
Package ‘estudy2’
November 15, 2021

Type Package

Title An Implementation of Parametric and Nonparametric Event Study

Version 0.10.0

Date 2021-11-15

Description An implementation of a most commonly used event study methodology,
including both parametric and nonparametric tests. It contains variety
aspects of the rate of return estimation (the core calculation is done in
C++), as well as three classical for event study market models: mean
adjusted returns, market adjusted returns and single-index market models.
There are 6 parametric and 6 nonparametric tests provided, which examine
cross-sectional daily abnormal return (see the documentation of the
functions for more information). Parametric tests include tests proposed by
Brown and Warner (1980) <DOI:10.1016/0304-405X(80)90002-1>, Brown and Warner
(1985) <DOI:10.1016/0304-405X(85)90042-X>, Boehmer et al. (1991)
<DOI:10.1016/0304-405X(91)90032-F>, Patell (1976) <DOI:10.2307/2490543>, and
Lamb (1995) <DOI:10.2307/253695>. Nonparametric tests covered in estudy2 are
tests described in Corrado and Zivney (1992) <DOI:10.2307/2331331>,
McConnell and Muscarella (1985) <DOI:10.1016/0304-405X(85)90006-6>,
Boehmer et al. (1991) <DOI:10.1016/0304-405X(91)90032-F>, Cowan (1992)
<DOI:10.1007/BF00939016>, Corrado (1989) <DOI:10.1016/0304-405X(89)90064-0>,
Campbell and Wasley (1993) <DOI:10.1016/0304-405X(93)90025-7>, Savickas (2003)
<DOI:10.1111/1475-6803.00052>, Kolari and Pynnonen (2010)
<DOI:10.1093/rfs/hhq072>. Furthermore, tests for the cumulative
abnormal returns proposed by Brown and Warner (1985)
<DOI:10.1016/0304-405X(85)90042-X> and Lamb (1995) <DOI:10.2307/253695>
are included.

License GPL-3

LazyData TRUE

URL https://github.com/irudnyts/estudy2,

https://irudnyts.github.io/estudy2/

BugReports https://github.com/irudnyts/estudy2/issues

Depends R (>= 4.1)

1

https://doi.org/10.1016/0304-405X(80)90002-1
https://doi.org/10.1016/0304-405X(85)90042-X
https://doi.org/10.1016/0304-405X(91)90032-F
https://doi.org/10.2307/2490543
https://doi.org/10.2307/253695
https://doi.org/10.2307/2331331
https://doi.org/10.1016/0304-405X(85)90006-6
https://doi.org/10.1016/0304-405X(91)90032-F
https://doi.org/10.1007/BF00939016
https://doi.org/10.1016/0304-405X(89)90064-0
https://doi.org/10.1016/0304-405X(93)90025-7
https://doi.org/10.1111/1475-6803.00052
https://doi.org/10.1093/rfs/hhq072
https://doi.org/10.1016/0304-405X(85)90042-X
https://doi.org/10.2307/253695
https://github.com/irudnyts/estudy2
https://irudnyts.github.io/estudy2/
https://github.com/irudnyts/estudy2/issues

2 R topics documented:

Imports quantmod (>= 0.4.18), zoo (>= 1.8.9), matrixStats (>= 0.60.0),
Rcpp (>= 1.0.7), curl (>= 4.3.2)

LinkingTo Rcpp

RoxygenNote 7.1.1

Suggests knitr (>= 1.33), rmarkdown (>= 2.10), purrr (>= 0.3.4), shiny
(>= 1.6.0), shinyFeedback (>= 0.4.0), shinyWidgets (>= 0.6.0),
DT (>= 0.19), bslib (>= 0.2.5.1), stringr (>= 1.4.0), magrittr
(>= 2.0.1), formattable (>= 0.2.1), dplyr (>= 1.0.7)

VignetteBuilder knitr

Encoding UTF-8

NeedsCompilation yes

Author Iegor Rudnytskyi [aut, cre]

Maintainer Iegor Rudnytskyi <iegor.rudnytskyi@gmail.com>

Repository CRAN

Date/Publication 2021-11-15 12:50:07 UTC

R topics documented:
apply_market_model . 3
boehmer . 6
brown_warner_1980 . 8
brown_warner_1985 . 10
car_brown_warner_1985 . 11
car_lamb . 13
car_nonparametric_tests . 15
car_parametric_tests . 17
car_rank_test . 20
corrado_sign_test . 22
generalized_sign_test . 23
get_prices_from_tickers . 25
get_rates_from_prices . 27
lamb . 28
modified_rank_test . 30
nonparametric_tests . 32
parametric_tests . 34
patell . 36
prices . 38
prices_indx . 39
rank_test . 39
rates . 41
rates_indx . 42
returns . 42
run_app . 46
securities_returns . 46
sign_test . 47

apply_market_model 3

t_test . 48
wilcoxon_test . 50

Index 53

apply_market_model Apply a market model and return a list of returns objects.

Description

The function applies a given market model to securities’ rates of returns and returns a list of returns
objects for each security, which can be passed directly to a whole battery of tests.

Usage

apply_market_model(
rates,
regressors,
same_regressor_for_all = TRUE,
market_model = c("mean_adj", "mrkt_adj", "sim"),
estimation_method = c("ols"),
estimation_start,
estimation_end

)

Arguments

rates an object of list, data.frame, zoo containing rates of returns of securities.

regressors an object of the same class as rates containing regressors. The argument can be
omitted, if market model is mean_adj. regressors must have the same number
of components as rates except cases when the same regressor is used for all
securities.

same_regressor_for_all

logical. Should the same regressor be used for each security? The default value
is TRUE.

market_model a character indicating the market model among mean_adj, mrkt_adj, and sim.
estimation_method

a character specifying an estimation method for sim model.
estimation_start

an object of Date class giving the first date of the estimation period.

estimation_end an object of Date class giving the last date of the estimation period.

Details

The generic function is dispatched for such classes as list, data.frame, and zoo. If same_regressor_for_all
is TRUE, and regressors has the length greater than one, the first element of regressors will be
applied for each security in rates.

4 apply_market_model

Value

A list of returns objects.

References

Brown S.J., Warner J.B. Using Daily Stock Returns, The Case of Event Studies. Journal of Financial
Economics, 14:3-31, 1985.

See Also

returns

Examples

1. Mean-adjusted-returns model
Not run:
library("magrittr")
tickers <- c("AMZN", "ZM", "UBER", "NFLX", "SHOP", "FB", "UPWK")
securities_returns <- get_prices_from_tickers(tickers,

start = as.Date("2019-04-01"),
end = as.Date("2020-04-01"),
quote = "Close",
retclass = "zoo") %>%

get_rates_from_prices(quote = "Close",
multi_day = TRUE,
compounding = "continuous") %>%

apply_market_model(market_model = "mean_adj",
estimation_start = as.Date("2019-04-01"),
estimation_end = as.Date("2020-03-13"))

End(Not run)
The result of the code above is equivalent to:
data(rates)
securities_returns <- apply_market_model(

rates,
market_model = "mean_adj",
estimation_start = as.Date("2019-04-01"),
estimation_end = as.Date("2020-03-13")

)

2. Market-adjusted-returns model
Not run:
library("magrittr")
rates_indx <- get_prices_from_tickers("^GSPC",

start = as.Date("2019-04-01"),
end = as.Date("2020-04-01"),
quote = "Close",
retclass = "zoo") %>%

get_rates_from_prices(quote = "Close",
multi_day = TRUE,
compounding = "continuous")

tickers <- c("AMZN", "ZM", "UBER", "NFLX", "SHOP", "FB", "UPWK")

apply_market_model 5

securities_returns <- get_prices_from_tickers(tickers,
start = as.Date("2019-04-01"),
end = as.Date("2020-04-01"),
quote = "Close",
retclass = "zoo") %>%

get_rates_from_prices(quote = "Close",
multi_day = TRUE,
compounding = "continuous") %>%

apply_market_model(regressor = rates_indx,
same_regressor_for_all = TRUE,
market_model = "mrkt_adj",
estimation_start = as.Date("2019-04-01"),
estimation_end = as.Date("2020-03-13"))

End(Not run)
The result of the code above is equivalent to:
data(rates, rates_indx)
securities_returns <- apply_market_model(

rates = rates,
regressor = rates_indx,
same_regressor_for_all = TRUE,
market_model = "mrkt_adj",
estimation_start = as.Date("2019-04-01"),
estimation_end = as.Date("2020-03-13")

)

3. Single-index market model
Not run:
library("magrittr")
rates_indx <- get_prices_from_tickers("^GSPC",

start = as.Date("2019-04-01"),
end = as.Date("2020-04-01"),
quote = "Close",
retclass = "zoo") %>%

get_rates_from_prices(quote = "Close",
multi_day = TRUE,
compounding = "continuous")

tickers <- c("AMZN", "ZM", "UBER", "NFLX", "SHOP", "FB", "UPWK")
securities_returns <- get_prices_from_tickers(tickers,

start = as.Date("2019-04-01"),
end = as.Date("2020-04-01"),
quote = "Close",
retclass = "zoo") %>%

get_rates_from_prices(quote = "Close",
multi_day = TRUE,
compounding = "continuous") %>%

apply_market_model(regressor = rates_indx,
same_regressor_for_all = TRUE,
market_model = "sim",
estimation_method = "ols",
estimation_start = as.Date("2019-04-01"),
estimation_end = as.Date("2020-03-13"))

6 boehmer

End(Not run)
The result of the code above is equivalent to:
data(rates, rates_indx)
securities_returns <- apply_market_model(

rates = rates,
regressor = rates_indx,
same_regressor_for_all = TRUE,
market_model = "sim",
estimation_method = "ols",
estimation_start = as.Date("2019-04-01"),
estimation_end = as.Date("2020-03-13")

)

boehmer Boehmer’s parametric test (1991).

Description

An event study parametric test described in Boehmer 1991.

Usage

boehmer(list_of_returns, event_start, event_end)

Arguments

list_of_returns

a list of objects of S3 class returns, each element of which is treated as a
security.

event_start an object of Date class giving the first date of the event period.

event_end an object of Date class giving the last date of the event period.

Details

Performs a parametric test for event study, which is described in Boehmer 1991. Also called hybrid
test or standardized cross-sectional test. This test performs t-test based on Patell’s standardized
residuals. By combining Patell’s and t-tests, this test allows for event-induced variance changes,
but still assumes cross-sectional independence. The test examines the hypothesis whether the the-
oretical cross-sectional expected value for a given day is equal to zero. It calculates statistics even
if event window and estimation period are overlapped (intersect). The critical values has Student’s
t-distribution. The significance levels of α are 0.1, 0.05, and 0.01 (marked respectively by *, **,
and ***).

boehmer 7

Value

A data frame of the following columns:

• date: a calendar date

• weekday: a day of the week

• percentage: a share of non-missing observations for a given day

• mean: an average abnormal return

• bh_stat: a Boehmer’s test statistic

• bh_signif: a significance of the statistic

References

• Patell J.M. Corporate forecasts of earnings per share and stock price behavior: empirical
tests. Journal of Accounting Research, 14(2):246- 276, 1976.

• Boehmer E., Musumeci J., Poulsen A.B. Event-study methodology under conditions of event-
induced variance. Journal of Financial Economics, 30(2):253-272, 1991.

See Also

parametric_tests, brown_warner_1980, brown_warner_1985, t_test, patell, and lamb.

Examples

Not run:
library("magrittr")
rates_indx <- get_prices_from_tickers("^GSPC",

start = as.Date("2019-04-01"),
end = as.Date("2020-04-01"),
quote = "Close",
retclass = "zoo") %>%

get_rates_from_prices(quote = "Close",
multi_day = TRUE,
compounding = "continuous")

tickers <- c("AMZN", "ZM", "UBER", "NFLX", "SHOP", "FB", "UPWK")
get_prices_from_tickers(tickers,

start = as.Date("2019-04-01"),
end = as.Date("2020-04-01"),
quote = "Close",
retclass = "zoo") %>%

get_rates_from_prices(quote = "Close",
multi_day = TRUE,
compounding = "continuous") %>%

apply_market_model(regressor = rates_indx,
same_regressor_for_all = TRUE,
market_model = "sim",
estimation_method = "ols",
estimation_start = as.Date("2019-04-01"),
estimation_end = as.Date("2020-03-13")) %>%

boehmer(event_start = as.Date("2020-03-16"),

8 brown_warner_1980

event_end = as.Date("2020-03-20"))

End(Not run)
The result of the code above is equivalent to:
data(securities_returns)
boehmer(list_of_returns = securities_returns,

event_start = as.Date("2020-03-16"),
event_end = as.Date("2020-03-20"))

brown_warner_1980 Brown and Warner parametric test (1980).

Description

An event study parametric test described in Brown and Warner 1980.

Usage

brown_warner_1980(list_of_returns, event_start, event_end)

Arguments

list_of_returns

a list of objects of S3 class returns, each element of which is treated as a
security.

event_start an object of Date class giving the first date of the event period.

event_end an object of Date class giving the last date of the event period.

Details

Performs a parametric test for the event study, which is described in Brown and Warner 1980. The
test assumes a cross-sectional independence and an insignificance of event-induced variance. The
test examines the hypothesis whether the theoretical cross-sectional expected value for a given day
is equal to zero. The standard deviation in statistics is calculated as the cross-sectional mean of
companies’ variances, estimated on the estimation period. It calculates statistics even if the event
window and the estimation period are overlapped (intersect). The critical values are Student’s t-
distributed (no approximation in limit). The significance levels of α are 0.1, 0.05, and 0.01 (marked
respectively by *, **, and ***). It was designed to measure monthly data: for daily data look at
Brown and Warner 1985 and brown_warner_1985.

Value

A data frame of the following columns:

• date: a calendar date

• weekday: a day of the week

brown_warner_1980 9

• percentage: a share of non-missing observations for a given day

• mean: an average abnormal return

• bw_1980_stat: a Brown and Warner (1980) test statistic

• bw_1980_signif: a significance of the statistic

References

Brown S.J., Warner J.B. Measuring security price performance. Journal of Financial Economics,
8:205-258, 1980.

See Also

parametric_tests, brown_warner_1985, t_test, patell, boehmer, and lamb.

Examples

Not run:
library("magrittr")
rates_indx <- get_prices_from_tickers("^GSPC",

start = as.Date("2019-04-01"),
end = as.Date("2020-04-01"),
quote = "Close",
retclass = "zoo") %>%

get_rates_from_prices(quote = "Close",
multi_day = TRUE,
compounding = "continuous")

tickers <- c("AMZN", "ZM", "UBER", "NFLX", "SHOP", "FB", "UPWK")
get_prices_from_tickers(tickers,

start = as.Date("2019-04-01"),
end = as.Date("2020-04-01"),
quote = "Close",
retclass = "zoo") %>%

get_rates_from_prices(quote = "Close",
multi_day = TRUE,
compounding = "continuous") %>%

apply_market_model(regressor = rates_indx,
same_regressor_for_all = TRUE,
market_model = "sim",
estimation_method = "ols",
estimation_start = as.Date("2019-04-01"),
estimation_end = as.Date("2020-03-13")) %>%

brown_warner_1980(event_start = as.Date("2020-03-16"),
event_end = as.Date("2020-03-20"))

End(Not run)
The result of the code above is equivalent to:
data(securities_returns)
brown_warner_1980(list_of_returns = securities_returns,

event_start = as.Date("2020-03-16"),
event_end = as.Date("2020-03-20"))

10 brown_warner_1985

brown_warner_1985 Brown and Warner parametric test (1985).

Description

An event study parametric test described in Brown and Warner 1985.

Usage

brown_warner_1985(list_of_returns, event_start, event_end)

Arguments

list_of_returns

a list of objects of S3 class returns, each element of which is treated as a
security.

event_start an object of Date class giving the first date of the event period.

event_end an object of Date class giving the last date of the event period.

Details

Performs a parametric test for event study, which is described in Brown and Warner 1985, which
is a traditional event study approach. This test does not require cross-sectional independence but
is non-robust to an event-induced variance. The test examines the hypothesis whether the theo-
retical cross-sectional expected value for a given day is equal to zero. The standard deviation in
statistics is estimated as the cross-sectional standard deviation of companies’ means, estimated on
the estimation period. It calculates statistics even if event window and estimation period are over-
lapped (intersect). The critical values are Student’s t-distributed (no approximation in limit). The
significance levels of α are 0.1, 0.05, and 0.01 (marked respectively by *, **, and ***).

Value

A data frame of the following columns:

• date: a calendar date

• weekday: a day of the week

• percentage: a share of non-missing observations for a given day

• mean: an average abnormal return

• bw_1985_stat: a Brown and Warner (1985) test statistic

• bw_1985_signif: a significance of the statistic

References

Brown S.J., Warner J.B. Using Daily Stock Returns, The Case of Event Studies. Journal of Financial
Economics, 14:3-31, 1985.

car_brown_warner_1985 11

See Also

parametric_tests, brown_warner_1980, t_test, patell, boehmer, and lamb.

Examples

Not run:
library("magrittr")
rates_indx <- get_prices_from_tickers("^GSPC",

start = as.Date("2019-04-01"),
end = as.Date("2020-04-01"),
quote = "Close",
retclass = "zoo") %>%

get_rates_from_prices(quote = "Close",
multi_day = TRUE,
compounding = "continuous")

tickers <- c("AMZN", "ZM", "UBER", "NFLX", "SHOP", "FB", "UPWK")
get_prices_from_tickers(tickers,

start = as.Date("2019-04-01"),
end = as.Date("2020-04-01"),
quote = "Close",
retclass = "zoo") %>%

get_rates_from_prices(quote = "Close",
multi_day = TRUE,
compounding = "continuous") %>%

apply_market_model(regressor = rates_indx,
same_regressor_for_all = TRUE,
market_model = "sim",
estimation_method = "ols",
estimation_start = as.Date("2019-04-01"),
estimation_end = as.Date("2020-03-13")) %>%

brown_warner_1985(event_start = as.Date("2020-03-16"),
event_end = as.Date("2020-03-20"))

End(Not run)
The result of the code above is equivalent to:
data(securities_returns)
brown_warner_1985(list_of_returns = securities_returns,

event_start = as.Date("2020-03-16"),
event_end = as.Date("2020-03-20"))

car_brown_warner_1985 Brown and Warner (1985) CAR test.

Description

A parametric test proposed by Brown and Warner 1995 that examines whether or not cumulative
abnormal return (CAR) significantly differs from zero.

12 car_brown_warner_1985

Usage

car_brown_warner_1985(list_of_returns, car_start, car_end, percentage = 90)

Arguments

list_of_returns

a list of objects of S3 class returns, each element of which is treated as a
security.

car_start an object of Date class giving the first date of the CAR period.

car_end an object of Date class giving the last date of the CAR period.

percentage a lowest allowed percentage of non-missing observation for each day to be in-
corporated into CAR. The default value is 90 percent.

• name: a name of the test, i.e. "car_brown_warner_1985"
• car_start: the first date of the CAR period
• car_end: the last date of the CAR period
• average_percentage: an average share of non-missing observations over

the CAR period
• car_mean: an average abnormal return over the CAR period
• statistic: a test’s statistic
• number_of_days: the number of days in the CAR period
• significance: a significance of the statistic

Details

This function performs a test proposed by Brown and Warner 1985 to investigate whether CAR
significantly differs from zero. This tests uses the variance, specified by Brown and Warner 1985.
The advantage of this test is allowance for correlated cross-sectional returns. However, the test
does not use autocorrelation adjustment. The test statistic is close enough to statistic, produced by
car_lamb. The critical values are standard normal. The significance levels of α are 0.1, 0.05, and
0.01 (marked respectively by *, **, and ***).

References

Brown S.J., Warner J.B. Using Daily Stock Returns, The Case of Event Studies. Journal of Financial
Economics, 14:3-31, 1985.

See Also

car_lamb and car_parametric_tests.

Examples

Not run:
library("magrittr")
rates_indx <- get_prices_from_tickers("^GSPC",

start = as.Date("2019-04-01"),
end = as.Date("2020-04-01"),

car_lamb 13

quote = "Close",
retclass = "zoo") %>%

get_rates_from_prices(quote = "Close",
multi_day = TRUE,
compounding = "continuous")

tickers <- c("AMZN", "ZM", "UBER", "NFLX", "SHOP", "FB", "UPWK")
get_prices_from_tickers(tickers,

start = as.Date("2019-04-01"),
end = as.Date("2020-04-01"),
quote = "Close",
retclass = "zoo") %>%

get_rates_from_prices(quote = "Close",
multi_day = TRUE,
compounding = "continuous") %>%

apply_market_model(regressor = rates_indx,
same_regressor_for_all = TRUE,
market_model = "sim",
estimation_method = "ols",
estimation_start = as.Date("2019-04-01"),
estimation_end = as.Date("2020-03-13")) %>%

car_brown_warner_1985(car_start = as.Date("2020-03-16"),
car_end = as.Date("2020-03-20"))

End(Not run)
The result of the code above is equivalent to:
data(securities_returns)
car_brown_warner_1985(

list_of_returns = securities_returns,
car_start = as.Date("2020-03-16"),
car_end = as.Date("2020-03-20")

)

car_lamb Lamb’s CAR test (1995).

Description

A parametric test proposed by Lamb 1995 that examines whether or not the cumulative abnormal
return (CAR) significantly differs from zero.

Usage

car_lamb(list_of_returns, car_start, car_end, percentage = 90)

Arguments

list_of_returns

a list of objects of S3 class returns, each element of which is treated as a
security.

14 car_lamb

car_start an object of Date class giving the first date of the CAR period.

car_end an object of Date class giving the last date of the CAR period.

percentage a lowest allowed percentage of non-missing observation for each day to be in-
corporated into CAR. The default value is 90 percent.

Details

This function performs a test proposed by Lamb 1995 to investigate whether CAR significantly
differs from zero. This tests uses the variance, specified by Lamb 1995. The advantage of this
test is allowance for correlated cross-sectional returns. The test statistic is close enough to statistic,
produced by car_brown_warner_1985. The critical values are standard normal. The significance
levels of α are 0.1, 0.05, and 0.01 (marked respectively by *, **, and ***).

Value

A data frame of the following columns:

• name: a name of the test, i.e. "car_lamb"

• car_start: the first date of the CAR period

• car_end: the last date of the CAR period

• average_percentage: an average share of non-missing observations over the CAR period

• car_mean: an average abnormal return over the CAR period

• statistic: a test’s statistic

• number_of_days: the number of days in the CAR period

• significance: a significance of the statistic

References

Lamb R.P. An Exposure-Based Analysis of Property-Liability Insurer Stock Values around Hurri-
cane Andrew. Journal of Risk and Insurance, 62(1):111-123, 1995.

See Also

car_brown_warner_1985 and car_parametric_tests.

Examples

Not run:
library("magrittr")
rates_indx <- get_prices_from_tickers("^GSPC",

start = as.Date("2019-04-01"),
end = as.Date("2020-04-01"),
quote = "Close",
retclass = "zoo") %>%

get_rates_from_prices(quote = "Close",
multi_day = TRUE,
compounding = "continuous")

tickers <- c("AMZN", "ZM", "UBER", "NFLX", "SHOP", "FB", "UPWK")

car_nonparametric_tests 15

get_prices_from_tickers(tickers,
start = as.Date("2019-04-01"),
end = as.Date("2020-04-01"),
quote = "Close",
retclass = "zoo") %>%

get_rates_from_prices(quote = "Close",
multi_day = TRUE,
compounding = "continuous") %>%

apply_market_model(regressor = rates_indx,
same_regressor_for_all = TRUE,
market_model = "sim",
estimation_method = "ols",
estimation_start = as.Date("2019-04-01"),
estimation_end = as.Date("2020-03-13")) %>%

car_lamb(car_start = as.Date("2020-03-16"),
car_end = as.Date("2020-03-20"))

End(Not run)
The result of the code above is equivalent to:
data(securities_returns)
car_lamb(

list_of_returns = securities_returns,
car_start = as.Date("2020-03-16"),
car_end = as.Date("2020-03-20")

)

car_nonparametric_tests

Returns the result of given event study nonparametric CAR tests.

Description

Performs given tests to examine the statistical significance of the CAR of a given period.

Usage

car_nonparametric_tests(
list_of_returns,
car_start,
car_end,
percentage = 90,
all = TRUE,
tests

)

16 car_nonparametric_tests

Arguments

list_of_returns

a list of objects of S3 class returns, each element of which is treated as a
security.

car_start an object of Date class giving the first date of the CAR period.

car_end an object of Date class giving the last date of the CAR period.

percentage a lowest allowed percentage of non-missing observation for each day to be in-
corporated into CAR. The default value is 90 percent.

all a logical value indicating whether all tests should be performed. The default
value is TRUE. Note, only car_rank_test will be performed.

tests a list of tests’ functions. Currently, only car_rank_test is allowed.

Details

Currently, car_nonparametric_tests performs only car_rank_test test. This function was de-
veloped for the sake of completeness and can be used for future extensions of the package.

Value

A data frame of the following columns:

• name: a name of the test

• car_start: the first date of the CAR period

• car_end: the last date of the CAR period

• average_percentage: an average share of non-missing observations over the CAR period

• statistic: a test’s statistic

• number_of_days: the number of days in the CAR period

• significance: a significance of the statistic

References

• Corrado C.J. A Nonparametric Test for Abnormal Security-Price Performance in Event Stud-
ies. Journal of Financial Economics 23:385-395, 1989.

• Cowan A.R. Nonparametric Event Study Tests. Review of Quantitative Finance and Account-
ing, 2:343-358, 1992.

See Also

car_rank_test.

car_parametric_tests 17

Examples

Not run:
library("magrittr")
rates_indx <- get_prices_from_tickers("^GSPC",

start = as.Date("2019-04-01"),
end = as.Date("2020-04-01"),
quote = "Close",
retclass = "zoo") %>%

get_rates_from_prices(quote = "Close",
multi_day = TRUE,
compounding = "continuous")

tickers <- c("AMZN", "ZM", "UBER", "NFLX", "SHOP", "FB", "UPWK")
car_nonparam <- get_prices_from_tickers(tickers,

start = as.Date("2019-04-01"),
end = as.Date("2020-04-01"),
quote = "Close",
retclass = "zoo") %>%

get_rates_from_prices(quote = "Close",
multi_day = TRUE,
compounding = "continuous") %>%

apply_market_model(regressor = rates_indx,
same_regressor_for_all = TRUE,
market_model = "sim",
estimation_method = "ols",
estimation_start = as.Date("2019-04-01"),
estimation_end = as.Date("2020-03-13")) %>%

car_nonparametric_tests(car_start = as.Date("2020-03-16"),
car_end = as.Date("2020-03-20"))

End(Not run)
The result of the code above is equivalent to:
data(securities_returns)
car_nonparam <- car_nonparametric_tests(

list_of_returns = securities_returns,
car_start = as.Date("2020-03-16"),
car_end = as.Date("2020-03-20")

)

car_parametric_tests Returns the result of given event study parametric CAR tests.

Description

Performs given tests to examine whether cumulative abnormal return (CAR) significantly differs
from zero.

18 car_parametric_tests

Usage

car_parametric_tests(
list_of_returns,
car_start,
car_end,
percentage = 90,
all = TRUE,
tests

)

Arguments

list_of_returns

a list of objects of S3 class returns, each element of which is treated as a
security.

car_start an object of Date class giving the first date of the CAR period.

car_end an object of Date class giving the last date of the CAR period.

percentage a lowest allowed percentage of non-missing observation for each day to be in-
corporated into CAR. The default value is 90 percent.

all a logical value indicating whether all tests should be performed. The default
value is TRUE.

tests a list of tests’ functions among car_brown_warner_1985 and car_lamb.

Details

car_parametric_tests performs specified tests among car_brown_warner_1985 and lamb and
returns a list of these tests’ results. If all = TRUE (by default), the function ignores the value of
tests.

Value

A data frame of the following columns:

• name: a name of the test

• car_start: the first date of the CAR period

• car_end: the last date of the CAR period

• average_percentage: an average share of non-missing observations over the CAR period

• car_mean: an average abnormal return over the CAR period

• statistic: a test’s statistic

• number_of_days: the number of days in the CAR period

• significance: a significance of the statistic

car_parametric_tests 19

References

• Brown S.J., Warner J.B. Using Daily Stock Returns, The Case of Event Studies. Journal of
Financial Economics, 14:3-31, 1985.

• Lamb R.P. An Exposure-Based Analysis of Property-Liability Insurer Stock Values around
Hurricane Andrew. Journal of Risk and Insurance, 62(1):111-123, 1995.

See Also

car_brown_warner_1985 and car_lamb.

Examples

Not run:
library("magrittr")
rates_indx <- get_prices_from_tickers("^GSPC",

start = as.Date("2019-04-01"),
end = as.Date("2020-04-01"),
quote = "Close",
retclass = "zoo") %>%

get_rates_from_prices(quote = "Close",
multi_day = TRUE,
compounding = "continuous")

tickers <- c("AMZN", "ZM", "UBER", "NFLX", "SHOP", "FB", "UPWK")
car_param <- get_prices_from_tickers(tickers,

start = as.Date("2019-04-01"),
end = as.Date("2020-04-01"),
quote = "Close",
retclass = "zoo") %>%

get_rates_from_prices(quote = "Close",
multi_day = TRUE,
compounding = "continuous") %>%

apply_market_model(regressor = rates_indx,
same_regressor_for_all = TRUE,
market_model = "sim",
estimation_method = "ols",
estimation_start = as.Date("2019-04-01"),
estimation_end = as.Date("2020-03-13")) %>%

car_parametric_tests(car_start = as.Date("2020-03-16"),
car_end = as.Date("2020-03-20"))

End(Not run)
The result of the code above is equivalent to:
data(securities_returns)
car_param <- car_parametric_tests(

list_of_returns = securities_returns,
car_start = as.Date("2020-03-16"),
car_end = as.Date("2020-03-20")

)

20 car_rank_test

car_rank_test Cowan’s CAR test.

Description

A nonparametric test proposed by Cowan 1992 as an extension of the rank test proposed by Corrado
1989.

Usage

car_rank_test(list_of_returns, car_start, car_end, percentage = 90)

Arguments

list_of_returns

a list of objects of S3 class returns, each element of which is treated as a
security.

car_start an object of Date class giving the first date of the CAR period.

car_end an object of Date class giving the last date of the CAR period.

percentage a lowest allowed percentage of non-missing observation for each day to be in-
corporated into CAR. The default value is 90 percent.

• name: a name of the test, i.e. "car_brown_warner_1985"
• car_start: the first date of the CAR period
• car_end: the last date of the CAR period
• average_percentage: an average share of non-missing observations over

the CAR period
• statistic: a test’s statistic
• number_of_days: the number of days in the CAR period
• significance: a significance of the statistic

Details

This function performs a test proposed by Cowan 1992 to investigate the significance of the CAR
for a given period. In order to get ranks of corresponding abnormal returns, the procedure uses
regular R function rank with parameter ties.method = "average" and na.last = "keep". For
this test the estimation period and the event period must not overlap, otherwise an error will be
thrown. The test statistic is assumed to have a normal distribution (as an approximation). The test
is well-specified for the case, when cross-sectional abnormal returns are not symmetric. The test
is stable to variance increase during given period. This test ignores the dependence of abnormal
returns’ ranks of different days (i.e., a serial dependence). The critical values are standard normal.
The significance levels of α are 0.1, 0.05, and 0.01 (marked respectively by *, **, and ***).

car_rank_test 21

References

• Corrado C.J. A Nonparametric Test for Abnormal Security-Price Performance in Event Stud-
ies. Journal of Financial Economics 23:385-395, 1989.

• Cowan A.R. Nonparametric Event Study Tests. Review of Quantitative Finance and Account-
ing, 2:343-358, 1992.

See Also

car_nonparametric_tests.

Examples

Not run:
library("magrittr")
rates_indx <- get_prices_from_tickers("^GSPC",

start = as.Date("2019-04-01"),
end = as.Date("2020-04-01"),
quote = "Close",
retclass = "zoo") %>%

get_rates_from_prices(quote = "Close",
multi_day = TRUE,
compounding = "continuous")

tickers <- c("AMZN", "ZM", "UBER", "NFLX", "SHOP", "FB", "UPWK")
get_prices_from_tickers(tickers,

start = as.Date("2019-04-01"),
end = as.Date("2020-04-01"),
quote = "Close",
retclass = "zoo") %>%

get_rates_from_prices(quote = "Close",
multi_day = TRUE,
compounding = "continuous") %>%

apply_market_model(regressor = rates_indx,
same_regressor_for_all = TRUE,
market_model = "sim",
estimation_method = "ols",
estimation_start = as.Date("2019-04-01"),
estimation_end = as.Date("2020-03-13")) %>%

car_rank_test(car_start = as.Date("2020-03-16"),
car_end = as.Date("2020-03-20"))

End(Not run)
The result of the code above is equivalent to:
data(securities_returns)
car_rank_test(

list_of_returns = securities_returns,
car_start = as.Date("2020-03-16"),
car_end = as.Date("2020-03-20")

)

22 corrado_sign_test

corrado_sign_test Corrado’s sign test (1992).

Description

An event study nonparametric test described in Corrado and Zivney 1992.

Usage

corrado_sign_test(list_of_returns, event_start, event_end)

Arguments

list_of_returns

a list of objects of S3 class returns, each element of which is treated as a
security.

event_start an object of Date class giving the first date of the event period.

event_end an object of Date class giving the last date of the event period.

Details

Performs a nonparametric test for the event study, which is described in Corrado and Zivney 1992.
This test is similar to procedure, described in Brown and Warner 1985 (t-ratio), but instead of using
abnormal returns, the test usesGi,t = sign(Ai,t−median(Ai)). sign and median are ones, which
have the same definition as R functions. For this test the estimation period and the event period must
not overlap, otherwise an error will be thrown. The sign test procedure avoids the misspecification
of tests, which assumes symmetry around zero of abnormal returns (the median equals to zero). For
a single day the performance of this test is proven to be better than classical Brown and Warner’s
test (without event-induced variance). This test is dominated by rank test. The significance levels
of α are 0.1, 0.05, and 0.01 (marked respectively by *, **, and ***).

Value

A data frame of the following columns:

• date: a calendar date

• weekday: a day of the week

• percentage: a share of non-missing observations for a given day

• csign_stat: a Corrado’s sign test statistic

• csign_signif: a significance of the statistic

References

Corrado C.J., Zivney T.L. The Specification and Power of the Sign Test in Event Study Hypothesis
Tests Using Daily Stock Returns. Journal of Financial and Quantitative Analysis, 27(3):465-478,
1992.

generalized_sign_test 23

See Also

nonparametric_tests, sign_test, generalized_sign_test, rank_test, modified_rank_test,
and wilcoxon_test.

Examples

Not run:
library("magrittr")
rates_indx <- get_prices_from_tickers("^GSPC",

start = as.Date("2019-04-01"),
end = as.Date("2020-04-01"),
quote = "Close",
retclass = "zoo") %>%

get_rates_from_prices(quote = "Close",
multi_day = TRUE,
compounding = "continuous")

tickers <- c("AMZN", "ZM", "UBER", "NFLX", "SHOP", "FB", "UPWK")
get_prices_from_tickers(tickers,

start = as.Date("2019-04-01"),
end = as.Date("2020-04-01"),
quote = "Close",
retclass = "zoo") %>%

get_rates_from_prices(quote = "Close",
multi_day = TRUE,
compounding = "continuous") %>%

apply_market_model(regressor = rates_indx,
same_regressor_for_all = TRUE,
market_model = "sim",
estimation_method = "ols",
estimation_start = as.Date("2019-04-01"),
estimation_end = as.Date("2020-03-13")) %>%

corrado_sign_test(event_start = as.Date("2020-03-16"),
event_end = as.Date("2020-03-20"))

End(Not run)
The result of the code above is equivalent to:
data(securities_returns)
corrado_sign_test(list_of_returns = securities_returns,

event_start = as.Date("2020-03-16"),
event_end = as.Date("2020-03-20"))

generalized_sign_test An event study binomial sign test.

Description

A binomial sign test which determines whether the frequency of positive abnormal returns in the
event period is significantly different from the frequency in the estimation period.

24 generalized_sign_test

Usage

generalized_sign_test(list_of_returns, event_start, event_end)

Arguments

list_of_returns

a list of objects of S3 class returns, each element of which is treated as a
security.

event_start an object of Date class giving the first date of the event period.

event_end an object of Date class giving the last date of the event period.

Details

This test is application of the binomial test to the event study, which indicates whether the cross-
sectional frequency of positive abnormal returns is significantly different from the expected. This
test is stable to outliers, in other words allows for checking if the result is driven by few companies
with extremely large abnormal performance. For this test the estimation period and the event period
must not overlap, otherwise an error will be thrown. This test uses an estimate from the estimation
period instead of using naive value of expected frequency 0.5. The test statistic is assumed to
have a normal distribution. Typically the test is used together with parametric tests. The test is
well-specified for the case, when cross-sectional abnormal returns are not symmetric. Also this
procedure is less sensitive to extreme returns than the rank test. The significance levels of α are 0.1,
0.05, and 0.01 (marked respectively by *, **, and ***).

Value

A data frame of the following columns:

• date: a calendar date

• weekday: a day of the week

• percentage: a share of non-missing observations for a given day

• gsign_stat: a generalized sign test statistic

• gsign_signif: a significance of the statistic

References

• McConnell J.J., Muscarella C.J. Capital expenditure plans and firm value Journal of Financial
Economics, 14:399-422, 1985.

• Cowan A.R. Nonparametric Event Study Tests. Review of Quantitative Finance and Account-
ing, 2:343-358, 1992.

See Also

nonparametric_tests, sign_test, corrado_sign_test, rank_test, modified_rank_test, and
wilcoxon_test.

get_prices_from_tickers 25

Examples

Not run:
library("magrittr")
rates_indx <- get_prices_from_tickers("^GSPC",

start = as.Date("2019-04-01"),
end = as.Date("2020-04-01"),
quote = "Close",
retclass = "zoo") %>%

get_rates_from_prices(quote = "Close",
multi_day = TRUE,
compounding = "continuous")

tickers <- c("AMZN", "ZM", "UBER", "NFLX", "SHOP", "FB", "UPWK")
get_prices_from_tickers(tickers,

start = as.Date("2019-04-01"),
end = as.Date("2020-04-01"),
quote = "Close",
retclass = "zoo") %>%

get_rates_from_prices(quote = "Close",
multi_day = TRUE,
compounding = "continuous") %>%

apply_market_model(regressor = rates_indx,
same_regressor_for_all = TRUE,
market_model = "sim",
estimation_method = "ols",
estimation_start = as.Date("2019-04-01"),
estimation_end = as.Date("2020-03-13")) %>%

generalized_sign_test(event_start = as.Date("2020-03-16"),
event_end = as.Date("2020-03-20"))

End(Not run)
The result of the code above is equivalent to:
data(securities_returns)
generalized_sign_test(list_of_returns = securities_returns,

event_start = as.Date("2020-03-16"),
event_end = as.Date("2020-03-20"))

get_prices_from_tickers

Get daily prices of securities.

Description

Returns daily Open or Close prices between start and end date for given tickers.

Usage

get_prices_from_tickers(
...,

26 get_prices_from_tickers

start,
end,
quote = c("Open", "Close"),
retclass = c("list", "zoo", "data.frame")

)

Arguments

... character vectors indicating tickers (should be valid in Yahoo Finance).

start an object of Date class specifying the first date of the observed time period.

end an object of Date class specifying the last date of the observed time period.

quote a character indicating the type of the price: "Open" (default) or "Close".

retclass a character specifying the return class: "list" (default), "zoo" or "data.frame".

Details

This function uses the function getSymbols form the quantmod package. The provider is set auto-
matically to Yahoo Finance. The function returns the data in different class-containers: list of zoo’s,
zoo, or data.frame.

Value

Prices of securities as "list", "zoo", or "data.frame".

See Also

getSymbols

Examples

Download historical prices of seven companies' stocks:
Not run:
library("magrittr")
tickers <- c("AMZN", "ZM", "UBER", "NFLX", "SHOP", "FB", "UPWK")
prices <- tickers %>%

get_prices_from_tickers(start = as.Date("2019-04-01"),
end = as.Date("2020-04-01"),
quote = "Close",
retclass = "zoo")

End(Not run)
The result of the above code is stored in:
data(prices)

Download historical prices of S&P 500 index:
Not run:
prices_indx <- get_prices_from_tickers("^GSPC",

start = as.Date("2019-04-01"),
end = as.Date("2020-04-01"),
quote = "Close",

get_rates_from_prices 27

retclass = "zoo")

End(Not run)
The result of the above code is stored in:
data(prices_indx)

get_rates_from_prices Calculate rates of return for given prices.

Description

get_rates_from_prices is used for computing rates of return from prices for different classes.

Usage

get_rates_from_prices(
prices,
quote = c("Open", "Close"),
multi_day = TRUE,
compounding = c("discrete", "continuous")

)

Arguments

prices an object containing prices of securities. Three classes are allowed: list,
data.frame, and zoo.

quote a character vector specifying the type of the quote: "Open" (default) or "Close".

multi_day logical, is a rate of return between more than 1 day is allowed?

compounding a character vector defining the type of compounding: "continuous" (default)
or "discrete".

Details

This is a generic function, dispatched for such classes as list, data.frame, and zoo that represent
prices.

The calculation is made in C++ (Rcpp) in favor of speed.

If prices is a data frame, than the first column should be of the class Date and contain ordered
dates of prices.

The correspondence between dates and values of the rates depends on the quote, which can be either
Open or Close. If the quote is Open, than the value of rate belongs to the former date. Otherwise, to
the latter one. This is also applied for the algorithm, if multiday is allowed: the value of the rate of
return is assigned to the latter day in case of Close price, and to the former day in in case of Open
quote.

The multi_day parameter specifies how to handle missing values and weekends. If the value is
TRUE, the function ignores missing values and the rates are calculated between non-missing prices.

28 lamb

If it is FALSE, then only one-day period rates of return are computed (between two consecutive
calendar dates).

The function uses either continuous (by default) or discrete (periodic) compounding.

Value

Rates of returns of the same class as prices.

Examples

Download historical prices of seven companies' stocks and estimate rates
of returns form prices:
Not run:
library("magrittr")
tickers <- c("AMZN", "ZM", "UBER", "NFLX", "SHOP", "FB", "UPWK")
rates <- tickers %>%

get_prices_from_tickers(start = as.Date("2019-04-01"),
end = as.Date("2020-04-01"),
quote = "Close",
retclass = "zoo") %>%

get_rates_from_prices(quote = "Close",
multi_day = TRUE,
compounding = "continuous")

End(Not run)
The result of the above code is stored in:
data(rates)

Download historical prices of S&P 500 index and estimate rates of
returns from prices:
Not run:
library("magrittr")
rates_indx <- get_prices_from_tickers("^GSPC",

start = as.Date("2019-04-01"),
end = as.Date("2020-04-01"),
quote = "Close",
retclass = "zoo") %>%

get_rates_from_prices(quote = "Close",
multi_day = TRUE,
compounding = "continuous")

End(Not run)
The result of the above code is stored in:
data(rates_indx)

lamb Lamb’s parametric test (1995).

lamb 29

Description

An event study parametric test described in Lamb 1995.

Usage

lamb(list_of_returns, event_start, event_end)

Arguments

list_of_returns

a list of objects of S3 class returns, each element of which is treated as a
security.

event_start an object of Date class giving the first date of the event period.

event_end an object of Date class giving the last date of the event period.

Details

Performs a parametric test for the event study, which is described in Lamb 1995. The author refers
to Warner and Brown 1985 and Henderson 1990. However, this test was not observed in neither
papers. The test statistics are very close to the statistics produced by brown_warner_1985 and
typically has the same significance. The test examines the hypothesis whether the theoretical cross-
sectional expected value for a given day is equal to zero. It calculates statistics even if event window
and estimation period are overlapped (intersect). The critical values are standard normal. The
significance levels of α are 0.1, 0.05, and 0.01 (marked respectively by *, **, and ***).

Value

A data frame of the following columns:

• date: a calendar date

• weekday: a day of the week

• percentage: a share of non-missing observations for a given day

• mean: an average abnormal return

• lmb_stat: a Lamb’s test statistic

• lmb_signif: a significance of the statistic

References

Lamb R.P. An Exposure-Based Analysis of Property-Liability Insurer Stock Values around Hurri-
cane Andrew. Journal of Risk and Insurance, 62(1):111-123, 1995.

See Also

parametric_tests, brown_warner_1980, brown_warner_1985, t_test,patell and boehmer.

30 modified_rank_test

Examples

Not run:
library("magrittr")
rates_indx <- get_prices_from_tickers("^GSPC",

start = as.Date("2019-04-01"),
end = as.Date("2020-04-01"),
quote = "Close",
retclass = "zoo") %>%

get_rates_from_prices(quote = "Close",
multi_day = TRUE,
compounding = "continuous")

tickers <- c("AMZN", "ZM", "UBER", "NFLX", "SHOP", "FB", "UPWK")
get_prices_from_tickers(tickers,

start = as.Date("2019-04-01"),
end = as.Date("2020-04-01"),
quote = "Close",
retclass = "zoo") %>%

get_rates_from_prices(quote = "Close",
multi_day = TRUE,
compounding = "continuous") %>%

apply_market_model(regressor = rates_indx,
same_regressor_for_all = TRUE,
market_model = "sim",
estimation_method = "ols",
estimation_start = as.Date("2019-04-01"),
estimation_end = as.Date("2020-03-13")) %>%

lamb(event_start = as.Date("2020-03-16"),
event_end = as.Date("2020-03-20"))

End(Not run)
The result of the code above is equivalent to:
data(securities_returns)
lamb(list_of_returns = securities_returns,

event_start = as.Date("2020-03-16"),
event_end = as.Date("2020-03-20"))

modified_rank_test An event study modified rank test.

Description

The test is the modification of the original rank test, proposed by Corrado 1989. This test is adapted
to missing values in abnormal returns.

Usage

modified_rank_test(list_of_returns, event_start, event_end)

modified_rank_test 31

Arguments

list_of_returns

a list of objects of S3 class returns, each element of which is treated as a
security.

event_start an object of Date class giving the first date of the event period.

event_end an object of Date class giving the last date of the event period.

Details

In addition to the original rank test, the procedure divides corresponding ranks by the number of
nonmissing returns plus one for each security. This leads to order statistics with uniform distribu-
tion. In limit overall statistics under a null hypothesis is approximately normally distributed. For
this test the estimation period and the event period must not overlap, otherwise an error will be
thrown. The test is well-specified for the case, when cross-sectional abnormal returns are not sym-
metric. The test is stable to variance increase during the event window. This test is more sensitive
to extreme values than the sign test. The significance levels of α are 0.1, 0.05, and 0.01 (marked
respectively by *, **, and ***).

Value

A data frame of the following columns:

• date: a calendar date

• weekday: a day of the week

• percentage: a share of non-missing observations for a given day

• mrank_stat: a modified rank test statistic

• mrank_signif: a significance of the statistic

References

• Corrado C.J., Zivney T.L. The Specification and Power of the Sign Test in Event Study Hy-
pothesis Tests Using Daily Stock Returns. Journal of Financial and Quantitative Analysis,
27(3):465-478, 1992.

• Kolari J.W., Pynnonen S. Event Study Testing with Cross-sectional Correlation of Abnormal
Returns. The Review of Financial Studies, 23(11):3996-4025, 2010.

See Also

nonparametric_tests,sign_test, generalized_sign_test, corrado_sign_test, rank_test,
and wilcoxon_test.

Examples

Not run:
library("magrittr")
rates_indx <- get_prices_from_tickers("^GSPC",

start = as.Date("2019-04-01"),
end = as.Date("2020-04-01"),

32 nonparametric_tests

quote = "Close",
retclass = "zoo") %>%

get_rates_from_prices(quote = "Close",
multi_day = TRUE,
compounding = "continuous")

tickers <- c("AMZN", "ZM", "UBER", "NFLX", "SHOP", "FB", "UPWK")
get_prices_from_tickers(tickers,

start = as.Date("2019-04-01"),
end = as.Date("2020-04-01"),
quote = "Close",
retclass = "zoo") %>%

get_rates_from_prices(quote = "Close",
multi_day = TRUE,
compounding = "continuous") %>%

apply_market_model(regressor = rates_indx,
same_regressor_for_all = TRUE,
market_model = "sim",
estimation_method = "ols",
estimation_start = as.Date("2019-04-01"),
estimation_end = as.Date("2020-03-13")) %>%

modified_rank_test(event_start = as.Date("2020-03-16"),
event_end = as.Date("2020-03-20"))

End(Not run)
The result of the code above is equivalent to:
data(securities_returns)
modified_rank_test(list_of_returns = securities_returns,

event_start = as.Date("2020-03-16"),
event_end = as.Date("2020-03-20"))

nonparametric_tests Returns the result of given event study nonparametric tests.

Description

Performs main nonparametric tests for each date in the event window and returns a data frame of
their statistics and significance.

Usage

nonparametric_tests(list_of_returns, event_start, event_end, all = TRUE, tests)

Arguments

list_of_returns

a list of objects of S3 class returns, each element of which is treated as a
security.

event_start an object of Date class giving the first date of the event period.

nonparametric_tests 33

event_end an object of Date class giving the last date of the event period.

all a logical vector of length one indicating whether all tests should be performed.
The default value is TRUE.

tests a list of tests’ functions among sign_test, generalized_sign_test, corrado_sign_test,
rank_test, modified_rank_test, and wilcoxon_test.

Details

nonparametric_tests performs given tests among sign_test, generalized_sign_test, corrado_sign_test,
rank_test, modified_rank_test, wilcoxon_test, and merge result to a single data frame. If all
= TRUE (the default value), the function ignores the value of tests.

Value

A data frame of the following columns:

• date: a calendar date

• weekday: a day of the week

• percentage: a share of non-missing observations for a given day

• Various tests’ statistics and significance

References

• Corrado C.J., Zivney T.L. The Specification and Power of the Sign Test in Event Study Hy-
pothesis Tests Using Daily Stock Returns. Journal of Financial and Quantitative Analysis,
27(3):465-478, 1992.

• McConnell J.J., Muscarella C.J. Capital expenditure plans and firm value Journal of Financial
Economics, 14:399-422, 1985.

• Boehmer E., Musumeci J., Poulsen A.B. Event-study methodology under conditions of event-
induced variance. Journal of Financial Economics, 30(2):253-272, 1991.

• Cowan A.R. Nonparametric Event Study Tests. Review of Quantitative Finance and Account-
ing, 2:343-358, 1992.

• Corrado C.J. A Nonparametric Test for Abnormal Security-Price Performance in Event Stud-
ies. Journal of Financial Economics 23:385-395, 1989.

• Campbell C.J., Wasley C.E. Measuring Security Price Performance Using Daily NASDAQ
Returns. Journal of Financial Economics 33:73-92, 1993.

• Savickas R. Event-Induced Volatility and Tests for Abnormal Performance. The Journal of
Financial Research, 26(2):156-178, 2003.

• Kolari J.W., Pynnonen S. Event Study Testing with Cross-sectional Correlation of Abnormal
Returns. The Review of Financial Studies, 23(11):3996-4025, 2010.

• Wilcoxon F. Individual Comparisons by Ranking Methods. Biometrics Bulletin 1(6):80-83,
1945.

• Lehmann E.L, Nonparametrics: Statistical Methods Based on Ranks. San Francisco: Holden-
Day, 1975.

• Hollander M., Wolfe D.A. Nonparametric Statistical Methods. New York: John Wiley &
Sons, 1973.

34 parametric_tests

See Also

sign_test, generalized_sign_test, corrado_sign_test, rank_test, modified_rank_test,
and wilcoxon_test.

Examples

Not run:
library("magrittr")
rates_indx <- get_prices_from_tickers("^GSPC",

start = as.Date("2019-04-01"),
end = as.Date("2020-04-01"),
quote = "Close",
retclass = "zoo") %>%

get_rates_from_prices(quote = "Close",
multi_day = TRUE,
compounding = "continuous")

tickers <- c("AMZN", "ZM", "UBER", "NFLX", "SHOP", "FB", "UPWK")
nparam <- get_prices_from_tickers(tickers,

start = as.Date("2019-04-01"),
end = as.Date("2020-04-01"),
quote = "Close",
retclass = "zoo") %>%

get_rates_from_prices(quote = "Close",
multi_day = TRUE,
compounding = "continuous") %>%

apply_market_model(regressor = rates_indx,
same_regressor_for_all = TRUE,
market_model = "sim",
estimation_method = "ols",
estimation_start = as.Date("2019-04-01"),
estimation_end = as.Date("2020-03-13")) %>%

nonparametric_tests(event_start = as.Date("2020-03-16"),
event_end = as.Date("2020-03-20"))

End(Not run)
The result of the code above is equivalent to:
data(securities_returns)
nparam <- nonparametric_tests(list_of_returns = securities_returns,

event_start = as.Date("2020-03-16"),
event_end = as.Date("2020-03-20"))

parametric_tests Returns the result of given event study parametric tests.

Description

Performs main parametric tests for each date in the event window and returns a data frame of their
statistics and significance.

parametric_tests 35

Usage

parametric_tests(list_of_returns, event_start, event_end, all = TRUE, tests)

Arguments

list_of_returns

a list of objects of S3 class returns, each element of which is treated as a
security.

event_start an object of Date class giving the first date of the event period.
event_end an object of Date class giving the last date of the event period.
all a logical vector of length one indicating whether all tests should be performed.

The default value is TRUE.
tests a list of tests’ functions among brown_warner_1980, brown_warner_1985, t_test,

patell, boehmer, and lamb.

Details

parametric_tests performs given tests among brown_warner_1980, brown_warner_1985, t_test,
patell, boehmer, lamb and merge result to a single data frame. If all = TRUE (the default value),
the function ignores the value of tests.

Value

A data frame of the following columns:

• date: a calendar date
• weekday: a day of the week
• percentage: a share of non-missing observations for a given day
• mean: an average abnormal return
• Various tests’ statistics and significance

References

• Brown S.J., Warner J.B. Measuring security price performance. Journal of Financial Eco-
nomics, 8:205-258, 1980.

• Brown S.J., Warner J.B. Using Daily Stock Returns, The Case of Event Studies. Journal of
Financial Economics, 14:3-31, 1985.

• Boehmer E., Musumeci J., Poulsen A.B. Event-study methodology under conditions of event-
induced variance. Journal of Financial Economics, 30(2):253-272, 1991.

• Patell J.M. Corporate forecasts of earnings per share and stock price behavior: empirical
tests. Journal of Accounting Research, 14(2):246- 276, 1976.

• Lamb R.P. An Exposure-Based Analysis of Property-Liability Insurer Stock Values around
Hurricane Andrew. Journal of Risk and Insurance, 62(1):111-123, 1995.

See Also

brown_warner_1980, brown_warner_1985, t_test, patell, boehmer, and lamb.

36 patell

Examples

Not run:
library("magrittr")
rates_indx <- get_prices_from_tickers("^GSPC",

start = as.Date("2019-04-01"),
end = as.Date("2020-04-01"),
quote = "Close",
retclass = "zoo") %>%

get_rates_from_prices(quote = "Close",
multi_day = TRUE,
compounding = "continuous")

tickers <- c("AMZN", "ZM", "UBER", "NFLX", "SHOP", "FB", "UPWK")
param <- get_prices_from_tickers(tickers,

start = as.Date("2019-04-01"),
end = as.Date("2020-04-01"),
quote = "Close",
retclass = "zoo") %>%

get_rates_from_prices(quote = "Close",
multi_day = TRUE,
compounding = "continuous") %>%

apply_market_model(regressor = rates_indx,
same_regressor_for_all = TRUE,
market_model = "sim",
estimation_method = "ols",
estimation_start = as.Date("2019-04-01"),
estimation_end = as.Date("2020-03-13")) %>%

parametric_tests(event_start = as.Date("2020-03-16"),
event_end = as.Date("2020-03-20"))

End(Not run)
The result of the code above is equivalent to:
data(securities_returns)
param <- parametric_tests(list_of_returns = securities_returns,

event_start = as.Date("2020-03-16"),
event_end = as.Date("2020-03-20"))

patell Patell’s parametric test (1976).

Description

An event study parametric test described in Patell 1976.

Usage

patell(list_of_returns, event_start, event_end)

patell 37

Arguments

list_of_returns

a list of objects of S3 class returns, each element of which is treated as a
security.

event_start an object of Date class giving the first date of the event period.

event_end an object of Date class giving the last date of the event period.

Details

Performs a parametric test for event study, which is described in Patell 1976, which is called
standardized-residuals method in Boehmer 1991. Test’s assumptions are a cross-sectional inde-
pendence and an insignificance of an event-induced variance. The standardization smooths the
effect of the event-induced variance comparing to Brown and Warner tests. Also standardization
incorporates the situation, when a highly volatile security dominates the test. The test examines the
hypothesis whether the theoretical cross-sectional expected value for a given day is equal to zero.
It calculates statistics even if event window and estimation period are overlapped (intersect). The
critical values are standard normal. The significance levels of α are 0.1, 0.05, and 0.01 (marked
respectively by *, **, and ***).

Value

A data frame of the following columns:

• date: a calendar date

• weekday: a day of the week

• percentage: a share of non-missing observations for a given day

• mean: an average abnormal return

• pt_stat: a Patell’s test statistic

• pt_signif: a significance of the statistic

References

• Patell J.M. Corporate forecasts of earnings per share and stock price behavior: empirical
tests. Journal of Accounting Research, 14(2):246- 276, 1976.

• Boehmer E., Musumeci J., Poulsen A.B. Event-study methodology under conditions of event-
induced variance. Journal of Financial Economics, 30(2):253-272, 1991.

See Also

parametric_tests, brown_warner_1980, brown_warner_1985, t_test, and boehmer, and lamb.

Examples

Not run:
library("magrittr")
rates_indx <- get_prices_from_tickers("^GSPC",

start = as.Date("2019-04-01"),

38 prices

end = as.Date("2020-04-01"),
quote = "Close",
retclass = "zoo") %>%

get_rates_from_prices(quote = "Close",
multi_day = TRUE,
compounding = "continuous")

tickers <- c("AMZN", "ZM", "UBER", "NFLX", "SHOP", "FB", "UPWK")
get_prices_from_tickers(tickers,

start = as.Date("2019-04-01"),
end = as.Date("2020-04-01"),
quote = "Close",
retclass = "zoo") %>%

get_rates_from_prices(quote = "Close",
multi_day = TRUE,
compounding = "continuous") %>%

apply_market_model(regressor = rates_indx,
same_regressor_for_all = TRUE,
market_model = "sim",
estimation_method = "ols",
estimation_start = as.Date("2019-04-01"),
estimation_end = as.Date("2020-03-13")) %>%

patell(event_start = as.Date("2020-03-16"),
event_end = as.Date("2020-03-20"))

End(Not run)
The result of the code above is equivalent to:
data(securities_returns)
patell(list_of_returns = securities_returns,

event_start = as.Date("2020-03-16"),
event_end = as.Date("2020-03-20"))

prices Stock prices of seven companies from 2019-04-01 to 2020-04-01

Description

A zoo object of seven columns containing daily Close stock prices from 2019-04-01 to 2020-04-01
of seven companies, which could profit from COVID-19 lockdown. See examples of get_prices_from_tickers
for the dataset generation.

Usage

prices

Format

A zoo object of eight columns:

• AMZN

prices_indx 39

• ZM

• UBER

• NFLX

• SHOP

• FB

• UPWK

prices_indx Prices of S&P 500 index from 2019-04-01 to 2020-04-01

Description

A zoo object containing daily prices of S&P 500 index from 2019-04-01 to 2020-04-01. See exam-
ples of get_prices_from_tickers for the dataset generation.

Usage

prices_indx

Format

A zoo object.

rank_test An event study rank test.

Description

An original rank test applied to an event study, which is based on Wilcoxon (1945) rank test.

Usage

rank_test(list_of_returns, event_start, event_end)

Arguments

list_of_returns

a list of objects of S3 class returns, each element of which is treated as a
security.

event_start an object of Date class giving the first date of the event period.

event_end an object of Date class giving the last date of the event period.

40 rank_test

Details

This procedure uses ranks of abnormal returns to examine significance of each day in the event
window. In order to get ranks of corresponding abnormal returns, the procedure uses regular R
function rank with parameter ties.method = "average" and na.last = "keep". For this test the
estimation period and the event period must not overlap, otherwise an error will be thrown. The test
statistic is assumed to have a normal distribution (as an approximation). The test is well-specified
for the case, when cross-sectional abnormal returns are not symmetric. The test is stable to variance
increase during event window. This test is more sensitive to extreme values than sign test. For data
with missing data see the modified_rank_test. The significance levels of α are 0.1, 0.05, and
0.01 (marked respectively by *, **, and ***).

Value

A data frame of the following columns:

• date: a calendar date

• weekday: a day of the week

• percentage: a share of non-missing observations for a given day

• rank_stat: a rank test statistic

• rank_signif: a significance of the statistic

References

• Corrado C.J. A Nonparametric Test for Abnormal Security-Price Performance in Event Stud-
ies. Journal of Financial Economics 23:385-395, 1989.

• Cowan A.R. Nonparametric Event Study Tests. Review of Quantitative Finance and Account-
ing, 2:343-358, 1992.

• Campbell C.J., Wasley C.E. Measuring Security Price Performance Using Daily NASDAQ
Returns. Journal of Financial Economics 33:73-92, 1993.

• Savickas R. Event-Induced Volatility and Tests for Abnormal Performance. The Journal of
Financial Research, 26(2):156-178, 2003.

See Also

nonparametric_tests,sign_test, generalized_sign_test, corrado_sign_test, modified_rank_test,
and wilcoxon_test.

Examples

Not run:
library("magrittr")
rates_indx <- get_prices_from_tickers("^GSPC",

start = as.Date("2019-04-01"),
end = as.Date("2020-04-01"),
quote = "Close",
retclass = "zoo") %>%

get_rates_from_prices(quote = "Close",
multi_day = TRUE,

rates 41

compounding = "continuous")
tickers <- c("AMZN", "ZM", "UBER", "NFLX", "SHOP", "FB", "UPWK")
get_prices_from_tickers(tickers,

start = as.Date("2019-04-01"),
end = as.Date("2020-04-01"),
quote = "Close",
retclass = "zoo") %>%

get_rates_from_prices(quote = "Close",
multi_day = TRUE,
compounding = "continuous") %>%

apply_market_model(regressor = rates_indx,
same_regressor_for_all = TRUE,
market_model = "sim",
estimation_method = "ols",
estimation_start = as.Date("2019-04-01"),
estimation_end = as.Date("2020-03-13")) %>%

rank_test(event_start = as.Date("2020-03-16"),
event_end = as.Date("2020-03-20"))

End(Not run)
The result of the code above is equivalent to:
data(securities_returns)
rank_test(list_of_returns = securities_returns,

event_start = as.Date("2020-03-16"),
event_end = as.Date("2020-03-20"))

rates Rates of returns of seven companies from 2019-04-01 to 2020-04-01

Description

A zoo object of seven columns containing daily rates of returns from 2019-04-01 to 2020-04-01 of
seven companies, which could profit from COVID-19 lockdown. See examples of get_rates_from_prices
for the dataset generation.

Usage

rates

Format

A zoo object of eight columns:

• AMZN

• ZM

• UBER

• NFLX

42 returns

• SHOP

• FB

• UPWK

rates_indx Rates of returns of S&P 500 index from 2019-04-01 to 2020-04-01

Description

A zoo object containing daily rates of returns of S&P 500 index from 2019-04-01 to 2020-04-01.
See examples of get_rates_from_prices for the dataset generation.

Usage

rates_indx

Format

A zoo object.

returns Constructor of an object of S3 class returns.

Description

Constructs an object of S3 class returns.

Usage

returns(
rates,
regressor,
market_model = c("mean_adj", "mrkt_adj", "sim"),
estimation_method = c("ols"),
estimation_start,
estimation_end

)

returns 43

Arguments

rates an object of class either zoo or data.frame giving observed rates of returns of
security.

regressor an object of the same class as rates representing rates of returns of the market
model, if needed.

market_model a character indicating the market model among mean_adj, mrkt_adj, and sim.
estimation_method

a character specifying an estimation method for sim model.
estimation_start

an object of Date class giving the first date of the estimation period.

estimation_end an object of Date class giving the last date of the estimation period.

Details

The constructor is a generic function, dispatched for classes zoo data.frame. Parameters rates
and regressor should be objects of the same class (zoo or data.frame). There are three market
model implemented. mean_adj stands for mean-adjusted-returns model, which is the average of re-
turns during the estimation period. mrkt_adj represents market-adjusted-returns model: the securi-
ties’ rates of returns are simply market index rates of returns (in terms of parameters - regressor).
Finally, sim stands for single-index market model For this model only Ordinary Least Squares
estimation_method is currently implemented. All models are described in Brown and Warner
(1985).

Value

An object of S3 class returns, which contains following fields:

• observed: an object of zoo class containing observed rates of returns.

• predicted: an object of zoo class containing predicted by a market model rates of returns.

• lower95CI: a lower bound of the 95% Confidence Interval for predicted rates of returns.

• upper95CI: an upper bound of the 95% Confidence Interval for predicted rates of returns.

• abnormal: an object of zoo class containing abnormal returns.

• regressor: an object of zoo class containing rates of regressor (typically market index).

• market_model: a code name of the market model.

• full_name_market_model: a full name of the market model.

• estimation_method: a code name of the estimation method (applied only for SIM).

• full_name_estimation_method: a full name of the estimation method (applied only for SIM).

• coefficients: coefficients α and β for SIM market model (applied only for SIM).

• estimation_start: a start date of the estimation period.

• estimation_end: an end date of the estimation period.

• estimation_length: a length of the estimation period.

44 returns

References

Brown S.J., Warner J.B. Using Daily Stock Returns, The Case of Event Studies. Journal of Financial
Economics, 14:3-31, 1985.

See Also

apply_market_model

Examples

library("zoo")
1. Mean-adjusted-returns model
Not run:
library("magrittr")
single_return <- get_prices_from_tickers("AMZN",

start = as.Date("2019-04-01"),
end = as.Date("2020-04-01"),
quote = "Close",
retclass = "zoo") %>%

get_rates_from_prices(quote = "Close",
multi_day = TRUE,
compounding = "continuous") %>%

returns(market_model = "mean_adj",
estimation_start = as.Date("2019-04-01"),
estimation_end = as.Date("2020-03-13"))

End(Not run)
The result of the code above is equivalent to:
data(rates)
single_return <- returns(rates[, "AMZN"],

market_model = "mean_adj",
estimation_start = as.Date("2019-04-01"),
estimation_end = as.Date("2020-03-13"))

2. Market-adjusted-returns model
Not run:
library("magrittr")
rates_indx <- get_prices_from_tickers("^GSPC",

start = as.Date("2019-04-01"),
end = as.Date("2020-04-01"),
quote = "Close",
retclass = "zoo") %>%

get_rates_from_prices(quote = "Close",
multi_day = TRUE,
compounding = "continuous")

single_return <- get_prices_from_tickers("AMZN",
start = as.Date("2019-04-01"),
end = as.Date("2020-04-01"),
quote = "Close",
retclass = "zoo") %>%

get_rates_from_prices(quote = "Close",

returns 45

multi_day = TRUE,
compounding = "continuous") %>%

returns(regressor = rates_indx,
market_model = "mrkt_adj",
estimation_start = as.Date("2019-04-01"),
estimation_end = as.Date("2020-03-13"))

End(Not run)
The result of the code above is equivalent to:
data(rates, rates_indx)
single_return <- returns(rates = rates[, "AMZN", drop = FALSE],

regressor = rates_indx,
market_model = "mrkt_adj",
estimation_method = "ols",
estimation_start = as.Date("2019-04-01"),
estimation_end = as.Date("2020-03-13"))

3. Single-index market model
Not run:
library("magrittr")
rates_indx <- get_prices_from_tickers("^GSPC",

start = as.Date("2019-04-01"),
end = as.Date("2020-04-01"),
quote = "Close",
retclass = "zoo") %>%

get_rates_from_prices(quote = "Close",
multi_day = TRUE,
compounding = "continuous")

single_return <- get_prices_from_tickers("AMZN",
start = as.Date("2019-04-01"),
end = as.Date("2020-04-01"),
quote = "Close",
retclass = "zoo") %>%

get_rates_from_prices(quote = "Close",
multi_day = TRUE,
compounding = "continuous") %>%

returns(regressor = rates_indx,
market_model = "sim",
estimation_method = "ols",
estimation_start = as.Date("2019-04-01"),
estimation_end = as.Date("2020-03-13"))

End(Not run)
The result of the code above is equivalent to:
data(rates, rates_indx)
single_return <- returns(rates = rates[, "AMZN", drop = FALSE],

regressor = rates_indx,
market_model = "sim",
estimation_method = "ols",
estimation_start = as.Date("2019-04-01"),
estimation_end = as.Date("2020-03-13"))

46 securities_returns

run_app Run Shiny demo app

Description

The function run_app() launches a Shiny app, which is a GUI wrapper of crippled version of
{estudy2}. This app is developed exclusively for demonstration purposes.

Usage

run_app()

Details

The app is run locally.

securities_returns Returns of seven companies from 2019-04-01 to 2020-04-01

Description

A list of length seven, elements of which are objects of the class returns. The list contains all
necessary returns from 2019-04-01 to 2020-04-01 of seven companies, which could profit from
COVID-19 lockdown. See examples of apply_market_model for the dataset generation.

Usage

securities_returns

Format

A list of eight zoo elements:

• AMZN

• ZM

• UBER

• NFLX

• SHOP

• FB

• UPWK

sign_test 47

sign_test An event study simple binomial sign test.

Description

A binomial sign test which determines whether the frequency of positive abnormal returns in the
event period is significantly different from one-half.

Usage

sign_test(list_of_returns, event_start, event_end)

Arguments

list_of_returns

a list of objects of S3 class returns, each element of which is treated as a
security.

event_start an object of Date class giving the first date of the event period.

event_end an object of Date class giving the last date of the event period.

Details

This test is application of the simple binomial test to the event study, which indicates whether the
cross-sectional frequency of positive abnormal returns is significantly different from 0.5. This test
is stable to outliers, in other words allows for checking if the result is driven by few companies
with extremely large abnormal performance. For this test the estimation period and the event period
must not overlap, otherwise an error will be thrown. The test statistic is assumed to have a normal
distribution in approximation under a null hypothesis, if the number of securities is large. Typically
the test is used together with parametric tests. The test is well-specified for the case, when cross-
sectional abnormal returns are not symmetric. Also this procedure is less sensitive to extreme
returns than the rank test. The significance levels of α are 0.1, 0.05, and 0.01 (marked respectively
by *, **, and ***).

Value

A data frame of the following columns:

• date: a calendar date

• weekday: a day of the week

• percentage: a share of non-missing observations for a given day

• sign_stat: a sign test statistic

• sign_signif: a significance of the statistic

References

Boehmer E., Musumeci J., Poulsen A.B. Event-study methodology under conditions of event-induced
variance. Journal of Financial Economics, 30(2):253-272, 1991.

48 t_test

See Also

nonparametric_tests, generalized_sign_test, corrado_sign_test, rank_test, modified_rank_test,
and wilcoxon_test.

Examples

Not run:
library("magrittr")
rates_indx <- get_prices_from_tickers("^GSPC",

start = as.Date("2019-04-01"),
end = as.Date("2020-04-01"),
quote = "Close",
retclass = "zoo") %>%

get_rates_from_prices(quote = "Close",
multi_day = TRUE,
compounding = "continuous")

tickers <- c("AMZN", "ZM", "UBER", "NFLX", "SHOP", "FB", "UPWK")
get_prices_from_tickers(tickers,

start = as.Date("2019-04-01"),
end = as.Date("2020-04-01"),
quote = "Close",
retclass = "zoo") %>%

get_rates_from_prices(quote = "Close",
multi_day = TRUE,
compounding = "continuous") %>%

apply_market_model(regressor = rates_indx,
same_regressor_for_all = TRUE,
market_model = "sim",
estimation_method = "ols",
estimation_start = as.Date("2019-04-01"),
estimation_end = as.Date("2020-03-13")) %>%

sign_test(event_start = as.Date("2020-03-16"),
event_end = as.Date("2020-03-20"))

End(Not run)
The result of the code above is equivalent to:
data(securities_returns)
sign_test(list_of_returns = securities_returns,

event_start = as.Date("2020-03-16"),
event_end = as.Date("2020-03-20"))

t_test An event study t-test.

Description

A classical t-test that examines each date in the event window.

t_test 49

Usage

t_test(list_of_returns, event_start, event_end)

Arguments

list_of_returns

a list of objects of S3 class returns, each element of which is treated as a
security.

event_start an object of Date class giving the first date of the event period.

event_end an object of Date class giving the last date of the event period.

Details

Performs a t-test for the event study. The procedure of this test is described in Boehmer et al. 1991,
sometimes is called a cross-sectional test. Assumes independence of securities, however is stable
to event-induced variance. This test examines the equality of the cross-sectional expected value to
zero. The standard deviation, which is used in this test, is simply a cross-sectional standard deviation
for a given day in the event window. It calculates statistics even if event window and estimation
period are overlapped (intersect). The critical values are Student’s t-distributed (no approximation
in limit). The significance levels of α are 0.1, 0.05, and 0.01 (marked respectively by *, **, and
***).

Value

A data frame of the following columns:

• date: a calendar date

• weekday: a day of the week

• percentage: a share of non-missing observations for a given day

• mean: an average abnormal return

• t_test_stat: a t-test statistic

• t_test_signif: a significance of the statistic

Warning

This test strongly requires cross-sectional independence and sensitive to the size of the sample.

References

Boehmer E., Musumeci J., Poulsen A.B. Event-study methodology under conditions of event-induced
variance. Journal of Financial Economics, 30(2):253-272, 1991.

See Also

parametric_tests, brown_warner_1980, brown_warner_1985, patell, boehmer, and lamb.

50 wilcoxon_test

Examples

Not run:
library("magrittr")
rates_indx <- get_prices_from_tickers("^GSPC",

start = as.Date("2019-04-01"),
end = as.Date("2020-04-01"),
quote = "Close",
retclass = "zoo") %>%

get_rates_from_prices(quote = "Close",
multi_day = TRUE,
compounding = "continuous")

tickers <- c("AMZN", "ZM", "UBER", "NFLX", "SHOP", "FB", "UPWK")
get_prices_from_tickers(tickers,

start = as.Date("2019-04-01"),
end = as.Date("2020-04-01"),
quote = "Close",
retclass = "zoo") %>%

get_rates_from_prices(quote = "Close",
multi_day = TRUE,
compounding = "continuous") %>%

apply_market_model(regressor = rates_indx,
same_regressor_for_all = TRUE,
market_model = "sim",
estimation_method = "ols",
estimation_start = as.Date("2019-04-01"),
estimation_end = as.Date("2020-03-13")) %>%

t_test(event_start = as.Date("2020-03-16"),
event_end = as.Date("2020-03-20"))

End(Not run)
The result of the code above is equivalent to:
data(securities_returns)
t_test(list_of_returns = securities_returns,

event_start = as.Date("2020-03-16"),
event_end = as.Date("2020-03-20"))

wilcoxon_test An event study Wilcoxon signed rank test.

Description

Performs Wilcoxon test on the event period for abnormal returns (abnormal returns are considered
as differences).

Usage

wilcoxon_test(list_of_returns, event_start, event_end)

wilcoxon_test 51

Arguments

list_of_returns

a list of objects of S3 class returns, each element of which is treated as a
security.

event_start an object of Date class giving the first date of the event period.

event_end an object of Date class giving the last date of the event period.

Details

The estimation periods can overlap with event windows, because the procedure takes into ac-
count only abnormal returns from the event window. The test has the same algorithm as built-in
R wilcox.test. The critical values are exact values, which are obtained from qsignrank. The
algorithm is the following: for each day in event window the cross-sectional abnormal returns
treated as sample of differences. Firstly the absolute value of these differences are computed, and
corresponding ranks of non-zero values are calculated. The test statistic is the sum of ranks, corre-
sponding to positive abnormal returns. The significance levels of α are 0.1, 0.05, and 0.01 (marked
respectively by *, **, and ***).

Value

A data frame of the following columns:

• date: a calendar date

• weekday: a day of the week

• percentage: a share of non-missing observations for a given day

• wlcx_stat: a Wilcoxon signed rank test statistic

• wlcx_signif: a significance of the statistic

References

• Wilcoxon F. Individual Comparisons by Ranking Methods. Biometrics Bulletin 1(6):80-83,
1945.

• Kolari J.W., Pynnonen S. Event Study Testing with Cross-sectional Correlation of Abnormal
Returns. The Review of Financial Studies, 23(11):3996-4025, 2010.

• Lehmann E.L, Nonparametrics: Statistical Methods Based on Ranks. San Francisco: Holden-
Day, 1975.

• Hollander M., Wolfe D.A. Nonparametric Statistical Methods. New York: John Wiley &
Sons, 1973.

See Also

nonparametric_tests, sign_test, generalized_sign_test, corrado_sign_test, rank_test,
and modified_rank_test.

52 wilcoxon_test

Examples

Not run:
library("magrittr")
rates_indx <- get_prices_from_tickers("^GSPC",

start = as.Date("2019-04-01"),
end = as.Date("2020-04-01"),
quote = "Close",
retclass = "zoo") %>%

get_rates_from_prices(quote = "Close",
multi_day = TRUE,
compounding = "continuous")

tickers <- c("AMZN", "ZM", "UBER", "NFLX", "SHOP", "FB", "UPWK")
get_prices_from_tickers(tickers,

start = as.Date("2019-04-01"),
end = as.Date("2020-04-01"),
quote = "Close",
retclass = "zoo") %>%

get_rates_from_prices(quote = "Close",
multi_day = TRUE,
compounding = "continuous") %>%

apply_market_model(regressor = rates_indx,
same_regressor_for_all = TRUE,
market_model = "sim",
estimation_method = "ols",
estimation_start = as.Date("2019-04-01"),
estimation_end = as.Date("2020-03-13")) %>%

wilcoxon_test(event_start = as.Date("2020-03-16"),
event_end = as.Date("2020-03-20"))

End(Not run)
The result of the code above is equivalent to:
data(securities_returns)
wilcoxon_test(list_of_returns = securities_returns,

event_start = as.Date("2020-03-16"),
event_end = as.Date("2020-03-20"))

Index

∗ datasets
prices, 38
prices_indx, 39
rates, 41
rates_indx, 42
securities_returns, 46

apply_market_model, 3, 44, 46

boehmer, 6, 9, 11, 29, 35, 37, 49
brown_warner_1980, 7, 8, 11, 29, 35, 37, 49
brown_warner_1985, 7, 9, 10, 29, 35, 37, 49

car_brown_warner_1985, 11, 14, 19
car_lamb, 12, 13, 19
car_nonparametric_tests, 15, 21
car_parametric_tests, 12, 14, 17
car_rank_test, 16, 20
corrado_sign_test, 22, 24, 31, 33, 34, 40,

48, 51

generalized_sign_test, 23, 23, 31, 33, 34,
40, 48, 51

get_prices_from_tickers, 25, 38, 39
get_rates_from_prices, 27, 41, 42
getSymbols, 26

lamb, 7, 9, 11, 28, 35, 37, 49

modified_rank_test, 23, 24, 30, 33, 34, 40,
48, 51

nonparametric_tests, 23, 24, 31, 32, 40, 48,
51

parametric_tests, 7, 9, 11, 29, 34, 37, 49
patell, 7, 9, 11, 29, 35, 36, 49
prices, 38
prices_indx, 39

qsignrank, 51

rank, 20, 40
rank_test, 23, 24, 31, 33, 34, 39, 48, 51
rates, 41
rates_indx, 42
returns, 4, 42
run_app, 46

securities_returns, 46
sign_test, 23, 24, 31, 33, 34, 40, 47, 51

t_test, 7, 9, 11, 29, 35, 37, 48

wilcox.test, 51
wilcoxon_test, 23, 24, 31, 33, 34, 40, 48, 50

53

	apply_market_model
	boehmer
	brown_warner_1980
	brown_warner_1985
	car_brown_warner_1985
	car_lamb
	car_nonparametric_tests
	car_parametric_tests
	car_rank_test
	corrado_sign_test
	generalized_sign_test
	get_prices_from_tickers
	get_rates_from_prices
	lamb
	modified_rank_test
	nonparametric_tests
	parametric_tests
	patell
	prices
	prices_indx
	rank_test
	rates
	rates_indx
	returns
	run_app
	securities_returns
	sign_test
	t_test
	wilcoxon_test
	Index

