

elo.update(wins.A ~ elo.A + elo.B + k(k), data = dat)

elo.winpct Compute a (usually logistic) regression based on win percentage for a
series of matches.

Description

Compute a (usually logistic) regression based on win percentage for a series of matches.

elo.winpct 19

Usage

elo.winpct(
formula,
data,
family = "binomial",
weights,
na.action,
subset,
...,
running = FALSE,
skip = 0

)

Arguments

formula A formula. See the help page for formulas for details.

data A data.frame in which to look for objects in formula.

family Arguments passed to glm.

weights A vector of weights. Note that these are used in calculating wins and losses but
not in the regression.

na.action A function which indicates what should happen when the data contain NAs.

subset An optional vector specifying a subset of observations.

... Arguments passed to glm.

running Logical, denoting whether to calculate "running" projected probabilities. If true,
a model is fit for group 1 on its own to predict group 2, then groups 1 and 2 to
predict 3, then groups 1 through 3 to predict 4, etc. Groups are determined in
formula. Omitting a group term re-runs a glm model to predict each observation
(a potentially time-consuming operation!)

skip Integer, denoting how many groups to skip before fitting the running models.
This is helpful if groups are small, where glm would have trouble converging
for the first few groups. The predicted values are then set to 0.5 for the skipped
groups.

Details

Win percentages are first calculated. Anything passed to adjust() in formula is also put in the
data.frame. A glm model is then run to predict wins or margin of victory.

With this setup, the intercept represents the home-field advantage. Neutral fields can be indicated
using the neutral() function, which sets the intercept to 0.

See Also

glm, summary.elo.winpct, score, mov, elo.model.frame

20 favored.elo

Examples

elo.winpct(score(points.Home, points.Visitor) ~ team.Home + team.Visitor, data = tournament,
subset = points.Home != points.Visitor)

elo.winpct(mov(points.Home, points.Visitor) ~ team.Home + team.Visitor, data = tournament,
family = "gaussian")

favored.elo Classify teams that are favored to win

Description

Classify teams that are favored to win

Usage

favored(x, ..., subset = TRUE)

S3 method for class 'elo.run'
favored(x, ..., subset = TRUE)

S3 method for class 'elo.glm'
favored(x, ..., subset = TRUE)

S3 method for class 'elo.running'
favored(x, running = TRUE, discard.skipped = FALSE, ..., subset = TRUE)

S3 method for class 'elo.markovchain'
favored(x, ..., subset = TRUE)

S3 method for class 'elo.winpct'
favored(x, ..., subset = TRUE)

S3 method for class 'elo.colley'
favored(x, ..., subset = TRUE)

Default S3 method:
favored(x, p.A, ...)

Arguments

x An object from elo.run or elo.glm, or for the default method a vector repre-
senting wins.A.

... Other arguments (not used at this time).

subset (optional) A vector of indices on which to calculate

running logical, denoting whether to use the running predicted values.

fitted.elo 21

discard.skipped

Logical, denoting whether to ignore the skipped observations in the calculation

p.A A vector of predicted win probabilities.

fitted.elo Extract model values

Description

Extract model values from elo functions.

Usage

S3 method for class 'elo.run'
fitted(object, ...)

S3 method for class 'elo.run'
residuals(object, ...)

S3 method for class 'elo.running'
fitted(object, running = TRUE, ...)

S3 method for class 'elo.glm'
fitted(object, ...)

S3 method for class 'elo.markovchain'
fitted(object, ...)

S3 method for class 'elo.winpct'
fitted(object, ...)

S3 method for class 'elo.colley'
fitted(object, ...)

Arguments

object An object.

... Other arguments

running logical, denoting whether to use the running predicted values.

Value

A vector of fitted values. For running values, it has an additional attribute denoting to which group
(i.e., which model) the prediction belongs

22 players

players Details on elo formulas and the specials therein

Description

Details on elo functions and the special functions allowed in them to change functions’ behaviors.

Usage

players(..., weights = NULL)

multiteam(...)

k(x, y = NULL)

adjust(x, adjustment)

regress(x, to, by, regress.unused = TRUE)

group(x)

neutral(x)

Arguments

... Vectors to be coerced to character, which comprise of the players of a team.

weights A vector giving the weights of Elo updates for the players in Ignored for
elo.glm.

x, y A vector.

adjustment A single value or a vector of the same length as x: how much to adjust the Elos
in x.

to Numeric: what Elo to regress to. Can be a single value or named vector the
same length as the number of teams.

by Numeric: by how much should Elos be regressed toward to.

regress.unused Logical: whether to continue regressing teams which have stopped playing.

Details

In the functions in this package, formula is usually of the form wins.A ~ elo.A + elo.B, where
elo.A and elo.B are vectors of Elos, and wins.A is between 0 and 1, denoting whether team
A (Elo A) won or lost (or something between). elo.prob also allows elo.A and elo.B to be
character or factors, denoting which team(s) played. elo.run requires elo.A to be a vector of
teams or a players matrix from players() (sometimes denoted by "team.A"), but elo.B can be
either a vector of teams or players matrix ("team.B") or else a numeric column (denoting a fixed-
Elo opponent). elo.glm requires both to be a vector of teams or players matrix. elo.markovchain
requires both to be a vector of teams.

predict.elo 23

formula accepts six special functions in it:

k() allows for complicated Elo updates. For constant Elo updates, use the k = argument instead of
this special function. Note that elo.markovchain uses this function (or argument) as a convenient
way of specifying transition probabilities. elo.colley uses this to indicate the fraction of a win to
be assigned to the winning team.

adjust() allows for Elos to be adjusted for, e.g., home-field advantage. The second argument to
this function can be a scalar or vector of appropriate length. This can also be used in elo.glm and
elo.markovchain as an adjuster to the logistic regressions.

regress() can be used to regress Elos back to a fixed value after certain matches. Giving a log-
ical vector identifies these matches after which to regress back to the mean. Giving any other
kind of vector regresses after the appropriate groupings (see, e.g., duplicated(...,fromLast =
TRUE)). The other three arguments determine what Elo to regress to (to =), by how much to regress
toward that value (by =), and whether to continue regressing teams which have stopped playing
(regress.unused, default = TRUE).

group() is used to group matches (by, e.g., week). For elo.run, Elos are not updated until the
group changes. It is also fed to as.matrix.elo.run, giving the number of rows to return. to
produce only certain rows of matrix output. It also determines how many models to run (and on
what data) for elo.glm and elo.markovchain when running=TRUE.

neutral() is used in elo.glm and elo.markovchain to determine the intercept. In short, the
intercept is 1 -neutral(), denoting home-field advantage. Therefore, the column passed should
be 0 (denoting home-field advatange) or 1 (denoting a neutral game). If omitted, all matches are
assumed to have home field advantage.

players() is used for multiple players on a team contributing to an overall Elo. The Elo updates
are then assigned based on the specified weights. The weights are ignored in elo.glm.

multiteam() is used for matchups consisting of multiple teams and is only valid in elo.run.multiteam.

predict.elo Make Predictions on an elo Object

Description

Make Predictions on an elo Object

Usage

S3 method for class 'elo.run'
predict(object, newdata, ...)

S3 method for class 'elo.run.regressed'
predict(object, newdata, regressed = FALSE, ...)

S3 method for class 'elo.run.multiteam'
predict(object, newdata, ...)

S3 method for class 'elo.glm'

24 predict.elo

predict(object, newdata, type = "response", ...)

S3 method for class 'elo.running'
predict(object, newdata, running = TRUE, ...)

S3 method for class 'elo.markovchain'
predict(object, newdata, ...)

S3 method for class 'elo.colley'
predict(object, newdata, ...)

S3 method for class 'elo.winpct'
predict(object, newdata, ...)

Arguments

object An model from which to get predictions.

newdata A new dataset containing the same variables as the call that made object. If
missing, the predicted win probabilities from object will be returned.

... Other arguments.

regressed See the note on final.elos.

type See predict.glm

running logical, denoting whether to use the running predicted values. Only makes sense
if newdata is missing.

Details

Note that the "elo.glm.running" objects will use a model fit on all the data to predict.

Value

A vector of win probabilities.

Examples

data(tournament)
t1 <- head(tournament, -3)
t2 <- tail(tournament, 3)
results <- elo.run(score(points.Home, points.Visitor) ~ team.Home + team.Visitor,

data = t1, k = 20)
predict(results)
predict(results, newdata = t2)

results <- elo.glm(score(points.Home, points.Visitor) ~ team.Home + team.Visitor, data = t1,
subset = points.Home != points.Visitor)

predict(results)
predict(results, newdata = t2)

results <- elo.markovchain(score(points.Home, points.Visitor) ~ team.Home + team.Visitor, data = t1,

rank.teams 25

subset = points.Home != points.Visitor, k = 0.7)
predict(results)
predict(results, newdata = t2)

results <- elo.colley(score(points.Home, points.Visitor) ~ team.Home + team.Visitor, data = t1,
subset = points.Home != points.Visitor)

predict(results)
predict(results, newdata = t2)

results <- elo.winpct(score(points.Home, points.Visitor) ~ team.Home + team.Visitor, data = t1,
subset = points.Home != points.Visitor, k = 0.7)

predict(results)
predict(results, newdata = t2)

rank.teams Rank teams

Description

Extract the rankings from Elo objects.

Usage

rank.teams(object, ties.method = "min", ...)

S3 method for class 'elo.run'
rank.teams(object, ties.method = "min", ...)

S3 method for class 'elo.run.regressed'
rank.teams(object, ties.method = "min", regressed = FALSE, ...)

S3 method for class 'elo.glm'
rank.teams(object, ties.method = "min", ...)

S3 method for class 'elo.markovchain'
rank.teams(object, ties.method = "min", ...)

S3 method for class 'elo.winpct'
rank.teams(object, ties.method = "min", ...)

S3 method for class 'elo.colley'
rank.teams(object, ties.method = "min", ...)

Arguments

object An object.
ties.method Passed to rank.
... Other arguments
regressed Passed to final.elos.

26 summary.elo

score Create a 1/0/0.5 win "indicator"

Description

Create a 1/0/0.5 win "indicator" based on two teams’ scores, and test for "score-ness".

Usage

score(score.A, score.B)

is.score(x)

Arguments

score.A Numeric; the score of the first team (whose wins are to be denoted by 1).

score.B Numeric; the score of the second team (whose wins are to be denoted by 0).

x An R object.

Value

For score, a vector containing 0, 1, and 0.5 (for ties). For is.score, TRUE or FALSE depending on
whether all values of x are between 0 and 1 (inclusive).

See Also

score

Examples

score(12, 10)
score(10, 10)
score(10, 12)

summary.elo Summarize an elo Object

Description

Summarize an elo Object

summary.elo 27

Usage

S3 method for class 'elo.run'
summary(object, ...)

S3 method for class 'elo.glm'
summary(object, ...)

S3 method for class 'elo.markovchain'
summary(object, ...)

S3 method for class 'elo.colley'
summary(object, ...)

S3 method for class 'elo.winpct'
summary(object, ...)

Arguments

object An object to summarize.

... Other arguments

Value

A summary of object.

See Also

favored, auc.elo.run, mse

Examples

summary(elo.run(score(points.Home, points.Visitor) ~ team.Home + team.Visitor,
data = tournament, k = 20))

summary(elo.glm(score(points.Home, points.Visitor) ~ team.Home + team.Visitor,
data = tournament))

mc <- elo.markovchain(score(points.Home, points.Visitor) ~ team.Home + team.Visitor,
data = tournament, subset = points.Home != points.Visitor, k = 0.7)

summary(mc)
co <- elo.colley(score(points.Home, points.Visitor) ~ team.Home + team.Visitor,

data = tournament, subset = points.Home != points.Visitor)
summary(co)
wp <- elo.winpct(score(points.Home, points.Visitor) ~ team.Home + team.Visitor,

data = tournament, subset = points.Home != points.Visitor, k = 0.7)
summary(wp)

28 tournament.multiteam

tournament tournament: Mock data for examples

Description

A fake dataset containing results from "animal-ball" matches.

Format

A data frame with 56 observations on the following 4 variables:

team.Home The home team for the match

team.Visitor The visiting team for the match

points.Home Number of points scored by the home team

points.Visitor Number of points scored by the visiting team

week Week Number

half The half of the season in which the match was played

Examples

data(tournament)
str(tournament)

tournament.multiteam tournament.multiteam: Mock data for examples

Description

A fake dataset containing results from "animal-ball" matches.

Format

A data frame with 56 observations on the following 4 variables:

week Week Number

half The half of the season in which the match was played

Place_1 The first-place team

Place_2 The second-place team

Place_3 The third-place team

Place_4 The fourth-place team

Index

adjust, 6, 7, 9, 19
adjust (players), 22
as.data.frame.elo.run

(elo.run.helpers), 15
as.matrix.elo.run, 23
as.matrix.elo.run (elo.run.helpers), 15
auc, 3
auc.elo, 2
auc.elo.run, 27

brier (elo.mse), 11

duplicated, 23

elo, 3
elo.calc, 3, 4, 10, 13, 14, 17, 18
elo.colley, 5, 23
elo.glm, 6, 6, 9, 20, 22, 23
elo.markovchain, 8, 22, 23
elo.model.frame, 6, 8, 9, 9, 13, 14, 19
elo.mov, 10
elo.mse, 11
elo.prob, 3, 5, 10, 12, 14, 18
elo.run, 3, 10, 13, 16, 17, 20, 23
elo.run.helpers, 14, 15
elo.run.multiteam, 16, 23
elo.update, 3, 5, 10, 13, 14, 17
elo.update.default, 14
elo.winpct, 18

favored, 27
favored (favored.elo), 20
favored.elo, 20
final.elos, 24, 25
final.elos (elo.run.helpers), 15
fitted.elo, 21
formula.specials (players), 22

glm, 5–9, 19
group (players), 22

is.score (score), 26

k (players), 22

mov, 6, 8, 9, 19
mov (elo.mov), 10
mse, 27
mse (elo.mse), 11
multiteam, 17
multiteam (players), 22

neutral, 6, 7, 9, 19
neutral (players), 22

players, 22
predict.elo, 23
predict.glm, 24

rank, 25
rank.teams, 25
regress (players), 22
residuals.elo.run (fitted.elo), 21

score, 3, 6, 8, 9, 11, 14, 19, 26, 26
summary.elo, 26
summary.elo.colley, 6
summary.elo.glm, 8
summary.elo.markovchain, 9
summary.elo.winpct, 19

the help page for formulas, 4, 5, 7, 8, 10,
13, 14, 17–19

tournament, 4, 28
tournament.multiteam, 28

29

	auc.elo
	elo
	elo.calc
	elo.colley
	elo.glm
	elo.markovchain
	elo.model.frame
	elo.mov
	elo.mse
	elo.prob
	elo.run
	elo.run.helpers
	elo.run.multiteam
	elo.update
	elo.winpct
	favored.elo
	fitted.elo
	players
	predict.elo
	rank.teams
	score
	summary.elo
	tournament
	tournament.multiteam
	Index

