
Package ‘emstreeR’
March 21, 2022

Type Package

Title Tools for Fast Computing and Plotting Euclidean Minimum Spanning
Trees

Version 3.0.0

Date 2022-03-17

Description Fast and easily computes an Euclidean Minimum Spanning Tree (EMST) from data,
relying on the R API for 'mlpack' - the C++ Machine Learning Library (Curtin et. al., 2013).
'emstreeR' uses the Dual-
Tree Boruvka (March, Ram, Gray, 2010, <doi:10.1145/1835804.1835882>),
which is theoretically and empirically the fastest algorithm for computing an EMST. This pack-
age also provides
functions and an S3 method for readily plotting Minimum Spanning Trees (MST) using either the
style of the 'base', 'scatterplot3d', or 'ggplot2' libraries.

License BSD_3_clause + file LICENSE

Encoding UTF-8

Imports mlpack, scatterplot3d, ggplot2, BBmisc, graphics, stats

Depends R (>= 3.5.0)

BugReports https://github.com/allanvc/emstreeR/issues/

RoxygenNote 7.1.2

NeedsCompilation no

Author Allan Quadros [aut, cre],
Duncan Garmonsway [ctb]

Maintainer Allan Quadros <allanvcq@gmail.com>

Repository CRAN

Date/Publication 2022-03-21 08:50:06 UTC

R topics documented:
emstreeR-package . 2
ComputeMST . 3

1

https://doi.org/10.1145/1835804.1835882
https://github.com/allanvc/emstreeR/issues/

2 emstreeR-package

plot.MST . 4
plotMST3D . 5
stat_MST . 6

Index 10

emstreeR-package Euclidean Minimum Spanning Tree

Description

The emstreeR package enables R users to fast and easily compute an Euclidean Minimum Spanning
Tree from data.

Introduction

This package relies on RcppMLPACK to provide an R interface for the Dual-Tree Boruvka algo-
rithm (March, Ram, Gray, 2010) implemented in ’mlpack’ - the C++ Machine Learning Library
(Curtin et. al., 2013). The Dual-Tree Boruvka is theoretically and emiprically the fastest algorithm
for computing an Euclidean Minimum Spanning Tree (EMST).

Computing the Minimum Spanning Tree

ComputeMST is the main function of this package. It is a fast wrapper to its C++ homonym from
’mlpack’ for computing an Euclidean Minimum Spanning Tree. Compared to functions in other
MST related R packages, ComputeMST is easier to use because you can pass your data as a numeric
matrix or a data.frame, which are the most common data input formats in the wild. You do not
have to put it into a graph format as you otherwise would in other packages.

Plotting

’emstreeR’ also provides wrapper functions and an S3 method for plotting the resulting MST from
ComputeMST.

• plot.MST is an S3 method to the generic function plot and produces 2D scatter plots with
segments between the points in a ’base’ R style, following the linkage order in the MST.

• plotMST3D produces a 3D point cloud with segments between the points, following the linkage
order in the MST and using the ’scatterplot3d’ package style for plotting.

• stat_MST is a ’ggplot2’ Stat extension which produces 2D scatter plots with segments based
on the linkage order in the MST using the ’ggplot2’ style.

Author(s)

Author & Mantainer: Allan Quadros <allanvcq@gmail.com>

ComputeMST 3

References

March, W. B., and Ram, P., and Gray, A. G. (2010). Fast euclidian minimum spanning tree: algo-
rithm analysis, and applications. 16th ACM SIGKDD International Conference on Knowledge Dis-
covery and Data mining, July 25-28 2010. Washington, DC, USA. doi:10.1145/1835804.1835882.

Curtin, R. R. et al. (2013). Mlpack: A scalable C++ machine learning library. Journal of Machine
Learning Research, v. 14, 2013.

See Also

Useful links:

• mlpack: https://www.mlpack.org/

ComputeMST Euclidean Minimum Spanning Tree

Description

Computes an Euclidean Minimum Spanning Tree (EMST) from the data. ComputeMST is a wrapper
around the homonym function in the ’mlpack’ library.

Usage

ComputeMST(x, verbose = TRUE, scale = FALSE)

Arguments

x a numeric matrix or data.frame.

verbose If TRUE, mutes the output from the C++ code.

scale If TRUE, it will scale your data with scale before computing the the minimum
spanning tree and the distances to be presented will refer to the scaled data.

Details

Before the computation, ComputeMST runs some checks and transformations (if needed) on the
provided data using the data_check function. After the computation, it returns the ’cleaned’ data
plus 3 columns: from, to, and distance. Those columns show each pair of start and end points,
and the distance between them, forming the Minimum Spanning Tree (MST).

Value

an object of class MST and data.frame.

https://www.mlpack.org/

4 plot.MST

Note

It is worth noting that the afore mentioned columns (from, to, and distance) have no relationship
with their respective row in the output MST/data.frame object. The authors chose the data.frame
format for the output rather than a list because it is more suitable for plotting the MST with the
new ’ggplot2’ Stat (stat_MST) provided with this package. The last row of the output at these three
columns will always be the same: 1 1 0.0000000. This is because we always have n-1 edges for n
points. Hence, this is done to ’complete’ the data.frame that is returned.

Examples

artifical data
set.seed(1984)
n <- 15
c1 <- data.frame(x = rnorm(n, -0.2, sd = 0.2), y = rnorm(n, -2, sd = 0.2))
c2 <- data.frame(x = rnorm(n, -1.1, sd = 0.15), y = rnorm(n, -2, sd = 0.3))
d <- rbind(c1, c2)
d <- as.data.frame(d)

MST:
out <- ComputeMST(d)
out

plot.MST Plot method for ’MST’ objects

Description

Plots a 2D Minimum Spanning Tree (MST) by producing a scatter plot with segments using the
generic function plot.

Usage

S3 method for class 'MST'
plot(x, ..., V1 = 1, V2 = 2, col.pts = "black", col.segts = "black", lty = 3)

Arguments

x a MST class object returned by the ComputeMST function.

... further graphical parameters.

V1 the numeric position or the name of the column to be used as the x coordinates
of the points in the plot.

V2 the numeric position or the name of the column to be used as the y coordinates
of the points in the plot.

col.pts color of the points (vertices/nodes) in the plot.

plotMST3D 5

col.segts color of the segments (edges) in the plot.

lty line type. An integer or name: 0 = "blank", 1 = "solid", 2 = "dashed", 3 =
"dotted", 4 = "dotdash", 5 = "longdash", 6 = "twodash". The default for
'MST' objects is "dotted".

Examples

2D artifical data
set.seed(1984)
n <- 15
c1 <- data.frame(x = rnorm(n, -0.2, sd = 0.2), y = rnorm(n, -2, sd = 0.2))
c2 <- data.frame(x = rnorm(n, -1.1, sd = 0.15), y = rnorm(n, -2, sd = 0.3))
c3 <- c(0.55, -2.4)
d <- rbind(c1, c2, c3)
d <- as.data.frame(d)

MST:
out <- ComputeMST(d)
out

2D plot:
plot(out)

using different parameters
plot(out, col.pts = "blue", col.segts = "red", lty = 2)

plotMST3D 3D Minimum Spanning Tree Plot

Description

Plots a 3D MST by producing a point cloud with segments as a ’scatterplot3d’ graphic.

Usage

plotMST3D(
tree,
x = 1,
y = 2,
z = 3,
col.pts = "black",
col.segts = "black",
angle = 40,
...

)

6 stat_MST

Arguments

tree a MST class object returned by the ComputeMST() function.

x the numeric position or the name of the column to be used as the x coordinates
of points in the plot.

y the numeric position or the name of the column to be used as the y coordinates
of points in the plot.

z the numeric position or the name of the column to be used as the z coordinates
of points in the plot.

col.pts color of points (vertices/nodes) in the plot.

col.segts color of segments (edges) in the plot.

angle angle between x and y axis (Attention: result depends on scaling).

... further graphical parameters.

Examples

3D artificial data:
n1 = 12
n2 = 22
n3 = 7
n = n1 + n2 + n3
set.seed(1984)

mean_vector <- sample(seq(1, 10, by = 2), 3)
sd_vector <- sample(seq(0.01, 0.8, by = 0.01), 3)
c1 <- matrix(rnorm(n1*3, mean = mean_vector[1], sd = .3), n1, 3)
c2 <- matrix(rnorm(n2*3, mean = mean_vector[2], sd = .5), n2, 3)
c3 <- matrix(rnorm(n3*3, mean = mean_vector[3], sd = 1), n3, 3)
d<-rbind(c1, c2, c3)

MST:
out <- ComputeMST(d)

3D PLOT:
plotMST3D(out)

stat_MST Euclidean Minimum Spanning Tree Stat Function

Description

A Stat extension for ’ggplot2’ to plot a 2D MST by making a scatter plot with segments.

stat_MST uses the information returned by ComputeMST for producing a 2D Minimum Spanning
Tree plot with ’ggplot2’ and should be combined with geom_point().

stat_MST 7

Usage

stat_MST(
mapping = NULL,
data = NULL,
geom = "segment",
position = "identity",
na.rm = FALSE,
linetype = "dotted",
show.legend = NA,
inherit.aes = TRUE,
...

)

Arguments

mapping The aesthetic mapping, usually constructed with aes or aes_. The required
aesthetics are x, y, from, and to. Those are columns of the mst object returned
by ComputeMST.

data a mst class object returned by the ComputeMST function.

geom The geometric object to display the data. The default value is "segment" in
order to produce the edges between the vertices.

position The position adjustment to use for overlapping points on this layer

na.rm a logical value indicating whether NA values should be stripped before the com-
putation proceeds.

linetype an integer or name: 0 = "blank", 1 = "solid", 2 = "dashed", 3 = "dotted", 4
= "dotdash", 5 = "longdash", 6 = "twodash". The default for 'MST' objects
is "dotted".

show.legend logical. Should this layer be included in the legends? NA, the default, includes if
any aesthetics are mapped. FALSE never includes, and TRUE always includes.

inherit.aes If FALSE, overrides the default aesthetics, rather than combining with them.
This is most useful for helper functions that define both data and aesthetics and
shouldn’t inherit behaviour from the default plot specification, e.g. borders.

... other arguments passed on to layer. This can include aesthetics whose values
you want to set, not map. See layer for more details.

Computed variables

x x coordinates of the MST start points

y y coordinates of the MST start points

xend x coordinates of the MST end points

yend y coordinates of the MST end points

8 stat_MST

Examples

2D artificial data:
set.seed(1984)
n <- 15
c1 <- data.frame(x = rnorm(n, -0.2, sd = 0.2), y = rnorm(n, -2, sd = 0.2))
c2 <- data.frame(x = rnorm(n, -1.1, sd = 0.15), y = rnorm(n, -2, sd = 0.3))
d <- rbind(c1, c2)
d <- as.data.frame(d)

MST:
out <- ComputeMST(d)

#1) simple plot
library(ggplot2)
ggplot(data = out,

aes(x = x, y = y,
from = from, to = to))+
geom_point()+
stat_MST(colour = "red", linetype = 2)

#2) curved edges
library(ggplot2)
ggplot(data = out,

aes(x = x, y = y,
from = from, to = to))+
geom_point()+
stat_MST(geom = "curve", colour = "red", linetype = 2)

Not run:
plotting MST on maps:
library(ggmap)

#3) honeymoon cruise example
define ports
df.port_locations <- data.frame(location = c("Civitavecchia, Italy",

"Genova, Italy",
"Marseille, France",
"Barcelona, Spain",
"Tunis, Tunisia",
"Palermo, Italy"),

stringsAsFactors = FALSE)

get latitude and longitude
geo.port_locations <- geocode(df.port_locations$location, source = "dsk")

combine data
df.port_locations <- cbind(df.port_locations, geo.port_locations)

MST
out <- ComputeMST(df.port_locations[,2:3])
plot(out) #just to check

stat_MST 9

Plot
#' map <- c(left = -8, bottom = 32, right = 20, top = 47)

get_stamenmap(map, zoom = 5) %>% ggmap()+
stat_MST(data = out,

aes(x = lon, y = lat, from = from, to = to),
colour = "red", linetype = 2)+

geom_point(data = out, aes(x = lon, y = lat), size = 3)

#4) World Map travels:
library(ggplot2)
library(ggmaps)

country_coords_txt <- "
1 3.00000 28.00000 Algeria
2 54.00000 24.00000 UAE
3 139.75309 35.68536 Japan
4 45.00000 25.00000 'Saudi Arabia'
5 9.00000 34.00000 Tunisia
6 5.75000 52.50000 Netherlands
7 103.80000 1.36667 Singapore
8 124.10000 -8.36667 Korea
9 -2.69531 54.75844 UK
10 34.91155 39.05901 Turkey
11 -113.64258 60.10867 Canada
12 77.00000 20.00000 India
13 25.00000 46.00000 Romania
14 135.00000 -25.00000 Australia
15 10.00000 62.00000 Norway"

d <- read.delim(text = country_coords_txt, header = FALSE,
quote = "'", sep = "", col.names = c('id', 'lon', 'lat', 'name'))

out <- ComputeMST(d[,2:3])

country_shapes <- geom_polygon(aes(x = long, y = lat, group = group),
data = map_data('world'), fill = "#CECECE", color = "#515151",
size = 0.15)

ggplot()+ country_shapes+
stat_MST(geomdata = out, aes(x = lon, y = lat, from = from, to = to),

colour = "red", linetype = 2)+
geom_point(data = out, aes(x = lon, y = lat), size=2)

End(Not run)

Index

aes, 7
aes_, 7

borders, 7

ComputeMST, 2, 3, 4, 6, 7

emstreeR (emstreeR-package), 2
emstreeR-package, 2

layer, 7

plot, 2, 4
plot.MST, 2, 4
plotMST3D, 2, 5

scale, 3
stat_MST, 2, 4, 6

10

	emstreeR-package
	ComputeMST
	plot.MST
	plotMST3D
	stat_MST
	Index

