Package 'extRatum'

January 18, 2021

Title Summary Statistics for Geospatial Features

Version 1.0.4

Description Provides summary statistics of local geospatial features within a given geographic area. It does so by calculating the area covered by a target geospatial feature (i.e. build-ings, parks, lakes, etc.).

The geospatial features can be of any type of geospatial data, including point, polygon or line data.

License MIT + file LICENSE

Depends R (>= 3.3.0)

Encoding UTF-8

LazyData true

RoxygenNote 7.1.1

SystemRequirements C++11, GDAL (>= 2.0.1), GEOS (>= 3.4.0), PROJ (>= 4.8.0)

Date/Publication 2021-01-18 16:50:12 UTC

Imports sf (>= 0.9.5), dplyr (>= 1.0.0), tidyr (>= 1.1.0)

NeedsCompilation no

Author Nikos Patias [aut, cre] (https://orcid.org/0000-0002-6542-2330), Francisco Rowe [aut]

Maintainer Nikos Patias <n.patias@liverpool.ac.uk>

Repository CRAN

R topics documented:

areal_calc	 		 																											2
lines	 		 																											3
line_calc .	 		 																											3
points	 		 																											4
point_calc	 		 						•		•			•	•	•	•	•		•	•		•	•	•			•	•	5
pol_large	 		 						•		•			•	•	•	•	•		•	•		•	•	•			•	•	7
pol_small	 	•	 	•				•	•					•	•	•	•	•		•	•		•	•	•	•		•	•	7
																														8

Index

areal_calc

Description

Computes three different summary statistics: (1) TotalArea total area of each polygon; (2) AreaCovered area covered by a multipolygon object within a high order polygon; and, (3) Ratio ratio between AreaCovered and TotalArea i.e. ratio between an area covered by a given set of features and total area of a higher-order geography polygon.

Usage

```
areal_calc(polygon_layer, higher_geo_lay, unique_id_code, crs)
```

Arguments

polygon_layer	multipolygon object of class sf, sfc or sfg.
higher_geo_lay	multipolygon object of class sf, sfc or sfg.
unique_id_code	a string; indicating a unique ID column of higher_geo_lay, used as the summary areas.
crs	coordinate reference system: integer with the EPSG code, or character based on proj4string.

Details

The function requires two sets of polygon data: high-order and low-order geographic polygons

Value

a tibble data frame object containing four columns is returned:

- the unique_id_code of higher_geo_lay
- the total area of each polygon in higher_geo_lay (TotalArea),
- the total area covered by polygon_layer features (AreaCovered),
- the ratio between the total area covered by polygon_layer and total area of higher_geo_lay polygon (Ratio).

Examples

```
## Run areal_calc() using the packages' dummy data sets.
## The data sets are georeferenced on wgs84. However, a planar system is used to measure areas.
## For the examples provided here, points and polygons relate to the United Kingdom.
## So the British National Grid is used.
## Not run:
#outcome <- areal_calc(polygon_layer = pol_small,
#higher_geo_lay = pol_large,
```

lines

```
#unique_id_code = "large_pol_",
#crs = "epsg:27700")
## End(Not run)
```

lines

Line geospatial layer.

Description

Toy dataset of line data.

Usage

lines

Format

A geospatial file of six lines georeferenced in wgs84.

Source

Own dataset.

line_calcLine data calculation

Description

Computes three different summary statistics: (1) TotalArea total area of each polygon; (2) TotalLength total length of a multilinestring object within a polygon (3) Ratio ratio between TotalLength and TotalArea i.e. the ratio between the total length and total area of a higher-order geography polygon.

Usage

```
line_calc(line_layer, higher_geo_lay, unique_id_code, crs)
```

Arguments

line_layer	multilinestring object of class sf, sfc or sfg.
higher_geo_lay	multipologon object of class sf, sfc or sfg.
unique_id_code	a string; indicating a unique ID column of higher_geo_lay, used as the summary areas.
crs	coordinate reference system: integer with the EPSG code, or character based on proj4string.

points

Value

a tibble data frame object containing four columns:

the unique_id_code of higher_geo_lay

the total area of each polygon in higher_geo_lay (TotalArea)

the total length of line_layer features (TotalLength)

the ratio between the total length of line_layer and the the total area of higher_geo_lay polygon (Ratio).

Examples

```
## Run line_calc() using the packages' dummy data sets.
## The data sets are georeferenced on wgs84. However, a planar system is used to measure areas.
## For the examples provided here, points and polygons relate to the United Kingdom.
## So the British National Grid is used.
```

```
## Not run:
#outcome <- line_calc(
# line_layer = lines,
# higher_geo_lay = pol_large,
# unique_id_code = "large_pol_",
# crs = "epsg:27700")
## End(Not run)
```

points

Point geospatial layer.

Description

Toy dataset of point data.

Usage

points

Format

A geospatial file of ten points georeferenced in wgs84.

Source

Own dataset.

point_calc

Description

Computes three different summary statistics: (1) TotalArea total area of each polygon; (2) NoPoints number of multipoint objects within a given polygon; and, (3) Ratio ratio between NoPoints and TotalArea covered within a polygon.

Usage

```
point_calc(
    point_data,
    higher_geo_lay,
    unique_id_code,
    class_col,
    crs,
    total_points = TRUE
)
```

Arguments

point_data	multipoint object of class sf, sfc or sfg.
higher_geo_lay	multipolygon object of class sf, sfc or sfg.
unique_id_code	a string; indicating a unique ID column of higher_geo_lay, used as the summary areas.
class_col	a string; indicating a column name for point_data containing information on a target point classification. This is used when total_points = FALSE.
crs	coordinate reference system: integer with the EPSG code, or character based on proj4string.
total_points	logical; if the target is to measure the total number of points set to TRUE, by setting to FALSE, it returns the total number of points by class. If missing, it defaults to TRUE.

Details

The function requires two sets of data: a layer of geographic polygons, and a layer of points

If points have been categorised into classes, the function can return the same summary measures for each class if total_points = FALSE by specifying the column that contains the classification in class_col

if total_points = TRUE: A tibble data frame objects containing four columns is returned:

- the unique_id_code of higher_geo_lay
- the total area of each polygon in higher_geo_lay (TotalArea)
- the total number of point features point_data (NoPoints), and
- the ratio between the total number of point features point_data and the total area of higher_geo_lay polygon (Ratio).

if total_points = FALSE: A list of three tibble data frame objects is returned.

- The object PointsLong contains three columns: the unique_id_code of higher_geo_lay, the class_col of point_data, the number of point features point_data by class (NoPoints), the total area of each polygon in higher_geo_lay (TotalArea) and the ratio between the number of point features by class point_data and the the total area of higher_geo_lay polygon (Ratio).
- The object PointsCountWide: Returns the point counts of PointsLong by unique_id_code and class_col in a wide format.
- The object PointsRatioWide: Returns the ratio of PointsLong by unique_id_code and class_col in a wide format.

Examples

```
## Run point_calc() using the packages' dummy data sets.
## The data sets are georeferenced on wgs84. However, a planar system is used to measure areas.
## For the examples provided here, points and polygons relate to the United Kingdom.
## So the British National Grid is used.
```

```
## Not run:
## This example returns the total points count and ratio
# outcome1 <- point_calc(
# point_data = points,
# higher_geo_lay = pol_large,
# unique_id_code = "large_pol_",
# crs = "epsg:27700",
```

```
# total_points = TRUE)
```

```
## This example returns the points count and ratio by class
# outcome2 <- point_calc(
# point_data = points,
# higher_geo_lay = pol_large,
# unique_id_code = "large_pol_",
# class_col = "class_name",
# crs = "epsg:27700",
# total_points = FALSE)
## End(Not run)
```

pol_large

Description

Toy dataset of polygon data.

Usage

pol_large

Format

A geospatial file of three polygons georeferenced in wgs84.

Source

Own dataset.

pol_small

Small polygons geospatial layer.

Description

Toy dataset of polygon data.

Usage

pol_small

Format

A geospatial file of eight polygons georeferenced in wgs84.

Source

Own dataset.

Index

* datasets lines, 3 points, 4 pol_large, 7 pol_small, 7 areal_calc, 2 line_calc, 3 lines, 3 point_calc, 5 points, 4 pol_large, 7 pol_small, 7