Package 'endogeneity'

February 3, 2022

Type Package

Title Recursive Two-Stage Models to Address Endogeneity

Version 2.0.1

Date 2022-02-02

Author Jing Peng

Maintainer Jing Peng <jing.peng@uconn.edu>

Description Various recursive two-stage models to address the endogeneity issue of treatment variables in observational study or mediators in experiments. The details of the models are discussed in Peng (2022) <doi:10.2139/ssrn.3494856>.

License GPL (>= 3)

Encoding UTF-8

Imports pbivnorm, maxLik, statmod, MASS

RoxygenNote 7.1.2

NeedsCompilation no

Repository CRAN

Date/Publication 2022-02-03 09:10:05 UTC

R topics documented:

ilinear	. 2
iprobit	. 3
iprobit_latent	. 4
iprobit_partial	. 6
ndogeneity	. 8
ln	. 9
ln_linear	. 10
ln_probit	. 12
robit_linear	. 13
robit_linear_latent	. 15
robit_linear_partial	. 16

19

Index

bilinear

Description

Estimate two linear models with bivariate normally distributed error terms. This command still works if the first-stage dependent variable is not a regressor in the second stage. The identification of a recursive bilinear model requires an instrument for the first dependent variable.

Usage

```
bilinear(
  form1,
  form2,
  data = NULL,
  par = NULL,
  method = "BFGS",
  verbose = 0,
  accu = 10000
)
```

Arguments

form1	Formula for the first linear model
form2	Formula for the second linear model
data	Input data, a data frame
par	Starting values for estimates
method	Optimization algorithm. Default is BFGS
verbose	Level of output during estimation. Lowest is 0.
асси	1e12 for low accuracy; 1e7 for moderate accuracy; 10.0 for extremely high ac- curacy. See optim

Value

A list containing the results of the estimated model

References

Peng, Jing. (2022) Identification of Causal Mechanisms from Randomized Experiments: A Framework for Endogenous Mediation Analysis. Information Systems Research (Forthcoming), Available at SSRN: https://ssrn.com/abstract=3494856

See Also

```
Other endogeneity: biprobit_latent(), biprobit_partial(), biprobit(), pln_linear(),
pln_probit(), probit_linear_latent(), probit_linear_partial(), probit_linear()
```

biprobit

Examples

```
library(MASS)
N = 2000
rho = -0.5
set.seed(1)
x = rbinom(N, 1, 0.5)
z = rnorm(N)
e = mvrnorm(N, mu=c(0,0), Sigma=matrix(c(1,rho,rho,1), nrow=2))
e1 = e[,1]
e2 = e[,2]
y1 = -1 + x + z + e1
y2 = -1 + x + y1 + e2
est = bilinear(y1~x+z, y2~x+y1)
est$estimates
```

```
biprobit
```

Recusrive Bivariate Probit Model

Description

Estimate two probit models with bivariate normally distributed error terms. This command still works if the first-stage dependent variable is not a regressor in the second stage.

Usage

```
biprobit(
  form1,
  form2,
  data = NULL,
  par = NULL,
  method = "BFGS",
  verbose = 0,
  accu = 10000
)
```

Arguments

form1	Formula for the first probit model
form2	Formula for the second probit model
data	Input data, a data frame
par	Starting values for estimates
method	Optimization algorithm. Default is BFGS
verbose	Level of output during estimation. Lowest is 0.

accu 1e12 for low accuracy; 1e7 for moderate accuracy; 10.0 for extremely high accuracy. See optim

Value

A list containing the results of the estimated model

References

Peng, Jing. (2022) Identification of Causal Mechanisms from Randomized Experiments: A Framework for Endogenous Mediation Analysis. Information Systems Research (Forthcoming), Available at SSRN: https://ssrn.com/abstract=3494856

See Also

Other endogeneity: bilinear(), biprobit_latent(), biprobit_partial(), pln_linear(), pln_probit(), probit_linear_latent(), probit_linear_partial(), probit_linear()

Examples

```
library(MASS)
N = 2000
rho = -0.5
set.seed(1)
x = rbinom(N, 1, 0.5)
z = rnorm(N)
e = mvrnorm(N, mu=c(0,0), Sigma=matrix(c(1,rho,rho,1), nrow=2))
e1 = e[,1]
e2 = e[,2]
y1 = as.numeric(1 + x + z + e1 > 0)
y2 = as.numeric(1 + x + z + y1 + e2 > 0)
est = biprobit(y1~x+z, y2~x+z+y1)
est$estimates
```

biprobit_latent Recursive Bivariate Probit Model with Latent First Stage

Description

Estimate two probit models with bivariate normally distributed error terms, in which the dependent variable of the first stage model is unobserved. The identification of this model is weak if the first-stage does not include regressors that are good predictors of the first-stage dependent variable.

biprobit_latent

Usage

```
biprobit_latent(
   form1,
   form2,
   data = NULL,
   EM = FALSE,
   par = NULL,
   method = "BFGS",
   verbose = 0,
   accu = 10000,
   maxIter = 500,
   tol = 1e-05,
   tol_LL = 1e-06
)
```

Arguments

form1	Formula for the first probit model, in which the dependent variable is unobserved. Use a formula like $\sim x$ to avoid specifying the dependent variable.
form2	Formula for the second probit model, the latent dependent variable of the first stage is automatically added as a regressor in this model
data	Input data, a data frame
EM	Whether to maximize likelihood use the Expectation-Maximization (EM) algorithm.
par	Starting values for estimates
method	Optimization algorithm. Default is BFGS
verbose	Level of output during estimation. Lowest is 0.
асси	1e12 for low accuracy; 1e7 for moderate accuracy; 10.0 for extremely high accuracy. See optim
maxIter	max iterations for EM algorithm
tol	tolerance for convergence of EM algorithm
tol_LL	tolerance for convergence of likelihood

Value

A list containing the results of the estimated model

References

Peng, Jing. (2022) Identification of Causal Mechanisms from Randomized Experiments: A Framework for Endogenous Mediation Analysis. Information Systems Research (Forthcoming), Available at SSRN: https://ssrn.com/abstract=3494856

See Also

```
Other endogeneity: bilinear(), biprobit_partial(), biprobit(), pln_linear(), pln_probit(),
probit_linear_latent(), probit_linear_partial(), probit_linear()
```

Examples

```
library(MASS)
N = 2000
rho = -0.5
set.seed(1)
x = rbinom(N, 1, 0.5)
z = rnorm(N)
e = mvrnorm(N, mu=c(0,0), Sigma=matrix(c(1,rho,rho,1), nrow=2))
e1 = e[,1]
e2 = e[,2]
y1 = as.numeric(1 + x + z + e1 > 0)
y2 = as.numeric(1 + x + z + y1 + e2 > 0)
est = biprobit(y1~x+z, y2~x+z+y1)
est$estimates
est_latent = biprobit_latent(~x+z, y2~x+z)
est_latent$estimates
```

biprobit_partial Recursive Bivariate Probit Model with Partially Observed First Stage

Description

Estimate two probit models with bivariate normally distributed error terms, in which the dependent variable of the first stage model is partially observed (or unobserved)

Usage

```
biprobit_partial(
  form1,
  form2,
  data = NULL,
  EM = FALSE,
  par = NULL,
  method = "BFGS",
  verbose = 0,
  accu = 10000,
  maxIter = 500,
  tol = 1e-05,
  tol_LL = 1e-06
)
```

biprobit_partial

Arguments

Formula for the first probit model, in which the dependent variable is partially observed.
Formula for the second probit model, the partially observed dependent variable of the first stage is automatically added as a regressor in this model (do not add manually)
Input data, a data frame
Whether to maximize likelihood use the Expectation-Maximization (EM) algorithm.
Starting values for estimates
Optimization algorithm. Default is BFGS
Level of output during estimation. Lowest is 0.
1e12 for low accuracy; 1e7 for moderate accuracy; 10.0 for extremely high accuracy. See optim
max iterations for EM algorithm
tolerance for convergence of EM algorithm
tolerance for convergence of likelihood

Value

A list containing the results of the estimated model

References

Peng, Jing. (2022) Identification of Causal Mechanisms from Randomized Experiments: A Framework for Endogenous Mediation Analysis. Information Systems Research (Forthcoming), Available at SSRN: https://ssrn.com/abstract=3494856

See Also

```
Other endogeneity: bilinear(), biprobit_latent(), biprobit(), pln_linear(), pln_probit(),
probit_linear_latent(), probit_linear_partial(), probit_linear()
```

Examples

```
library(MASS)
N = 5000
rho = -0.5
set.seed(1)
x = rbinom(N, 1, 0.5)
z = rnorm(N)
e = mvrnorm(N, mu=c(0,0), Sigma=matrix(c(1,rho,rho,1), nrow=2))
e1 = e[,1]
e2 = e[,2]
```

```
y1 = as.numeric(1 + x + 3*z + e1 > 0)
y2 = as.numeric(1 + x + z + y1 + e2 > 0)
est = biprobit(y1~x+z, y2~x+z+y1)
est$estimates
observed_pct = 0.2
y1p = y1
y1p[sample(N, N*(1-observed_pct))] = NA
est_partial = biprobit_partial(y1p~x+z, y2~x+z)
est_partial$estimates
```

```
endogeneity
```

Recursive two-stage models to address endogeneity

Description

This package supports various recursive two-stage models to address the endogeneity issue. The details of the implemented models are discussed in Peng (2022). In a recursive two-stage model, the dependent variable of the first stage is an endogenous regressor in the second stage. The dependent variable of the second stage is the outcome of interest. The endogeneity is captured by the correlation in the error terms of the two stages.

Recursive two-stage models can be used to address the endogeneity of treatment variables in observational study and the endogeneity of mediators in experiments.

The first-stage supports linear model, probit model, and Poisson lognormal model. The secondstage supports linear and probit models. These models can be used to address the endogeneity of continuous, binary, and count variables. When the endogenous variable is binary, it can be unobserved or partially unobserved, but the identification can be weak.

Functions

bilinear: recursive bivariate linear model

biprobit: recursive bivariate probit model

biprobit_latent: recursive bivariate probit model with latent first stage

biprobit_partial: recursive bivariate probit model with partially observed first stage

probit_linear: recursive probit-linear or linear-probit model

probit_linear_latent: recursive probit-linear model with latent first stage

probit_linear_partial: recursive probit-linear model with partially observed first stage

pln: Poisson lognormal (PLN) model

pln_linear: recursive PLN-linear model

pln_probit: recursive PLN-probit model

References

Peng, Jing. (2022) Identification of Causal Mechanisms from Randomized Experiments: A Framework for Endogenous Mediation Analysis. Information Systems Research (Forthcoming), Available at SSRN: https://ssrn.com/abstract=3494856

pln

Poisson Lognormal Model

Description

Estimate a Poisson model with a log-normally distributed heterogeneity term. Also referred to as Poisson-Normal model.

Usage

```
pln(
    form,
    data = NULL,
    par = NULL,
    method = "BFGS",
    init = c("zero", "unif", "norm", "default")[4],
    H = 20,
    verbose = 0,
    accu = 10000
)
```

Arguments

form	Formula
data	Input data, a data frame
par	Starting values for estimates
method	Optimization algorithm.
init	Initialization method
Н	Number of quadrature points

pln_linear

verbose	Level of output during estimation. Lowest is 0.
accu	1e12 for low accuracy; 1e7 for moderate accuracy; 10.0 for extremely high ac-
	curacy. See optim

Value

A list containing the results of the estimated model

References

Peng, Jing. (2022) Identification of Causal Mechanisms from Randomized Experiments: A Framework for Endogenous Mediation Analysis. Information Systems Research (Forthcoming), Available at SSRN: https://ssrn.com/abstract=3494856

Examples

```
library(MASS)
N = 2000
set.seed(1)
# Works well when the variance of the normal term is not overly large
# When the variance is very large, it tends to be underestimated
x = rbinom(N, 1, 0.5)
z = rnorm(N)
y = rpois(N, exp(-1 + x + z + 0.5 * rnorm(N)))
est = pln(y~x+z)
est$estimates
```

pln_linear

Recursive PLN-Linear Model

Description

Estimate a Poisson Lognormal model (first-stage) and a linear model (second-stage) with bivariate normally distributed error terms. This command still works if the first-stage dependent variable is not a regressor in the second stage.

Usage

```
pln_linear(
  form_pln,
  form_linear,
  data = NULL,
  par = NULL,
  method = "BFGS",
  init = c("zero", "unif", "norm", "default")[4],
  H = 20,
  verbose = 0,
  accu = 10000
)
```

pln_linear

Arguments

form_pln	Formula for the first-stage Poisson lognormal model
form_linear	Formula for the second-stage linear model
data	Input data, a data frame
par	Starting values for estimates
method	Optimization algorithm.
init	Initialization method
Н	Number of quadrature points
verbose	Level of output during estimation. Lowest is 0.
accu	1e12 for low accuracy; 1e7 for moderate accuracy; 10.0 for extremely high accuracy. See optim

Value

A list containing the results of the estimated model

References

Peng, Jing. (2022) Identification of Causal Mechanisms from Randomized Experiments: A Framework for Endogenous Mediation Analysis. Information Systems Research (Forthcoming), Available at SSRN: https://ssrn.com/abstract=3494856

See Also

Other endogeneity: bilinear(), biprobit_latent(), biprobit_partial(), biprobit(), pln_probit(), probit_linear_latent(), probit_linear_partial(), probit_linear()

Examples

```
library(MASS)
N = 1000
rho = -0.5
set.seed(1)
x = rbinom(N, 1, 0.5)
z = rnorm(N)
e = mvrnorm(N, mu=c(0,0), Sigma=matrix(c(1,rho,rho,1), nrow=2))
e1 = e[,1]
e2 = e[,2]
y1 = rpois(N, exp(1 + x + z + e1))
y2 = 1 + x + y1 + e2
est = pln_linear(y1~x+z, y2~x+y1)
est$estimates
```

pln_probit

Description

Estimate a Poisson Lognormal model (first-stage) and a probit model (second-stage) whose error terms are bivariate normally distributed. This model still works if the first-stage dependent variable is not a regressor in the second stage.

Usage

```
pln_probit(
  form_pln,
  form_probit,
  data = NULL,
  par = NULL,
  method = "BFGS",
   init = c("zero", "unif", "norm", "default")[4],
  H = 20,
  verbose = 0,
  accu = 10000
)
```

Arguments

form_pln	Formula for the first-stage Poisson lognormal model
form_probit	Formula for the second-stage probit model
data	Input data, a data frame
par	Starting values for estimates
method	Optimization algorithm. Without gradient, NM is much faster than BFGS
init	Initialization method
Н	Number of quadrature points
verbose	Level of output during estimation. Lowest is 0.
асси	1e12 for low accuracy; 1e7 for moderate accuracy; 10.0 for extremely high accuracy. See optim

Value

A list containing the results of the estimated model

References

Peng, Jing. (2022) Identification of Causal Mechanisms from Randomized Experiments: A Framework for Endogenous Mediation Analysis. Information Systems Research (Forthcoming), Available at SSRN: https://ssrn.com/abstract=3494856

probit_linear

See Also

```
Other endogeneity: bilinear(), biprobit_latent(), biprobit_partial(), biprobit(), pln_linear(),
probit_linear_latent(), probit_linear_partial(), probit_linear()
```

Examples

```
library(MASS)
N = 1000
rho = -0.5
set.seed(1)
x = rbinom(N, 1, 0.5)
z = rnorm(N)
e = mvrnorm(N, mu=c(0,0), Sigma=matrix(c(1,rho,rho,1), nrow=2))
e1 = e[,1]
e2 = e[,2]
y1 = rpois(N, exp(-1 + x + z + e1))
y2 = as.numeric(1 + x + z + log(1+y1) + e2 > 0)
est = pln_probit(y1~x+z, y2~x+z+log(1+y1))
est$estimates
```

```
probit_linear Recursive Probit-Linear Model
```

Description

Estimate probit and linear models with bivariate normally distributed error terms. This command supports two models with opposite first and second stages.

1) Recursive Probit-Linear: the endogenous treatment effect model

2) Recursive Linear-Probit: the ivprobit model. The identification of this model requires an instrument.

This command still works if the first-stage dependent variable is not a regressor in the second stage.

Usage

```
probit_linear(
   form_probit,
   form_linear,
   data = NULL,
   par = NULL,
   method = "BFGS",
   init = c("zero", "unif", "norm", "default")[4],
   verbose = 0,
   accu = 10000
)
```

Arguments

form_probit	Formula for the probit model
form_linear	Formula for the linear model
data	Input data, a data frame
par	Starting values for estimates
method	Optimization algorithm. Default is BFGS
init	Initialization method
verbose	Level of output during estimation. Lowest is 0.
accu	1e12 for low accuracy; 1e7 for moderate accuracy; 10.0 for extremely high accuracy. See optim

Value

A list containing the results of the estimated model

References

Peng, Jing. (2022) Identification of Causal Mechanisms from Randomized Experiments: A Framework for Endogenous Mediation Analysis. Information Systems Research (Forthcoming), Available at SSRN: https://ssrn.com/abstract=3494856

See Also

Other endogeneity: bilinear(), biprobit_latent(), biprobit_partial(), biprobit(), pln_linear(), pln_probit(), probit_linear_latent(), probit_linear_partial()

Examples

```
library(MASS)
N = 2000
rho = -0.5
set.seed(1)
x = rbinom(N, 1, 0.5)
z = rnorm(N)
e = mvrnorm(N, mu=c(0,0), Sigma=matrix(c(1,rho,rho,1), nrow=2))
e1 = e[,1]
e2 = e[,2]
y1 = as.numeric(1 + x + z + e1 > 0)
y2 = 1 + x + z + y1 + e2
est = probit_linear(y1~x+z, y2~x+z+y1)
est$estimates
```

probit_linear_latent Recursive Probit-Linear Model with Latent First Stage

Description

The first stage is a probit model with unobserved dependent variable, the second stage is a linear model that includes the first-stage dependent variable as a regressor.

Usage

```
probit_linear_latent(
   form_probit,
   form_linear,
   data = NULL,
   EM = TRUE,
   par = NULL,
   method = "BFGS",
   verbose = 0,
   accu = 10000,
   maxIter = 500,
   tol = 1e-06,
   tol_LL = 1e-08
)
```

Arguments

form_probit	Formula for the first-stage probit model, in which the dependent variable is latent
form_linear	Formula for the second stage linear model. The latent dependent variable of the first stage is automatically added as a regressor in this model
data	Input data, a data frame
EM	Whether to maximize likelihood use the Expectation-Maximization algorithm. EM is slower but more robust
par	Starting values for estimates
method	Optimization algorithm. Default is BFGS
verbose	Level of output during estimation. Lowest is 0.
асси	1e12 for low accuracy; 1e7 for moderate accuracy; 10.0 for extremely high accuracy. See optim
maxIter	max iterations for EM algorithm
tol	tolerance for convergence of EM algorithm
tol_LL	tolerance for convergence of likelihood

Value

A list containing the results of the estimated model

References

Peng, Jing. (2022) Identification of Causal Mechanisms from Randomized Experiments: A Framework for Endogenous Mediation Analysis. Information Systems Research (Forthcoming), Available at SSRN: https://ssrn.com/abstract=3494856

See Also

Other endogeneity: bilinear(), biprobit_latent(), biprobit_partial(), biprobit(), pln_linear(), pln_probit(), probit_linear_partial(), probit_linear()

Examples

```
library(MASS)
N = 2000
rho = -0.5
set.seed(1)
x = rbinom(N, 1, 0.5)
z = rnorm(N)
e = mvrnorm(N, mu=c(0,0), Sigma=matrix(c(1,rho,rho,1), nrow=2))
e1 = e[,1]
e2 = e[,2]
y1 = as.numeric(1 + x + z + e1 > 0)
y2 = 1 + x + z + y1 + e2
est = probit_linear(y1~x+z, y2~x+z+y1)
est$estimates
est_latent = probit_linear_latent(~x+z, y2~x+z)
est_latent$estimates
```

probit_linear_partial Recursive Probit-Linear Model with Partially Observed First Stage

Description

The first stage is a probit model with partially observed (or unobserved) dependent variable, the second stage is a linear model that includes the first-stage dependent variable as a regressor.

Usage

```
probit_linear_partial(
   form_probit,
   form_linear,
   data = NULL,
   EM = TRUE,
```

```
par = NULL,
method = "BFGS",
verbose = 0,
accu = 10000,
maxIter = 500,
tol = 1e-06,
tol_LL = 1e-08
```

Arguments

form_probit	Formula for the first-stage probit model, in which the dependent variable is par- tially observed
form_linear	Formula for the second stage linear model. The partially observed dependent variable of the first stage is automatically added as a regressor in this model (do not add manually)
data	Input data, a data frame
EM	Whether to maximize likelihood use the Expectation-Maximization algorithm. EM is slower but more robust
par	Starting values for estimates
method	Optimization algorithm. Default is BFGS
verbose	Level of output during estimation. Lowest is 0.
accu	1e12 for low accuracy; 1e7 for moderate accuracy; 10.0 for extremely high accuracy. See optim
maxIter	max iterations for EM algorithm
tol	tolerance for convergence of EM algorithm
tol_LL	tolerance for convergence of likelihood

Value

A list containing the results of the estimated model

References

Peng, Jing. (2022) Identification of Causal Mechanisms from Randomized Experiments: A Framework for Endogenous Mediation Analysis. Information Systems Research (Forthcoming), Available at SSRN: https://ssrn.com/abstract=3494856

See Also

```
Other endogeneity: bilinear(), biprobit_latent(), biprobit_partial(), biprobit(), pln_linear(),
pln_probit(), probit_linear_latent(), probit_linear()
```

Examples

```
library(MASS)
N = 1000
rho = -0.5
set.seed(1)
x = rbinom(N, 1, 0.5)
z = rnorm(N)
e = mvrnorm(N, mu=c(0,0), Sigma=matrix(c(1,rho,rho,1), nrow=2))
e1 = e[,1]
e2 = e[,2]
y1 = as.numeric(1 + x + z + e1 > 0)
y^2 = 1 + x + z + y^1 + e^2
est = probit_linear(y1~x+z, y2~x+z+y1)
est$estimates
observed_pct = 0.2
y1p = y1
y1p[sample(N, N*(1-observed_pct))] = NA
est_latent = probit_linear_partial(y1p~x+z, y2~x+z)
est_latent$estimates
```

Index

* endogeneity bilinear, 2 biprobit, 3 biprobit_latent, 4 biprobit_partial, 6 pln_linear, 10 pln_probit, 12 probit_linear_latent, 15 probit_linear_partial, 16 bilinear, 2, 4, 5, 7, 11, 13, 14, 16, 17 biprobit, 2, 3, 5, 7, 11, 13, 14, 16, 17 biprobit_latent, 2, 4, 4, 7, 11, 13, 14, 16, 17 biprobit_partial, 2, 4, 5, 6, 11, 13, 14, 16, 17 biprobit_partial, 2, 4, 5, 6, 11, 13, 14, 16, 17

endogeneity, 8