envi: Environmental Interpolation using Spatial Kernel Density Estimation

CRAN version CRAN RStudio mirror downloads license DOI

Overview

The envi package is a suite of R functions to estimate the ecological niche of a species and predict the spatial distribution of the ecological niche – a version of environmental interpolation – with spatial kernel density estimation techniques. A two group comparison (e.g., presence and absence locations of a single species) is conducted using the spatial relative risk function that is estimated using the sparr package. Internal cross-validation and basic visualization are also supported.

Installation

To install the release version from CRAN:

install.packages("envi")

To install the development version from GitHub:

devtools::install_github("Waller-SUSAN/envi")

Available functions

Function Description
lrren Main function. Estimate an ecological niche using the spatial relative risk function and predict its location in geographic space.
perlrren Sensitivity analysis for lrren whereby observation locations are spatially perturbed (“jittered”) with specified radii, iteratively.
plot_obs Display multiple plots of the estimated ecological niche from lrren output.
plot_predict Display multiple plots of the predicted spatial distribution from lrren output.
plot_cv Display multiple plots of internal k-fold cross-validation diagnostics from lrren output.
plot_perturb Display multiple plots of output from perlrren including prediced spatial distribution of the summary statistics.
div_plot Called within plot_obs, plot_predict, and plot_perturb, provides functionality for basic visualization of surfaces with diverging color palettes.
seq_plot Called within plot_perturb, provides functionality for basic visualization of surfaces with sequential color palettes.
pval_correct Called within lrren and perlrren, calculates various multiple testing corrections for the alpha level.

Authors

See also the list of contributors who participated in this package, including:

Usage

For the lrren() function

set.seed(1234) # for reproducibility

# ------------------ #
# Necessary packages #
# ------------------ #

library(envi)
library(raster)
library(spatstat.data)
library(spatstat.geom)
library(spatstat.random)

# -------------- #
# Prepare inputs #
# -------------- #

# Using the 'bei' and 'bei.extra' data within {spatstat.data}

# Environmental Covariates
elev <- spatstat.data::bei.extra[[1]]
grad <- spatstat.data::bei.extra[[2]]
elev$v <- scale(elev)
grad$v <- scale(grad)
elev_raster <- raster::raster(elev)
grad_raster <- raster::raster(grad)

# Presence data
presence <- spatstat.data::bei
spatstat.geom::marks(presence) <- data.frame("presence" = rep(1, presence$n),
                                        "lon" = presence$x,
                                        "lat" = presence$y)
spatstat.geom::marks(presence)$elev <- elev[presence]
spatstat.geom::marks(presence)$grad <- grad[presence]

# (Pseudo-)Absence data
absence <- spatstat.random::rpoispp(0.008, win = elev)
spatstat.geom::marks(absence) <- data.frame("presence" = rep(0, absence$n),
                                            "lon" = absence$x,
                                            "lat" = absence$y)
spatstat.geom::marks(absence)$elev <- elev[absence]
spatstat.geom::marks(absence)$grad <- grad[absence]

# Combine
obs_locs <- spatstat.geom::superimpose(presence, absence, check = FALSE)
obs_locs <- spatstat.geom::marks(obs_locs)
obs_locs$id <- seq(1, nrow(obs_locs), 1)
obs_locs <- obs_locs[ , c(6, 2, 3, 1, 4, 5)]

# Prediction Data
predict_locs <- data.frame(raster::rasterToPoints(elev_raster))
predict_locs$layer2 <- raster::extract(grad_raster, predict_locs[, 1:2])

# ----------- #
# Run lrren() #
# ----------- #

test1 <- envi::lrren(obs_locs = obs_locs,
                     predict_locs = predict_locs,
                     predict = TRUE,
                     verbose = TRUE,
                     cv = TRUE)
              
# -------------- #
# Run plot_obs() #
# -------------- #

envi::plot_obs(test1)

# ------------------ #
# Run plot_predict() #
# ------------------ #

envi::plot_predict(test1,
                   cref0 = "EPSG:5472",
                   cref1 = "EPSG:4326")

# ------------- #
# Run plot_cv() #
# ------------- #

envi::plot_cv(test1)

# -------------------------------------- #
# Run lrren() with Bonferroni correction #
# -------------------------------------- #

test2 <- envi::lrren(obs_locs = obs_locs,
                     predict_locs = predict_locs,
                     predict = TRUE,
                     p_correct = "Bonferroni")

# Note: Only showing third plot
envi::plot_obs(test2)

# Note: Only showing second plot
envi::plot_predict(test2,
                   cref0 = "EPSG:5472",
                   cref1 = "EPSG:4326")

# Note: plot_cv() will display the same results because cross-validation only performed for the log relative risk estimate

For the perlrren() function

set.seed(1234) # for reproducibility

# ------------------ #
# Necessary packages #
# ------------------ #

library(envi)
library(raster)
library(spatstat.data)
library(spatstat.geom)
library(spatstat.random)

# -------------- #
# Prepare inputs #
# -------------- #

# Using the 'bei' and 'bei.extra' data within {spatstat.data}

# Scale environmental covariates
ims <- spatstat.data::bei.extra
ims[[1]]$v <- scale(ims[[1]]$v)
ims[[2]]$v <- scale(ims[[2]]$v)

# Presence data
presence <- spatstat.data::bei
spatstat.geom::marks(presence) <- data.frame("presence" = rep(1, presence$n),
                                             "lon" = presence$x,
                                             "lat" = presence$y)

# (Pseudo-)Absence data
absence <- spatstat.random::rpoispp(0.008, win = ims[[1]])
spatstat.geom::marks(absence) <- data.frame("presence" = rep(0, absence$n),
                                            "lon" = absence$x,
                                            "lat" = absence$y)

# Combine and create 'id' and 'levels' features
obs_locs <- spatstat.geom::superimpose(presence, absence, check = FALSE)
spatstat.geom::marks(obs_locs)$id <- seq(1, obs_locs$n, 1)
spatstat.geom::marks(obs_locs)$levels <- as.factor(stats::rpois(obs_locs$n, lambda = 0.05))
spatstat.geom::marks(obs_locs) <- spatstat.geom::marks(obs_locs)[ , c(4, 2, 3, 1, 5)]

# -------------- #
# Run perlrren() #
# -------------- #

# Uncertainty in observation locations
## Most observations within 10 meters
## Some observations within 100 meters
## Few observations within 500 meters

test3 <- envi::perlrren(obs_ppp = obs_locs,
                        covariates = ims,
                        radii = c(10,100,500),
                        verbose = FALSE, # may not be availabe if parallel = TRUE
                        parallel = TRUE,
                        n_sim = 100)
                 
# ------------------ #
# Run plot_perturb() #
# ------------------ #

envi::plot_perturb(test3,
                   cref0 = "EPSG:5472",
                   cref1 = "EPSG:4326",
                   cov_labs = c("elev", "grad"))